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Summary of last lecture

I Described limits at ±∞.

I Gave the precise definition of limx→∞ f (x) = L:

For every ε > 0 there exists an N > 0 such that
|f (x)− L| < ε whenever x > N.

I Mentioned the relationship between horizontal asymptotes
and infinite limits.

I Saw the main technique for calculating limits at infinity for
rational functions: multiply and divide by

1/xn

1/xn where n is the
degree of the denominator.

I Saw some examples to show that you have to be careful when
doing arithmetic with ∞.



Tangent lines
Motivating Problem: Calculate the equation of the line tangent
to the graph y = f (x) at the point (x0, f (x0)).



Tangent lines
Motivating Problem: Calculate the equation of the line tangent
to the graph y = f (x) at the point (x0, f (x0)).



Tangent lines
Solution: Calculate the secant line through the points (x0, f (x0))
and (x1, f (x1)) as an approximation. Then move x1 closer to x0.
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Secant lines

Let’s now make this idea of approximating the tangent line with
secant lines more precise.

Recall that a secant line for a curve y = f (x) is simply a line that
passes through two points on the curve, let’s call these two points
P0 = (x0, y0) and P1 = (x1, y1)

Since y = f (x), the y -coordinate of P0 is y0 = f (x0); thus
P0 = (x0, f (x0)). Similarly, P1 = (x1, f (x1)).



Secant lines

To write down the equation of a line we need two pieces of
information: the slope of the line, and a point the line passes
through.

For our secant line through P0 = (x0, y0) and P1 = (x1, y1) the
slope is

m =
y1 − y0
x1 − x0

=
f (x1)− f (x0)

x1 − x0



Secant lines

Recall that the equation of the line with slope m through the point
P0 = (x0, y0) is

y − y0 = m(x − x0).

The equation of our secant line is thus

y − y0 = m(x − x0)

=⇒ y − f (x0) =
f (x1)− f (x0)

x1 − x0
(x − x0)

=⇒ y =
f (x1)− f (x0)

x1 − x0
(x − x0) + f (x0)



Secant lines
Example: Find the equation of the secant line for the curve
y = x2 + 1 which passes through the points with x-coordinates
x0 = 1 and x1 = 2.
First notice that our points are P0 = (1, 2), and P1 = (2, 5).
The slope of the line is

f (x1)− f (x0)

x1 − x0
=

x2
1 − x2

0

x1 − x0
=

5− 2

2− 1
= 3.

Thus the secant line is

y − f (x0) = m(x − x0)

=⇒ y − 2 = 3(x − 1)

=⇒ y = 3(x − 1) + 2

=⇒ y = 3x − 1.



Secant lines
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Secant lines
Each of our secant lines gives us an approximation of the tangent
line. Our goal now is to make the approximation better, and we do
this by moving our two points closer together.

Notice that if we are approximating the tangent line at (x0, f (x0)),
then we are simply going to move x1 closer to x0.
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Thus in our formula for the secant line, y − f (x0) = m(x − x0), the
only quantity that will change is the slope.



Secant lines

So all we really need to do is understand how the slope is changing.

To make our calculations a little bit easier, let’s suppose we obtain
x1 by moving a distance of h from x0:

x1 = x0 + h.

Note: h may be positive or negative. If h is positive, we move
h-units to the right from x0; if h is negative, we move |h|-units to
the left from x0.

The slope of our secant line is thus

f (x1)− f (x0)

x1 − x0
=

f (x0 + h)− f (x0)

x0 + h − x0

=
f (x0 + h)− f (x0)

h
.



Tangent lines

To obtain the slope of the line tangent to y = f (x) at (x0, f (x0)),
we want to move x1 = x0 + h closer and closer to x0. I.e., we want
to take the limit as h goes to zero:

lim
h→0

f (x0 + h)− f (x0)

h
.

This limit, if it exists, tells us the slope of the tangent line.



Tangent lines
Example: Determine the equations of the line tangent to
y = x2 + 1 at the point (1, 2).
Solution: We first need to find the slope of this line. Here, x0 = 1,
and so we consider the slopes of secant lines through x0 and
x1 = 1 + h.
In this problem, f (x) = x2 + 1. Taking the limit of these slopes as
h goes to zero, we have

lim
h→0

f (1 + h)− f (1)

h
= lim

h→0

[
(1 + h)2 + 1

]
−
[
12 + 1

]
h

= lim
h→0

1 + 2h + h2 + 1− 2

h

= lim
h→0

2h + h2

h



Tangent lines

... = lim
h→0

2h + h2

h

= lim
h→0

(2 + h)

= 2

Thus the equation of the line tangent to y = x2 + 1 at the point
(1, 2) is y − 2 = 2(x − 1) or simply y = 2x .



