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Summary of last lecture

I Defined functions, domain, codomain, range, and introduced
the f : D → C notation.

I Defined one-to-one functions and the horizontal line test;
described the relationship between one-to-one functions and
invertibility.

I If f is one-to-one with domain D and range R, then its inverse
f −1 has domain R and range D (inverses switch the role of
input and output).

I The two fundamental equations of invertible functions:

f
(
f −1(x)

)
= x

f −1 (f (x)) = x

I Gave an algorithm for determining the inverse of a given
one-to-one function.



Summary of last lecture

I The six trig functions are not one-to-one, and so not
invertible, but they become invertible if we restrict their
domains.

I Each exponential function f (x) = ax , for a > 0 and a 6= 1, is
one-to-one, and its inverse is denoted f −1(x) = loga(x).

I Five properties of logarithms, coming from the five properties
of exponentials and the fundamental equations of inverses.

I ln(x) = loge(x) is the natural log.



The basic idea of calculus

Everything in calculus boils down to the following simple idea:

If you want to calculate some quantity but don’t know
how, then approximate that quantity with something you
do know how to calculate; then find a way to improve
your approximation.

This is a theme you will see over and over again in calculus, and
even though it’s easy to lose sight of this basic idea, it is lurking in
the background of everything you do.



Tangent lines
Motivating Problem: Calculate the equation of the line tangent
to the graph y = f (x) at the point (x0, f (x0)).



Tangent lines
Motivating Problem: Calculate the equation of the line tangent
to the graph y = f (x) at the point (x0, f (x0)).



Tangent lines
Solution: Calculate the secant line through the points (x0, f (x0))
and (x1, f (x1)) as an approximation. Then move x1 closer to x0.
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Average velocity

Another motivating problem has to do with calculating velocities.

Suppose a car travels 110 miles over a period of 2 hours. What
was the car’s velocity?

If you said 55 miles-per-hour, you’re only half-right. If you drove
from Clemson to Charlotte over the course of two hours, you
probably aren’t driving 55 mph the whole time: you speed up and
slow down and stop and start again, over and over.

The 55 miles-per-hour above is the average velocity of the car, and
represents what your velocity would be if the velocity was constant
for the entire drive.



Average velocity

In general, if a body moves a distance of D over a time T then the
body’s average velocity is

vavg =
D

T
.

(Note: If you are given units for distance and time, then your
answer to a velocity question should include the appropriate units
as well.)



Average velocity

For our purposes, we will usually think of motion as occurring on
the real line.

We will think of a body starting from position x0 at time t0 and
moving to position x1 at time t1. The average velocity is then

vavg =
x1 − x0
t1 − t0

=
∆x

∆t
.

We use the symbol ∆ to mean the change in the variable.



Average velocity

In the animation below, the position of the particle at time t is
given by f (t) = t2/25, and the animation takes a total of 10
seconds.
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The average velocity of the particle during this time is

vavg =
x1 − x0
t1 − t0

=
102/25− 02/25
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Average velocity

In the animation below, the position of the particle at time t is
given by f (t) = sin (πt/7), and the animation takes a total of 7
seconds.

0 1

What’s the average velocity of the particle?



Average velocity

In the animation below, the position of the particle at time t is
given by f (t) = sin (3πt/14), and the animation takes a total of 7
seconds.
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The average velocity of the particle during this time is

vavg =
sin (3π/2)− sin (0)
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=
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The problem with average velocity

Notice that average velocity ignores a lot of information about the
motion of the particle. If the average velocity is zero, you don’t
know if the particle ever moved at all: it may have moved and
come back to its starting point, or it may have stayed still.

One way of getting more information about how exactly the
particle moves is to calculate its instantaneous velocity at each
moment in time.

Now we have a slight problem: how can we go about calculating
the velocity at an instant in time? Is this even an idea that makes
sense?



Instantaneous velocity

Calculating instantaneous velocity seems like a hard problem at
first glance, but we can actually do these calculations by applying
the basic idea of calculus mentioned earlier.

We can approximate instantaneous velocity with something easier
which we understand: average velocity, over very short intervals of
time. To get better approximations, we look at average velocities
over smaller and smaller portions of time.



