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Summary of last lecture

I Described coordinated courses, exams, homeworks, quizzes,
and grading.

I Defined four common sets of numbers: N (the natural
numbers), Z (the integers), Q (the rational numbers), and R
(the real numbers).

I Described exponential functions, working our way up from an

when n ∈ N through ax when x ∈ R.

I Described the graphs of the functions ax and a−x , and noticed
some commonalities in these graphs.

I Defined the number e as the unique number so that the
tangent line to the graph y = ex at (0, 1) has slope 1.

I Homework Due Monday: Read Ch. 1 of Stewart, do
problems §1.5: 2, 4, 7, 15 and §1.6: 5 - 8, 29, 30.
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Domain and codomain

Recall that a function is a rule for associating a single output in a
set C to each input in a set D. (This is the vertical line test.)

The set D is called the domain of the function, and the set C is
called the codomain of the function.

To denote that f is a function with domain D and codomain C we
write f : D → C .
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Example
The greatest integer function, denoted [[x ]], returns the larger
integer less than or equal to x . For instance [[2.34]] = 2, and
[[−3.78]] = −4.

The domain of this function is R, but because we can only ever
hope to get integers out of the function, the codomain is Z.
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Examples

Function Domain Codomain Notation
f (x) = [[x ]] R Z f : R→ Z

g(x) = x2 R R g : R→ R

h(x) =
√

x [0,∞) R h : [0,∞)→ R

k(x) = 1√
x+2

(−2,∞) R k : (−2,∞)→ R

`(z) = (z + 2)−
1/2 (−2,∞) R ` : (−2,∞)→ R

Notice that the function is defined for everything in the domain,
but does not necessarily hit every value in the codomain. E.g.,
g(x) = x2 is never negative; h(x) =

√
x is also never negative, by

convention.
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A convention
The function h(x) =

√
x is always positive, but this is by

convention. The square root of x ,
√

x , should be the number y
such that y2 = x . If x > 0, then there are always two y values
satisfying y2 = x . For example, if y2 = 4, then y = ±2.



A convention

Functions can only have one output value, though, so for
√

x to be
a function, we must restrict ourselves to either the positive or
negative square roots. By convention, the symbol

√
x will always

mean the positive square root. If we want the negative root, we
will explicitly write −

√
x .

Important Observation:
√

x2 = |x |.
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The range of a function

The codomain of a function f (x) is the set of all possible outputs
of the function.

The range of a function f (x) is the set of all values in the
codomain that are actually obtained. For example, the range of
g(x) =

√
x is [0,∞): these are the only values will ever get out of√

x .
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The vertical line test

The graph of a function f (x) – i.e., the set of all (x , y)-pairs
satisfying y = f (x) – always satisfies the vertical line test because
exactly one output is associated with each input.

However, the same output could occur multiple times.
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One-to-one
In the event that every value in the range occurs for exactly one
input value, we say the function is one-to-one (sometimes denoted
1-1). The graphs of one-to-one functions pass both the vertical
and horizontal line test.

Example:
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Inverse functions

One-to-one functions are special because they are invertible. That
means, if y = f (x), then we can find a function g that satisfies
x = g(y).

I.e., inverse functions “undo” one another.

Example: If f (x) = 3
√

x , then g(x) = x3 is its inverse. E.g.,
−3 = f (−27), and −27 = g(−3): f (g(−3)) = −3 and
g(f (−27)) = −27.

Example: If f (x) = 3x + 2, then g(x) = x−2
3 is its inverse. E.g.,

8 = f (2), and 2 = g(8): f (g(8)) = 8 and g(f (2)) = 2.



Inverse functions

One-to-one functions are special because they are invertible. That
means, if y = f (x), then we can find a function g that satisfies
x = g(y). I.e., inverse functions “undo” one another.

Example: If f (x) = 3
√

x , then g(x) = x3 is its inverse. E.g.,
−3 = f (−27), and −27 = g(−3): f (g(−3)) = −3 and
g(f (−27)) = −27.

Example: If f (x) = 3x + 2, then g(x) = x−2
3 is its inverse. E.g.,

8 = f (2), and 2 = g(8): f (g(8)) = 8 and g(f (2)) = 2.



