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Introduction to the Course
The reason a lot of people do not recognize
opportunity is because it usually goes around
wearing overalls looking like hard work.

THOMAS EDISON

Welcome to Math 255, the second course of the calculus sequence at
Western Carolina University. This course is meant to continue where a
typical Calculus I course (such as WCU’s Math 153) leaves off. In partic-
ular, we will assume that students are comfortable with the material cov-
ered in Calculus I, such as limits, derivatives, and basic integrals, as well
as material that is prerequisite to Calculus I, namely basic algebra and
trigonometry. There is a short set of appendices to these notes reviewing
some of the material from algebra, trig, and Calculus I that students will
need in this course, but may have forgotten.

Over the course of the semester we will continue to develop our un-
derstanding of integration by learning more sophisticated integration
techniques and applications of integrals, and we will also introduce the
ideas of series, Taylor polynomials, parametric curves, and polar coordi-
nates.

The remainder of this introductory chapter is meant to prepare you
for what to expect in Calculus II this semester, including the format of
the course, the types of assignments that will be assigned, and some tips
for how to do well in the class.

Format of the course
This course will be taught as a traditional lecture-style course, though
hopefully one with lots of interaction between the instructor and the stu-
dents. Class will typically start with reminders about upcoming assign-
ments and a brief summary of the previous class, followed by time for
questions from students. After this we will begin the day’s lecture in
earnest, introducing the main ideas of the lecture and mentioning any
relevant theorems before working through examples. Sometimes exam-
ples will be left as exercises for students to work on in class, and students
are welcome to work with others in class at this time, while the instruc-
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INTRODUCTION TO THE COURSE v

tor walks around answering any individual questions students may have
before discussing the solutions to the exercise with the class as a whole.

Assignments and grades
Your final letter grade in this course is determined by a weighted aver-
age of your grades on the assignments you’ll complete throughout the
semester. These assignments come in several forms: online “labs” on
Canvas, out-of-class written homework, three midterm exams, one final
exam, and attendance & class participation.

Canvas Labs and Written Homework

It’s sometimes said that the only way to learn math is to do math, which
means that in order to truly understand the material in this class you will
need to regularly work on problems. These problems should not simply
be “cookie cutter” problems solved by a procedure learned in class, but
they should also be problems that require you to deeply engage and think
about the material.

In order to have you solve problems on a regular basis, we will reg-
ularly have online labs through Canvas. You will typically have one lab
due at noon each day that we have class concerning material discussed
in the last class. The intent with these labs is mostly to get you into the
habit of thinking about the material and solving some simple problems
on your own. That is, the lab problems are not meant to be overly dif-
ficult or challenging, but are meant to give you practice with the basic
concepts from each week’s reading. In order to truly understand the ma-
terial, however, you will need to also work on more difficult problems.
To facilitate this, I will also post a set of more difficult homework prob-
lems each week. These homework problems will be normally be posted
at the beginning of the week, and will be due the following Monday.

The homework assignments will be challenging, and it is up to you
to manage your time wisely and start on assignments early. You have
about a week to complete a homework assignment, and the intention is
that you will work on the assignment regularly during that week. Wait-
ing until the day before the assignment is due to begin is a bad idea.

Important: Extensions to labs and homeworks will not be given ex-
cept in extreme circumstances. You have about a week to complete these
assignments, so waiting until the last minute to start the assignment is
not a valid excuse!
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Exams

We will have three midterm exams and a final this semester. The exact
dates of the midterms are subject to change, but tentatively the midterms
will be held on Thursday February 8, Thursday March 14, and Thursday
April 24.

The final exam will be held on the Monday of finals week (May 6)
from 12pm until 2:30pm. The final exam will be cumulative and is re-
quired of all students.

Expectations

Students in this class are expected to be mature and conduct themselves
in a professional manner. In terms of this classroom this means

• students are expected to come to class each day;

• be in class prepared with pencil and paper at the start of class

• students should have completed the assigned reading before com-
ing to class;

• pay active attention during class and have any computers, phones,
or tablets put away (students may take notes on a tablet, however);

• and be ready to participate in class by asking questions about exam-
ples from the previous lecture, problems from homework assign-
ments, or any concepts discussed in class or the assigned reading.

Students are expected to spend a minimum of eight hours per week work-
ing on material for Math 153 (working on homework, reading the text-
book, studying notes, etc.). Keep in mind eight hours is the minimum:
each additional hour spent working outside of class will have been well-
invested come exam time.

Students are strongly encouraged to take advantage of the various
studying resources provided by the university and the mathematics de-
partment, such as the MTC.

Online notes

In addition to our textbook, I will be typing up my lecture notes for the
course and posting them online in Canvas. Students are expected to read
both the online lecture notes as well as the OpenStax textbook. The read-
ings for each week will be posted to Canvas.
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How to succeed in this course
Calculus II is a difficult course which is simultaneously more conceptual
and more applied than Calculus I. There is no denying that succeeding
in this course will require that you put significant time and energy into
the course by regularly reading the assigned materials, thinking carefully
and deeply about the material, and investing time to work through all of
the assigned problems.

Every student is different and you have to figure out what study
methods and schedule will work best for you, but here are some pointers
you might helpful.

• Start on material early. Check Canvas for the assigned reading,
labs, and homework for the upcoming week on Sunday evening.
Start reading as soon as you can, and once you finish the reading,
start working on the homework. You might get stuck, and that’s
okay: that’s just something for you to ask about during class or
office hours.

• Work regularly. Instead of trying to complete your homework in
one sitting, spread it out over the week. Skip around, working on
the problems you think you know how to do first, but make a point
to at least think about harder problems. Sometimes a problem that
seems incomprehensible or very difficult at first will become easier
after you’ve thought about it a little and given your brain time to
digest it.

• Ask questions. When you read something you don’t understand or
get stuck on a problem, look for help. Keep a record of the questions
you have and ask them in class, during office hours, through email,
etc. Make an effort to get your questions answered and don’t let
them linger hoping they magically get cleared up.

• Work hard. You will need to work hard to understand the material
in this course and get a good grade. Unfortunately there are no
short cuts here. Just be aware from the beginning that you’ll need
to make a serious effort to commit time to this class. This will be a
lot easier if you get into the habit of working on material in the class
regularly. For example, you might make a point to set aside an hour
of your day each day to focus on Calculus II. (You do have other
classes and other responsibilities, so you may not be able to literally
spend one hour every single day on Calculus, but that should be the
goal you shoot for.)
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• Don’t stress out. Working through difficult material in a class like
Calculus II can be stressful and frustrating. Take breaks when you’re
getting tired and frustrated and do something fun. Even when you
are doing something else your subconscious mind may have still
been thinking through what you were working on and you might
find that something that seemed difficult earlier doesn’t seem as
bad after you’ve taken a break. Remember that this is only one
class in your college career and it doesn’t define you. A bad grade
here or there really isn’t as big of a deal as you may think at the
time.

Chris Johnson
Spring 2024



1Review of Calculus I Material
If you have an important point to make, don’t
try to be subtle or clever. Use a pile driver. Hit
the point once. Then come back and hit it again.
Then hit it a third time – a tremendous whack.

WINSTON CHURCHILL

Knowledge of the material from Calculus I, especially concerning in-
tegration, antiderivatives, and the fundamental theorem of calculus, is
vital for success in Calculus II. As students in this class are expected to
have seen the material in this chapter before, we only give a brief sum-
mary of some of the pertinent material from a typical Calculus I course. If
you would like to see more details about the formulas, tools, and “tricks”
that are only quickly reviewed here, see the Appendix B which fills in
some of the gaps, or consult a Calculus I textbook such as the free online
OpenStax book,

https://openstax.org/details/books/calculus-volume-1.

1.1 The definite integral
Recall that the definite integral of a function f(x) over an interval [a, b]
is defined as a limit of Riemann sums. In particular, the Riemann sum
using n subintervals of equal width and the left-hand endpoints of the
subintervals to determine the height of the corresponding rectangle is
given by

n∑
i=1

f

(
a+

(b− a)i

n

)
b− a
n

.

Taking the limit as n goes to infinity of this quantity then gives us the
integral, ∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f

(
a+

(b− a)i

n

)
b− a
n

.

Though the expression above seems overwhelming at first glance, the
underlying idea has as very simple interpretation. If we wish to find the
area under the graph of a function y = f(x) over the interval [a, b] on the

1

https://openstax.org/details/books/calculus-volume-1


CHAPTER 1. REVIEW OF CALCULUS I MATERIAL 2

x-axis, then we can approximate that area with rectangles. The Riemann
sum above is simply adding up the areas of these individual rectangles.
Using a finite number of rectangles, this quantity is generally only an ap-
proximation of what we’re interested in. We get better approximations
by using more rectangles, so we consider what happens when we use
more and more and more rectangles by letting n (the number of rectan-
gles) go off to infinity. See Figure 1.1.

Figure 1.1: The area under y = x2 between x = 1 and x = 3 on the left is
approximated by the sums of areas of rectangles on the right.

Remark.
A very natural question to ask at this point is how do we know the
limit actually exists? In Calculus I you saw many examples of limits
that blew up to infinity, or oscillated infinitely-often, or had other
undesirable properties that prevented the limit from existing. In
general, any time you see a limit the first question you should ask
yourself is whether the limit exists or not. It will turn out that the
limits described above will always exist, provided the function f(x)
is continuous.

Most of the time in this class we will only consider continuous
functions, so the limit defining the integral will exist, and we won’t
bother to explicitly discuss the existence of the limit. There will be
exceptions to this when we discuss “improper integrals” later in the
course.

Calculating an integral as a limit is possible, but it is often a tedious
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calculation. For the sake of completeness, we’ll go ahead and compute
one integral this way.

Example 1.1.

Compute
3∫
1

x2 dx as a limit of Riemann sums.

Comparing this with the expression above,∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f

(
a+

(b− a)i

n

)
b− a
n

,

in this example we have a = 1, b = 3, and f(x) = x2. Thus the
integral becomes∫ 3

1

x2 dx = lim
n→∞

n∑
i=1

f

(
1 +

(3− 1)i

n

)
3− 1

n

= lim
n→∞

n∑
i=1

f

(
1 +

2i

n

)
2

n

= lim
n→∞

n∑
i=1

(
1 +

2i

n

)2
2

n

= lim
n→∞

n∑
i=1

(
1 +

4i

n
+

4i2

n2

)
2

n

= lim
n→∞

n∑
i=1

(
2

n
+

8i

n2
+

8i2

n3

)
At this point we may pause to just quickly fill in all the details of
what just happened. First, we simply wrote out the integral as a
limit of Riemann sums by replacing the a, b, and f(x) in our earlier
expression with 1, 3, and x2. Note that since we are plugging 1 + 2i

n

in for x in f(x) = x2, we must square this entire expression. We can
compute (

1 +
2i

n

)2

= 1 +
4i

n
+

4i2

n2
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by either manually “FOILing” the expression, or using the binomial
theorem. After doing this we simply distributed 2

n
to each of the

terms in our summation.
To proceed in calculating this limit, we need to recall a couple

of basic properties of summations. First, we can always break sums

of multiple terms up into multiple sums. E.g.,
n∑
i=1

(g(i) + h(i)) =

n∑
i=1

g(i) +
n∑
i=1

h(i). Applying this to the terms in our sum above we

have ∫ 3

1

x2 dx = lim
n→∞

n∑
i=1

(
2

n
+

8i

n2
+

8i2

n3

)

= lim
n→∞

(
n∑
i=1

2

n
+

n∑
i=1

8i

n2
+

n∑
i=1

8i2

n3

)

The next property of sums we need to recall is that we can al-

ways factor constants out of summations. E.g.,
n∑
i=1

kg(i) = k
n∑
i=1

g(i).

Here the “constant” is actually anything which does not depend on
the index i of the summation. So, n, for example, can be factored
out as well. This then gives us∫ 3

1

x2 dx = lim
n→∞

(
n∑
i=1

2

n
+

n∑
i=1

8i

n2
+

n∑
i=1

8i2

n3

)

= lim
n→∞

(
2

n
·

n∑
i=1

1 +
8

n2
·

n∑
i=1

i+
8

n3
·

n∑
i=1

i2

)

Now we recall a few simple formulas you learned in Calculus I
which will help us simplify these summations:

n∑
i=1

1 = n,

n∑
i=1

i =
n(n+ 1)

2
, and

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.
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Applying these to the expression above we have∫ 3

1

x2 dx = lim
n→∞

(
2

n
·

n∑
i=1

1 +
8

n2
·

n∑
i=1

i+
8

n3
·

n∑
i=1

i2

)

= lim
nto∞

(
2

n
· n+

8

n2
· n(n+ 1)

2
+

8

n3
· n(n+ 1)(2n+ 1)

6

)
= lim

n→∞

(
2 +

4n2 + 4n

n2
+

8n3 + 12n2 + 4n

3n2

)
.

At this point we are basically home free. If we recall that when you
take a limit as n goes to infinity of a ratio of polynomials of the same
degree you simply get the ratio of coefficients, we then easily see∫ 3

1

x2 dx = lim
n→∞

(
2 +

4n2 + 4n

n2
+

8n3 + 12n2 + 4n

3n3

)
= 2 + 4 +

8

3

=
6 + 12 + 8

3

=
26

3

While it is possible to compute definite integrals this way, it is very
tedious. Luckily there is a simpler way, using the fundamental theorem
of calculus.

1.2 The fundamental theorem of calculus and
antiderivatives

The fundamental theorem of calculus establishes a relationship between
definite integrals and antiderivatives. We really like this theorem because
it replaces something that is generally difficult to do (compute a limit of
Riemann sums) and replaces it with something that is generally easier to
do (compute an antiderivative). There are some caveats to this that we
will worry about later, but the basic idea is that we want to convert a
difficult problem into an easier problem.

To be more precise we have the following:
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Theorem 1.1 (The fundamental theorem of calculus).
If F (x) is an antiderivative of f(x) defined on the interval [a, b], then∫ b

a

f(x) dx = F (b)− F (a).

That is, provided we can find the antiderivative F (x), computing def-
inite integrals becomes very simple – again, assuming we can actually
compute our antiderivative.

Recall that the antiderivative of a function f(x) is a function F (x)
with the property that F ′(x) = f(x). That is, differentiating the an-
tiderivative of a function gives us back the original function; antidiffer-
entiating is a kind of opposite (or inverse) of differentiating, hence the
name.

Remark.
A natural question to ask at this point is “how do you know that
a function f(x) has an antiderivative?” There are actually two ver-
sions of the fundamental theorem of calculus, and the version we
did not state above answers this question: if f(x) is continuous
on an interval [a, b], then it has an antiderivative F (x) defined on
the same interval. To prove this you have to describe a method of
constructing an antiderivative of any arbitrary continuous function,
and that boils down to using the definition of the definite integral
as a limit of Riemann sums. See Appendix B if you’re interested in
seeing the details.

For the fundamental theorem of calculus to be useful, though, we
have to actually be able to compute antiderivatives. For some simple
functions this isn’t too terribly difficult and follows from basically per-
forming our derivative rules “in reverse.” The basic antiderivative rules
you should remember from Calculus I are summarized in the following
theorem. Recall that

∫
f(x) dx, sometimes called the indefinite integral

of f(x), is just notation that means the antiderivative of f(x).
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Theorem 1.2.
Suppose f(x) and g(x) are two continuous functions and k is a constant.
Then,

•
∫

(f(x)± g(x)) dx =

∫
f(x) dx+

∫
g(x) dx,

•
∫
kf(x) dx = k

∫
f(x) dx,

•
∫
xn dx =

xn+1

n+ 1
+ C provided n 6= −1,

•
∫
x−1 dx =

∫
1

x
dx = ln |x|+ C,

•
∫
ex dx = ex + C,

•
∫

cos(x) dx = sin(x) + C,

•
∫

sin(x) dx = − cos(x) + C,

•
∫

sec2(x) dx = tan(x) + C,

•
∫

csc2(x) dx = − cot(x) + C,

•
∫

sec(x) tan(x) dx = sec(x) + C, and

•
∫

csc(x) cot(x) dx = − csc(x) + C.

Notice that many of the antiderivative rules above have a “+C” at the
end. The reason for this is simply that the derivative of a constant is zero,
and so we can always add any constant onto an antiderivative and get
another perfectly valid antiderivative. For example, x

3

3
, x

3

3
+ 3, and x3

3
− 7

are all perfectly fine antiderivatives of the function x2. Since the choice of
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constant we add onto the end of our antiderivative can be any arbitrary
value, we usually just refer to it as C and sometimes call it a constant of
integration.

Remark.
When we are just finding an antiderivative of a function, any choice
of C is perfectly valid. However, in some applications we may want
to find a particular antiderivative and then need to compute the cor-
rect value of C. In order to do this we need to have more informa-
tion about the antiderivative we desire, for example we may want to
find the antiderivative F (x) of f(x) satisfying F (x0) = y0. This ad-
ditional condition we wish to satisfy is called an initial condition,
and determining the antiderivative together with the value ofC that
will solve our initial condition is called an initial value problem.

These rules are our bread and butter for computing antiderivatives:
they are the most basic of our antiderivative rules. You should be famil-
iar with all of these rules, but let’s have a few examples of computing
antiderivatives using these rules just to see how powerful they are.

Example 1.2.
Compute the antiderivative of 6x2 + 8x− 5.

For the sake of this example, let’s very clearly walk through ev-
ery detail of computing this antiderivative using the rules above.
(We won’t usually be this verbose in explaining antiderivatives, and
you aren’t expected to write down every detail like this in work you
turn in, but we’ll do it in this example just to be as clear as possible.)

We wish to compute∫ (
6x2 + 8x− 5

)
dx.

We begin by applying the first rule of Theorem 1.2 which allows us
to break our antiderivative problem up as∫

6x2 dx+

∫
8x dx−

∫
5 dx.
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The point of applying this rule is that we took a “hard” problem and
split it up into “easier” problems. (Perhaps the original problem
isn’t truly hard, but the strategy here, as in many problems, is to
keep breaking the problem into simpler and simpler pieces until we
arrive at something we can easily solve.) Now we can apply the
second rule in Theorem 1.2 to

6

∫
x2 dx+ 8

∫
x dx− 5

∫
1 dx.

Now we are virtually done because we can simply apply the third
rule from Theorem 1.2 to each of these terms to obtain

6
x3

3
+ C1 + 8

x2

2
+ C2 − 5 (x+ C3) .

Here we should pause for just a moment to discuss the last step
in a little bit of detail. In the very last term we were integrating
the constant function 1,

∫
1 dx. To apply the third rule from Theo-

rem 1.2, we should think of 1 as x0. The rule then tells us∫
1 dx =

∫
x0 dx =

x1

1
+ C = x+ C.

Let’s also notice that we have three different constants of integra-
tion above, which we denoted C1, C2, and C3, in the last step of our
calculation. Theorem 1.2 says that each time we apply the third rule
we should pick up a +C. In principle these are different C’s, one for
each integration. Keep in mind, however, these C’s are completely
arbitrary. So we may add the completely arbitrary C1 to the com-
pletely arbitrary C2, we can just call this some new arbitrary con-
stant. Similarly, when we distribute the−5 of the last term to obtain
−5C3, we have the constant −5 times some arbitrary constant C3

and this is still just as equally arbitrary. Thus we can always com-
bine multiple arbitrary C’s together into one constant, which we’ll
keep denoting C. Our last step can thus be rewritten as

6
x3

3
+ 8

x2

2
− 5x+ C.

