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Lecture 4
Limit Laws
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Summary of last lecture

I The basic idea of calculus: calculate hard quantities by
approximating with easier ones.

I Tangent lines and instantaneous velocity.

I The idea of a limit.

I When limits DNE.

I One-sided limits.

I Infinite limits and vertical asymptotes

I Homework: Read §2.1 - 2.2 in Stewart. Exercises from 2.1: 2,
5, 7, 8. Exercises from 2.2: 1, 2, 4, 5, 11, 15.
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Motivation

Last time we described limits by looking at graphs. Now we want
to calculate limits “algebraically,” meaning we want to have some
rules for manipulating equations to calculate limits.

The way we will do this is by describing the limits of some
easy-to-understand functions, then giving rules for calculating the
limits of new functions built from old ones (e.g., sums and
products). By the end of the lecture we will know how to calculate
limits for a large family of functions.
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Two easy functions
To get started, we consider the limits of the two simplest types of
functions: constants, and the identity.
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Let c ∈ R be any real number. Then for every a,

lim
x→a

c = c.
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The identity
The identity function is simply the function f (x) = x : this is the
function that spits out whatever you give it.
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Combining functions

We have two very simple types of functions at our desposal, but
we can combine these two functions in various ways to get lots of
other, more interesting functions.

Just like we can add, subtract, multiply, and divide numbers, we
can add, subtract, multiply, and divide functions: we just do the
operation (addition, subtraction, ...) pointwise. For example, to
add two functions f and g together, we just define

(f + g)(x) = f (x) + g(x),

and similarly for other operations.

Notice functions like 3x7 − 4x3 + 2x and 5x+3
x3+9

can be built from
adding, multiplying, and dividing the two functions above
(constants and the identity) multiple times.
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Limit laws

We have several limit laws which tell us how to calculate limits of
functions built in this way (adding, subtracting, ...), and they are
about as simple as you could hope for. We’ll mention each one at
a time and give an example.



Limit of a sum

Theorem
The limit of a sum is the sum of the limits, provided both limits
exist. That is,

lim
x→a

[f (x) + g(x)] = lim
x→a

f (x) + lim
x→a

g(x),

assuming both lim
x→a

f (x) and lim
x→a

g(x) exist, and are not ±∞.

Example:

lim
x→7

[4 + x ]

= lim
x→7

4 + lim
x→7

x

= 4 + 7

= 11
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Limit of a difference

Theorem
The limit of a difference is the difference of the limits, provided
both limits exist. That is,

lim
x→a

[f (x)− g(x)] = lim
x→a

f (x)− lim
x→a

g(x),

assuming both lim
x→a

f (x) and lim
x→a
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[x − 5]
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x − lim
x→3

5

= 3− 5

= − 2
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Limit of a product

Theorem
The limit of a product is the product of the limits, provided both
limits exist. That is,

lim
x→a

[f (x) · g(x)] =
(

lim
x→a

f (x)
)
·
(

lim
x→a

g(x)
)
,

assuming both lim
x→a

f (x) and lim
x→a

g(x) exist.

Example:

lim
x→−1

2x

=

(
lim

x→−1
2

)
·
(

lim
x→−1

x

)
= 2 · (−1)

= − 2
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Limits of polynomials

Notice the limit laws for products extends to powers of x :

lim
x→a

xn = lim
x→a

x · x · · · x︸ ︷︷ ︸
n times
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x
)
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n times

= a · a · · · a︸ ︷︷ ︸
n times

= an
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Limits of polynomials
Now we can use the three limit laws above to show that the limit
of a polynomial as x approaches a is just the polynomial evaluated
at a:

Let f (x) = 3x2 − 7x + 2.

lim
x→2

f (x) = lim
x→2

(
3x2 − 7x + 2

)

= lim
x→2

(
3x2
)
− lim

x→a
(7x) + lim

x→a
2

=
(

lim
x→2

3
)
·
(

lim
x→2

x2
)
−
(

lim
x→2

7
)
·
(

lim
x→2

x
)

+
(

lim
x→2

2
)

= 3 · 22 − 7 · 2 + 2

= 0

= f (2)
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Limits of polynomials

Theorem
If f (x) is a polynomial (i.e., a function of the form

f (x) = cnxn + cn−1xn−1 + cn−2xn−2 + · · ·+ c2x2 + c1x + c0

where cn, cn−1, ..., c1, c0 ∈ R and n is a non-negative integer), then
the limit of f (x) as x goes to a exists and

lim
x→a

f (x) = f (a).