Tangent lines

Notice that any time we talk about limits, we always have to worry
about whether the limit exists or not; it could be that
lim
h→0

f (x0+h)−f (x0)
h does not exist.

Here’s one example of a function where this may happen: consider
f (x) = |x − 1|+ 1. If we try to determine the tangent line at the
point (1, 1), we will run into trouble:
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lim
h→0+

f (1 + h)− f (1)

h
= 1 lim

h→0−

f (1 + h)− f (1)

h
= −1.



Instantaneous velocity

As another example of using limits of approximations, let’s
determine the instantaneous velocity of a moving object.

Suppose you drop a ball from a height of 100 metres. The height
of the ball t seconds after being dropped is given, in metres, by
f (t) = 100− 4.9t2.

What is the instantaneous velocity of the ball two seconds after
being dropped?



Average velocity
To answer this question, we will approximate the instantaneous
velocity with average velocities over smaller and smaller intervals
of time.

Let’s calculate the average velocity of the ball over the time
interval [2, 2 + h]:

f (2 + h)− f (2)

2 + h − 2
=

[
100− 4.9(2 + h)2

]
−
[
100− 4.9 · 22

]
h

=
100− 4.9 · (4 + 4h + h2)− 100 + 19.6

h

=
−19.6h − 4.9h2

h

= −19.6− 4.9h



Instantaneous velocity

That is, the average velocity of the ball over the time interval
[2, 2 + h] is (−19.6− 4.9h) m

s .

To get the instantaneous velocity, we consider the average
velocities over smaller and smaller intervals of time: I.e., we take
the limit as h goes to zero.

The instantaneous velocity of the ball at time t = 2 seconds is

lim
h→0

f (2 + h)− f (2)

h
= lim

h→0
(−19.6− 4.9h)

= −19.6.

And so, the instantaneous velocity of the ball one second after
being dropped is −19.6m

s .



Instantaneous rates of change

As a slightly different example, suppose that water is being
pumped into an industrial sized, cone shaped kettle. Suppose that
due to the height and radius of the kettle, when g gallons of water
have been pumped into the kettle, the depth of the water
measured in feet is

d(g) =
3

√
12g

π
.

What is the instantaneous rate of change in the depth of the water
when there are already 200 gallons of water?

We will find this instantaneous rate of change by taking the limit
of the average rates of change.



Average rate of change

In general, the average rate of change of a function f (x) over the
interval [a, b] is

f (b)− f (a)

b − a
.

In the problem described on the previous slide we are considering
the rate of change in the depth of water as we pour more water
into the kettle, supposing there are already 200 gallons of water in
the kettle.

That is, we will consider the average rate of change of d(g) over
intervals of the form [200, 200 + h]:

d(200 + h)− d(200)

200 + h − 200
=

d(200 + h)− d(200)

h
.

Notice this average rate of change has the units feet per gallon.



Instantaneous rate of change

The instantaneous rate of change of a function f (x) at x = a is
the limit as h goes to zero of the average rates of change of f over
the interval [a, a + h].

lim
h→0

f (a + h)− f (a)

h
.

For the problem at hand, we thus need to calculate

lim
h→0

d(200 + h)− d(200)

h
.



Instantaneous rate of change

Our instantaneous rate of change in the depth of the water in the
kettle, when there is already 200 gallons in the kettle is

lim
h→0

d(200 + h)− d(200)

h
= lim

h→0

3

√
12(200+h)

π − 3

√
2400
π

h

= lim
h→0

3

√
2400
π −

12h
π −

3

√
2400
π

h

= (algebra to rewrite as a difference of cubes)

=
1

3

(
3

√
2400

π

)−2/3

· 12

π

feet

gallon



Derivatives

All of the examples above follow a familiar pattern: whether we are
calculating tangent lines, instantaneous velocities, or instantaneous
rates of change, we evaluate a limit of the form

lim
h→0

f (a + h)− f (a)

h
.

These types of limits come up very frequently in mathematics and
physics and have a special name. We call the quantity
lim
h→0

f (a+h)−f (a)
h , if this limit exists, the derivative of f (x) at x = a.

We denote this limit (if it exists) by f ′(a):

f ′(a) = lim
h→0

f (a + h)− f (a)

h
.



Derivatives
Example: Let f (x) = x2 + 2x . Calculate the derivative f ′(−1).