We won’t typically bother to write down all of these different C’s as
C1, C2, C3, and so on – usually we’ll just write one +C at the very
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end, but it’s worth pointing out that there really are different C’s
that we’re just adding together.

Finally, we can do a tiny bit of simplification to write down our
antiderivative,∫ (

6x2 + 8x− 5
)
dx = 2x3 + 4x2 − 5x+ C.

Recall that one of the nice things about antiderivatives is that we can
always check our answer: if 2x3 + 4x2− 5x+C really is an antiderivative
of 6x2 + 8x− 5, then we should be able to differentiate 2x3 + 4x2− 5x+C
and get back 6x2 + 8x− 5, which is easy to verify:

d

dx

(
2x3 + 4x2 − 5x+ C

)
= 3 · 2x2 + 2 · 4x− 5 + 0 = 6x2 + 8x− 5.

With Theorem 1.2 and the fundamental theorem of calculus available,
problems that would otherwise be very difficult become very easy. For
instance, the tedious limit of Riemann sums calculation from Example 1.1
above now becomes much easier.

Example 1.3.
Compute

∫ 3

1
x2 dx using the fundamental theorem of calculus.

To apply the fundamental theorem of calculus we need an an-
tiderivative of x2, but this is easy to compute using the third rule of
Theorem 1.2: ∫

x2 dx =
x3

3
+ C.

Now, by the fundamental theorem of calculus, we simply need to
evaluate our antiderivative at 3 and at 1 then subtract to obtain∫ 3

1

x2 dx =

(
33

3
+ C

)
−
(

13

3
+ C

)
=

27

3
+ C − 1

3
− C

=
26

3
.
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Notice this is the same value we computed in Example 1.1, but it
requires much less work!

Remark.
Notice that the +C’s from our antiderivative in Example 1.3 can-
celled out. This will always happen when we evaluate a definite
integral, and for this reason we often don’t both to write down the
+C when we are evaluating a definite integral as it will just can-
cel out with a −C anyway. However, this is specifically for definite
integrals: you still need a +C for indefinite integrals (aka, general
antiderivative problems)!

Recall that as a notation convenience we often write F (x)|ba as a
short-hand for F (b)− F (a) in definite integral problems. For exam-
ple, the integral in Example 1.3 may be written as∫ 3

1

x2 dx =
x3

3

∣∣∣∣3
1

=
33

3
− 13

3
=

26

3
.

Though the rules described in Theorem 1.2 should be relatively fa-
miliar and easy to use, they are certainly not enough to integrate many
of the functions that we will care about. For example, it’s not at all clear
how to compute

∫
ln(x) dx based on the rules above. That is, our list of

rules is far from complete.
We will spend a fair bit of time this semester extending our list of

antiderivative rules, but let’s first recall one more rule that you learned
in Calculus I which is not mentioned in the theorem above.

1.3 Substitution
Given an indefinite integral of the the form∫

f ′(g(x))g′(x) dx

we can simplify this complicated-looking integral by introducing a new
variable. If we were to introduce a variable u which we define to be
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u = g(x), then its differential (see the “Detailed Review of Calculus I
Material” for a reminder about differentials) is du = g′(x) dx. Notice that
this means we can rewrite the integral above as∫

f ′(u) du.

Now, since we’re looking for the antiderivative of f ′(u) – the derivative
of f(u) – we just need a function whose derivative is f ′(u). Of course this
is simply f(u) (plus an arbitrary constant C):∫

f ′(u) du = f(u) + C.

So our complicated-looking integral from before actually became extremely
easy when we introduced our variable u. However, we started off by ask-
ing for an antiderivative of a function of x, and currently have a function
of u. Since the antiderivative of a function of x should also be a function
of x, we need to rewrite f(u) +C in terms of x, but this is easy: we’ll just
replace u with g(x) since those are equal.

Putting all of this together we have determined∫
f ′(g(x))g′(x) dx = f(g(x)) + C.

Since this is an antiderivative problem, we can easily check our answer
by seeing if the derivative of f(g(x)) is f ′(g(x))g′(x), but this is really just
the chain rule:

d

dx
(f(g(x)) + C) = f ′(g(x))g′(x).

That is, the substitution u = g(x) we introduced and the correspond-
ing antiderivative we computed is really just doing the chain rule “in
reverse.”

Example 1.4.
Find the antiderivative of

√
x3 + x− 2 (3x2 + 1).

We wish to compute∫ √
x3 + x− 2

(
3x2 + 1

)
dx.

If we were to let u = x3+x−2, then we would have du = (3x2 + 1) dx,
and the complicated integral we started with becomes simply

∫ √
u du.
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Recalling that taking a square root is the same as raising to the 1/2
powever, we can now compute∫ √

u du =

∫
u

1/2 du =
u3/2

3/2
=

2

3
u

3/2 + C.

Keeping in mind we started with a function of x and so we need to
end with a function of x, we convert our u back into x2 + x − 2 to
obtain ∫ √

x3 + x− 2
(
3x2 + 1

)
dx =

2

3

(
x3 + x− 2

)3/2
+ C.

Exercise 1.1.
Verify that the antiderivative computed in Example 1.4 is correct by
differentiating 2

3
(x3 + x− 2)

3/2
+ C.

Recall that when performing a substitution like this, we want to choose
our u so that the differential du is inside the original integral. However,
sometimes we may have to do a little bit of work to see that du is hiding
in the integral.

Example 1.5.

Compute
∫

4x2

1 + 8x3
dx.

We want to introduce a u so that this integral becomes simpler
(this process isn’t very helpful if it makes our problem harder), and
so that du is “essentially” in the integral. If we set u = 1 + 8x3,
du = 24x2 dx. We don’t have a 24x2 dx in our integral, but we can
turn 4x2 dx into 24x2 dx by multiplying by 6. However, this changes
our interal, so we’ll need to divide by 6 as well to compensate. I.e.,
what we’re really doing is just multiplying by 1, but writing 1 in a
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convenient way.∫
4x2

√
1 + 8x3

dx = 1 ·
∫

4x2

√
1 + 8x3

dx

=
6

6
·
∫

4x2

√
1 + 8x3

dx

=
1

6
·
∫

24x2

√
1 + 8x3

dx.

Now performing the substitution u = 1 + 8x3, du = 24x2 dx, the
integral becomes

1

6

√
1
√
u du =

1

6

∫
u−

1/2 du =
1

6
· u

1/2

1/2
+ C =

1

3

√
u+ C.

Putting this back in terms of x we have∫
4x2

√
1 + 8x3

dx =
1

3

√
1 + 8x3 + C.

Example 1.6.

Compute
∫

x√
1 + 2x

dx.

Warning: In this example we will address a common misconcep-
tion with substitutions and in doing so we will intentionally show
incorrect work to highlight the misconception. Read the text of the
example very carefully so that you do not confuse the incorrect work we’re
highlighting with correct work!

If we let u = 1 + 2x, then du = 2 dx. We now have two problems:
there is not a corresponding 2 in our integral, and there is an extra x
that does not immediately get “swallowed up” by u or du. Both of
these issues can be easily fixed, however. The issue with the missing
2 is fixed by using the same kind of trick from Example 1.5: we will
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simply multiply and divide by 2:∫
x√

1 + 2x
dx =

2

2

∫
x√

1 + 2x
dx

=
1

2

∫
2x√

1 + 2x
dx

=
1

2

∫
x√

1 + 2x
2 dx.

Now let’s tackle the problem of the extra x that was mentioned ear-
lier. At this point in the process you may be tempted to go ahead
and put u in for the 1 + 2x that appears in the square root, rewriting
the integral as

1

2

∫
x√
u
du.

While this seems like a pretty reasonable thing to do it is incorrect,
but the reason why it’s incorrect is a little bit subtle. When we have
an integral the differential at the end (the du or dx or “d-whatever-
the-variable is”) tells us which variable we’re integrating and every-
thing else is treated as a constant. That is, if you were to just hand the

integral 1
2

∫
x√
u
du to a random person on the street (well, a random

person that has taken calculus...), then when they computed the an-
tiderivative they would pull the x out of the integral and leave it
alone, just like any constant because of the du that appears. This,
however, is definitely not going to give us the right answer to our
problem.

To see more precisely exactly why the integral 1
2

∫
x√
u
du is incor-

rect, let’s actually work it out and see if we get an antiderivative
to our initial

∫
x√

1+2x
dx or not. Because of the du that appears we

would pull the x out (since we’d be treating it like a constant) to get

1

2

∫
x√
u
du =

x

2

∫
u−

1/2 du =
x

2

u1/2

1/2
+ C = x

√
u+ C.

At this point you’d like to replace u with 1 + 2x to get the (incor-
rect) antiderivative, x

√
1 + 2x + C. As mentioned, though, this is
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incorrect, which we can easily verify by differentiating:

d

dx

(
x
√

1 + 2x+ C
)

=
x√

1 + 2x
+
√

1 + 2x.

Notice this is not what we want, our antiderivative is incorrect!
The issue with the above is that when we mixed u’s and x’s in

our integral, we treated one of these as a constant and one as a vari-
able but both should have been variables! The way around this
problem is to only have one variable in the integral. That is, we
always want only x’s or only u’s in our integrals and we should
never mix variables!

Keeping this in mind, let’s go back to our original problem which
we have rewritten as∫

x√
1 + 2x

dx =
1

2

∫
x√

1 + 2x
2 dx.

We want to replace the 1 + 2x in the denominator with just u, but
we need to replace the x in the numerator with some expression
involving u’s as well. To do this, keep in mind we’re making the
substitution u = 1+2x. Let’s notice that we could solve this equation
for x:

u = 1 + 2x

=⇒ u− 1 = 2x

=⇒ u− 1

2
= x.

That is, we can take the x in the numerator and rewrite it in terms
of u as x = u−1

2
. Doing this our integral now becomes

1

2

∫ (
u−1

2

)
√
u

=
1

4

∫
u− 1√
u
du.

Now, before we can start applying our rules from Theorem 1.2, we
need to do just a tiny bit of algebra to the integrand:

1

4

∫
u− 1√
u
du =

1

4

∫
(u− 1)u−

1/2 du =
1

4

∫ (
u

1/2 − u−1/2
)
du.
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At this point we can easily compute our integral:

1

4

∫ (
u

1/2 − u−1/2
)
du =

1

4

(
u3/2

3/2
− u1/2

1/2

)
+ C

=
1

4

(
2

3
u

3/2 − 2u
1/2

)
+ C

=
1

6
u

3/2 − 1

2
u

1/2 + C.

Now rewriting this in terms of xwe see that our original antideriva-
tive problem is solved by∫

x√
1 + 2x

dx =
1

6
(1 + 2x)

3/2 − 1

2
(1 + 2x)

1/2 + C.

Exercise 1.2.
Verify the antiderivative computed in Example 1.6 is correct.

The examples of substitution that we have seen so far were all indef-
inite integrals – i.e., just computing antiderivatives. What about definite
integrals where we want to compute a number in the end? One thing
we could do is find the antiderivative as before, then plug in our original
limits of integral as in Example 1.7 below.

Example 1.7.

Compute
∫ 2

0

(6x− 4)5 dx.

We could first find the antiderivative in terms of x by computing
the indefinite integral

∫
(6x − 4)5 dx. This would require the sub-

stitution u = 6x − 4, du = 6 dx. Multiplying and dividing by 6 to
account for the 6 we have picked up in the dx, the integral would
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become
1

6

∫
u5 du =

1

6
· u

6

6
+ C =

u6

36
+ C.

Converting this back to x’s we see∫
(6x− 4)5 dx =

(6x− 4)6

36
+ C.

Now that we have an antiderivative we could apply the fundamen-
tal theorem of calculus to obtain∫ 2

0

(6x− 4)5 dx =
(6x− 4)6

36

∣∣∣∣2
0

=
86

36
− (−4)6

36

=
262, 144− 4096

36
= 7168

Remark.
Notice that you could actually compute

∫
(6x−4)5 dxwithout using a

substitution, but you’d have to expand (6x−4)5. While this is possi-
ble, it’s certainly very tedious to do by hand. Thus substitution can
sometimes be used to convert tedious problems into easier ones!

While the work appearing in Example 1.7 is perfectly valid, there is
another way. Instead of performing a u-substitution in an indefinite in-
tegral, converting back to x, and then plugging in the original limits of
integration, we could actually change the limits of integration when we
perform the substitution, as showin Example 1.8

Example 1.8.

Compute
∫ 2

0

(6x− 4)5 dx by changing the limits of integration dur-

ing the substitution.
Just as before we will perform the substitution u = 6x − 4, du =



CHAPTER 1. REVIEW OF CALCULUS I MATERIAL 19

6 dx. Notice that this gives us an integral in terms of u. When we
change our definite integral in terms of x to a definite integral in
terms of u, we need to change the limits of integration from x-values
to the corresponding u-values. That is, when x = 0, we will have
the corresponding u-value

u = 6x− 4 = 6 · 0− 4 = −4.

Similarly, when x = 2, the corresponding u-value is

u = 6x− 4 = 6 · 2− 4 = 8.

Changing our limits of integration from x = 0 and x = 2 to the
corresponding u-values u = −4 and u = 8 we have∫ 2

0

(6x− 4)5 dx =
1

6

∫ 8

−4

u5 du

=
u6

36

∣∣∣∣8
−4

=
86 − (−4)6

36
= 7168.

Notice that we never needed to convert “back” to x’s and we still
computed the same value as before.

Sometimes we can use knowledge of an integral to determine the
value of another integral without even knowing the function being integrated!

Example 1.9.
Suppose that f(x) is a continuous function and

∫ 9

0
f(x) dx = 4. What

is
∫ 3

0
xf(x2) dx?

Let’s perform the substitution u = x2, du = 2x dx. Then our



CHAPTER 1. REVIEW OF CALCULUS I MATERIAL 20

integral may be rewritten as∫ 3

0

xf(x2) dx =
1

2

∫ 9

0

f(u) du

=
4

2
= 2

The above example might seem a little bit silly, but tricks like this are
often very useful. In many applications you may not know the function
modelling something you’re interested in, but are still able to determine
various properties of the function, and tricks like the one above can then
be used to tell you information about related functions. (This is perhaps
hard to imagine or understand when you’re first learning this material,
but many functions we are interested in aren’t explicitly known and we
often have to work with functions based solely on their properties.)

If the necessity of changing limits of integration is confusing, it might
help to think of this as changing the units being used in the problem.
For example, imagine taking a problem that’s described in minutes and
converting it into a problem in terms of seconds. If your original problem
in terms of minutes took place on the interval [0, 1/2], when you convert
the problem into seconds this interval has to change to [0, 30].

Example 1.10.
Suppose the velocity of a particle t minutes after the particle is first
observed is given by v(t) = 30tmeters

minute . How far does the particle
travel over the course of half a minute?

Recall that velocity is the derivative of position, so the change in
position (the distance the particle travelled) is given by integrating
velocity (this is really just the fundamental theorem of calculus).

When we compute the problem in terms of minutes we have∫ 1/2

0

30t dt = 15t2
∣∣∣∣1/2
0

=
15

4
= 3.75

and so the particle travelled 3.75 meters.
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There’s nothing “magical” about measuring time in minutes, of
course: we could convert this into a problem where time is mea-
sured in seconds. Our t before was measured in minutes, so if we let
u denote the same amount of time measured in seconds we would
have u = 60t since there are sixty seconds in each minute. Thus we
will perform the substitution u = 60t, du = 60dt. Of course, when
we integrate we will need to multiply and divide by 60 because of
the 60 that appears in du = 60dt. However, we also need to change
our limits of integration. The problem we are interested in takes
place over half a minute which is thirty seconds. In terms of our
substitution, when t = 0 the corresponding u-value is

u = 60t = 60 · 0 = 0;

and when t = 1/2, the corresponding u is

u = 60t = 60 · 1

2
= 30.

Our integral is thus

1

60

∫ 30

0

u

2
du =

1

60
· u

2

4

∣∣∣∣30

0

=
302

240
=

900

240
=

90

24
=

30

8

=
15

4
= 3.75.

And, of course, we computed the same distance travelled regardless
of whether we measured time in minutes or seconds, but we had to
change our integrals appropriately when doing the conversion from
minutes to seconds.

Remark.
One minor “trick” may have slipped by you in Example 1.10. When
we wrote the integral in terms of u, notice that our integrand changed
from 30t to u

2
, and you may wonder where the u

2
came from. Keep

in mind we were doing the substitution u = 60t, and this could
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be rewritten as t = u
60

. When we replaced t with u
60

our integrand
switched from 30t to 30 · u

60
= 30u

60
= u

2
.

One more little remark about the previous example: sometimes
when students first learn about substitution, they don’t understand
why the dx has to change, or has to change to something more com-
plicated than just du. For example, if we performed the substitu-
tion u = x2 + 2x we would have du = (2x + 2) dx, but why do
we care about this 2x + 2 that appeared? Example 1.10 gives us
some rationale for why we need this. The dt that appeared in the
original integral essentially represents a change of time measured in
minutes, but we are rewriting this as an integral measured in sec-
onds, so our du (since u is measured in seconds) needs to represent
the change in time measured in seconds. Notice that changing time by
one minute is the same as changing time by sixty seconds, and this
is what du = 60dt (or equivalently, dt = 1

60
du) represents. One tick

of a clock that measures only in minutes corresponds to sixty ticks
of a clock that measures only in seconds.

1.4 Practice problems
Problem 1.1. Compute the antiderivative of x2 sin (x3 − 1).

Problem 1.2. Compute
∫

ln(x)

x
dx.

Problem 1.3. Compute
∫

1

x ln(x)
dx.

Problem 1.4. Compute
∫

cos (4x) sin (4x) dx.

Problem 1.5. Compute
∫

sin(tan(θ))

cos2(θ)
dθ.

Problem 1.6. Compute the antiderivative of sec(x) by first multiplying
and dividing by sec(x) + tan(x), and then performing an appropriate u-
substitution.

Problem 1.7. Compute the definite integral
∫ 9

3

2x3
√
x2 − 3 dx.
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Problem 1.8. Compute the definite integral
∫ 3

−2

14

23 + 7x
dx.

Problem 1.9. Suppose f(x) is a continuous function satisfying∫ 2

0

f(x) = 5.

What is
∫ 1

0

f(2x) dx?



2Applications of Integrals
Knowledge is not power, it is only potential.
Applying that knowledge is power.

TAKEDA SHINGEN

2.1 Area between curves
Recall that one interpretation of the quantity

∫ b
a
f(x) dx is that it repre-

sents the area between the graph y = f(x) and the x-axis between x = a
and x = b – at least when f(x) ≥ 0 for a ≤ x ≤ b.

Suppose that we wanted to find the area between the graphs of two
functions instead of the area between a graph and the x-axis? How can
we do this using integrals? For example, suppose f(x) and g(x) are the
graphs in the blue and red below, and we want to find the area of the
region between these graphs, shaded in purple.

24
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Notice that the area we care about is obtained by first taking the area
between the graph of y = f(x) and the x-axis (the blue region below),
and then removing the area between the graph of y = g(x) and the x-axis
(red below).

Each of these areas we can compute as an integral, and so to find the
area of the purple region we’re interested in, we’ll simply subtract the
area under y = g(x) from the area under y = f(x):
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By one of the basic properties of integrals, we could rewrite this as

Area =

∫ b

a

(f(x)− g(x)) dx.