Inverse functions

One-to-one functions are special because they are invertible. That
means, if y = f (x), then we can find a function g that satisfies
x = g(y). I.e., inverse functions “undo” one another.

Example: If f (x) = 3
√

x , then g(x) = x3 is its inverse. E.g.,
−3 = f (−27), and −27 = g(−3): f (g(−3)) = −3 and
g(f (−27)) = −27.

Example: If f (x) = 3x + 2, then g(x) = x−2
3 is its inverse. E.g.,

8 = f (2), and 2 = g(8): f (g(8)) = 8 and g(f (2)) = 2.



Inverse functions

One-to-one functions are special because they are invertible. That
means, if y = f (x), then we can find a function g that satisfies
x = g(y). I.e., inverse functions “undo” one another.

Example: If f (x) = 3
√

x , then g(x) = x3 is its inverse. E.g.,
−3 = f (−27), and −27 = g(−3): f (g(−3)) = −3 and
g(f (−27)) = −27.

Example: If f (x) = 3x + 2, then g(x) = x−2
3 is its inverse. E.g.,

8 = f (2), and 2 = g(8): f (g(8)) = 8 and g(f (2)) = 2.



Inverse functions

If f : D → C is a one-to-one function with range R, then its
inverse is usually denoted f −1 and is a function from R back to D,
f −1 : R → D.

Warning: f −1 does not mean f raised to the −1! It is just a
notational convention that means “the inverse of f .” If you
want to actually raise a function to −1, write it as (f (x))−1.
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f −1(x) 6= (f (x))−1

If f (x) = x3, then f −1(x) = 3
√

x while (f (x))−1 = x−3.

f −1(x) = 3
√

x (f (x))−1 = x−3



Inverse functions

The defining property of the inverse function f −1 is that it
“undoes” f . More precisely, f −1 is the unique function satisfying
the following two equations:

f
(
f −1(x)

)
= x

f −1 (f (x)) = x

Another way to say this is that if y = f (x), then x = f −1(y). The
inverse switches the roles of x and y .

Notice that the domain of f is the range of f −1, and the domain
of f −1 is the range of f .
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Graphs of inverse functions

Since the inverse function switches the role of x and y , there is an
easy graphical description of inverse functions: the graph of f −1 is
the graph of f but reflected about the line y = x .
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Trying to invert a non-invertible function
Notice that if a function f is not one-to-one, then its graph
reflected about y = x is not a function! This is another way of
thinking about one-to-one and invertible functions: if a graph’s
reflection around y = x does not pass the vertical line test (i.e.,
isn’t the graph of a function), then the originally function is not
one-to-one and so not invertible.
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Inverse functions

In most situations you can solve for the inverse function using the
following procedure:

1. Write down the equation y = f (x)

2. Solve for x , giving an equation
x = [some expression involving y ].

3. Swap x and y to get an equation
y = [some expression involving x ].

4. The expression on the right-hand side, involving x ’s, is the
inverse function.



Example
Example: Calculate the inverse of f (x) = x3 − 5.
Solution:

1. Write y = f (x):
y = x3 − 5.

2. Solve for x :

y = x3 − 5

=⇒ y + 5 = x3

=⇒ 3
√

y + 5 = x

=⇒ x = 3
√

y + 5

3. Swap x and y :
y = 3
√

x + 5

4. The inverse is
f −1(x) = 3

√
x + 5.
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Calculating inverses

Why does this procedure work?

Keep in mind the defining property for an inverse function is
f −1(f (x)) = x .

If y = f (x), we need f −1(y) = x , which just means we have solved
for x : we have x by itself on one side of the equation, and an
expression involving y ’s on the other side.

The step where we swap x and y is simply putting the equation
into the more familiar “y = some function of x” notation.
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=⇒ x(y − 3) = 1 + 2y

=⇒ x =
1 + 2y

y − 3
.
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Example (continued)

3. Swapping the x ’s and y ’s, we have that the inverse of

g(x) =
3x + 1

x − 2

which is

g−1(x) =
1 + 2x

x − 3
.