Solution: In this problem the value of a is −1, and we simply
apply the definition of the derivative and calculate the limit.

f ′(−1) = lim
h→0

f (−1 + h)− f (−1)

h

= lim
h→0

[
(−1 + h)2 + 2(−1 + h)

]
−
[
(−1)2 + 2(−1)

]
h

= lim
h→0

[
(−1)2 − 2h + h2

]
+ [−2 + 2h]− [1− 2]

h

= lim
h→0

h2

h

= lim
h→0

h = 0



Derivatives

Because the derivative of f (x) = x2 + 2x at x = −1 is f ′(−1) = 0,
we know the equation of the line tangent to y = x2 + 2x at
(−1,−1) is y = −1.

Warning: There are some shortcuts for calculating the derivatives
which we will learn about later. If you already know the shortcuts
you may use them to double-check your work, but for the time
being you must use this “limit definition of the derivative” when
doing calculations on tests and quizzes!



Derivatives
Example: Determine the derivative of f (x) = 3x + 4 at the point
x = 5.

Solution: We simply calculate the limit:

f ′(5) = lim
h→0

f (5 + h)− f (5)

h

= lim
h→0

[3(5 + h) + 4]− [3 · 5 + 4]

h

= lim
h→0

15 + 3h + 4− 15− 4

h

= lim
h→0

3h

h

= lim
h→0

3 = 3.



Derivatives

Before we go any further, let’s notice that the derivative f ′(a) may
actually be written in several different ways.

f ′(a) = lim
h→0

f (a + h)− f (a)

h

= lim
x→a

f (x)− f (a)

x − a

= lim
x→a

∆y

∆x
.

Even though these limits are all equal, it is sometimes convenient
to express the derivative in one of these alternative forms; it makes
some calculations slightly easier.



Derivatives

Let’s take a moment to understand why

lim
h→0

f (a + h)− f (a)

h
= lim

x→a

f (x)− f (a)

x − a
.

Notice that a + h is some x-value that we plug into f ; let’s just
write x = a + h.

Since h = h + a− a = a + h − a, we may also write so h = x − a.

Combining these two facts, the difference quotient in the derivative
becomes

f (a + h)− f (a)

h
=

f (x)− f (a)

x − a
.

Finally, note that when h goes to 0, x = a + h goes to a. Thus

lim
h→0

f (a + h)− f (a)

h
= lim

x→a

f (x)− f (a)

x − a
.



Differentiability at a point

If the derivative f ′(a) of a function is defined at x = a, then we say
that f is differentiable at x = a.

If the derivative f ′(a) is defined for every point x = a in the
domain of the function, we just say the function is differentiable.

Most of (but not all) functions we care about are differentiable:
polynomials, rational functions, trig functions, inverse trig
functions, exponentials, and logarithms are differentiable.



Differentiability implies continuity

One basic property of differentiability is that a function must be
continuous in order to be differentiable.

If f is differentiable at x = a, then the limit

f ′(a) = lim
x→a

f (x)− f (a)

x − a

exists. We want to show that this implies lim
x→a

f (x) = f (a).

This is the same as showing

lim
x→a

(f (x)− f (a)) = 0.



Differentiability implies continuity

lim
x→a

(f (x)− f (a)) = lim
x→a

(f (x)− f (a)) · x − a

x − a

= lim
x→a

f (x)− f (a)

x − a
· (x − a)

=

(
lim
x→a

f (x)− f (a)

x − a

)
·
(

lim
x→a

(x − a)
)

= f ′(a) · 0

= 0

What we’ve shown is that if f is differentiable at a, then f must be
continuous at a.

Said another way, if f is not continuous at a, then f can not be
differentiable at a.



When is a function not differentiable

As differentiability implies continuity, a function can not be
differentiable if it is not continuous.

Are there places where the function is continuous, but not
differentiable?

Yes! These correspond to places where the function has a corner or
a cusp.
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The derivative is a function
Suppose that f is a differentiable function, so that f ′(a) is defined
for each a in the domain of f . Then we can think of the derivative
as being a function.
For example, let f (x) = x2 + 3x . For every value of x we have

f ′(x) = lim
h→0

f (x + h)− f (x)

h

= lim
h→0

[
(x + h)2 + 3(x + h)

]
−
[
x2 + 3x

]
h

= lim
h→0

x2 + 2xh + h2 + 3x + 3h − x2 − 3x

h

= lim
h→0

2xh + h2 + 3h

h

= lim
h→0

(2x + 3 + h)

= 2x + 3

So if f is the function x2 + 3x , then f ′ is the function 2x + 3.