Notice we subtract the function whose graph is the curve on the bot-
tom from the function whose graph is the curve on the top. If we were to
think about estimating the area between the curves by adding the areas
of rectangles between the curves, notice that the heights of these rectan-
gles would be given by an expression of the form f(x∗i ) + g(x∗i ) for some
chosen “sample points” x∗i :

Adding up the areas of these rectangles, using some partition a =
x0 < x1 < · · · < xn−1 < xn = b and chosen points x∗i on [xi−1, xi], would
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give us the sum
n∑
n=1

(f(x∗i )− g(x∗i )) ∆xi

Taking the limit of such sums of course gives us the integral
∫ b
a

(f(x)− g(x)) dx.

Example 2.1.
Fine the area between y = x2− 1 and y = 2x+ 1, between x = 0 and
x = 2.

Noting that y = 2x + 1 is above y = x2 − 1, we see that our f(x)
and g(x) in this example are f(x) = 2x+ 1 and g(x) = x2− 1, and so
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the area between the two curves is∫ 2

0

(
(2x+ 1)−

(
x2 − 1

))
=

∫ 2

0

(
−x2 + 2x+ 2

)
dx

=

(
−x3

3
+ x2 + 2x

)∣∣∣∣2
0

=

(
−8

3
+ 4 + 4

)
− 0

= 8− 8

3
=

24− 8

3

=
16

3

In the example above, it was evident from the given graph that
y = 2x + 1 was on the top and y = x2 − 1 was on the bottom. A
very reasonable question to ask now would be how do you know
which is the “top” and which is the “bottom” if you aren’t given
a graph? We will address this in a moment, but let’s first do an
example where the roles of top and bottom switch.

Example 2.2.
Find the area between y = sin(x) and y = cos(x) for 0 ≤ x ≤ π:
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Notice that the roles of top and bottom change when the graphs
intersect. So, we should first determine where this point of intersec-
tion occurs. I.e., we want to find the value of x between 0 and π such
that cos(x) = sin(x). Recalling the definition of cos(x) and sin(x) in
terms of the unit circle, we see that this occurs when x = π/4.

cos(x)

sin(x)
1

In particular, we consider the triangle of hypotenuse 1 whose sides
are cos(x) and sin(x) for the special value of x giving us cos(x) =
sin(x). We simply note that since the horizontal and vertical sides
of this triangle have the same length, we must have a 45◦ angle, and
so x = π/4.

Thus, from our graph, we see that for 0 ≤ x ≤ π/4, y = cos(x) is
the top curve and y = sin(x) is the bottom curve. For π/4 ≤ x ≤ 4,
however, the curve y = sin(x) is on the top and y = cos(x) is on the
bottom. We’ll thus compute the area in two steps by breaking the
integral up at π/4.



CHAPTER 2. APPLICATIONS OF INTEGRALS 30

Now we simply compute each of these integrals separately and
add the areas together to obtain the total area enclosed by the two
curves.∫ π/4

0

(cos(x)− sin(x)) dx = (sin(x)− (− cos(x)))

∣∣∣∣π/4
0

= (sin(π/4− cos(π/4)− (sin(0) + cos(0))

= (
√

2/2 +
√

2/2)− (0 + 1)

=
√

2− 1

∫ π

π/4

(sin(x)− cos(x)) dx = (− cos(x)− sin(x))

∣∣∣∣π
π/4

= (− cos(π)− sin(π))− (− cos(π/4)− sin(π/4))

= (−(−1)− 0)− (−
√

2/2−
√

2/2)

= 1 +
√

2

Finally, adding these together we see that the total area between
y = cos(x) and y = sin(x) is 2

√
2.

So, back to our earlier concern about determining the top and bottom
curves without a graph. Since we have to worry that the roles of the top
and bottom can switch, let’s first determine where all of these possible
switches could concern. For simplicity, let’s suppose f(x) and g(x) are
both continuous. Then we want to find all all the points where y = f(x)
intersects y = g(x), meaning we need to solve the equation f(x) = g(x).

Once we have all of the intersection points, we’ll break the interval
we’re integrating over up at these points. For example, if we were con-
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cerned with the interval [a, b] and f(x) = g(x) at x = c, x = d, and x = e,
where a < c < d < b < e, then we would want to consider integrating
over the intervals [a, c], [c, d], and [d, b]. (Notice the point e here did not
actually matter since it was outside of the interval we care about.)

On each of these intervals we would then check to see which curve
was on the top and the bottom by simply evaluating each of the functions
at some point inside the intervals (but not the endpoints, since we know
the functions are equal there).

Example 2.3.
Find the area of the region enclosed by y = x2− 1 and y = 1− x2 on
the interval [−2, 2].

First we find where the roles of top and bottom may switch:

x2 − 1 = 1− x2

=⇒ 2x2 = 2

=⇒ x2 = 1

=⇒ x = ±1

Now we consider the intervals [−2,−1], [−1, 1], and [1, 2] and
evaluate both x2−1 and 1−x2 at some point inside of each interval.

Interval Point x2 − 1 1− x2 Conclusion
[−2,−1] −3/2 5/4 −5/4 x2 − 1 is on top
[−1, 1] 0 −1 1 1− x2 is on top
[1, 2] 3/2 5/4 −5/4 x2 − 1 is on top
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Now we compute the area of the closed region as∫ −1

−2

((
x2 − 1

)
−
(
1− x2

))
dx

+

∫ 1

−1

((
1− x2

)
−
(
x2 − 1

))
dx

+

∫ 2

1

((
x2 − 1

)
−
(
1− x2

))
dx

=

∫ −1

−2

(
2x2 − 2

)
dx+

∫ 1

−1

(
2− 2x2

)
dx+

∫ 2

1

(
2x2 − 2

)
dx

=

(
2x3

3
− 2x

)∣∣∣∣−1

−2

(
2x− 2x3

3

)∣∣∣∣1
−1

+

(
2x3

3
− 2x

)∣∣∣∣2
1

=

[(
−2

3
+ 2

)
−
(
−16

3
+ 4

)]
+

[(
2− 2

3

)
−
(
−2

3
+ 2

)]
+

[(
16

3
− 4

)
−
(

2

3
− 2

)]
=

[
4

3
−
(
−4

3

)]
+

[
4

3
−
(
−4

3

)]
+

[
4

3
−
(
−4

3

)]
=

8

3
+

8

3
+

8

3
=8

Let’s just notice that the two graphs x2 − 1 and 1− x2 are curves
which are easy to graph (even by hand), just to confirm our conclu-
sion about which curves were on the top and the bottom.

Exercise 2.1.
It is possible to express the the area between the graphs y = f(x)
and y = g(x) as one integral, regardless of the number of times the
roles of top and bottom switch. How could this be done? (Hint: It
may not be easy to actually evaluate that integral without splitting
it back up.)



CHAPTER 2. APPLICATIONS OF INTEGRALS 33

Exercise 2.2.
Above we assumed the functions f(x) and g(x) were continuous.
How would we modify the strategy outlined above if f(x) and g(x)
have discontinuities?

In some problems the interval of x-values may not be given to us and
we have to determine what the interval is. In particular, if two curves
intersect at exactly two points, and we want to find the area of the region
enclosed by the curves, their intersection points will tell us the interval.

Example 2.4.
Find the area of the region enclosed by y = x and y = x2 − 2.

For this example we will do all of our calculations without view-
ing a graph of the regions, even though these two curves could eas-
ily be graphed by hand, just to emphasize that we don’t strictly need
a graph: we can determine everything we need with some basic al-
gebra.

First we must determine where these two curves intersect:

x = x2 − 2

=⇒ x2 − x− 2 = 0

=⇒ (x+ 1)(x− 2) = 0.

The curves intersect at x = −1 and x = 2, so we’ll integrate over
[−1, 2]. Now we still need to determine which curve is on the top
and which is on the bottom. To do this we’ll simply evaluate each
function at some point inside [−1, 2], such as x = 0. At x = 0 the
function y = x gives us 0, and the function y = x2 − 2 gives us −2,
thus y = x is on the top and y = x2 − 2 is on the bottom. Now we
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can compute the enclosed area as∫ 2

−1

(
x−

(
x2 − 2

))
dx =

∫ 2

−1

(
−x2 + x+ 2

)
dx

=

(
−x3

3
+
x2

2
+ 2x

)∣∣∣∣2
−1

=

(
−8

3
+ 2 + 4

)
−
(

1

3
+

1

2
− 2

)
=

10

3
−
(
−7

3

)
=

20 + 7

6
=

27

6

=
9

2

In all of the examples we have seen thus far, our curves have both
been graphs of a function of x, but this need not always be the case. If
our graphs are functions of y, then the same sort of procedure applies,
except we integrate with respect to y instead of x. Before jumping to the
integrals, let’s sketch what’s happening in terms of Riemann sums.

Suppose that x = `(y) and x = r(y) are two graphs as indicated in the
figure below, with r(y) > `(y) for all y-values between c and d, and we
want to find the area between these curves for c ≤ y ≤ d.

We can of course approximate this area using rectangles. However,
now the change in the y-values determines the heights of the rectangles,
and the widths of the rectangles are given by evaluating r(y) and `(y) are
values y∗i in our i-th subinterval of [c, d] along the y- axis, then subtracting
`(y∗i ) from r(y∗i ).
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The area of this region is then approximated by the sums of these
rectangles,

Area ≈
n∑
i=1

[r(y∗i )− `(y∗i )] ∆yi,

and taking the limit as the rectangles become arbitrarily skinny, we have

Area =

∫
[r(y)− `(y)] dy.

Exercise 2.3.
Why is `(y∗i ) subtracted from r(y∗i )? Why not r(y∗i ) subtracted from
`(y∗i ), or some other expression?

Example 2.5.
Find the area of the region bounded by x = y2 − 2y − 1 and x =

y
√
y2 + 1 with 0 ≤ y ≤ 3.
To compute this area we need to calculate∫ 3

0

(
y
√
y2 + 1−

(
y2 − 2y − 1

))
dy

=

∫ 3

0

y
√
y2 + 1 dy −

∫ 3

0

(
y2 − 2y − 1

)
dy.

For the first term, we can perform the substitution u = y2 + 1, du =
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2y dy. Notice that ydy = 1
2
du, and so our first integral evaluates to∫ 3

0

y
√
y2 + 1 dy =

1

2

∫ 10

1

√
u du

=
1

2
· 2

3
u

3/2

∣∣∣∣10

1

=
1

3

(
10

3/2 − 1
3/2
)

=
103/2−1

3
.

The second integral is even easier to compute:∫ 3

0

(
y2 − 2y − 1

)
dy =

(
y3

3
− y2 − y

)∣∣∣∣3
0

= −3.

Together these tell us the area of the enclosed region is∫ 3

0

[
y
√
y2 + 1−

(
y2 − 2y − 1

)]
dy =

103/2−1

3
− (−3) =

103/2 + 8

3
.

We’ll end our discussion of the area between curves by making two
observations and having one final example.

1. If a region is divided into two non-overlapping pieces, the area of
the entire region can be computed by adding the areas of the pieces
together.

2. When dividing a region into pieces, it may be convenient to inte-
grate one piece with respect to x, but integrate another piece with
respect to y.

Let’s have one example which applies both of these observations.
Caution: The example below requires a fair bit of work, including

some tedious algebra. The most important part of the problem, though,
is the setup. You should feel free to skim this example the first time you
look at it, focusing on the big ideas in the setup. If the algebra seems
overly tedious, don’t worry too much about it; don’t worry about getting
bogged down in the details.
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Example 2.6.
Compute the area of the shaded region below.

One way of doing this is to divide the region into two pieces as
shown below,

We’ll compute the areas of the orange and purple regions sep-
arately. Notice that for the purple piece the boundary curves (the
top and bottom) are graphs of functions of x since they pass the
vertical line test. For this reason we will perform that integral with
respect to x. The boundaries of the orange piece (the left- and right-
hand sides) are functions of y since they pass the horizontal line test.
Thus we’ll compute the area of the orange piece by integrating with
respect to y.

In both cases we need to determine where the curves intersect,
so first we need to d a little bit of algebra.
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Points on the red curve satisfy x = 2y2 − 4y, and points on the
blue curve satisfy y = − x2/2+x/4+2. At the intersection points, both
equations are satisfied, and so we have a system of equations,

x = 2y2 − 4y

y =
−x2

2
+
x

4
+ 2.

Plugging in y = − x2/2 + x/4 + 2 in for the y that appears in the first
equation gives us

x = 2

(
−x2

2
+
x

4
+ 2

)2

− 4

(
−x2

2
+
x

4
+ 2

)
= 2

[
x4

4
− x2

(x
4

+ 2
)

+
(x

4
+ 2
)2
]

+ 2x2 − x− 8

= 2

[
x4

4
− x3

4
− 2x2 +

x2

16
+ x+ 4

]
+ 2x2 − x− 8

=
x4

2
− x3

2
− 4x2 +

x2

8
+ 2x+ 8 + 2x2 − x− 8.

Multiplying through by 8 to remove the denominators we then have

8x = 4x4 − 4x3 − 32x2 + x2 + 16x+ 16x2 − 8x

Moving all of the terms to the left-hand side of the equation and
combining like-terms, the equation then becomes

4x4 − 4x3 − 15x2 = 0.

Conveniently, the polynomial on the left factors as

4x4 − 4x3 − 15x2 = x2
(
4x2 − 4x− 15

)
= x2(2x− 5)(2x+ 3).

This tells us that our curves intersect at three points: x = 0, x = 5/2,
and x = − 3/2.

For the integral which gives the area of the orange region, we
need to know the y-values bounding this region since we will inte-
grate with respect to y. Notice that if we plug in x = −3/2 and x = 0
into y = − x2/2+x/4+2, then we obtain the y-values y = 1/2 and y = 2.
Before we can write out our integral, we need to write the portion
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of the blue curve (giving the right-hand side of the orange region)
as a function of y. This requires just a little bit of algebra:

y =
−x2

2
+
x

4
+ 2

=⇒ − 2y = x2 − x

2
− 4

=⇒ 4− 2y = x2 − x

2

Completing the square on the right-hand side gives us the follow-
ing:

4− 2y = x2 − x

2

= x2 − x

2
+

1

16
− 1

16

=

(
x− 1

4

)2

− 1

16

Adding 1/16 to both sides of the equation we have

65

16
− 2y =

(
x− 1

4

)2

,

and solving for x this gives us

x = ±
√

65

16
− 2y +

1

4
.

Notice this means there are two possible functions which give
x in terms of y satisfying the equation y = −x2

2
+ x

4
+ 2, namely

x =
√

65
16
− 2y + 1

4
and x = −

√
65
16
− 2y + 1

4
. To determine which of

these two roots we should use in our problem, let’s simply notice
that when these functions are evaluated at y = 1 we obtain one
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positive value and one negative value:√
65

16
− 2 +

1

4
=

√
33

16
+

1

4
=

1 +
√

33

4
> 0,

−
√

65

16
− 2 +

1

4
= −

√
33

16
+

1

4
=

1−
√

33

4
> 0.

We don’t really care what the exact value of these expressions might
be, we just care about the sign for now. In particular, for the portion
of the cure in our picture, we see that the x value that occurs when
y = 1 is negative, and so we will use the negative root.

That is, for computing the area of the orange region, we will
integrate with respect to y, and the right-hand curve is given by x =

−
√

65/16− 2y + 1/4,and the left-hand curve is given by x = 2y2 − 4y.
Thus the area of the orange region is given by the integral∫ 2

1/2

[
−
√

65

16
− 2y +

1

4
−
(
2y2 − 4y

)]
dy.

We will compute this integral by breaking it into two parts as
follows: ∫ 2

1/2

[
−
√

65

16
− 2y +

1

4
−
(
2y2 − 4y

)]
dy

=

∫ 2

1/2

[
1

4
− 2y2 + 4y −

√
65

16
− 2y

]
dy

=

∫ 2

1/2

(
1

4
− 2y2 + 4y

)
dy −

∫ 2

1/2

√
65

16
− 2y dy.

The first integral is straight-forward:∫ 2

1/2

(
1

4
− 2y2 + 4y

)
dy =

(
y

4
− 2y3

3
+ 2y2

)∣∣∣∣2
1/2

=

(
1

2
− 16

3
+ 8

)
−
(

1

8
− 1

12
+

1

2

)
=

21

8
.
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For the second integral we’ll perform the substitution u = 65
16
− 2y,

du = −2 dy and obtain∫ 2

1/2

√
65

16
− 2y dy =

−1

2

∫ 1/16

49/16

u
1/2 du

=
1

2

∫ 49/16

1/16

u
1/2 du

=
1

2
· 2

3
u

3/2

∣∣∣∣49/16
1/16

=
1

3

([
49

16

]3/2

− [1/16]
3/2

)

=
1

3
·
(

343

64
− 1

64

)
=

1

3
· 342

64
=

114

64

=
57

32
.

Thus the total area of the orange region is

21

8
− 57

32
=

84− 57

32
=

27

32
.

To find the area of the purple region, we’ll integrate the top (red
curve) minus the bottom (blue curve) from x = 0 to x = 5/2. As
the red curve was given as the graph of a function of y, however,
we first need to write it as the graph of a function of x, and this is
accomplished with a little bit of algebra.

x = 2y2 − 4y

=⇒ x

2
= y2 − 2y

We now complete the square on the right-hand side,

y2 − 2y = y2 − 2y + 1− 1 = (y − 1)2 − 1.
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Thus we have
x

2
= (y − 1)2 − 1

=⇒ (y − 1)2 =
x

2
+ 1

=⇒ y − 1 = ±
√
x

2
+ 1

=⇒ y = 1±
√
x

2
+ 1.

The top curve we have in our picture is above the line y = 1, and
so we will need to use the expression with the positive root; our
top curve is given by y = 1 +

√
x/2 + 1. Keeping in mind the bot-

tom curve is given by y = − x2/2 + x/4 + 2, we simply compute the
following integral to determine the area of the purple region,∫ 5/2

0

[
1 +

√
x

2
+ 1−

(
−x2

2
+
x

4
+ 2

)]
dx

=

∫ 5/2

0

(
x2

2
− x

4
− 1

)
dx+

∫ 5/2

0

√
x

2
+ 1 dx.

The first integral is compute easily,∫ 5/2

0

(
x2

2
− x

4
− 1

)
dx =

(
x3

6
− x2

8
− x
)∣∣∣∣5/2

0

=
125

48
− 25

32
− 5

2

=
−65

96
.

The second integral requires an easy substitution u = x
2

+ 1, du =
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1
2
dx, ∫ 5/2

0

√
x

2
+ 1 dx = 2

∫ 9/4

1

u
1/2 du

=
4

3
u

3/2

∣∣∣∣9/4
1

=
4

3

((
9

4

)3/2

− 1
3/2

)

=
4

3

(
27

8
− 1

)
=

4

3
· 19

8

=
19

6
.

The area of the purple region is thus

19

6
− 65

96
=

239

96
.

Adding the areas of the orange and purple regions together, we see
that the area of the entire shaded region is thus

141

32
+

19

6
.
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2.2 Volume by slicing
When you first learn about integrals, you’re often motivated by the prob-
lem of finding the area under the graph of a function. However, integrals
are used to compute all sorts of quantities besides area. For example, in
your first semester calculus class you likely saw that integrals can be used
to compute displacement by integrating velocity. Now we will show how
integrals can be used to compute another quantity of interest: volume.

