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Summary of last lecture

» Described the e-0 definition of limits:
We say I@ f(x) = L if for every € > O there exists a

d > 0 such that |f(x) — L| < & whenever
0<|x—al <.

» Given a particular g > 0, showed how to determine, for some
simple functions, the ¢ so that 0 < |x — a| < ¢ implies
|f(x) — L| < eo.
Work “backwards” from |f(x) — L| < € to determine
what you think § should be, then verify that
0 < |x — a| < 0 does indeed imply |f(x) — L| < €.

» Used the e-d definition to prove some of the limit laws from
earlier in the week.

> Described the -9 definitions for left- and right-hand limits.

» Described the -6 definition of an infinite limit.
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Motivation

Last week we saw that some functions f(x), like polynomials and
rational functions, satisfied a very nice property:

If a is in the domain of f, then lim f(x) = f(a).

X—a

This property is nice because it makes calculating limits easy.
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Continuity at a point

When this nice property, IiLn f(x) = f(a), is satisfied we say the

function is continuous at the point x = a.

The precise definition requires three conditions hold. We say f(x)
is continuous at x = a if all of the following statements hold:
1. ais in the domain of f (i.e., f(a) is defined),
2. lim f(x) exists, and
X—a
3. lim f(x) = f(a).

X—a

All that this definition is trying to convey is that f(x) can't behave
“wildly" very close to x = a: inputs very close to a give outputs
very close to f(a).



Continuity at a point

At which points below is the function continuous? Why is the
function not continuous (aka discontinuous) at the other points?
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Continuity at a point

The domain of this function is (-2, —1) U (-1, 2).
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Continuity at a point

The function is not continuous at x = —1 because it is not defined
there.
ol
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Continuity at a point

Similarly, the function is not continuous if x > 2 or x < —2 since it
is not defined there.




Continuity at a point

The function is defined at x = 1, but the limit does not exist; and
so the function is not continuous at x = 1.




Continuity at a point

The function is defined at x = —3/2, and the limit lim f(x) exists,
X—a
but it does not equal f (—3/2): the function is not continuous at
x = =3/2.
2,
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Discontinuities

If f is not continuous at a, we say that a is a discontinuity of f.

Discontinuities occur because one of the three conditions in the
definition of continuity at a point fail: Either

1. f is not defined at a,

2. the limit lim f(x) does not exist, or
X—a

3. the function is defined and the limit does exist, but
Iil;n f(x) # f(a).
X a

For the purposes of calculus, we like continuity at a point because
it makes our lives a little easier. It is helpful, then, to know which
points cause us trouble: sometimes we would like to know where a
function is discontinuous.



Discontinuities
Example: Where is the following function discontinuous, and why
is the function discontinuous at those points?
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Discontinuities

Example: Where is the function f(x) = ;21;2‘;

why is the function discontinuous at those points?

discontinuous, and

We know that for rational functions, lim,_,, f(x) = f(a) wherever
f(a) is defined. The only thing that can go wrong, then, is that
f(a) is undefined.

This happens precisely when the denominator is zero. Factoring
the denominator,
x% 4 2x = x(x + 2),

we see the function is discontinuous at x = 0 and at x = —2
because that is where the function is undefined.
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Discontinuities

Discontinuities can be classified as falling into a few different
categories:

> Jump discontinuities
» Infinite discontinuities

» Removable discontinuities

Each of these three types corresponds to one of the three
conditions in the definition of continuity at a point failing.



Jump discontinuities

A jump discontinuity occurs when the graph of the function has a
“break” in it.




Jump discontinuities

More formally, we say that f has a jump discontinuity at x = a if
both the left- and right-hand limits of f at a exist and are finite,
but are not equal.

lim f(x) # lim f(x).

x—a~ x—at



Infinite discontinuities
An infinite discontinuity occurs when the limit of the function at
X = a equals Fo0.
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Removable discontinuities

We say f has a removable discontinuity at x = a if lim f(x) exists,
X—a

but does not equal f(a). This includes both the case when a is in
the domain of f, and the case when it is not.

1 1
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Continuity from the left and right

We say that a function f is continuous from the right at x = a if
1. f(a) is defined,

2. lim f(x) exists, and
x—at

3. lim f(x) = f(a).

x—at

We say that a function f is continuous from the left at x = a if
1. f(a) is defined,

2. lim f(x) exists, and
X—a~
3. lim f(x) = f(a).

X—a—



Continuity from the left or right

Example: Where is the function graphed below continuous from
the left? Where is it continuous from the right? Where it is
continuous?
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Continuity from the left or right

Example: Where is the function graphed below continuous from
the left? Where is it continuous from the right? Where it is
continuous?

0.5

-0.5

EE—

This function is left-continuous everywhere, but is not
right-continuous at any integer. The integers are jump
discontinuities of the function.



Continuity from the left or right

Notice that a function is continuous at x = a if and only if it is
both left- and right-continuous at x = a.

3
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This function is continuous at x = —1 because it is both left- and

right-continuous at x = —1.
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Continuity

We defined continuity at a point earlier in the lecture. In the
special situation that a function is continuous at every point where
it is defined we give the function a special name: continuous.