Limits of quotients

Theorem
The limit of a quotient is the quotient of limits, provided both
limits exist and the limit of the denominator is not zero. That is,

lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)

if lim
x→a

f (x) exists, lim
x→a

g(x) exists, and lim
x→a

g(x) 6= 0.

Example:

lim
x→2

3

x
=

lim
x→2

3

lim
x→2

x

=
3

2
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Rational functions

A rational function is a ratio of polynomials, e.g.

17x12 − 9x5 + 32x3 − 21

x3 − 3x2
.

The above laws tell us that to evaluate the limit of a rational
function, all we need to do is evaluate the function.

Theorem
Let f (x) be a rational function (i.e., f (x) = g(x)

h(x) where g and h

are polynomials). Then

lim
x→a

f (x) = f (a).
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Rational functions

Example: Let f (x) = 5x3−6x2+2
x4−1 .

lim
x→−3

f (x) = lim
x→−3

5x3 − 6x2 + 2

x4 − 1

=
lim

x→−3

(
5x3 − 6x2 + 2

)
lim

x→−3
(x4 − 1)

=
5 · (−3)3 − 6 · (−3)2 + 2

(−3)4 − 1

=
5 · (−27)− 6 · 9 + 2

81− 1

=
187

80
= f (−3)



Rational functions

Example: Let f (x) = 5x3−6x2+2
x4−1 .

lim
x→−3

f (x) = lim
x→−3

5x3 − 6x2 + 2

x4 − 1

=
lim

x→−3

(
5x3 − 6x2 + 2

)
lim

x→−3
(x4 − 1)

=
5 · (−3)3 − 6 · (−3)2 + 2

(−3)4 − 1

=
5 · (−27)− 6 · 9 + 2

81− 1

=
187

80
= f (−3)



Rational functions

Example: Let f (x) = 5x3−6x2+2
x4−1 .

lim
x→−3

f (x) = lim
x→−3

5x3 − 6x2 + 2

x4 − 1

=
lim

x→−3

(
5x3 − 6x2 + 2

)
lim

x→−3
(x4 − 1)

=
5 · (−3)3 − 6 · (−3)2 + 2

(−3)4 − 1

=
5 · (−27)− 6 · 9 + 2

81− 1

=
187

80
= f (−3)



Rational functions

Example: Let f (x) = 5x3−6x2+2
x4−1 .

lim
x→−3

f (x) = lim
x→−3

5x3 − 6x2 + 2

x4 − 1

=
lim

x→−3

(
5x3 − 6x2 + 2

)
lim

x→−3
(x4 − 1)

=
5 · (−3)3 − 6 · (−3)2 + 2

(−3)4 − 1

=
5 · (−27)− 6 · 9 + 2

81− 1

=
187

80
= f (−3)



Rational functions

Example: Let f (x) = 5x3−6x2+2
x4−1 .

lim
x→−3

f (x) = lim
x→−3

5x3 − 6x2 + 2

x4 − 1

=
lim

x→−3

(
5x3 − 6x2 + 2

)
lim

x→−3
(x4 − 1)

=
5 · (−3)3 − 6 · (−3)2 + 2

(−3)4 − 1

=
5 · (−27)− 6 · 9 + 2

81− 1

=
187

80
= f (−3)



Limits of roots

Theorem
The limit of the n-th root of a function is the n-th root of the limit
of the function, assuming n ∈ N, and the root “makes sense” (e.g.,
we don’t wind up taking the square root of a negative number).
That is,

lim
x→a

n
√

f (x) = n

√
lim
x→a

f (x)

Example: Let f (x) = x3 + 6x2 − 10x + 5.