Inverse trig functions

Notice that the six trig functions (sin(x), cos(x), tan(x), sec(x),
csc(x), and tan(x)) are not one-to-one, and so are not invertible.

These functions do become invertible if we restrict their domains
so that the graphs pass the horizontal line test. This is easiest to
explain by example...
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Restricting the domain to make sin(x) one-to-one



Restricting the domain to make cos(x) one-to-one



Domains and ranges of inverse trig functions

Function Domain Range
arcsin [−1, 1] [−π/2, π/2]

arccos [−1, 1] [0, π]

arctan R (−π/2, π/2)

arcsec (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]

arccsc [1,∞) (0, π/2]

arccot (−∞,∞) (0, π)



Logarithms

If a > 0, then the function f (x) = ax is one-to-one, and so it must
have an inverse. Like the trigonometric functions, this inverse does
not have a nice, closed form.

The inverse of ax is called the logarithm with base a and is
denoted loga(x).

Note this means the logarithm and exponential satisfy the
following two equations:

loga (ax) = x

aloga(x) = x .

Another way to say the same thing: if y = loga(x), then ay = x .
For example, log2(32) = 5 because 25 = 32. Similarly,
log7(49) = 2 since 72 = 49.
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Graphs of logarithms

The graph of a logarithmic function is easy to determine if you
know what the corresponding exponential function looks like.

Notice that loga(x) is not defined if x ≤ 0! If you see loga(0) or
loga(−3) in one of your answers, then you’ve made a mistake
somewhere!
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Properties of exponentials

Recall that exponential functions satisfied five important
properties:

(i) a0 = 1

(ii) ax · ay = ax+y .

(iii) ax

ay = ax−y

(iv) (ax)y = axy

(v) (ab)x = ax · bx .

Using these properties, we can show that loga(x) must satisfy five
similar properties. We will prove the first two in class, and leave
the other three as an exercise.
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Properties of logarithms

Theorem
For all positive real numbers a > 0 and b > 0, and for every pair of
real numbers x and y, the following five properties hold:

(i) loga(1) = 0

(ii) loga(xy) = loga(x) + loga(y)

(iii) loga

(
x
y

)
= loga(x)− loga(y)

(iv) loga(xy ) = y · loga(x)

(v) logb(x) =
loga(x)

loga(b)
.

We’ll show properties (i), (ii) and (v), and leave the others as
exercises.
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Properties of logarithms

Property (i): loga(1) = 0.

Recall that loga(x) is the inverse of ax . Thus aloga(x) = x . So,
aloga(1) = 1, and loga(1) must be the power we can raise a to to
get 1. There is only possibility: a0 = 1, and so loga(1) = 0.
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Properties of logarithms

Property (ii) loga(xy) = loga(x) + loga(y).

Using properties of exponents, we know

aloga(x)+loga(y) = aloga(x) · aloga(y)

= xy .

Taking loga of both sides of the equation gives the result:

aloga(x)+loga(y) = xy

=⇒ loga

(
aloga(x)+loga(y)

)
= loga(xy)

=⇒ loga(x) + loga(y) = loga(xy).
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Properties of logarithms

Property (v) logb(x) =
loga(x)

loga(b)
.

We know blogb(x) = x . Taking loga of both sides of the equation
tells us loga(blogb(x)) = loga(x). By property (iv) (which we have
not shown; try to prove it on your own), we have

logb(x) · loga(b) = loga(x).

Solving for logb(x) gives the result.

Example:

log3(243) =
log10(243)

log10(3)

= 5
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The natural log

As the function ex comes up all the time in calculus, its inverse,
loge(x) comes up all the time as well. For this reason we give
loge(x) a special name and some special notation:

loge(x) is called
the natural logarithm and is denoted ln(x).

So, ln(x) and ex satisfy the following two equations:

ln (ex) = x

e ln(x) = x .
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Homework

1. Due Monday, 8/25:

I Read Ch. 1 of Stewart
I Stewart §1.5: 2, 4, 7, 15
I Stewart §1.6: 5 - 8, 29, 30
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