There are a few special ways that we can use integrals to compute
volumes in this class, and if you take multivariable calculus you will see
a more general technique.

Before describing how to compute volume using integrals, though,
we will need to discuss some preliminaries. We say that a three-dimensional
solid is cylindrical if all of its cross sections along some axes give the
same two-dimensional shape. In the case of traditional round cylinders
these cross sections are circles.

These cross sections can be more complicated than circles, however;
in principle they can be any arbitrarily complicated two-dimensional
shape.
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One of the nice properties of these cylindrical solids is that their vol-
umes are very easy to compute: if the cross sections of a cylindrical solid
have area A and the length of the axis perpendicular to the cross sections
(e.g., the height of the solids shown above) is h, then the volume of the
solid is simply Ah. From this we can recover a few families of volume
formulas. For example, the volume of a round cylinder of radius r and
height h is πr2h since this is just the area of the cross-sectional circle times
the height of the cylinder.

The volume of a rectangular prism of dimensions `, w and h is also
`wh: the area of the cross-sectional square is `w and the height is h.
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Now suppose that we have a solid which is not cylindrical. How can
we use our knowledge of volumes of cylindrical solids to help us find
the volume of this more complicated solid?

At first glance this seems like a hard problem, so let’s do what we
always do in calculus when we want to compute something but aren’t
sure how: let’s approximate the quantity we care about with something
we can actually compute. The idea in general is that we’ll imagine taking
a non-cylindrical solid and slicing it up into smaller pieces which we will
approximate with cylindrical solids.

In the picture below we have a sphere which is a non-cylindrical solid,
and an approximation of that sphere by cylinders. By adding up the
volumes of these approximating cylinders (which we can compute with
the V = Ah formula mentioned above), we have an approximation to the
volume of the solid.

Just to illustrate the idea, let’s try to approximate the volume of a
cone. We’ll imagine the cone is on its side with the x-axis going through
the center of the base and out through the tip of the cone. Say the radius
of the cone’s base is r and its height (which because we’re laying the cone
on its side runs along the x-axis) is h.
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To estimate the volume of this cone, let’s first imagine that we use five
cylinders of equal height but varying circumferences. For concreteness,
say we use five cylinders of height h/5.

Each of these cylindrical pieces has an easy to compute volume. If we
let r1 denote the radius of the base of the first piece, r2 the radius of the
base of the second piece, and so on, then we’ll estimate the volume of the
cone to be

5∑
i=1

πr2
i

h

5
.

If we could figure out what these radii ri are, then we could actually
compute this number. To do this, it’s helpful to think about the follow-
ing cross-section of our cone where we intersect the cone with a plane
containing the x-axis.
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x
h

This gives us a triangle lying on its side with the x-axis running through
the center. Note the vertical part of this triangle gives us the radius of
our pieces. Given a value of x (distance from the base of the cone), the
corresponding point on the line over the x-axis tells us the radius of the
circular cross section of the cone at that point. We can easily see that the
slope of this line is − r/h and the y-intercept is r (the radius of the bottom
of the cone), so the this line is given by y = − rx/h + r.

x

y

r

h

y = −r
h
x+ r

Since we’re chopping our cone up into five pieces, this means we are
interested in the following x-values (these correspond to the bases of the
cylindrical pieces we’re interested in),

x0 = 0

x1 =
h

5

x2 =
2h

5

x3 =
3h

5

x4 =
4h

5
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x

y

r

y = −r
h
x+ r

x0 x1 x2 x3 x4 x5

And so the corresponding radii are

r1 =
−r
h
x0 + r = r

r2 =
−r
h
x1 + r =

4r

5

r3 =
−r
h
x2 + r =

3r

5

r4 =
−r
h
x3 + r =

2r

5

r5 =
−r
h
x4 + r =

r

5

Notice the radii here are given by ri = 5−i
5
r.

Using these five cylindrical pieces, our estimate to the volume of the
cone is

5∑
i=1

πr2
i

h

5
=

5∑
i=1

π

(
5− i

5
r

)2
h

5

=
5∑
i=1

π · 25− 10i+ i2

25
· r2h

5

= πr2h

5

(
5∑
i=1

1− 2

5

5∑
i=1

i+
1

25

5∑
i=1

i2

)

= πr2h

5

(
5− 6 +

330

6

)
= πr2h

5
· 54.

This is only an approximation to our volume, and we get better approxi-
mations by using more pieces. For n cylindrical pieces of the same height
h
n

, the i-th radius will be given by

−r
h
· hi
n

+ r,
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and so the estimated volume will be
n∑
i=1

π

(
−r
h
· hi
n

+ r

)2

· h
n
.

After looking at this for a minute you may realize this is a Riemann sum
for π

(−r
h
x+ r

)2 on the interval [0, h] using n rectangles of equal width.
The limit of these Riemann sums thus gives us the integral∫ h

0

π

(
−r
h
x+ r

)2

dx.

Evaluating this integral gives us the standard formula for the volume
of a cone of height h and radius r:

Volume =

∫ h

0

π

(
−r
h
x+ r

)2

dx

= π

∫ h

0

(
r2

h2
x2 − 2r2

h
x+ r2

)
dx

= π

(
r2x3

3h2
− r2x2

h
+ r2x

)∣∣∣∣h
0

= π

(
r2h

3
− r2h+ r2h

)
=
πr2h

3

Notice that in the above we estimated volume by slicing our solid into
pieces which we approximated with cylindrical solids whose volumes
were easy to compute. Adding these volumes of cylinders and taking a
limit resulted in integrating the cross-sectional area of “infinitely-thin”
slices of our solid.

Computing volume in the way described above (integrating cross-
sectional area) is often called volume by slicing, and we’ll see many spe-
cial cases of these calculations soon, but in general we have the following
proposition which summarizes the above discussion.

Proposition 2.1.
Suppose a three-dimensional solid is positioned so the x-axis goes through
it from x = a to x = b. If the cross-sectional area of the slice of the solid
located at position x is denoted A(x), then the volume of the solid may be
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computed as

Volume =

∫ b

a

A(x) dx.

Though we stated the proposition above with the cross-sectional area
being a function of x, this isn’t strictly necessary. In some problems it
may be more natural for the cross-sectional area to be a function of y.
Regardless, the take-away is that we can compute volume by integrating
cross-sectional area.

As another example of calculating volume in this way, let’s determine
the volume of a triangular pyramid.
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Example 2.7.
Find the volume of a triangular pyramid of height h whose base is
an equilateral triangle of side length `.

`

h

Let’s first determine the cross-sectional area obtained by slicing
the pyramid with a horizontal plane at height y from the base to get
an equilateral triangle.

y

Notice the side lengths start at ` when y = 0 (the base of the
pyramid) and decrease linearly to 0 when y = h (the top of the
pyramid). That is, the side lengths are a function of y whose graph
is a line through (0, `) and (h, 0).

`

h
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The side length for the cross-section at y is thus −`
h
y+ `. The area

of a triangle of side length s is
√

3
4
s2, so the area of our cross-sections

is

A(y) =

√
3

4

(
−`
h
y + `

)2

.

Now we can compute the volume of the pyramid as∫ h

0

√
3

4

(
−`
h
y + `

)2

dy.

Using the substitution u = −`
h
y+ `, du = −`

h
dy, this integral becomes

Volume =

∫ h

0

√
3

4

(
−`
h
y + `

)2

dy

=
−
√

3h

4`

∫ 0

`

u2 du

=

√
3h

4`

∫ `

0

u2 du

=

√
3hu3

12`

∣∣∣∣`
0

=

√
3h`2

12
.

Example 2.8.
Compute the volume of a sphere of radius R by integrating cross-
sectional area.

If we imagine that the sphere is placed so that the x-axis runs
through its center in three-dimensional space, then the sphere inter-
sects the x-axis along the interval [−R,R]. Intersecting the sphere
with planes perpendicular to the x-axis gives us discs of radius that
start at 0, increase up to R at the center of the sphere, then decrease
back down to 0.
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To find the volume of the sphere, we need the radius of each disc.
The radii of the discs are given by the vertical distance between a
point of the sphere (on the edge of the disc) and the x-axis (center of
the disc).

We see these radii are functions of x, say r(x) is the radius of the
disc centered at x in [−R,R] on the x-axis. The graph of r(x) is then
a semi-circle of radius R centered at the origin, and from this we see
that

r(x) =
√
R2 − x2.

Thus the area of the associated disc is πr(x)2 = π (R2 − x2), and we
can now compute the volume of the sphere as follows.

Volume =

∫ R

−R
π
(
R2 − x2

)
dx

= π

(
R2x− x3

3

)∣∣∣∣R
−R

= π

([
R2 ·R− R3

3

]
−
[
R2 · (−R)− (−R)3

3

])
= π

[
2R3

3
−
(
−2R3

3

)]
=

4

3
πR3
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2.3 Solids of revolution
In the last section we saw that the volume of a solid could be obtained by
integrating cross-sectional area. For this to be useful, though, we must
be able to compute these cross-sectional areas, and in general this can
be difficult. In this section we will restrict ourselves to special types of
solids whose cross-sectional areas are easier to compute called solids of
revolution.

A solid of revolution is a three-dimensional solid obtained by revolv-
ing a region in the plane 360◦ around a line (usually the x-axis, y-axis,
or a line parallel to one of these). Notice this produces two-dimensional
shapes in every plane that contains that axis of rotation. By gluing to-
gether all of these two-dimensional slices we obtain a solid three-dimensional
object.

For example, imagine that we rotate the disc of radius 1 centered at
(2, 0) around the y-axis. This means the disc will come out of the page (or
screen) representing the plane and spin around that axis. We attach all
of the two-dimensional discs obtained by this process together and we
obtain a three-dimensional solid.

In this particular case the solid we obtain is shaped like a doughnut.
(The mathematical term for this object is a torus.)

As another example, imagine rotating a rectangle which is flush against
the y-axis around the axis. This gives a cylinder.
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Rotating the right triangle presented below around the x-axis gives a
cone:

Notice that if we change the axis of rotation from the x-axis to the
y-axis in the example above we obtain a very different solid.
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The disc and washer methods

Once we have one of these solids of revolution, the question we are inter-
ested in is what is the cross-sectional area of that solid, since that’s what
we need to compute the solid’s volume.

To determine the cross-sectional area, let’s first suppose the region
we are rotating around an axis is flush against that axis. For example, the
region below is bounded by the x-axis and the graph y = 1− x2, and we
can rotate that around the x-axis to obtain a solid.

Intersecting this solid with planes sticking out perpendicularly from
the plane containing our original two-dimensional figure gives us a cross-
section. If we can determine the area of all the cross sections that arise in
this way, then we can integrate those areas to determine the volume of
the solid.

Notice, though, that each of these cross sections can be obtained as
follows. Take one vertical line segment from the x-axis to the graph y =
1 − x2 and rotate that single line segment around the x-axis in three-
dimensional space. This carves out our cross section, and we can now
easily see that cross section must be a disc.



CHAPTER 2. APPLICATIONS OF INTEGRALS 58

The area of a disc is easily computed as πr2 where r is the disc’s
radius, so all that we need to do is determine that radius. The radius,
though, is simply the height of the line segment from above! At a point x
between −1 and 1 this height is just 1− x2. That is, the area of the cross-
section corresponding to x is π(1− x2)2. Now that we have a formula for
the area of our cross section, we can easily integrate the cross-sectional
areas to determine the volume of our solid:

Volume =

∫ 1

−1

π
(
1− x2

)2
dx

= π

∫ 1

−1

(
1− 2x2 + x4

)
dx

= π

(
x− 2

3
x3 +

1

5
x5

)∣∣∣∣1
−1

= π

[(
1− 2

3
+

1

5

)
−
(

(−1) +
2

3
− 1

5

)]
= π

[
2− 4

3
+

2

5

]
= π

[
30− 20 + 6

15

]
=

16

15
π

Suppose that instead of rotating our region above around the x axis,
we rotate around the line y = −1. This will certain change our solid:

Instead of having cross sections which are discs, we now have annuli.
(An annulus is a “ring” obtained by removing a small, concentric disc
from a larger disc.)
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Notice that if the outer radius of an annulus is R and the inner radius
is r, then the area of the annulus is

πR2 − πr2 = π(R2 − r2).

In our cross sections, we thus need to find both the outer and inner
radii.

Note that our outer and inner radii are just the distances from the axis
of rotation to the top or bottom curve enclosing the figure we rotate. In
particular, the outer radius comes from the semicircle y = 1 − x2 just as
before, but because we’re rotating around the line y = −1 instead of y = 0
(aka the x-axis), we are one unit further away from the axis of rotation.
That is, the outer radius is

1 + (1− x2) = 2− x2.

The inner radius, however, is always just 1 since the bottom of our fig-
ure is at the x axis which is one unit above the axis of rotation in our
problem. Putting these pieces of information together, we see that the
cross-sectional area of our figure (corresponding to the cross section at x)
is

π
[(

2− x2
)2 − 1

]
= π

[
4− 4x2 + x4 − 1

]
= π

[
3− 4x2 + x4

]
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and so the volume of the solid is∫ 1

−1

π
(
3− 4x2 + x4

)
dx = π

(
3x− 4

3
x3 +

1

5
x5

)∣∣∣∣1
−1

= π

([
3− 4

3
+

1

5

]
−
[
−3 +

4

3
− 1

5

])
= π

(
6− 8

3
+

2

5

)
= π

(
90− 40 + 6

15

)
=

56

15
π

Notice that the important details in computing a volume of a solid of
revolution like this are not simply the “top” and “bottom” curves, but
rather the distances of those curves from the axis of rotation. This can
take on various forms depending on, for instance, if the axis of rotation
is below or above the figure, as the next example shows.

Example 2.9.
Find the volume of the solid of revolution obtained by rotating the
region enclosed by the curves y = x and y = x2 − 2 around the line
y = 4. (We had seen in in the previous section these curves intersect
at x = −1 and x = 2.)

The cross sections are again annuli, but now the outer radius is
given by the bottom curve and the inner radius is given by the top
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curve. Since our axis of rotation is above the curve, we compute
that the outer radius is 3− (x2 − 2) = 5− x2 and the inner radius is
3 − x. Notice here we have the y-value of the line minus the curve,
whereas in our earlier calculation we had the curve minus the y-
value of the line. The distinction between these two is that the axis
of rotation is above the figure in this example, but below the figure
in our earlier calculation. (For this reason I think it’s better to think
in terms of “inner” and “outer” instead of getting fixated on “top”
and “bottom.”)

Now that we have the inner and outer radii, we see the cross-
sectional area is given by

π
[(

5− x2
)2 − (3− x)2

]
= π

[
25− 10x2 + x4 −

(
9− 6x+ x2

)]
= π

[
25− 10x2 + x4 − 9 + 6x− x2

]
= π

[
16 + 6x− 11x2 + x4

]
With the cross-sectional areas computed, we are now ready to com-
pute the volume of the solid:

Volume =

∫ 2

−1

π
[
16 + 6x− 11x2 + x4

]
dx

= π

∫ 2

−1

[
16 + 6x− 11x2 + x4

]
dx

= π

(
16x+ 3x2 − 11

3
x3 +

1

5
x5

)∣∣∣∣2
−1

= π

[(
32 + 12− 88

3
+

32

5

)
−
(
−16 + 3 +

11

3
− 1

5

)]
= π

[
57− 77

3
+

33

5

]
= π

[
855− 385 + 99

15

]
=

569

15
π

The process of computing volumes of solids of revolution by integrat-
ing these cross-sectional areas where the cross sections are discs or annuli
is sometimes called the disc method and the washer method.
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Remark.
Notice the disc and washer methods are really the same thing. In
particular, the disc method is the same as the washer method where
the inner radius is zero.

In all of the examples thus far we have rotated a figure around a line
parallel to the x-axis. We could of course rotate around a line parallel to
the y-axis instead. Mathematically this isn’t really any different, though
psychologically it may feel different.

Example 2.10.
Rotate the region bounded by the curves y = ln(x), y = 1, y = 2,
and x = 0 around the line x = −2.

In order to obtain our annuli (washers) we will consider inter-
secting the solid with planes perpendicular to the y-axis. (We could
continue to intersect with planes perpendicular to the x-axis as we
did before; there is nothing mathematically wrong about doing that.
However, the cross sections we would obtain would be more com-
plicated than discs or annuli.)

The cross-sections occurring at a given y-value are annuli whose
outer radius correspond to y = ln(x) and inner radius correspond to
x = 0. In order to use the washer method here, though, we will want
to integrate with respect to y. Thus we need to rewrite y = ln(x) as
a graph of a function of y, namely x = ey. With this in mind we see



CHAPTER 2. APPLICATIONS OF INTEGRALS 63

the outer radius is ey − (−2) = ey + 2, and the inner radius is simply
2.

Thus our cross-sectional area is simply

π
(
(ey + 2)2 − 22

)
= π

(
e2y + 4ey + 4− 4

)
= π

(
e2y + 4ey

)
.

We can thus compute our volume as

Volume =

∫ 2

1

π
(
e2y + 4ey

)
dy.

To compute this integral we will break it into two parts,∫ 2

1

π
(
e2y + 4ey

)
dy = π

∫ 2

1

e2y dy + 4π

∫ 2

1

ey dy.

The first integral requires a simple u-substitution with u = 2y, du =
2 dy, and so we compute

π

∫ 2

1

e2y dy =
π

2

∫ 4

2

eu du =
π

2

(
e4 − e2

)
.

The second integral is slightly simpler,

4π

∫ 2

1

ey dy = 4πey
∣∣∣∣2
1

= 4π
(
e2 − e

)
.

Putting these together we see the volume of our solid is

π

2

(
e4 − e2

)
+ 4π

(
e2 − e

)
=
πe4 − πe2 + 8πe2 − 8πe

2

=
π

2

(
e4 + 7e2 − 8e

)
.
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To summarize what we have seen thus far:

• The volume of the solid of revolution obtained by rotating the re-
gion bounded by y = f(x), y = g(x), x = a, and x = b, assuming
f(x) ≥ g(x) for all a ≤ x ≤ b, around the axis y = k is given by

–
∫ b

a

π
(
(f(x)− k)2 − (g(x)− k)2) dx if y = k is below the re-

gion, and

–
∫ b

a

π
(
(k − g(x))2 − (k − f(x))2) dx if y = k is above the re-

gion.

• The volume of the solid bounded by x = r(y), x = `(y), y = c, y = d,
assuming r(y) ≥ `(y) for all c ≤ y ≤ d, around the axis x = k is

–
∫ d

c

π
(
(r(y)− k)2 − (`(y)− k)2) dy if x = k is to the left of the

region, and

–
∫ d

c

π
(
(k − `(y))2 − (k − r(y))2) dy if x = k is to the right of the

region.

Remark.
I personally do not think it’s worthwhile to memorize the four for-
mulas above. Instead, I would recommend that you understand the
ideas (volume is computed by integrating cross-sectional area; cross
sections for solids of revolution are discs or washers; the radius of a
disc or radii of a washer depend on the axis of rotation) and derive
the formulas as necessary.

The shell method

We now describe another method for computing volumes of solids of
revolution. Instead of integrating cross-sectional areas as before, we will
integrate areas of “shells” centered at the axis of rotation. Let’s illustrate
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the idea with an example: find the volume of the solid obtained by rotat-
ing the region bounded by y = f(x), y = 0, x = 0, and x = 1 around the
y-axis.