lim
x→4

3
√

f (x) = lim
x→4

3
√

x3 + 6x2 − 10x + 5

= 3

√
lim
x→4

(x3 + 6x2 − 10x + 5)

= 3

√
(43 + 6 · 42 − 10 · 4 + 5)

=
3
√

125 = 3
√

f (4)



Limits of roots

Theorem
The limit of the n-th root of a function is the n-th root of the limit
of the function, assuming n ∈ N, and the root “makes sense” (e.g.,
we don’t wind up taking the square root of a negative number).
That is,

lim
x→a

n
√

f (x) = n

√
lim
x→a

f (x)

Example: Let f (x) = x3 + 6x2 − 10x + 5.

lim
x→4

3
√

f (x) = lim
x→4

3
√

x3 + 6x2 − 10x + 5

= 3

√
lim
x→4

(x3 + 6x2 − 10x + 5)

= 3

√
(43 + 6 · 42 − 10 · 4 + 5)

=
3
√

125 = 3
√

f (4)



Notation

When taking the limit of a product, a quotient, or a root, you
don’t need to use any extra parentheses: just place lim

x→a
next to the

product/quotient/root.

When taking the limit or a sum or difference, however, you must
include parentheses or brackets around the quantity you’re taking
the limit of: thinking of the limit as “distributing” over the
sum/difference:

Right Wrong
lim
x→3

(
3x2 + 2x

)
lim
x→3

3x2 + 2x

lim
x→0

[
9x7 − 5

√
4x2 + x

]
lim
x→0

9x7 − 5
√

4x2 + x
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Equality away from a point

Before going any further, let’s remind ourselves of something we
saw in the last lecture: what a function does at x = a is not
important for calculating limx→a f (x). What’s important is what
happens near x = a. The following theorem is the precise way of
stating this.

Theorem
If f (x) = g(x) near a, but f (a) 6= g(a), then

lim
x→a

f (x) = lim
x→a

g(a),

assuming either limit (and hence both limits) exist.
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Equality away from a point

One particular application of this theorem is our first example of
limits yesterday.

Let f (x) = x2−4
x−2 and g(x) = x + 2. Then f (x) = g(x) except at

x = 2: f is undefined at x = 2 because of division by zero. The
above theorem tells us, however

lim
x→2

x2 − 4

x − 2︸ ︷︷ ︸
f (x)

= lim
x→2

(x + 2)︸ ︷︷ ︸
g(x)

= 4.

It’s important that you realize that we aren’t simply factoring
x2 − 4 = (x + 2)(x − 2) and cancelling the x − 2 factors in the
numerator and denominator: we are comparing f (x) to a function
g(x) which is equal everywhere except at x = 2. This is an
important, though very subtle, distinction.



Equality away from a point

One particular application of this theorem is our first example of
limits yesterday.

Let f (x) = x2−4
x−2 and g(x) = x + 2. Then f (x) = g(x) except at

x = 2: f is undefined at x = 2 because of division by zero.

The
above theorem tells us, however

lim
x→2

x2 − 4

x − 2︸ ︷︷ ︸
f (x)

= lim
x→2

(x + 2)︸ ︷︷ ︸
g(x)

= 4.

It’s important that you realize that we aren’t simply factoring
x2 − 4 = (x + 2)(x − 2) and cancelling the x − 2 factors in the
numerator and denominator: we are comparing f (x) to a function
g(x) which is equal everywhere except at x = 2. This is an
important, though very subtle, distinction.



Equality away from a point

One particular application of this theorem is our first example of
limits yesterday.

Let f (x) = x2−4
x−2 and g(x) = x + 2. Then f (x) = g(x) except at

x = 2: f is undefined at x = 2 because of division by zero. The
above theorem tells us, however

lim
x→2

x2 − 4

x − 2︸ ︷︷ ︸
f (x)

= lim
x→2

(x + 2)︸ ︷︷ ︸
g(x)

= 4.