The derivative is a function
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The derivative is a function
Since f ′ is a function, we can try to take its derivative.

The derivative of f ′ is denoted f ′′ and is also called the second
derivative of f .

f ′′(x) = lim
h→0

f ′(x + h)− f ′(x)

h

= lim
h→0

[2(x + h) + 3]− [2x + 3]

h

= lim
h→0

2x + 2h + 3− 2x − 3

h

= lim
h→0

2h

h

= lim
h→0

2 = 2.



Higher-order derivatives

We could then differentiate f ′′ again to obtain the triple derivative
of f , denoted f ′′′.

Notice we can continue doing this pattern forever, obtaining
quadruple derivatives and so on.

Any of these functions obtained by differentiating f multiple times
is called a higher-order derivative.

Writing a single ′ (called a prime) for each derivative we take
becomes unrealistic if we want to differentiate a function several
times. Luckily there is some terser notation.



Notation

The n-th derivative of f (the function obtained by differentiating n
times) is sometimes denoted f (n). For example,

f ′ = f (1)

f ′′ = f (2)

f ′′′ = f (3)

f ′′′′ = f (4)

...



Notation

An alternative notation is to write

dnf

dxn

for the n-th derivative. When n = 1, we just write df
dx .

Note dnf
dxn and f (n) mean the same thing, and we will use both

notations throughout the course.

By convention the “zero-th derivative” of a function just means
the function itself:

f = f (0) =
d0f

dx0
.



Notation

When y = f (x), we will sometimes write y ′ or dy
dx in place of f ′ or

df
dx .

When evaluating the derivative at a point x = a, we write

f ′(a) or
df

dx

∣∣∣∣
x=a

or
df

dx

∣∣∣∣
a

All of these notations are very common, so you should be
comfortable with each.



Notation

Another notation that is common in physics, especially if f is a
function of time, is to write ḟ in place of f ′; f̈ in place of f ′′; and
so on.

We will not use this “dot notation” in this course, but you should
be aware of what it means in case you come across it in another
class.



Applications

Finally, we end by mentioning a few applications of derivatives to
mathematics, physics, computer science, and engineering.

We are just beginning our study of derivatives in this course, and
learning all of the tricks of the trade for derivatives will occupy the
majority of the remainder of this course.

Right now we don’t have the technical abilities to go through the
nitty-gritty details of all of these examples, but it’s good to know
that the topics we are discussing have practical, real-world
applications.



Applications within mathematics

Several other areas of mathematics use derivatives in one way or
another.

One example you will see later, in Math 2060, is curvature. The
curvature of a curve is the (magnitude of the) derivative of the
curve’s tangent vectors. The curvature of a surface is the product
of the largest and smallest curvatures of curves on the surface.

This curvature has a lot of consequences in geometry: the three
types of geometries for surfaces (Euclidean, spherical, or
hyperbolic) correspond to three possibilities for curvature (zero,
positive, or negative).



Applications within physics

Very, very many quantities in physics are defined as derivatives.
Whether you’re talking about classical mechanics; relativistic
mechanics; electrodynamics; or quantum theory, derivatives are
ubiquitous in physics.

One important set of examples: Maxwell’s equations describe how
electromagnetic fields propagate and are at the heart of all modern
electronics (computers, phones, etc.). Maxwell’s equations are four
differential equations, simply meaning they are equations involving
derivatives.



Applications within computer science

One of the simplest ways to create three-dimensional graphics on a
computer is to use a technique called ray tracing. Ray tracing
produces extremely realistic three-dimensional images and is used,
for example, to create special effects in movies.



Applications within computer science

The idea behind ray tracing is surprisingly simple: model the path
a ray of light would take between a light source and your eye,
bouncing off any objects in the scene.

Calculating how the light bounces off an object involves
determining the tangent plane of the object, and this requires
differentiating the equation whose graph gives the surface.



Applications within engineering

One important aspect in many types of engineering problems
involves not simply finding a solution to a problem, but finding the
most efficient solution (e.g., the solution which uses the least
power, or costs the least amount of money to implement).

The most commonly used method for solving special types of these
problems (called linear programs) is to use the simplex algorithm
which iteratively works its way to the most efficient solution to the
problem.

As we will see later, derivatives tell when a function is increasing or
decreasing. The basic idea behind the simplex algorithm is to start
with a possible solution, then consider derivatives of the function
to determine where the next best point is. Repeat this process
until you are at the point maximizing (or minimizing) the objective
function.
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