
LECTURE 10 - LIMITS & CONTINUITY OF
MULTIVARIABLE FUNCTIONS

CHRIS JOHNSON

Abstract. In the last lecture we introduced multivariable func-
tions. In this lecture we pave the way for doing calculus with mul-
tivariable functions by introducing limits and continuity of such
functions.

1. Limits

Informally, the notation lim(x,y)→(x0,y0) f(x, y) = L means that as the
inputs (x, y) gets “really close” to (x0, y0), the outputs f(x, y) get “really
close” to L. We won’t spend the time to make this notion precise, but
it comes down to an ε-δ definition of the limit, like we saw when we
defined limits of vector-valued functions.

Recall that for functions of a single variable, we could talk about
right-hand and left-hand limits. That is, if our inputs were from
the real line, then we could approach a value from one of two direc-
tions. When our inputs live in the plane, there infinitely many different
ways for the inputs (x, y) to approach (x0, y0). In order for the limit
lim(x,y)→(x0,y0) f(x, y) to exist, we must get the same value for all pos-
sible ways of approaching (x0, y0). Put another way, if any two paths
give different values, the limit does not exist.

Example 1.1. Determine whether or not the limit lim(x,y)→(0,0)
x2−y2
x2+y2

exists.

If we approach (0, 0) from the x axis (so y = 0), we have

lim
x→0

x2

x2
= 1.

If we instead approach (0, 0) from the y axis (so x = 0), we have

lim
y→0

−y2

y2
= −1.

Since these two values disagree, the limit can not exist.
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Example 1.2. Determine whether or not the limit lim(x,y)→(0,0)
x2y2

x4+3y4

exists.
Let’s first approach from the x-axis to get

lim
x→0

0

x4 + 3y4
= 0.

Approaching from the y-axis,

lim
y→0

0

x4 + 3y4
= 0.

Finally, let’s approach from the line y = x:

lim
x→0

x4

x4 + 3x4
= lim

x→0

x4

4x4
=

1

4
.

These values don’t all agree, so the limit can not exist.

Given that there are infinitely-many different paths we’d need to
check to see if a limit exists, you may wonder how on earth we’re
supposed to check if limits exist. The answer is that we need to some
tools to help us. The main tool we need is continuity of multivariable
functions, since this will let us easily calculate limits.

2. Continuity

We say that a function f(x, y) is continuous at the point (x0, y0) if
the following three conditions are met:
(i) f(x0, y0) is defined (i.e., (x0, y0) is in the domain of f).
(ii) lim(x,y)→(x0,y0) f(x, y) exists
(iii) lim(x,y)→(x0,y0) f(x, y) = f(x0, y0).
If a function is continuous at every point in its domain, then we simply
say that the function is continuous.

This means that if we know a function is continuous, then its easy
to take limits: we just evaluate the function. Now what we need is a
repertoire of continuous functions.

Theorem 2.1. The following types of multivariable functions are con-
tinuous:
(i) Polynomials are always continuous on all of R2.
(ii) Rational functions (ratios of polynomials) are continuous where

they’re defined (i.e., where the denominator is not zero)
(iii) If g : R→ R is continuous and f(x, y) : RtoR is continuous, then

g(f(x, y)) is continuous.
(iv) Products and sums of continuous functions are always continuous.
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(v) Quotients of continuous functions are continuous where they’re
defined.

(vi) A composition of continuous functions, in any number of vari-
ables, is continuous.

Let’s spend a little bit of time describing each of the types of func-
tions described in the theorem above.

A polynomial in two variables is a sum where each term has the form
cxiyj where c is a real number, and i and j are positive integers. So
the following functions are all polynomials:

5x3y2 + 3x2 − 2y3 + 4xy + 5

− 3x17 + y3

32x5y4

13

Polynomials are very nice functions because they’re built from the
basic operations of arithmetic: addition and multiplication. Since the
above theorem tells us that polynomials are continuous, it’s very easy
to take limits of polynomials.

Example 2.1. Calculate the limit lim(x,y)→(3,−1) (3x
2y − 2y2 + x).

lim
(x,y)→(3,−1)

(
3x2y − 2y2 + x

)
= 3·32·(−1)−2·(−1)2+3 = −27−2+3 = 26

A rational function in two variables is just a ratio of two polynomials.
So the functions below are examples of rational functions:

3x2 + xy

4y2 − x

3

x+ y

x+ y2 − 2x

2xy

The theorem above tells us that rational functions are continuous
everywhere they’re defined. So taking limits of rational functions is
also very easy, provided that we’re taking the limit at a point that’s in
the domain of the function.
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Example 2.2. Calculate the following limit:

lim
(x,y)→(1,2)

3xy − y2

4x+ 3y
.