The idea of a limit

The main idea in calculus is to approximate difficult-to-calculate
quantities with easier-to-calculate quantities and then make the
approximation “better.”

But when do we stop? When can we stop improving our
approximations and say we know what the true value is supposed
to be?

The main technical tool for doing this is called a limit, and limits
make the notion of “one quantity getting closer to another
quantity” precise.

We’ll explain limits slowly, starting off by simply looking at some
graphs and talking about limits in a näıve, hand-wavy way. Later
we will make the notion of limit very precise, but first it will be
good to get some intuition for what a limit is.



The idea of a limit

A limit tells us that the outputs of a function get very close to a
specific value as the inputs get very close to some value. This idea
is easiest to explain by looking at some specific examples.

We begin with a simple function, f (x) = x2−4
x−2 .

1 1.5 2 2.5 3
3

3.5

4

4.5

5



Limits

The numerator of this function may be factored, giving

f (x) =
x2 − 4

x − 2
=

(x + 2)(x − 2)

x − 2
.

Notice this function is undefined at x = 2, but equals x + 2
everywhere else: everywhere except x = 2, the x − 2 in the
numerator and denominator cancel.

The function is undefined at x = 2 because we have division by
zero: 4·0

0 = 0
0 is undefined.

The domain of this function is (−∞, 2) ∪ (2,∞).



Limits

Because f (x) = x2−4
x−2 equals x + 2 everywhere except at x = 2,

when we plug inputs very close to x = 2 into f , we get outputs
which are very close 4.

Notice that we never actually plug in 2, and we never actually get
out a 4, but we get outputs very, very, very close to 4 by plugging
in inputs very, very, very close to 2.

We express this fact that inputs very close to 2 give outputs very
close to 4 by saying “the limit as x goes to 2 of f (x) equals 4.”

Notationally this is written as

lim
x→2

f (x) = 4.



Limits

In general, we write
lim
x→a

f (x) = L

if the outputs of the function f (x) get arbitrarily close to L as the
inputs x get arbitrarily close to a.

(We will make this idea of “arbitrarily close” precise later, but for
right now, just think of that f (x) gets very, very, very close to L
when x is very, very, very close to a.)



Limits from graphs

Many times when discussing limits, it is useful to have graphs to
look at: we can usually guess what the limit should be based on
the graph.

There is a technical way to actually calculate limits and we will
talk about that later, but for the time being let’s just look at some
pictures to get some intuition for limits.



Example

What is the limit of f (x) = sin(x)
x as x goes to 0?
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Even though this function is undefined at x = 0, the outputs of the
function get very close to 1 (they never actually get to 1, however),

as x gets very close to 1. So the limit as x goes to 0 of sin(x)
x is 1,

lim
x→0

sin(x)

x
= 1.



Example

What is the limit of f (x) = sin(x)
x as x goes to π?
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As x gets very close to π, sin(x)
x gets very close to 0. In this

particular case, we actually hit 0 and can actually plug in x = π.

The limit as x goes to π of sin(x)
x is 0,

lim
x→π

sin(x)

x
= 0.



Example

What is the limit of the following function?
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f (x) =

{ √
x if x 6= 2

1 if x = 2



Example

In the case of the function on the previous slide,

f (x) =

{ √
x if x 6= 2

1 if x = 2

the outputs of f (x) get very close to
√

2 as x gets close to 2.

lim
x→2

f (x) =
√

2.

The fact that f (2) = 1 is irrelevant!

With limits, what is important is what the function does near a
point, not what happens at the actual point.



Caution!

The value of limx→a f (x) is not necessarily the same as f (a). In
particular, f does not need to be defined at x = a for the limit to
make sense, but even if f (a) exists it may be different from
limx→a f (x)!.



Non-existence
Consider the function sin (1/x). How should we make sense of
lim
x→0

sin (1/x)?
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Non-existence
Consider the function sin (1/x). How should we make sense of
lim
x→0

sin (1/x)?
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Non-existence

The problem with sin (1/x) is that it oscillates back and forth
between −1 and 1 infinitely-many times as x approaches 0. That
is, the function is not getting close to any one particular value.