It’s important that you realize that we aren’t simply factoring
x2 − 4 = (x + 2)(x − 2) and cancelling the x − 2 factors in the
numerator and denominator: we are comparing f (x) to a function
g(x) which is equal everywhere except at x = 2. This is an
important, though very subtle, distinction.



Equality away from a point

One particular application of this theorem is our first example of
limits yesterday.

Let f (x) = x2−4
x−2 and g(x) = x + 2. Then f (x) = g(x) except at

x = 2: f is undefined at x = 2 because of division by zero. The
above theorem tells us, however

lim
x→2

x2 − 4

x − 2︸ ︷︷ ︸
f (x)

= lim
x→2

(x + 2)︸ ︷︷ ︸
g(x)

= 4.

It’s important that you realize that we aren’t simply factoring
x2 − 4 = (x + 2)(x − 2) and cancelling the x − 2 factors in the
numerator and denominator: we are comparing f (x) to a function
g(x) which is equal everywhere except at x = 2. This is an
important, though very subtle, distinction.



Some cautions

Now we have enough tools at our disposal to calculate limits of
lots of different types of functions. However, there are some
caveats we need to be aware of.

I Division by zero.

I Piecewise functions.

I Arithmetic with ±∞.

We can deal with each of these situations, but there are some
non-obvious things you have to worry about.
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Division by zero

As mentioned above, we can take a limit of quotients as the
quotient of limits,

lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)

provided both limits exist and lim
x→a

g(x) 6= 0.

However, sometimes the limit lim
x→a

f (x)
g(x) still exists even if

lim
x→a

g(x) = 0: we just can’t use the limit law above to calculate

the limit.

This issue will be very important next week when we talk about
derivatives: derivatives are always expressed as limits of quotients
where the denominator goes to zero.



Division by zero

As mentioned above, we can take a limit of quotients as the
quotient of limits,

lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)

provided both limits exist and lim
x→a

g(x) 6= 0.

However, sometimes the limit lim
x→a

f (x)
g(x) still exists even if

lim
x→a

g(x) = 0: we just can’t use the limit law above to calculate

the limit.

This issue will be very important next week when we talk about
derivatives: derivatives are always expressed as limits of quotients
where the denominator goes to zero.



Division by zero

As mentioned above, we can take a limit of quotients as the
quotient of limits,

lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)

provided both limits exist and lim
x→a

g(x) 6= 0.

However, sometimes the limit lim
x→a

f (x)
g(x) still exists even if

lim
x→a

g(x) = 0: we just can’t use the limit law above to calculate

the limit.

This issue will be very important next week when we talk about
derivatives: derivatives are always expressed as limits of quotients
where the denominator goes to zero.



Division by zero
Example: Calculate the following limit,

lim
x→0

(x + 2)3 − 8

x
.

lim
x→0

(x + 2)3 − 8

x

= lim
x→0

x3 + 6x2 + 12x + 8− 8

x
(binomial theorem)

= lim
x→0

x3 + 6x2 + 12x

x

= lim
x→0

(
x2 + 6x + 12

)
= 12
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Division by zero

Example: Calculate the following limit,

lim
h→0

(x + h)2 − x2

h
.

Notice that in this case the h is what’s approaching 0: the x is not
changing!

lim
h→0

(x + h)2 − x2

h
= lim

h→0

x2 + 2xh + h2 − x2

h

= lim
h→0

2xh + h2

h

= lim
h→0

(2x + h)

= 2x
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One-sided limits

All of the limit laws above, which were originally stated in terms of
two-sided limits, also hold for one-sided limits.

1. lim
x→a±

c = c

2. lim
x→a±

x = a

3. lim
x→a±

(f (x) + g(x)) = lim
x→a±

f (x) + lim
x→a±

g(x)

4. lim
x→a±

(f (x)− g(x)) = lim
x→a±

f (x)− lim
x→a±

g(x)

5. lim
x→a±

f (x) · g(x) =

(
lim

x→a±
f (x)

)
·
(

lim
x→a±

g(x)

)
6. lim

x→a±

f (x)

g(x)
=

limx→a± f (x)

limx→a± g(x)

7. lim
x→a±

n
√

f (x) = n

√
lim

x→a±
f (x)



Piecewise functions

We can now use these limit laws for one-sided limits to calculate
the limits of piecewise functions. The idea is to calculator the left-
and right-hand limits at the point which “join” two pieces of the
function, and check whether or not they are the same thing.