Let’s imagine that that instead of rotating the region described above
around the axis, we instead approximate the region with rectangles (just
as when approximating area under a curve) and instead rotate those rect-
angles around the y-axis.

Each rectangle we rotate around the axis gives a solid cylindrical shell.
We could approximate the volume of the original solid by adding the vol-
umes of these shells. So, we need to determine the volume of the shell.

Here we will actually cheat a little bit and instead of computing the
volume exactly, we will only approximate the volume of the shell. (You
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could compute the exact volume, but what we are about to describe will
result in a simpler integral.)

Let’s suppose the cylindrical shell we have has an outer radius of r, a
height of h, and a thickness of τ .

Imagine that we cut the shell along one side and unroll it to give a
“rectangular prism,”

Notice the height of this prism is h, the width of the prism is τ , but
the length of the prism is 2πr since this corresponds to the circumference
of the original shell. Thus the volume of the prism is 2πrhτ . We are
cheating a little bit here because when we unroll the cylindrical shell we
don’t quite have a rectangular prism since one side of our “prism” will
be shorter than the opposite side (corresponding to the inner and outer
radii of the shell). Despite this, we will use 2πrhτ as an approximation to
the volume of the shell. Notice this approximation gets better and better
as the shell gets thinner and thinner (i.e., as τ goes to zero).

In our example above, let’s suppose the i-th shell is given by an x-
coordinate we’ll write as x∗i . The height of the shell would then corre-
spond to f(x∗i ), and the thickness of the shell is the width of the rectangle,
∆xi. Putting all of this together, the volume of our solid of revolution is
approximately

Volume ≈
n∑
i=1

2πx∗i f(x∗i )∆xi.
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As our shells get thinner (the corresponding rectangles we rotated around
the axis also becoming thinner), we get better and better approximations.
In the limit we get the true volume, and the limit of the Riemann sums
above becomes an integral. That is, we may compute the volume as

Volume =

∫ 1

0

2πxf(x) dx.

More generally, if the region bounded by y = f(x), x = a, x = b and
the x-axis is rotated around the y-axis, the volume of the resulting solid
can be computed as

Volume =

∫ b

a

2πxf(x) dx.

Computing the volume this way is called the shell method since it comes
from approximating the region with cylindrical shells.

Notice that we could have computed the volume described above us-
ing the disc or washer method, but because we rotated around the y-axis
we would have to integrate with respect to y, and this would require us
to rewrite the y = f(x) above as a function of y which could very well
be difficult depending on what the function was. With the shell method,
though, we integrate with respect to x and get to sidestep that very an-
noying algebra, although possibly at the price of having a more involved
integral.

Example 2.11.
Use the shell method to compute the volume of the cone obtained
by rotating the region bounded by the line y = h− h

r
x and the axes,

rotated around the y-axis. (This results in a cone of height h and
base radius r.)



CHAPTER 2. APPLICATIONS OF INTEGRALS 68

Volume =

∫ r

0

2πx

(
h− h

r
x

)
dx

= 2π

∫ r

0

(
hx− h

r
x2

)
dx

= 2π

(
hx2

2
− hx3

3r

)∣∣∣∣r
0

dx

= 2π

(
hr2

2
− hr3

3r

)
= 2π

(
hr2

2
− hr2

3

)
= 2π

(
3hr2 − 2hr2

6

)
= 2π · hr

2

6

=
πr2h

3

Of course, we could also slide the axis of rotation around and this will
modify our integral.

Example 2.12.
Find the volume of the solid obtained by rotating the region bounded
by y = −x2 + 4x+ 1 and y = 5− x around the axis x = 6.
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Before jumping straight to an integral, let’s spend a moment
thinking about the shells that are involved. If we choose an x-value
our region to determine the shell, notice the top of the shell occurs
with y-value −x2 + 4x + 1 and the bottom of the shell has y-value
5− x. That is, the height of the shell is

−x2 + 4x+ 1− (5− x) = −x2 + 4x+ 1− 5 + x = −x2 + 5x− 4.

The radius of the shell is given by the distance from the shell to the
axis of rotation. Since the axis is x = 6 and this is to the right of our
region, the shell corresponding to our x has radius 6− x.
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Letting ∆x denote the width of our rectangle (aka the thickness
of our shell), the volume of the shell is approximately

2π(6− x)
(
−x2 + 5x− 4

)
∆x

Summing up these volumes and taking the limit as the shells be-
come thinner and thinner we are left with the following integral:

Volume =

∫ 5

1

2π(6− x)
(
−x2 + 5x− 4

)
dx

= 2π

∫ 5

1

(
−6x2 + 30x− 24 + x3 − 5x2 + 4x

)
dx

= 2π

∫ 5

1

(
x3 − 11x2 + 34x− 24

)
dx

= 2π

(
x4

4
− 11x3

3
+ 17x2 − 28x

)∣∣∣∣5
1

=
80π

3

Of course, we could rotate a region around the x-axis instead of the
y-axis. The idea is exactly the same, but now our shells will sit on their
sides, and their heights and radii will be functions of y instead of x, so
we will integrate with respect to y.

Example 2.13.
Find the volume of the solid obtained by rotating the region below
around the x-axis.
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Here, since we are rotating around the x-axis, our integral will have
the form

∫ b
a

2πyf(y) dy, and so we must write our curves as func-
tions of y. This, however, is simply x = y1/3. We can then compute
the volume as

Volume =

∫ 8

0

2πy · y
1
3 dy

= 2π

∫ 8

0

y
2
3 dy

= 2π
3

5
y

5
3

∣∣∣∣8
0

=
6π

5

(
8

5
3 − 0

5
3

)
=

6π

5
· 32

=
192π

5

2.4 Work
In physics, work is defined as force times distance. That is, the work
done by applying a force F across a distance d is by definition W = Fd.
At least, this is the case if the force is constant and applied in the direction
of motion. But what if the force changes? For example, suppose we being
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pushing a heavy object with a force of 100 pounds, but over time grow
tired and push with less force. How can we determine the work done in
this situation when our force changed?

To solve this, we’ll suppose the distance we’re traversing is broken
into small segments, assume the force is constant on each segment, and
add up the work done on each of those segments to get an approxima-
tion. This gives us an expression of the form

W ≈
n∑
i=1

F (x∗i ) ∆xi.

Of course, we get better estimates by using smaller segments, and in
the limit the sum above turns into an integral,

W =

∫ b

a

F (x) dx.

Example 2.14.
Hooke’s law states that the force exerted by a spring stretched or
compressed by a distance of x from its natural equilibrium position
is −kx, where k depends on the stiffness of the spring.

What this is really means is the following: When you push the
spring in by compressing it a distance of x, the spring pushes back,
and how hard it pushes back depends on both the constant k and
how much you’ve compressed the spring. (The constant k simply
tells us how “stiff” the spring is. For example, for a spring made of
soft plastic k might be a very small number; for a heavy spring made
of cast iron the k might be very large.) Imagine a stiff spring made of
some kind of metal. If you attached one end of the spring to a wall
and then pushed the other end with your hand, you would feel the
spring pushing back, trying to get back to its equilibrium position.
The more you compress the spring, the stronger it pushes back, and
in particular if you compress the spring twice as much, the spring
will push back twice as hard. That is all that Hooke’s law is saying.
(The negative that appears is because the spring is pushing against
whichever direction you are stretching/compressing it.)

Determine the work required to compress a spring a distance of
` meters from its natural equilibrium position.
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Equilibrium Compressed

We simply integrate the force required to compress the spring.
When the spring is compressed by a distance of x, the spring sup-
plies a force of −kx, so we have to supply a force of kx to balance
this out. As we continually push the spring in, though, the x con-
stantly changes, so the force we’re supplying is constantly changing
too. The total work required is the integral of this force,

W =

∫ `

0

kx dx

=
kx2

2

∣∣∣∣`
0

=
k`2

2
.

Remark.
You may recognize k`2/2 as the elastic potential energy of the spring.

Example 2.15.
If we were to build a concrete column by pouring cement to the
current top of the column (the top rises as the column is built), the
force required to lift the concrete to the top increases as the column
rises. How much work is done in building a cylindrical column of
concrete with radius three feet and height ten feet, if the concrete
being used has a density of 95 pounds per cubic foot?

First notice that the weight of the concrete is given by its density
(which we’re told is 95 pounds per cubic foot) times its volume. For



CHAPTER 2. APPLICATIONS OF INTEGRALS 74

example, a 2× 2× 2 block of this concrete would weigh 760 pounds
as the volume of the block is 8 cubic feet.

The weight of the concrete tells us the force required to lift it. To
lift the 760 lb concrete block described a moment ago, for instance,
you need to supply a force of 760 lb. When we lift the block some
distance h the work done is the force times the distance. Lifting our
760 lb block three feet, for instance, means we have to perform 2280
foot-pounds of work.

In our situation we are raising our concrete higher and higher
amounts as the column is constructed, and this makes the problem
seem hard, so let’s consider a simplification. Suppose we imagine
our 10 foot tall cylindrical column is constructed from five prefab-
ricated cylindrical blocks of concrete with radius 3 feet and height
2 feet. Now imagine we build our column by simply stacking these
blocks on top of one another. Notice that each block weighs

95
lb

ft3 · π (3ft)2 · 2ft = 1710πlb

. As we build our column we have to raise each block higher than
the previous blocks to put it on the top of the column.

Our first block will be the base of the column, and it requires
zero work to leave it on the ground.

The second block will go on top of the first block. This means it
must be lifted a height of 2 ft. Since the block weighs 1710π pounds,
the work required is 3420π foot-pounds.

The third block goes on top of the second, but since the second
block is already on top of the first, it must be lifted 4 ft. This means
the required work is 6840π foot-pounds.

The fourth block must be lifted 6 feet, so 10260π foot-pounds of
work is required.

Finally, the fifth block must be lifted 8 feet and requires 13680π
foot-pounds of work.

Putting all of this together, the total work required to build our
column from these pre-made blocks is

0 + 3420π + 6840π + 10260π + 13680π = 34200π foot-pounds.

The process just described is an approximation of what we want
to do, except since we are pouring the concrete we should think
the height changes continually – not just the height of the column,
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but the height of the individual blocks. That is, using five blocks
of height 2 we approximated the work to be 34200π foot-pounds.
We could repeat this process using ten blocks of height 1 or twenty
blocks of height 0.5 feet, or 120 blocks of height 1/12-foot. As we
make the blocks thinner and thinner, we get better and better ap-
proximations to what we are interested in.

In the limit we will take more and more blocks of thinner and
thinner heights, and the resultant sum becomes an integral. In par-
ticular, using n blocks of height 10

n
, the work is approximately

n∑
i=1

π32 10

n︸ ︷︷ ︸
volume

95︸︷︷︸
density

10(i− 1)

n︸ ︷︷ ︸
distance

Notice the distance we move the i-th block is one-blocks-height less
than the distance we moved the previous, (i− 1)-st, block.

Let’s slightly rewrite this as

n∑
i=1

855π
10(i− 1)

n

10

n
.

Notice that since 10(i−1)
n

is a height, we could think of it as a y-value;
say y∗i = 10(i−1)

n
. Note too that 10

n
is the change in heights from one

height to the next, so we can write ∆yi = 10
n

, and the sum becomes

n∑
i=1

855πy∗i ∆yi.

As n goes to infinity this becomes the integral∫ 10

0

855πy dy.
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Thus our work to build the concrete column can be computed as

Work =

∫ 10

0

855πy dy

= 855π
y2

2

∣∣∣∣10

0

= 42750π

and so 42750π foot-pounds of work is required.

In general, our integral for the work done in moving a substance of
density δ with cross sections of area A(y) moved by a height of y is given
by

largest distance∫
shortest distance

δA(y)y dy

There is one issue here we must pay attention to when discussing “den-
sity.” Ultimately we must integrate a force, and so if our density has
units

Force

Volume

then we don’t need to do anything special. However, if the units for our
density were

Mass

Volume

we need to convert the mass into weight (force) by multiplying by the
acceleration due to gravity. This will mostly be an issue when we use
metric units where we may say the density is given in kilograms per
cubic meter. As kilogram is a unit of mass, not force, we must multiply
this by the acceleration due to gravity to “upgrade” from kilograms to
Newtons. When using English units like pounds, however, this is already
a unit of force with gravity already being incorporated.

Example 2.16.
Suppose a tank shaped like an inverted cone of height 10m and ra-
dius of 5m has a pump attached to a spigot 2m above the top of the
tank.
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10

5

2

If the tank is filled with water which has a density of 1000 kg
m3 , how

much work is done to pump the water out of the tank through the
spigot?

Let’s imagine that our water comes in little (approximately) cylin-
drical chunks. (E.g., maybe the water was frozen and we slice it
in layers.) Let’s try to find the work done in moving just a single
chunk. To do this, let y denote the height of the chunk from the
bottom of the tank and let ∆y denote its thickness. We need to com-
pute the volume of the chunk, but this requires us to know its ra-
dius. Note that the radius changes as we consider different chunks,
however.
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∆y

y

In order to determine the radius, we will use some basic trigonom-
etry. In particular, consider the right triangle whose height is the
center of the conical tank and whose top is the radius of the tank.
Now consider the similar triangle obtained by looking at the (un-
known) radius of our chunk distance y from the bottom of the cone.

5

y

10
r

θ

The bottom tip of this triangle has some angle θ, whatever it hap-
pens to be. Notice that we can compute tan(θ) in two ways using
the fact tangent is opposite over adjacent. Using the large triangle
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we have
tan(θ) =

5

10
,

but using the smaller triangle we have

tan(θ) =
r

y
.

However, these are the same θ in each case, so these expressions
must be equal, and from this we can solve for r:

5

10
=
r

y

=⇒ y

2
= r.

That is, the radius is a function of our height from the bottom of the
cone.

Given that r = y
2
, we can now compute the volume of the little

chunk as
π
(y

2

)2

∆y =
π

4
y2∆y.

The weight of this chunk is thus given by its volume times its
density times acceleration due to gravity (since the given density is
only a mass and not a force). Since acceleration due to gravity near
the surface of the Earth is 9.8 m

s2
, we have the force is

9.8 · 1000 · π
4
y2∆y = 2450πy2∆y.

Now we need to determine the distance this chunk of water
moves. As we are moving to the spigot which is 2m above the top of
the 10m cone, the distance from the top of the spigot to the bottom
of the cone is 12m. However, our chunk is already distance y from
the bottom of the tank, and so it needs to be pumped the remaining
12− y meters.

Putting all of this together, the approximate work done in pump-
ing one of our little chunks of water in the tank is

2450πy2(12− y)∆y.

The units here can be determined by thinking through each part
of our integral: 2450πy2∆y was measured in Newtons and 12 − y
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is measured in meters. Thus each term has units “Newton-meter”,
Nm, also known as “Joule,” J .

Summing up these approximations to work for each chunk gives
us a Riemann sum, and in the limit we obtain the following integral:

Work =

∫ 10

0

2450πy2(12− y)dy

= 2450π

∫ 10

0

(
12y2 − y3

)
dy

= 2450π

(
4y3 − y4

4

)∣∣∣∣10

0

= 2450π

(
4 · 103 − 104

4

)
= 2450π (4000− 2500)

= 3675000π

≈ 1.55× 107

2.5 Practice problems

Problems about area between curves

Problem 2.1. Find the area of the region bounded by y = x and x =
(y − 2)2.
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Problem 2.2. Find the area between the graphs y = x
2

+ 1 and y = sin(x)
between x = 0 and x = 2.

Problem 2.3. Find the area enclosed by x = −y3 + 2y2 and x = −3y.
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Problem 2.4. Find the area enclosed by by x = y2 − 2 and x = y.

Problem 2.5. Find the area enclosed by y = x4 and y = 2− x2.

Problems about volume

Problem 2.6. Determine the volume of the three-dimensional solid con-
structed as follows: the base of the solid is the right triangle with vertices
(0, 0), (2, 1), and (2, 0) in the xy-plane, and the cross sections perpendicu-
lar to the x-axis sitting in three-dimensional space are squares.

Problem 2.7. Using the washer method, compute the volume of the solid
of revolution obtained by rotating the region bounded by the curves y =
x2 and y = 3x around the x-axis.

Problem 2.8. Using the shell method, compute the volume of the solid of
revolution obtained by rotating the region bounded by the curves y = x2

and y = 3x around the x-axis.

Problem 2.9. Using the shell method, compute the volume of the solid
obtained by rotating the region bounded by y = x3 and y = −x2 + 4x+ 4
between x = −1 and x = 2 around the line x = 3.
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Problem 2.10. Repeat Problem 2.9, but using the washer method instead
of the shell method

Problems about work

Problem 2.11. How much work is done if a crane lifts a stone block
weighing 900 pounds upwards ten feet, assuming the weight of the chain
connecting the block to the crane is negligible?

Problem 2.12. Suppose a 900 pound block is attached to a crane via a
chain that weighs 50 pounds per foot. If the chain is initially 30 feet long
but is then reeled in to bring the block up 10 feet, how much work has
the crone done?

Problem 2.13. Imagine a cylindrical tank of liquid has a spigot at its top,
and attached to the spigot is a pump which is used to pump all of the
liquid out of the tank. If the tank has a radius of 10 feet and a height
of 30 feet, and if the density of the liquid in the tank is 65 pounds per
cubic foot, how much work is done in pumping all of the liquid out of
the tank?



3
Integration Techniques

The beauty of mathematics only shows itself to
more patient followers.

MARYAM MIRZAKHANI

3.1 Integration by parts
In this section we will see a rule for integration that can be thought of as
a sort of product rule for integrals. Let’s begin by recalling the product
rule for derivatives which tells us

d

dx
f(x) · g(x) = f ′(x)g(x) + f(x)g′(x) dx.

Notice this means the antiderivative of f ′(x)g(x)+f(x)g′(x) is f(x)g(x)+
C: ∫

(f ′(x)g(x) + f(x)g′(x)) dx = f(x)g(x) + C.

Let’s rewrite this as follows:∫
(f ′(x)g(x) + f(x)g′(x)) dx = f(x)g(x) + C

=⇒
∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx+ C

Noting the antiderivative
∫
f ′(x)g(x) dx may be written as

∫
g(x)f ′(x) dx

and that this integration will supply its own “+C”, we may further rewrite
this as ∫

f(x)g′(x) dx = f(x)g(x)−
∫
g(x)f ′(x) dx.

This way of integrating products of functions is often called integration
by parts and you can think of it as a sort of product rule for integrals.

Notice, though, that this expresses one integral in terms of another
integral. Thus this procedure is only helpful if the other integral is easier
for us to compute.

84
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Example 3.1.
Compute

∫
xex dx.

Suppose that f(x) = x and g′(x) = ex in our formula. Notice we
need to compute f ′(x) and g(x), but both of these are easy: f ′(x) = 1
and

g(x) =

∫
g′(x) dx =

∫
ex dx = ex + C.

In fact, since there will be a second integral involved, we can drop
this “+C” and rely on our second integral (written below) to supply
us with the constant of integration.

Using the integration by parts formula above we thus have∫
xex dx = xex −

∫
ex dx = xex − ex + C.

We can easily verify this is the correct antiderivative:

d

dx
(xex − ex + C) = 1 · ex + xex − ex + 0 = xex.

Example 3.2.
Compute

∫
ln(x)x2 dx.