In situations such as this we say the limit does not exist, which we
will usually abbreviate DNE. In this example we would write

lim
x→0

sin (1/x) DNE.



Notational remark

When the limit does not exist we simply write “DNE” next to the
limit, and not “= DNE.” Here DNE just means “does not exist,”
and is not a numerical quantity: writing “equals does not exist”
does not make any sense.

Right Wrong
lim
x→a

f (x) DNE lim
x→a

f (x) = DNE

If you write “= DNE” on an assignment, you will lose points!



One-sided limits

Consider the function below.
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Notice the limit as x approaches 1 of f (x) does not exist: the
function does not get close to any one value.



One-sided limits

However, if we only saw the right-hand side of the graph,
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then we would be comfortable saying the limit existed and equaled
1.



One-sided limits

Similarly, if we only saw the left-hand side of the graph,
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we would be comfortable saying the limit existed and equaled −1.



One-sided limits

In situations such as these, we say the function has a right-hand
limit and a left-hand limit.

The right-hand limit is denoted lim
x→a+

f (x), and the left-hand limit

is denoted lim
x→a−

f (x).

In our previous example we have

lim
x→1+

f (x) = 1, and lim
x→1−

f (x) = −1.



One-sided limits

In general,
lim

x→a+
f (x) = L

if the outputs of the function f (x) get arbitrarily close to L as the
inputs x get arbitrarily close to a from the right (i.e., are larger
than a).

Similarly,
lim

x→a−
f (x) = L

if the outputs of the function f (x) get arbitrarily close to L as the
inputs x get arbitrarily close to a from the left (i.e., are smaller
than a).



Connecting one-sided and two-sided limits

There is a connection between the one-sided limits (i.e., the left-
and right-hand limits) and the “usual” limit, which is sometimes
called the two-sided limit.

Theorem
The two-sided limit of f (x) at x = a exists and equals L
( lim
x→a

f (x) = L) if and only if both one-sided limits exist at x = a

and equal L (i.e., lim
x→a+

f (x) = lim
x→a−

f (x) = L).

This factoid might seem a little silly right now, but will be useful
several times in the semester. The will be helpful, in particular, for
calculating limits of piecewise functions.



Connecting one-sided and two-sided limits

Another way of writing this theorem:

If lim
x→a

f (x) = L, then

lim
x→a+

f (x) = L and lim
x→a−

f (x) = L

If lim
x→a+

f (x) = L and lim
x→a−

f (x) = L , then

lim
x→a

f (x) = L

This is what the if and only if (sometimes abbreviated iff) in the
theorem means.

A iff B means that A implies B and B implies A.



Connecting one-sided and two-sided limits

An important corollary of this theorem is the following: if
lim

x→a+
f (x) 6= lim

x→a−
f (x), then lim

x→a
f (x) DNE.

This is one of the basic tricks for showing that a (two-sided) limit
does not exist: show the one-sided limits are not the same.



Infinite limits

For some functions f (x), as x approaches a the value of f (x) gets
arbitrarily large.
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f (x) =
∣∣∣ 1
x−3

∣∣∣
When this happens we say the limit goes to infinity and write
lim
x→a

f (x) =∞.



Infinite limits

If instead f (x) gets arbitrarily negative, we write lim
x→a

f (x) = −∞.

1 2 3 4

-100

-80

-60

-40

-20

f (x) =
∣∣∣ 1
x−3

∣∣∣



Infinite limits
It could happen that the limit from one side approaches ∞ while
the limit from the other side approaches −∞.
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f (x) = 1/x

Notice when in this case we have

lim
x→0+

1

x
=∞, lim

x→0−

1

x
= −∞, and lim

x→0

1

x
DNE



Vertical asymptotes

If any of the limits of f (x) at x = a (the two-sided limit, or either
of the one-sided limits) equals ±∞, then we say f (x) has a vertical
asymptote at x = a.
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The function graphed above has three vertical asymptotes.



Homework

1. Due Friday, 8/29: Complete the following exercises in
Stewart:

I Read §2.1 and §2.2 in Stewart.
I In §2.1: 2, 5, 7, 8.
I In §2.2: 1, 2, 4, 5, 11, 15.
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