Notice that the denominator, 4x+3y is not zero at the point (x, y) =
(1, 2), so this point is in the domain of the rational function, so to take
the limit we just evaluate the function:

lim
(x,y)→(1,2)

3xy − y2

4x+ 3y
=

3 · 1 · 2− 22

4 · 1 + 3 · 2
=

2

10
=

1

5
.

The third condition of the theorem above, that a composition of the
form g(f(x, y)) is continuous when f : R2 → R and g : R → R are
continuous tells us that functions such as the following are continuous:

cos(x+ y)

tan−1(2x3y)

ex−y

Once nice property about such functions is the following:

Theorem 2.2. If g : R → R is continuous and f : R2 → R is any
function, then

lim
(x,y)→(a,b)

g(f(x, y)) = g

(
lim

(x,y)→(a,b)
f(x, y)

)
.

provided lim(x,y)→(a,b) f(x, y) is in the domain of g.

That is, we can move limits inside of continuous functions.

Example 2.3. Calculate the following limit:

lim
(x,y)→(−1,4)

ex+
√
y.

lim
(x,y)→(−1,4)

ex+
√
y = elim(x,y)→(−1,4)(x+

√
y) = e−1+

√
4 = e

Knowing that all of these functions are continuous is very helpful,
but there are still times when they aren’t able to help us take limits.
For example, if we wanted to calculate the limit

lim
(x,y)→(0,0)

x2y2

x2 + y2
,

continuity doesn’t help us since (0, 0) isn’t in the domain of x2y2

x2+y2
. To

evaluate limits like this we need one more tool: the sandwich theorem.
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One of the interesting thing about limits of multivariable functions
is that, if the limit exists, we can write it as a double limit :

lim
(x,y)→(a,b)

f(x, y) = lim
x→a

lim
y→b

f(x, y) = lim
y→b

lim
x→a

f(x, y).

Again, this is contingent on the fact that we already know lim(x,y)→(a,b) f(x, y)!
This may seem like a minor observation, but it turns out to be a very
useful fact, particularly for proving certain theorems.

3. The Sandwich Theorem

The sandwich theorem tells us that if we have a function that’s
“sandwiched” between two other functions, then the limit has to be
sandwiched as well.

Theorem 3.1 (Sandwich theorem, (aka the squeeze theorem)). Sup-
pose that f, g, h : R2 → R are three multivariable functions defined near
the point (a, b) ∈ R2 and such that f(x, y) ≤ g(x, y) ≤ h(x, y) for all
(x, y) near (a, b). If

lim
(x,y)→(a,b)

f(x, y) = L = lim
(x,y)→(a,b)

h(x, y),

then we must also have that

lim
(x,y)→(a,b)

g(x, y) = L

as well.

Example 3.1. Evaluate the following limit:

lim
(x,y)→(0,0)

x2y2

x2 + y2
.

Let’s notice first that since (0, 0) isn’t in the domain of this function,
we can’t use continuity to help us evaluate this limit. To use the
sandwich theorem we need to find two functions which sandwich our
x2y2

x2+y2
from above and below.

Let’s first notice that x2y2

x2+y2
is never negative, and so we have

0 ≤ x2y2

x2 + y2
.

Let’s also notice that
x2 ≤ x2 + y2

since adding y2 will always make x2 larger (as y2 > 0). This means

x2

x2 + y2
≤ 1
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If we multiply both sides by y2 we have x2y2

x2+y2
≤ y2. Now we have our

sandwich functions:
0 ≤ x2y2

x2 + y2
≤ y2.

Taking the limit as (x, y)→ (0, 0) we have

0 ≤ x2y2

x2+y2
≤ y2

=⇒ lim
(x,y)→(0,0)

0 ≤ lim(x,y)→(0,0)
x2y2

x2+y2
≤ lim

(x,y)→(0,0)
y2

=⇒ 0 ≤ lim(x,y)→(0,0)
x2y2

x2+y2
≤ 0

=⇒ lim(x,y)→(0,0)
x2y2

x2+y2
= 0


	1. Limits
	2. Continuity
	3. The Sandwich Theorem