Letting f(x) = ln(x) and g′(x) = x2, we compute g(x) =
∫
x2 dx =

x3/3 and f ′(x) = 1/x. Thus our integration by parts formula gives us∫
ln(x)x2 dx = ln(x)

x3

3
−
∫
x3

3
· 1

x
dx

=
x3 ln(x)

3
−
∫
x2

3
dx

=
x3 ln(x)

3
− x3

9
+ C

=
3x3 ln(x)− x3

9
+ C.

Often when people discuss integration by parts the introduce two
new variables to simplify the formula above. Letting u = f(x) and
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v = g(x) in our earlier formula, notice du = f ′(x)dx and dv = g′(x)dx.
We may then rewrite∫

f(x)g′(x) dx = f(x)g(x)−
∫
g(x)f ′(x) dx

as ∫
u dv = uv −

∫
v du.

This is entirely equivalent to what we had earlier, just expressed in a
different notation. As with u-substitution, this new notation takes some
getting used to but is usually preferred by students once they’ve done a
few examples with it.

Example 3.3.
Compute

∫
x2 cos−1(x) dx.

If we take u = cos−1(x) and dv = x2 dx, then we must have v = x3

3

and
du =

d

dx
cos−1(x) dx =

1

sin(cos−1(x))
dx.

Here we have used the formula for the derivative of an inverse
function. Just to remind you of how this works, if f−1(x) is the
inverse of f(x), then we must have f(f−1(x)) = x. If we differentiate
both sides of this equality we must still have an equality, and we can
differentiate f(f−1(x)) using the chain rule. The chain rule will give
us a factor of d

dx
f−1(x), and from there we can solve for d

dx
f−1(x):

f(f−1(x)) = x

=⇒ d

dx
f(f−1(x)) =

d

dx
x

=⇒ f ′(f−1(x)) · d
dx
f−1(x) = 1

=⇒ d

dx
f−1(x) =

1

f ′(f−1(x))
.

We can actually use some trig to rewrite the expression 1/sin(cos−1(x))

that appeared above. If we imagine a right triangle with hypotenuse
1 and a non-right angle θwith x as the adjacent side, then the Pythagorean
theorem tells us the opposite side must have length

√
1− x2:
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1 √
1− x2

x

Let’s notice that since cosine is adjacent over hypotenuse, for this
triangle we have cos(θ) = x, or cos−1(x) = θ. Thus sin(cos−1(x)) =
sin(θ) and recalling that that sine is opposite over hypotenuse, we
have

sin(cos−1(x)) = sin(θ) =

√
1− x2

1
=
√

1− x2

=⇒ 1

sin(cos−1(x))
=

1√
1− x2

.

All of this means that our dv that appears in our integration by
parts formula can be written as du = dx

1−x2 .
Now we use the integration by parts formula

∫
u dv = uv−

∫
v du

to write

∫
x3 cos−1(x) dx = cos−1(x) · x

3

3
−
∫ (

x3

3

)
√

1− x2
dx.

Now we must evaluate this late integral. First we rewrite that inte-
gral as ∫ (

x3

3

)
√

1− x2
dx =

1

3

∫
x3

√
1− x2

dx.

We can compute this integral using a substitution. As we already
used the variable u above, we will use w in our substitution. Letting
w = 1− x2, dw = −2x dx. Before we plug this into our integral let’s
rewrite it once more so that the −2x dx appears:

1

3

∫
x3

√
1− x2

dx =
1

3
· 1

−2

∫
x2(−2x)√

1− x2
dx
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With our w-substitution above this becomes

−1

6

∫
1− w√
w

dw =
−1

6

∫ (
w−

1/2 − w1/2
)
dw.

(Here we used the fact that if w = 1 − x2, then x2 = 1 − w.) This
integral is easy to compute,

−1

6

(
w−

1/2 − w1/2
)
dw =

−1

6

(
2w

1/2 − 2

3
w

3/2

)
+ C.

Rewriting this in terms of x we have

1

3

∫
x3

√
1− x2

dx =
−1

6

(
2
√

1− x2 − 2

3

(
1− x2

)3/2)
+ C.

Finally combining this with the above we have∫
x2 cos−1(x) dx

=
x3 cos−1(x)

3
−
∫ (

x3

3

)
√

1− x2
dx

=
x3 cos−1(x)

3
+

1

6

(
2
√

1− x2
)
− 2

3

(
1− x2

)3/2
+ C

=
x3 cos−1(x) +

√
1− x2 − 2(1− x2)3/2

3
+ C

In doing these problems, we have to make a choice of what u and dv
are, and that choice influences how easy or difficult it will be to solve
the problem. For example, if we were to repeat the example above but
making the choice u = x2, dv = cos−1(x), then we would be required to
compute v =

∫
cos−1(x) dx, which is not so obvious.

Notice that when we perform integration by parts we will need to
differentiate u, which is usually easy, and integrate dv, which may be
hard. So, we should try to choose our u and dv to be things where we are
more likely to be able to integrate the chosen dv. To help guide us in this
decision there’s a convenient acronym, ILATE:
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I inverse trig
L logarithm
A algebraic (e.g., polynomial)
T trig
E exponential

The idea here is that we will choose our u using the letters of ILATE left-
to-right. If there’s an inverse trig involved in our integral, we’ll take our
u to be that. If there’s no inverse trig, then we’ll take our u to be any
logarithms that appear, and so on. Once we make a choice of u, then dv
is everything that remains.

Remark.
Of course, ILATE is not magical. The strategy here is just that we can
pretty much differentiate any function we’re given, but integration
may be much more difficult. So, we’ll take our u to be things that
are difficult to integrate (like inverse trig functions and logarithms),
so that dv is hopefully easier to integrate. This is what happened in
our example above where we took u to be cos−1(x) – an inverse trig
function – and then dv was simply x2 dx, and x2 is easy to integrate.

Example 3.4.
Compute

∫
2x (x2 + 3x− 4) dx.

We will use integration by parts, using ILATE to guide our choice
of u. There are no inverse trig functions and no logarithms in our
integrand, but there is something “algebraic,” the polynomial x2 +
3x− 4. So we will take u = x2 + 3x− 4, and then dv = 2x dx. Notice
that du is easily computed to be du = (2x + 3) dx, and v is given by
integrating 2x:

v =

∫
dv =

∫
2x dx =

2x

ln(2)
.

Now applying the integration by parts formula we can rewrite our
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original integral as∫
2x
(
x2 + 3x− 4

)
dx =

(
x2 + 3x− 4

)
2x −

∫
2x

ln(2)
(2x+ 3) dx.

Now we need to compute this integral that appears on the right. To
do this we will rewrite it as∫

2x

ln(2)
(2x+ 3) dx =

1

ln(2)

(
2

∫
2xx dx+ 3

∫
2x dx

)
.

The right-most integral we have already computed,
∫

2x dx = 2x

ln(2)
+

C. For the other integral,
∫

2xx dx, however, we will have to do
another integration by parts.

In order to not confuse the “new” u and dv in our second inte-
gration by parts, we will use u2 and dv2. Notice that, using ILATE
again, we will take u2 = x and dv2 = 2x dx. Thus du2 = dx and
v2 = 2x

ln(2)
. Now we apply the integration by parts formula to com-

pute ∫
2x xdx =

x2x

ln(2)
− 1

ln(2)

∫
2x dx =

x2x

ln(2)
− 2x

(ln(2))2 + C.

Now we can put all of this together to solve our original problem:∫
2x
(
x2 + 3x− 4

)
dx

=
(
x2 + 3x− 4

)
2x −

∫
2x

ln(2)
(2x+ 3) dx

=
(
x2 + 3x− 4

)
2x − 3

ln(2)2
2x +

x

ln(2)2
2x+1 − 1

ln(2)3
+ C.

It is worth pointing out here that it is not uncommon to have to per-
form integration by parts multiple times in solving one problem! Some-
times, though, you may wind up performing an infinite loop of integra-
tion by parts with integrals that seem to be getting harder and harder.
When this happens, you likely have a mistake somewhere in your work,
or should pick a different u and dv. (ILATE is a useful guideline, but it is
not always the definitive way to choose u and dv.)

There are a few cases, though, when this “infinite loop” of integration
by parts can be solved.
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Example 3.5.
Compute

∫
ex sin(x) dx.

Using ILATE we will take u = sin(x) and dv = ex dx. Notice this
means du = cos(x) dx and v = ex. Our integral can now be written
as ∫

ex sin(x) dx = ex sin(x)−
∫
ex cos(x) dx.

We will perform integration by parts again to compute
∫
ex cos(x) dx.

Letting u2 = cos(x) and dv2 = ex dx gives us du2 = − sin(x) dx and
v2 = ex. Thus integration by parts tells us∫

ex cos(x) dx = ex cos(x) +

∫
ex sin(x) dx.

Plugging this into the
∫
ex cos(x) dx that appeared before we have∫

ex sin(x) dx =ex sin(x)−
∫
ex cos(x) dx

=ex sin(x)−
(
ex cos(x) +

∫
ex sin(x) dx

)
=ex sin(x)− ex cos(x)−

∫
ex sin(x) dx.

Notice that our original integral reappeared on the right-hand side,
and so we can now try to solve for our integral!∫

ex sin(x) dx = ex sin(x)− ex cos(x)−
∫
ex sin(x) dx

=⇒ 2

∫
ex sin(x) dx = ex sin(x)− ex cos(x)

=⇒
∫
ex sin(x) =

1

2
(ex sin(x)− ex cos(x)) + C.

(In the last step we added a “+C” to account for the fact that a gen-
eral antiderivative is only determined up to a constant.)

There are some times when the choice of dv is somewhat hidden, as
in the next example.
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Example 3.6.
Compute

∫
ln(x) dx.

If we try to perform integration by parts using ILATE to guide
our choice of u, notice we have u = ln(x). But what is dv? In gen-
eral our dv is everything that’s left over, so we must have dv = dx.
Alternatively think of

∫
ln(x) dx as

∫
ln(x) · 1 dx. Then dv = 1 · dx.

Notice we then have du = 1
x
dx and v =

∫
dx =

∫
1 dx = x. Now we

have ∫
ln(x) dx = x ln(x)−

∫
x · 1

x
dx

= x ln(x)−
∫

1 dx

= x ln(x)− x+ C

Exercise 3.1.
Verify the antiderivative computed in Example 3.6 is correct.

All of the examples we have seen thus far have been indefinite inte-
grals, and so you should naturally ask what will happen when we com-
pute a definite integral. Let’s examine this by writing our integration by
parts formula as follows. Let’s rewrite the

∫
g(x)f ′(x) dx that appears on

the right-hand side of the integral as H(x) + C; whatever the antideriva-
tive of g(x)f ′(x) happens to be, let’s just momentarily call it H(x) + C.
Then, by the integration by parts formula, the antiderivative of f(x)g′(x)
is ∫

f(x)g′(x) dx = f(x)g(x)−
∫
g(x)f ′(x) dx

= f(x)g(x)−H(x) + C.

The fundamental theorem of calculus then tells us that we can compute
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the definite integral
∫ b
a
f(x)g′(x) dx as follows:∫ b

a

f(x)g′(x) dx = (f(x)g(x)−H(x) + C)

∣∣∣∣b
a

= f(b)g(b)−H(b) + C − (f(a)g(a)−H(a) + C)

= f(b)g(b)−H(b) + C − f(a)f(a) +H(a)− C
= f(b)g(b)− f(a)g(a)−H(b) +H(a)

= f(b)g(b)− f(a)g(a)− (H(b)−H(a)) .

Notice, however, that since H(x) +C is the antiderivative of g(x)f ′(x) dx
we must have

H(b)−H(a) =

∫ b

a

f(x)g′(x) dx

by the fundamental theorem of calculus. Plugging this in for the above

and rewriting f(b)g(b)− f(a)g(a) as f(x)g(x)

∣∣∣∣b
a

we have

∫ b

a

f(x)g′(x) dx = f(x)g(x)

∣∣∣∣b
a

−
∫ b

a

g(x)f ′(x) dx.

In our u, dv notation we have∫ b

a

u dv = uv

∣∣∣∣b
a

−
∫ b

a

v du.

Example 3.7.

Compute
∫ π/2

0

x sin(2x) dx.

Letting u = x and dv = sin(2x) dx we have du = dx and v =
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−1
2

cos(2x). Thus∫ π/2

0

x sin(2x) dx =
−x cos(2x)

2

∣∣∣∣π/2
0

+
1

2

∫ π/2

0

cos(2x) dx

=
−π cos(π)

4
+

0 cos(0)

2
+

1

2

(
sin(2x)

2

∣∣∣∣π/2
0

)
=
π

4
+

1

4
(sin(π)− sin(0))

=
π

4
.

3.2 Trigonometric integrals
When integrating various combinations of trigonometric functions, it can
be helpful to take advantage of various trigonometric identities, such as
the Pythagorean identity, sin2(x) + cos2(x) = 1. For instance, to compute
the integral

∫
cos3(x) dx we can write∫

cos3(x) dx =

∫
cos2(x) cos(x) dx =

∫ (
1− sin2(x)

)
cos(x) dx.

We can now perform the substitution u = sin(x), du = cos(x) dx and our
integral becomes ∫ (

1− u2
)
du

which we can easily compute,∫ (
1− u2

)
du = u− u3

3
+ C.

Rewriting this in terms of x we have∫
cos3(x) = sin(x)− 1

3
sin3(x) + C.
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Exercise 3.2.
Verify that sin(x) − 1

3
sin3(x) + C is the general antiderivative of

cos3(x).

d

dx

(
sin(x)− 1

3
sin3(x) + C

)
= cos(x)− 1

3
· 3 sin2(x) cos(x) + 0

= cos(x)− sin2(x) cos(x)

= cos(x)
(
1− sin2(x)

)
= cos(x) · cos2(x)

= cos3(x)

In general, we want to use some trig to rewrite the integrand as some-
thing we can easily compute. If we can write our integral as some func-
tion of sin(x) together with a single factor of cos(x) as above, then we
can use a u-substitution. In particular, if we have an odd power of sin(x)
(or cos(x)), then we can pull of one factor and use the Pythagorean iden-
tity to rewrite the remaining even power of sin(x) (or cos(x)) using the
Pythagorean identity.

Example 3.8.
Compute

∫
sin7(x) cos2(x) dx.

We begin by trying to rewrite the integrand using the strategy
mentioned just above:∫

sin7(x) cos2(x) dx =

∫
sin(x) · sin6(x) cos2(x) dx

=

∫
sin(x)

(
sin2(x)

)3
cos2(x) dx

=

∫
sin(x)

(
1− cos2(x)

)3
cos2(x) dx.

We are now set up to perform a u-substitution. Letting u = cos(x),
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then du = − sin(x) dx and we can write our integral as

−
∫ (

1− u2
)3
u2 du = −

∫ (
1− 3u2 + 3u4 − u6

)
u2 du

= −
∫ (

u2 − 3u4 + 3u6 − u8
)
du

= −
(
u3

3
− 3u5

5
+

3u7

7
− u9

9

)
+ C

We can now rewrite u as cos(x) to obtain∫
sin7(x) cos2(x) dx = −

(
cos(x)3

3
− 3 cos(x)5

5
+

3 cos(x)7

7
− cos(x)9

9

)
+C

Similarly, because we have the identity 1 + tan2(x) = sec2(x), we
can integrate powers of sec(x) and tan(x) using the same strategy. Here
we want to write our integrand as a function of tan(x) and have a sin-
gle sec2(x) left over, or as a function of sec(x) with a single factor of
sec(x) tan(x) left over. Once we do that, we are set up to do a u-substitution.

Example 3.9.
Compute

∫
sec3(x) tan3(x) dx.

First note we can rewrite the integral as∫
sec3(x) tan3(x) dx =

∫
sec2(x) tan2(x) sec(x) tan 9x) dx

Letting u = sec(x), du = sec(x) tan(x) dx our integral becomes∫
u2
(
u2 − 1

)
du =

∫ (
u4 − u2

)
du =

u5

5
− u3

3
+ C

Hence, ∫
sec3(x) tan3(x) dx =

sec5(x)

5
− sec3(x)

3
+ C.
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In some cases we may need to use more involved trig identities, as in
the next example.

Example 3.10.
Compute

∫
sin4(x) cos2(x) dx.

Here just trying to pull off a single sin(x) or cos(x) and then apply
the Pythagorean identity as we had before won’t get us very far as
there will be an “extra” factor we won’t be able to swallow up with
du, or we will have only sin(x)’s or cos(x). That is, pulling off a
single sin(x) won’t help because we will have the following:∫

sin4(x) cos2(x) dx =

∫
sin(x) sin3(x) cos2(x) dx

=

∫
sin2(x) sin2(x) cos3(x) dx

=

∫
sin2(x)

(
1− cos2(x)

)
cos2(x) dx

The substitution u = cos(x), du = − sin(x) dx doesn’t help us here
because of the extra sin(x) that will be left over.

If we tried to pull off a single cos(x) we’d run into a different
problem: ∫

sin4(x) cos2(x) dx =

∫
sin4(x)

(
1− sin2(x)

)
dx

Now we’re stuck: since there are only sines and no cosines we can’t
perform a u-substitution.

In a situation like this it’s useful to recall to recall the half-angle
identities,

cos(2x) = 1− 2 sin2(x) = −1 + 2 cos2(x).

We can do a little bit of algebra to these equalities to obtian the fol-
lowing identities which are helpful in our current situation:

sin2(x) =
1− cos(2x)

2

cos2(x) =
1 + cos(2x)

2
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Using this, our strategy will be to rewrite our integrand to contain
terms that are all powers of cosine. Once we’re in that situation
we can try to deal with integrating each term individually, possibly
using the half-angle identities or the Pythagorean identity for each
integrating each term.

For example, we can rewrite the sin4(x) in our original problem
as∫

sin4(x) cos2(x) dx =

∫ (
sin2(x)

)2
cos2(x) dx

=

∫ (
1− cos(2x)

2

)2

cos2(x) dx

=
1

4

∫ (
1− 2 cos(2x) + cos2(2x)

)
cos2(x) dx

=
1

4

∫ (
cos2(x)− 2 cos(2x) cos2(x) + cos2(2x) cos2(x)

)
dx.

Now we simply deal with each part of the integral by itself.
Using the half-angle identity we may write∫

cos2(x) dx =
1

2

∫
(1 + cos(2x)) dx

=
1

2

(
x+

sin(2x)

2

)
+ C

=
x

2
+

sin(2x)

4
+ C

For the second term we will use the identity cos2(x) = 1
2

(1 + cos(2x))
to rewrite the integral as follows:∫

2 cos(2x) cos2(x) dx = 2

∫
cos(2x) · 1 + cos(2x)

2
dx

=

∫ (
cos(2x) + cos2(2x)

)
dx

=

∫ (
cos(2x) +

1 + cos(4x)

2

)
dx

=

∫ (
1

2
+ cos(2x) +

cos(4x)

2

)
dx

=
x

2
− sin(2x)

2
− sin(4x)

8
+ C
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For the last term we compute∫
cos2(2x) cos2(x) dx =

∫
cos2(2x) · 1 + cos(2x)

2
dx

=
1

2

∫ (
cos2(2x) + cos3(2x)

)
dx

=
1

2

(∫
1 + cos 2x

2
dx+

∫
cos2(2x) cos(2x) dx

)
=

1

2

(
x

2
+

sin(2x)

4
+

∫ (
1− sin2(2x)

)
cos(2x) dx

)
For the remaining integral we perform the substitution u = sin(2x),
du = 2 cos(2x) dx. We then write the last integral as

1

2

∫
(1− u2) du =

u

2
− u3

6
+ C

in terms of x this gives us∫ (
1− sin2(2x)

)
cos(2x) dx =

sin(2x)

2
− sin3(2x)

6
+ C.