For example, suppose want to calculate the limit of the following
function at x = 1.

0.2 0.4 0.6 0.8 1 1.2 1.4

-0.2

0.2

0.4

0.6

f (x) =

{
x2 − x if x < 1√

x − 1 if x ≥ 1
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Piecewise functions
We calculate the left- and right-hand limits at x = 1.
Left-hand limit:

lim
x→1−

f (x) = lim
x→1−

(
x2 − x

)
= 0

Right-hand limit:

lim
x→1+

f (x) = lim
x→1+

√
x − 1

= 0

Because both one-sided limits agree, we know

lim
x→1

f (x) = 0.
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Piecewise functions

Example: Calculate the limit as x goes to 3 of the following
function:

f (x) =

{
x2 if x > 3
−x if x < 3.

Notice limx→3+ f (x) = 9, while limx→3− f (x) = −3, and so the
limit does not exist.



Piecewise functions

Example: Calculate the limit as x goes to 3 of the following
function:

f (x) =

{
x2 if x > 3
−x if x < 3.

Notice limx→3+ f (x) = 9, while limx→3− f (x) = −3, and so the
limit does not exist.



The squeeze theorem

The squeeze theorem (aka sandwich theorem) gives us a way to
calculate limits of complicated functions by comparing them to
simpler functions. Before stating the squeeze theorem, let’s one
simple observation.

Suppose that f (x) and g(x) are two functions defined near x = a
(a may or may not be in the domain of the functions). Suppose
also that f (x) ≥ g(x) for all x values “near” a. Then

lim
x→a

f (x) ≤ lim
x→a

g(x).

If the outputs of f (x) are always less-than-or-equal-to the outputs
of g(x), then it is impossible for the limit of f to be greater than
the limit of g .
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The squeeze theorem (aka sandwich theorem)

Theorem
Suppose f (x), g(x), and h(x) are three functions defined near
x = a, and suppose for all values of x near a the following
inequalities hold:

f (x) ≤ g(x) ≤ h(x).

If limx→a f (x) = limx→a h(x) = L, then limx→a g(x) = L as well.

The limit of g(x) is sandwiched inbetween the limits of f (x) and
h(x), so if the limits of f and h are the same, then

lim
x→a

f (x) ≤ lim
x→a

g(x) ≤ lim
x→a

h(x)

=⇒ L ≤ lim
x→a

g(x) ≤ L

=⇒ lim
x→a

g(x) = L.
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The squeeze theorem

Example: Calculate the limit as x goes to 0 of the following
function,

cos

(
1

x2

)
·
(
x4 + 6x2

)
.
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The squeeze theorem
Notice that because −1 ≤ cos(x) ≤ 1, for any functions α(x) and
β(x), with β(x) > 0, we have

−β(x) ≤ cos (α(x)) · β(x) ≤ β(x).

− 1 ≤ cos(x) ≤ 1

=⇒ − 1 ≤ cos (α(x)) ≤ 1

=⇒ − β(x) ≤ cos (α(x)) · β(x) ≤ β(x)

This is a very nice observation, which also works with sine, that is
sometimes helpful in finding the sandwiching functions we need to
apply the sandwich theorem.
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The squeeze theorem
Using the observation on the last slide and applying the sandwich
theorem, we have the following:
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Homework

Due Friday, 8/29 :
Complete the following exercises in Stewart:

I Read §2.1 and §2.2 in Stewart.
I In §2.1: 2, 5, 7, 8.
I In §2.2: 1, 2, 4, 5, 11, 15.

Due Monday, 9/1 :

I Read about the binomial theorem on Wikipedia;
know how to expand quantities like (a + b)7

without FOIL-ing.
I Read §2.3 and §2.4 in Stewart.

There will be an in-class quiz on Monday, 9/1.
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