This might sound confusing because we are using the same word
to express two different ideas:

» continuous at a point: lim f(x) = f(a)
X—a

» continuous: the continuous at a point definition applies at
every point where the function is defined.
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The intuition behind continuity

When we say a function is continuous the intuitive idea is that
small changes in the input of the function, result in small changes
in the output.

That is, if you change x just a little bit, then f(x) can only change
a little bit as well.

The vast majority of functions modeling real-world, physical
phenomena (distance, position, velocity, acceleration, momentum,
kinetic & potential energy, temperature, ...) are continuous.

Throughout your calculus careers, and in any applications of
calculus (physics, engineering, computer science, ...), continuity is
a very desirable property, and sometimes essential assumption, of
most of the functions you will come in contact with.
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Continuity
Luckily, lots of commonly used functions are continuous:
Theorem
All of the following types of functions are continuous:
1. Polynomials
Rational functions
Roots
Trigonometric functions
Inverse trig functions

Exponential functions

No oA~ wDbd

Logarithmic functions

Thus, for each of these types of functions,

lim f(x) = f(a)

X—a

as long as f(a) is defined.



Continuity

By our limit laws from last week, sums, differences, products,
quotients, etc. of continuous functions are continuous.



Continuity

By our limit laws from last week, sums, differences, products,
quotients, etc. of continuous functions are continuous.

Examples: All of the following functions are continuous because
they are “built” from continuous functions:
1. x?+sin(x) — Vxcos(x)

eX
2. arcsec(x) — In(x)

3 I/x+6x3
© tan(x)—4x5+x
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Composition of continuous functions

Theorem
If f and g are two continuous functions, then their composition
f o g (that is, the function f(g(x))) is continuous.

Corollary

If f and g are continuous functions and a is in the domain of f o g
(so g(a) is defined, and f(g(a)) is defined as well, then

lim #(g(x)) = £ lim g(x)) = F(g(2)).

X—a X—a
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The intermediate value theorem

The intermediate value theorem is a simple idea that has many
interesting consequences. Before giving the statement of the
theorem let’s think a little bit about the graphs of continuous
functions whose domains are intervals.

If f(x) is defined for every x € [a, b], then the graph y = f(x) has
no holes or jumps in it: it makes one “continuous” curve.



The intermediate value theorem

This means the graph hits every y-value between f(a) and f(b).
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This is all that the intermediate value theorem says.



The intermediate value theorem

12

10r

In this picture f(1) = 0.5 and f(5) = 13.5. The intermediate value
theorem says that this function hits each value between 0.5 and
13.5 for some x between 1 and 5.



The intermediate value theorem

Theorem
Let f be a continuous function defined on the interval [a, b]. For
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f(x)=D.



The intermediate value theorem

Theorem
Let f be a continuous function defined on the interval [a, b]. For

every D between f(a) and f(b), there exists a x € [a, b] such that
f(x)=D.

The intermediate value theorem seems like a simple observation,
but it implies some very interesting, and non-obvious, facts.



The intermediate value theorem

Application: If you walk from the library bridge, around the
reflection pond, and then over to Starbucks in the University
Union, at some point along the path your elevation will be exactly
the same as the elevation of your starting point on the library
bridge.




The intermediate value theorem

Application: Suppose you have a table whose legs all have the

same length, but the table is placed on uneven ground making the
table wobbly. You can make the table stable by rotating it.

At most you only need to turn the table 90°.
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Pathological examples

Sometimes in mathematics examples that are very strange and
atypical are called pathological, these are usually very
counter-intuitive examples that show you how your intuition can
sometimes lead you astray.

We will consider three such examples which should convince you
there are some very strange functions out there that don't behave
like anything you've ever seen before. (l.e., all of your intuition
goes out the window when considering such functions.)
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A nowhere continuous function

In the examples of functions we've seen thus far, the functions

were continuous at “most” points: there were only finitely-many
discontinuities.

There are functions, however, which are defined for every real
number, but which are not continuous at any point; i.e., every real
number is a discontinuity. Such functions are called nowhere
continuous.

Here's one example of such a function:

F(x) = 1 if x is irrational
“ 1 2 if x is rational



A nowhere continuous function

This function is not continuous because for every a, every L, every
0 < e <1 and for every § > 0, there will be points satisfying
0<|x—a|l<ébut|f(x)—L|l>e.
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A function which is continuous at exactly one point

The following function is continuous at x = 0, but that is the only
point where it's continuous:

AN 0.4¢

if x is irrational
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—x if x is rational



A continuous function with no smooth components

We've seen that the graph of a continuous function can have sharp
edges and corners, but in the examples thus far these corners have
been few and far between?
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A continuous function with no smooth components

We've seen that the graph of a continuous function can have sharp
edges and corners, but in the examples thus far these corners have
been few and far between?

Can the graph of such a function have infinitely many such
corners?

Can the graph of such a function consist entirely of corners?



A continuous function with no smooth components

The answer to both questions is yes: there are bizarre functions
with weird properties like this. One example is the Weierstrass
function plotted below.




Homework

Due Monday, September 8 :

» Read §2.5 in Stewart.
» Homework set listed on the website (will appear
online late Wednesday / early Thursday)
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