Finally, putting everything back together we have∫
sin4(x) cos2(x) dx

=
x

8
+

sin(2x)

16
−

x

8
+

sin(2x)

8
+

sin(4x)

32
+

x

16
+

sin(2x)

16
+

sin(2x)

8
− sin3(2x)

24
+ C

=
x

16
+

3 sin(2x)

8
+

sin(2x)

16
+

sin(4x)

16
− sin3(2x)

24
+ C

Remark.
It’s worth pointing out that there are multiple different routes for
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solving many of these problems with trig identities, and several dif-
ferent ways to write the final answer by using trig substitutions to
simplify the answer. Thus two answers to the same problem could
be correct but look very different because they have been simplified
with a different sequence of trig identities. The answers really are
the same in a case like this, just written in different ways.

There are several other trig identities which can be useful when rewrit-
ing integrals, but for now we’ll only introduce one more: for any integers
m and n we have

sin(mx) cos(nx) =
1

2
(sin ((m− n)x) + sin ((m+ n)x))

Example 3.11.
Compute

∫
sin(3x) cos(2x) dx.

Using the above identity wherem = 3 and n = 2 we simply have∫
sin(3x) cos(2x) dx =

1

2

∫
(sin(x) + sin(5x)) dx

=
1

2

(
− cos(x)− cos(5x)

5

)
+ C

3.3 Trigonometric substitution
We often perform u-substitution to take a difficult integral and rewrite it
as something simpler. For example, given∫

f ′(g(x)) g′(x) dx

we introduce a variable u = g(x), and so du = g′(x) dx, and then rewrite
the integral as ∫

f ′(u) du.
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That is, in u-substitution we often use our u to take the place of some
complicated function. There are times, however, when we may want
to reverse the process, and instead replace our variable x by a possibly
complicated-looking function of x. This may sound strange, but the un-
derlying idea is that the resultant integral may be more amenable to some
of our other integration techniques. For instance, if we wanted to com-
pute

∫
f(x) dx where f(x) was a function that didn’t have an “obvious”

antiderivative, we could let x = g(θ) and dx = g′(θ) dθ so that our integral
becomes ∫

f(g(θ))g′(θ) dθ.

At first glance this may look like we’re making the problem more diffi-
cult, but sometimes making an appropriate choice of g(θ) will allow us
to use some other tricks up our sleeves to compute the integral.

The most common instance of this occurs when the original integral
involves a square root of a sum or difference of squares. Often when this
occurs we can take x = g(θ) to be some trig function and then take ad-
vantage of various trig identities to help us solve the integral. In that case
the procedure described above is often referred to as a trig substitution.

Example 3.12.
Compute

∫ √
1− x2 dx.

Notice that if we were to write x = sin(θ) and dx = cos(θ) dθ,
then the integral becomes∫ √

1− sin2(θ) cos(θ) dθ.

Now we can use the Pythagorean identity sin2(θ) + cos2(θ) = 1 to
write cos(θ) =

√
1− sin2(θ) and write our integral as∫

cos2(θ) dθ.

Now we take advantage of the identity

cos2(θ) =
1 + cos(2θ)

2
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and we have ∫
cos2(θ) dθ =

1

2

∫
(1 + cos(2θ)) dθ

=
1

2

(
θ +

sin(2θ)

2

)
+ C

=
2θ + sin(2θ)

4
+ C.

This is not the final answer to our orignal problem, however: we
were asked to compute an antiderivative of a function of x, so we
need to give a final answer in terms of x. Thus we need to convert
our θ’s above back into x’s. To do this let’s notice that if x = sin(θ),
then by taking the arcsin of each side we have

sin−1(x) = sin−1(sin(θ)) = θ

and so we can replace our θ’s in the above with x’s. Before we do
that, let’s recall the identity sin(2θ) = 2 sin(θ) cos(θ). Using this we
can write our antiderivative above as

2θ + 2 sin(θ) cos(θ)

4
+ C

Now we convert θ back to sin−1(x) to obtain∫ √
1− x2 dx =

2 sin−1(x) + 2 sin(sin−1(x)) cos(sin−1(x))

4
+ C

With a little bit of thought we can simplify this nicely.
First note sin(sin−1(x)) = x. Also notice that if we consider a

right triangle with hypotenuse 1 and non-right angle θ with oppo-
site side x, this triangle will have sin(θ) = x (as in our substitution).
The Pythagorean theorem will then tell us that cos(θ) =

√
1− x2.

1
x

√
1− x2

θ
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Keeping in mind θ = sin−1(x), we then see that the cos(sin−1(x))
appearing in our integral above can simply be written as

√
1− x2.

Hence ∫ √
1− x2 dx =

2 sin−1(x) + 2x
√

1− x2

4
+ C.

Exercise 3.3.
Verify that

2 sin−1(x) + 2x
√

1− x2

4
+ C

is the antiderivative of
√

1− x2 by differentiating.

If we had a multiple in each term appearing in our integral in the
previous example, then we can take care of that using our substitution.

Example 3.13.

Compute
∫ √

9− x2 dx.

Here we want to try to turn 9−x2 into 1−sin2(θ), but the 9 seems
to present a problem. To fix this, we’ll actually try to put an extra
9 in the integral that we can factor out. That is, instead of turning
9− x2 into 1− sin2(θ), we’ll try to turn it into

9− 9 sin2(θ) = 9
(
1− sin2(θ)

)
.

To get this extra 9 that we need so that we can factor 9 out, we’ll
perform the substitution x = 3 sin(θ) (so then x2 = 9 sin2(θ)), and
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dx = 3 cos(θ)dθ. The integral then becomes∫ √
9− (3 sin(θ))23 cos(θ) dθ

=

∫ √
9− 9 sin2(θ)3 cos(θ) dθ

=

∫ √
9
(
1− sin2(θ)

)
3 cos(θ) dθ

=

∫ √
9 ·
√

1− sin2(θ)3 cos(θ) dθ

= 9

∫ √
cos2(θ) cos(θ) dθ

= 9

∫
cos2(θ) dθ

= 9

∫
1 + cos(2θ)

2
dθ

= 9

(
θ

2
+

sin(2θ)

4

)
+ C

=
9θ

2
+

9 sin(2θ)

4
+ C

Now we need to convert this back in terms of x. Before we do that
it will be convenient to notice that

sin(2θ) = 2 sin(θ) cos(θ).

(This follows from our earlier identity sin(mx) cos(nx) = 1
2

(sin((m− n)x) + sin((m+ n)x))
by taking m = n = 1.)

Our antiderivatve in terms of θ is thus

9θ

2
+

9 sin(θ) cos(θ)

2
+ C.

The point of the most recent manipulation is that it will be easier for
us to convert sin(θ) and cos(θ) into a function of x than sin(2θ), as
we will see in just a moment.

Notice that as x = 3 sin(θ), we must have sin(θ) = x
3
, and so

θ = sin−1 (x/3). This allows us to write our antiderivative above as∫ √
9− x2 dx =

9

2
sin−1

(x
3

)
+

9

2
· x

3
· cos

(
sin−1

(x
3

))
+ C.
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To rewrite the cos
(
sin−1

(
x
3

))
that appears we again think about right

triangles. Consider the right triangle whose hypotenuse is 3 and
whose side opposite the angle θ is x, as pictured below.

3
x

√
9− x2

θ

Notice we do in fact have sin(θ) = x
3
. The cos(θ) term can then be

written as “adjacent over hypotenuse” to obtain

cos(θ) = cos
(

sin
(x

3

))
=

√
9− x2

3
.

Plugging this into the above we have∫ √
9− x2 dx =

9

2
sin−1

(x
3

)
+

9

2
· x

3
· cos

(
sin−1

(x
3

))
+ C

=
9

2
sin−1

(x
3

)
+
x

2

√
9− x2 + C.

If our last example had been modified to
∫ √

9− 4x2 dx, then we

could first rewrite this as
∫ √

9− (2x)2 dx, and performing the substi-

tution u = 2x, du = 2 dx rewrite the integral as

1

2

∫ √
9− u2 du

then proceed as in the last example.

Exercise 3.4.



CHAPTER 3. INTEGRATION TECHNIQUES 106

Compute
∫ √

9− 4x2 dx.

In the examples we have seen thus far, we took advantage of the
Pythagoren identity sin2(θ) + cos2(θ) = 1 to rewrite integrands involving√
a2 − x2 where a was a constant (e.g., 1 and 3 in our earlier examples,

respectively). Recall, though, there are other useful trig identities such
as 1 + tan2(θ) = sec2(θ). This can be helpful when our integrand has
involves

√
a2 + x2 as seen in the next example.

Example 3.14.

Compute
∫

dx

x2
√

25 + x2
.

We want to rewrite 25 + x2 as something like 1 + tan2(θ) so that
we can then rewrite that as sec2(θ). The 25 that appears slightly
complicates things, so we will first try to write our integral as 25 +
25 tan2(θ). If we can do that then we can factor out 25 to obtain
25 (1 + tan2(θ)).

Notice that if we want 25 + x2 = 25 + 25 tan2(θ), then we must
have x2 = 25 tan2(θ) and so x =

√
25 tan2(θ) = 5 tan(θ). Thus we

will use the trig substitution x = 5 tan(θ), dx = 5 sec2(θ) dθ to write
our integral as ∫

5 sec2(θ) dθ

25 tan2(θ)
√

25 + 25 tan2(θ)

=

∫
5 sec2(θ) dθ

25 tan2(θ)
√

25 (1 + tan2(θ))

=

∫
5 sec2(θ) dθ

25 tan2(θ) · 5 sec(θ)
dθ

=
1

25

∫
sec(θ)

tan2(θ)
dθ

In order to proceed with the integral we will write sec(θ) and tan(θ)
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in terms of sines and cosines:

1

25

∫
sec(θ)

tan2(θ)
dθ

=
1

25

∫
1/cos(θ)

( sin(θ)/cos(θ))2 dθ

=
1

25

∫
1

cos(θ)
· cos2(θ)

sin2(θ)
dθ

=
1

25

∫
cos(θ)

sin2(θ)
dθ

Now we can use the substitution u = sin(θ), du = cos(θ) dθ to write
the integral as

1

25

∫
1

u2
du =

1

25

∫
u−2 du

=
−1

25
u−1 + C

=
−1

25u
+ C.

We can easily rewrite this in terms of θ as

−1

25 sin(θ)
+ C.

To go from θ’s to x’s, we consider the right triangle where the side
opposite the angle θ has length x and the adjacent side has length 5.

√ x
2 +

25

x

5

θ

Notice tan(θ) = x
5
, and so x = 5 tan(θ), as in our substitution. We

want to replace the sin(θ) that appeared above and so we simply
consider that sin(θ) is “opposite over hypotenuse” to write sin(θ) =
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x/
√
x2 + 25. We then have∫

dx

x2
√

25 + x2
=

−1

25
(

x√
x2+25

) + C =
−
√
x2 + 25

25x
+ C.

Noticing that 1+tan2(θ) = sec2(θ) implies sec2(θ)−1 = tan2(θ), we can
use similar trigonometric substitutions to deal with integrals involving√
x2 − a2.

Example 3.15.

Compute
∫ √

x2 − 4

x3
dx.

Our strategy here will be to convert x2 − 4 into something like
sec2(θ)−1 and then write that as tan2(θ). We can deal with the 4 that
appears by first writing x2− 4 as 4 sec2(θ)− 4 and then factoring the
4 out. If we want

x2 − 4 = 4 sec2(θ)− 4

then we will require x2 = 4 sec2(θ) and so x = 2 sec(θ), which means



CHAPTER 3. INTEGRATION TECHNIQUES 109

dx = 2 sec(θ) tan(θ) dθ. Using this substitution our integral becomes∫ √
4 sec2(θ)− 4

8 sec3(θ)
· 2 sec(θ) tan(θ) dθ

=

∫
2
√

sec2(θ)− 1

8 sec3(θ)
· 2 sec(θ) tan(θ) dθ

=
1

2

∫ √
sec2(θ)− 1

sec3(θ)
· sec(θ) tan(θ) dθ

=
1

2

∫ √
sec2(θ)− 1

sec2(θ)
· tan(θ) dθ

=
1

2

∫ √
tan2(θ)

sec2(θ)
· tan(θ) dθ

=
1

2

∫
tan(θ)

sec2(θ)
· tan(θ) dθ

=
1

2

∫
tan2(θ)

sec2(θ)
dθ

=
1

2

∫
tan2(θ)

1

sec2(θ)
dθ

=
1

2

∫
sin2(θ)

cos2(θ)
cos2(θ) dθ

=
1

2

∫
sin2(θ) dθ

=
1

2

∫
1− cos(2θ)

2
dθ

=
1

4

∫
(1− cos(2θ)) dθ

=
1

4

(
θ − sin(2θ)

2

)
+ C

=
1

4
(θ − sin(θ) cos(θ)) + C

Since x = 2 sec(θ), we have sec(θ) = x
2
. As secant is “hypotenuse

over adjacent,” we want to consider the right triangle where the
hypotenuse has length x and the side adjacent to θ has length 2.
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x √
x2 − 4

2

θ

Notice this tells us sin(θ) =
√
x2 − 4/x and cos(θ) = 2/x, and so we have∫ √

x2 − 4

x3
dx =

1

4

(
sec−1

(x
2

)
−
√
x2 − 4

x
· 2

x

)
+ C

To summarize what we’ve described, whenever we see an integral
involving

√
a2 − x2, we want to use the substitution x = a sin(θ), dx =

a cos(θ) dθ and take advantage of the trig identity 1− sin2(θ) = cos2(θ).
When we see an integral involving

√
a2 + x2, we’ll use the substitu-

tion x = a tan(θ), dx = a sec2(θ) and use the identity 1 + tan2(θ) = sec2(θ).
If
√
x2 − a2 appears, then we’ll use the substitution x = a sec(θ), dx =

a sec(θ) tan(θ) dθ and sec2(θ)− 1 = tan2(θ).
This is not an exhaustive list of all possible trig substitutions or useful

trig identities, but this is a summary of the most commonly used ones,
especially for the purposes of integration.

3.4 Partial fractions
Recall that when two fractions are added together, we must get a com-
mon denominator. For example,

3

x+ 2
+

7

x− 5
=

3

x+ 2
· x− 5

x− 5
+

7

x− 5
· x+ 2

x+ 2

=
3x− 15 + 7x+ 14

(x+ 2)(x− 5)

=
10x− 1

x2 − 3x− 10
.
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If we wanted to integrate
10x− 1

x2 − 3x− 10
, being aware that it may be writ-

ten as
3

x+ 2
+

7

x− 5
is helpful:

∫
10x− 1

x2 − 3x− 10
dx =

∫ (
3

x+ 2
+

7

x− 5

)
dx

= 3

∫
dx

x+ 2
+ 7

∫
dx

x− 5

= 3 ln |x+ 2|+ 7 ln |x− 5|+ C.

Thus, knowing that a fraction can be decomposted as a sum of simpler
fractions is often helpful for integration as it allows us to express a diffi-
cult to integrate function in terms of an easier to integrate function.

In the previous example we cheated a little bit because we started
with the simpler functions. So, the obvious question we need to address
is how do we go backwards? That is, given a “complicated” fraction,
how do we break it up into simpler fractions?

Let’s begin by considering a concrete example. Suppose we wanted
to compute ∫

5x+ 23

x2 + 2x− 3
dx

by writing the integrand as the sum of two simpler fractions. What
should those fractions be?

We know the fractions will have common denominator x2+2x−3, and
we get the common denominator by multiplying the denominators of
those simpler fractions together. So, what polynomials can we multiply
together to get x2 + 2x−3? Put another way, how does x2 + 2x−3 factor?

Thinking about factoring the polynomial for a moment we may real-
ize that x2 + 2x− 3 = (x+ 3)(x− 1). So, our decomposition into simpler
fractions should have the form

???
x+ 3

+
???
x− 1

where the numerators still need to be determines.
How will we go about finding these numerators? As the numera-

tor of our initial fraction is a polynomial, it seems reasonable that our
simpler fractions should have polynomial numerators as well. Since our
initial numerator was a polynomial of degree one, and our numerators
of the simpler summands will get multiplied by the denominator of the
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other fraction, which has degree one, these polynomials should simply
be constants. I.e., we want to find the constants A and B so that

A

x+ 3
+

B

x− 1
=

5x+ 23

x2 + 2x− 3
.

Now we have an algebra problem, finding the correct A and B. To solve
the problem let’s simply determine what would happen if we added the
fractions on the left, leaving A’s and B’s in our expressions:

A

x+ 3
+

B

x− 1
=

A

x+ 3
· x− 1

x− 1
+

B

x− 1
· x+ 3

x+ 3

=
Ax− A+Bx+ 3B

x2 + 2x− 3

=
(A+B)x+ (−A+ 3B)

x2 + 2x− 3
.

If this is to equal our initial fraction, then we will require that the denom-
inators match up. That is, we need (A+B)x+ (−A+ 3B) = 5x+ 23. This
gives us a system of equations,

A+B = 5

−A+ 3B = 23.

To solve this, we will add the equations together to obtain

(A+B) + (−A+ 3B) = 5 + 23

To see why this is equality holds, simply notice that A + B is assumed
to be 5 and −A + 3B is assumed to be 23. We can of course rewrite this
equation as simply 4B = 28 which means B = 28/4 = 7. Once we know
B = 7, we can then plug this back into our first equation to determine
A+ 7 = 5 and so A = 5− 7 = −2. That is, we have determined

5x+ 23

x2 + 2x− 3
=
−2

x+ 3
+

7

x− 1

Now we can easily compute the integral:∫
5x+ 23

x2 + 2x− 3
dx =

∫ (
−2

x+ 3
+

7

x− 1

)
dx

= −2

∫
dx

x+ 3
+ 7

∫
dx

x− 1

= −2 ln |x+ 3|+ 7 ln |x− 1|+ C.
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In the example above the degree of the numerator was less than the
degree of the denominator, and this is important for the system of equa-
tions we came up with to have a unique solution. However, we can al-
ways ensure this happens because of the following fact from algebra.

Theorem 3.1 (The Division Algorithm).
Given any two polynomials f(x) and g(x), there exists a unique pair of
polynomials q(x) and r(x) with deg(r(x)) < deg(g(x)) such that f(x) =
q(x)g(x) + r(x).

For example, if f(x) = x4 + 2x3 − x2 + 5x + 1 and g(x) = x2 + 2x + 1,
then the above says there must be polynomials q(x) and r(x) such that
deg(r(x)) < 2 and f(x) = q(x)g(x) + r(x). The theorem only tells us these
polynomials doesn’t exist, but it doesn’t tell us what they are. So, how
can we go about finding q(x) and r(x)? Let’s first notice that q(x) must
have degree 2 since g(x) has degree 2 and q(x)g(x) + r(x) should have
degree 4 (and r(x) can’t bump the degree up any higher than what q(x)
already provides). That means q(x) must have the form q(x) = Ax2 +
Bx+ C. Now if we multiply this by our g(x) then we have(

Ax2 +Bx+ C
) (
x2 + 2x+ 1

)
=Ax4 + 2Ax3 + Ax2 +Bx3 + 2Bx2 +Bx+ Cx2 + 2Cx+ C

=Ax4 + (2A+B)x3 + (A+ 2B + C)x2 + (B + 2C)x+ C

Since r(x) has degree less than 2, the x4, x3, and x2 terms that appear in
q(x)g(x) + r(x) must come from the q(x)g(x) part, and so we must have

A = 1

2A+B = 2

A+ 2B + C = −1

We can easily solve the second two equations to determine B = 0 and
C = −2. Thus we must have q(x) = x2 − 2, and we can compute

q(x)g(x) = x4 + 2x3 − x2 − 4x− 2.

This isn’t quite f(x), and we need f(x) to make up the difference:

f(x) = q(x)g(x) + r(x)

=⇒ r(x) = f(x)− q(x)g(x)
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In our case this allows us to compute

r(x) = x4 + 2x3 − x2 + 5x+ 1−
(
x4 + 2x3 − x2 − 4x− 2

)
= 9x+ 3.

This process of finding q(x) and r(x) is streamlined by the polynomial
division algorithm you learned in high-school,

x2 − 2

x2 + 2x+ 1
)

x4 + 2x3 − x2 + 5x + 1
− x4 − 2x3 − x2

− 2x2 + 5x + 1
2x2 + 4x + 2

9x + 3

Notice the quotient x2−2 at the top is exactly our q(x) and the remainder
9x+ 3 at the bottom is exactly our r(x).

The reason this whole division algorithm and f(x) = q(x)g(x) + r(x)
stuff is helpful for us right now is that if divide both sides of f(x) =
q(x)g(x) + r(x) by g(x) we’re left with

f(x)

g(x)
= q(x) +

r(x)

g(x)
.

For example, our earlier calculation tells us

x4 + 2x3 − x2 + 5x+ 1

x2 + 2x+ 1
= x2 − 2 +

9x+ 3

x2 + 2x+ 1
.

This can be helpful for integration as it allows us write the following:∫
x4 + 2x3 − x2 + 5x+ 1

x2 + 2x+ 1
dx

=

∫ (
x2 − 2 +

9x+ 3

x2 + 2x+ 1

)
dx

=
x3

3
− 2x+

∫
9x+ 3

x2 + 2x+ 1
dx.

Now we can try to write the fraction in our last integral as a sum of
simpler fractions. Noticing that x2 + 2x + 1 factors as (x + 1)(x + 2), we
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may try to write our fraction as

9x+ 3

x2 + 2x+ 1
=

A

x+ 1
+

B

x+ 2

=
A(x+ 2) +B(x+ 1)

x2 + 2x+ 1

=
(A+B)x+ 2A+B

x2 + 2x+ 1
.

To determine A and B we must solve the following system of equations,

A+B = 9

2A+B = 3.

Subtracting the first equation from the secon dequation gives us

(2A+B)︸ ︷︷ ︸
3

− (A+B)︸ ︷︷ ︸
9

= −6

This leaves us with A = −6, and so B = 15 and we have

9x+ 3

x2 + 2x+ 1
=
−6

x+ 1
+

15

x+ 2
.

Now we can easily compute our earlier integral,∫
9x+ 3

x2 + 2x+ 1
dx =

∫ (
−6

x+ 1
+

15

x+ 2

)
dx

=− 6 ln |x+ 1|+ 15 ln |x+ 2|+ C.

Plugging this into our integral from before, we now have∫
x4 + 2x3 − x2 + 5x+ 1

x2 + 2x+ 1
dx =

x3

3
− 2x− 6 ln |x+ 1|+ 15 ln |x+ 2|+ C.

Just to summarize what we have thus far: we want to write compli-
cated fractions of polynomials as sums of simpler fractions, and in order
to do this we need the polynomial in the numerator has smaller degree
than the polynomial in the denominator. If the denominator has smaller
degree than the numerator,then we first need to apply the division al-
gorithm to write our fraction in the form f(x) = q(x)g(x) + r(x) where
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f(x) is the numerator and g(x) is the denominator. To do this we need to
divide g(x) into f(x) and can either do this “by hand” (writing out a cor-
responding system of equations to give the coefficients of q(x) and then
subtracting to determine r(x)), or by using the polynomial long division
you learned in high-school.

In the examples we have seen thus far we have had denominators
that factored into two distinct factors, but this need always happen.

In general, a polynomial of degree n can have at most n roots and so
at most n factors (this is called the fundamental theorem of algebra). These
roots don’t have to be distinct, however, and this can result in a repeated
factor. For example, x3 − 5x2 + 3x + 9 factors as (x + 1)(x− 3)2. Polyno-
mials which can be written as a product of linear factors like this – even
if some of the factors are repated – is said to factor completely. If a polyno-
mial does not factor completely, then it has irreducible quadratic factors.
Conveniently, though, this is the worst possible scenario.

Theorem 3.2.
Every polynomial can be written as a product of linear factors and irre-
ducible quadratic factors. Factors may repeat in both cases.

We will have to modify the procedure of “breaking a fraction into
simpler fractions” for each possible situation involving linear factors,
quadratic factors, and unique factors or repeated factors. That means
there are four cases we need to know how to deal with:

1. Unique linear factors.

2. Repeated linear factors.

3. Unique irreducible quadratic factors.

4. Repeated irreducible quadratic factors.

We will deal with the various cases through the examples that are
to follow. For simplicity we will restrict our examples to the situations
where the numerator has smaller degree than the denominator to avoid
having to apply the division algorithm, but in principle this may be a
necessary first step regardless of how the denominator factors.
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Example 3.16.
Compute the general antiderivative of

6x2 + 23x+ 10

x3 + 3x2 − 4x− 12
.

Our first goal is to write our fraction as a sum of simpler, easier-
to-integrate fractions. To do this we need to factor the denominator.
In this particular example we can factor by grouping:

x3 + 3x2 − 4x− 12 = x2(x+ 3)− 4(x+ 3)

= (x2 − 4)(x+ 3)

= (x+ 2)(x− 2)(x+ 3)

Now that we know how the denominator factors, we will write our
fraction as a sum of three fractions (one for each factor that ap-
peared) with constants for the numerators:

6x2 + 23x+ 10

x3 + 3x2 − 4x− 12
=

A

x+ 2
+

B

x− 2
+

C

x+ 3
.

Now, to determine what A, B, and C actually are, we want to add
the fractions on the left and compare the result with the original
fraction we started with.

A

x+ 2
+

B

x− 2
+

C

x+ 3

=
A

x+ 2
· (x− 2)(x+ 3)

(x− 2)(x+ 3)
+

B

x− 2
· (x+ 2)(x+ 3)

(x+ 2)(x+ 3)
+

C

x+ 3
· (x+ 2)(x− 2)

(x+ 2)(x− 2)

=
A(x2 + x− 6) +B(x2 + 5x+ 6) + C(x2 − 4)

x3 + 3x2 − 4x− 12

=
(A+B + C)x2 + (A+ 5B)x+ (−6A+ 6B − 4C)

x3 + 3x2 − 4x− 12
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Now we set up our system of equations,

A+B + C = 6

A+ 5B = 23

−6A+ 6B − 4C = 10

To solve this system we’ll try to eliminate A from the second and
third equation. Subtracting the first equation from the second the
system becomes

A+B + C = 6

4B − C = 17

−6A+ 6B − 4C = 10

Now adding six times the first equation to the third equation we
have

A+B + C = 6

4B − C = 17

12B + 2C = 46

We can go one step further and eliminate B from the third equa-
tion by subtracting three times the second equation from the third
equation, giving us

A+B + C = 6

4B − C = 17

5C = −5

Once we’ve turned our system into something like this where we
have a “triangular” system, we can easily compute the solution to
the system by solving for one variable at a time. In this example the
third equation instantly tells us C = −1. Once we know C = −1
we can plug this into the second equation to obtain 4B + 1 = 7, or
4B = 16, and so B = 4. Now we plug C = −1 and B = 4 into the
first equation to obtain A+ 4− 1 = 6, or A+ 3 = 6, and thus A = 3.
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Now that we’ve solved the system we know that our fraction
can be rewritten as

6x2 + 23x+ 10

x3 + 3x2 − 4x− 12
=

3

x+ 2
+

4

x− 2
+
−1

x+ 3
.

This makes our integral much easier to compute:∫
6x2 + 23x+ 10

x3 + 3x2 − 4x− 12
dx =

∫ (
3

x+ 2
+

4

x− 2
+
−1

x+ 3

)
dx

= 3 ln |x+ 2|+ 4 ln |x− 2| − ln |x+ 3|+ C

In the last example, and all of our previous examples, the denomina-
tor has had distinct roots, so now we turn our attention to the case when
a root is repeated. That is, when the polynomial has factors of the form
(x− a)n.

When a factor of the denominator repeats, we need to add more terms
to our expression with simpler fractions. In particular, if (x − a)n occurs
as a factor of the denominator, then our sum of simpler fractions must
include the following terms,

A1

x− a
+

A2

(x− a)2
+

A3

(x− a)3
+ · · ·+ An

(x− a)n
.

The reason for this has to do with ensuring our system of equations we
write down will have a solution. If we did not include all of these terms,
we may not be able to solve the system. (The exact reasons for this aren’t
terribly advanced, but are a bit beyond the scope of our class. If you go
on to take linear algebra, you’ll learn more about the conditions required
to guarantee a system of linear equations has a solution.)

Example 3.17.

Compute
∫

5x2 + 36x+ 62

x3 + 9x2 + 27x+ 27
dx.

Factoring the denominator gives us (x+3)3, and so we will write
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our fraction as

5x2 + 36x+ 62

x3 + 9x2 + 27x+ 27
=

A

x+ 3
+

B

(x+ 3)2
+

C

(x+ 3)3
.

Adding these simpler fractions together gives us

A(x+ 3)2 +B(x+ 3) + C

(x+ 3)2
=
A(x2 + 6x+ 9) +Bx+ 3B + C

(x+ 3)3
=
Ax2 + (6A+B)x+ (9A+ 3B + C)

(x+ 3)3
.

Comparing this to the original fraction we were given, we obtain
the system of equations

A = 5

6A+B = 36

9A+ 3B + C = 62.

Solving this system tells us A = 5, b = 6, and C = −1, thus∫
5x2 + 36x+ 62

x3 + 9x2 + 27x+ 27
dx =

∫ (
5

x+ 3
+

6

(x+ 3)2
− 1

(x+ 3)3

)
dx

In order to integrate this we will perform the substitution u = x+ 3,
du = dx, and thus rewrite the integral as∫ (

5

u
+ 6u−2 − u−3

)
du = 5 ln |u| − 6u−1 +

u−2

2
+ C

Rewriting this in terms of x we have∫
5x2 + 36x+ 62

x3 + 9x2 + 27x+ 27
dx = 5 ln |x+ 3| − 6

x+ 3
+

1

2(x+ 3)2
+ C.

All of the examples we have seen so far have been concerned with
denominators that factor completely into linear factors. Sometimes this
does not happen, though, and we will have irreducible quadratic factors.
In order to guarantee that the system of equations giving us the numera-
tors of our simpler fractions has a solution, our numerators will need to
be linear polynomials, and so have the form Ax+B.
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Example 3.18.

Compute
∫
x3 + 4x2 − 6x+ 7

(x2 + 1)(x− 1)2
dx.

We will try to write our fraction as

x3 + 4x2 − 6x+ 7

(x2 + 1)(x− 1)2
=
Ax+B

x2 + 1
+

C

x− 1
+

D

(x− 1)2
.

Notice that we only have a linear numerator for the factor with the
quadratic denominator. The other terms, which come from a re-
peated linear factor, simply have constants as their numerators.

Adding together the terms on the right-hand side gives us

(Ax+B)(x− 1)2 + C(x− 1)(x2 + 1) +D(x2 + 1)

(x2 + 1)(x− 1)2
.

After a bit of slightly tedious arithmetic this will become

(A+ C)x3 + (−2A+B − C +D)x2 + (A− 2B + C)x+ (B − C +D)

(x2 + 1)(x− 1)2

This gives us the following system of equations,

A+ C = 1

−2A+B − C +D = 4

A− 2B + C = −6

B − C +D = 7

Subtracting the third equation from the first tells us 2B = 7, so B =
7/2. Subtracting the second equation from the fourth then gives us
2A = 3, and so A = 3/2. The first equation then becomes 3/2 + C =
1, and so C = − 1/2. Finally, we may write the fourth equation as
7/2− (−1/2) +D = 7 and so D = 3.

That is, our fraction may be written as

x3 + 4x2 − 6x+ 7

(x2 + 1)(x− 1)2
=

(3/2)x+ 7/2

x2 + 1
+

− 1/2

x− 1
+

3

(x− 1)2
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which we can further rewrite, by bringing the denominerators from
the terms in the numerators down, as

3x+ 7

2(x2 + 1)
− 1

2(x− 1)
+

3

(x− 1)2
.

We can more easily integrate these individual terms. For exam-
ple, ∫

3x+ 7

2(x2 + 1)
dx =

3

2

∫
x

x2 + 1
dx+

7

2

∫
dx

x2 + 1
.

The first term on the right can be computed using the substitution
u = x2 + 1, du = 2x dx to obtain

3

4

∫
du

u
=

3

4
ln |u|+ C,

and so
3

2

∫
x

x2 + 1
dx =

3

4
ln |x2 + 1|+ C.

For the second integral above we will perform the trig substitution
x = tan(θ), dx = sec2(θ) dθ. Then our integral becomes

7

2

∫
sec2(θ)

tan2(θ) + 1
dθ =

7

2

sec2(θ)

sec2(θ)
dθ =

7

2

∫
dθ =

7

2
θ + C.

As x = tan(θ), θ = tan−1(x) and so we have

7

2

∫
dx

x2 + 1
=

7

2
tan−1(x) + C

and so ∫
3x+ 7

2(x2 + 1)
dx =

3

4
ln |x2 + 1|+ 7

2
tan−1(x) + C

The second term,
∫

dx
2(x−1)

, of our earlier integral is simply 1
2

ln |x−
1|+C. The third term,

∫
3

(x−1)2
dx is easily seen to be −3

x−1
+C through

a simple u-substitution.
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Putting all of the pieces back together we finally have∫
x3 + 4x2 − 6x+ 7

(x2 + 1)(x− 1)2
dx =

∫
3x+ 7

2(x2 + 1)
dx−

∫
1

2(x− 1)
dx+

∫
3

(x− 1)2
dx

=
3

4
ln
∣∣x2 + 1

∣∣+
7

2
tan−1(x)− 1

2
ln |x− 1| − 3

x− 1
+ C.

The last case we need to consider is when the denominator has re-
peated irreducible factors. That is, when the denominator has factors of
the form (αx2 +βx+ γ)n where the quadratic αx2 +βx+ γ will not factor
any further. In this situation we will do something analogous to what
we did for repeated linear factors: our simpler fraction will contain the
terms

A1x+B1

αx2 + βx+ γ
+

A2x+B2

(αx2 + βx+ γ)2 +
A3x+B3

(αx2 + βx+ γ)3 + ...
Anx+Bn

(αx2 + βx+ γ)n
+

Example 3.19.

Compute
∫

3x3 + 5x2 + 6x+ 2

(x2 + 2x+ 2)2
dx.

We will equate our original fraction with

Ax+B

x2 + 2x+ 2
+

Cx+D

(x2 + 2x+ 2)2

Adding these fractions together yields

Ax3 + (2A+B)x2 + (2A+ 2B + C)x+ 2B +D

(x2 + 2x+ 2)2
.

Setting the numerator of this fraction equal to the numerator of the
fraction in our integrand and equating coefficients gives us the sys-
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tem of equations

A = 3

2A+B = 5

2A+ 2B + C = 6

2B +D = 2

Solving for the variables one at a time tells us A = 3, B = −1, C = 2,
and D = 4 and thus we have∫

3x3 + 5x2 + 6x+ 2

(x2 + 2x+ 2)2
dx =

∫
3x− 1

x2 + 2x+ 2
dx+

∫
2x+ 4

(x2 + 2x+ 2)2
dx

In order to evluate these two integrals, let’s notice that we may com-
plete the square to write our denominator as

x2 + 2x+ 2 = x2 + 2x+ 1− 1 + 2 = (x+ 1)2 + 1.

Performing the substitution u = x + 1, du = dx, the integrals then
become ∫

3u− 4

u2 + 1
du+

∫
2u+ 2

(u2 + 1)2 du

We now perform the trig substitution u = tan(θ), du = sec2(θ) dθ
and the integrals become∫

(3 tan(θ)− 4) sec2(θ)

tan2(θ) + 1
dθ +

∫
2 tan(θ) + 2

(tan2(θ) + 1)
2 sec2(θ) dθ

As sec2(θ) = tan2(θ) + 1 the integrals then become∫
(3 tan(θ)− 4) dθ +

∫
2 tan(θ) + 2

sec2(θ)
dθ

To evalute these, let’s keep in mind that tan(θ) = sin(θ)
cos(θ)

and sec(θ) =
1

cos(θ)
, so 1

sec(θ)
= cos(θ). Our integrals then become∫

3
sin(θ)

cos(θ)
dθ −

∫
4 dθ +

∫
2 sin(θ) cos(θ) dθ +

∫
2 cos2(θ) dθ.
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Each of these integral is straight-forward to compute:∫
3

sin(θ)

cos(θ)
dθ = −3 ln | cos(θ)|+ C∫

4 dθ = 4θ + C∫
2 sin(θ) cos(θ) dθ = − cos2(θ) + C∫
2 cos2(θ) dθ =

∫
(1− cos(2θ)) dθ = θ − sin(2θ)

2
+ C.

Our integral in terms of θ is thus

−3 ln |cos(θ)| − 4θ − cos2(θ) + θ − sin(2θ)

2
+ C.

Ultimately we need to write this in terms of x, but first we have
to go back to writing it in terms of u. Since u = tan(θ), we have
θ = tan−1(u). We can rewrite sin(θ) and cos(θ) by considering the
right triangle with angle θ which has adjacent side of length 1 and
opposite side of length u,

√ 1 +
u
2

u

1

θ

From this we see

cos(θ) =
1√

1 + u2
sin(θ) =

u√
1 + u2

.

Recalling that sin(2θ) = 2 sin(θ) cos(θ), our integral in terms of umay
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be written as

− 3 ln

∣∣∣∣ 1√
1 + u2

∣∣∣∣− 3 tan−1(u)− 1

1 + u2
− u

1 + u2
+ C

=
3

2
ln
∣∣1 + u2

∣∣− 3 tan−1(u)− 1 + u

1 + u2
+ C

Finally, in terms of x, our integral becomes

3

2
ln
∣∣1 + (1 + x)2

∣∣− 3 tan−1(x+ 1)− x+ 2

1 + (x+ 1)2
+ C

3.5 Improper integrals
When we’ve dealt with integration before we have implicitly made two
key assumptions: the integral was over a closed, bounded interval [a, b],
and the function we were integrating was continuous on the interval we
were integrating over. We will now dispense of these assumptions to
study so-called “improper integrals.”

Let’s begin with an example to motivate what’s to come.

Example 3.20.
Find the area under the curve y = 1/x2 over the interval [1,∞).
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Notice that we can not simply use our usual techniques of “find
the antiderivative and evaluate at the endpoints” as one of these
endpoints is infinite; we can’t really plug ∞ into a function. So,
we do the next best thing and approximate the quantity we care
about with something easier. In particular, we will approximate the
integral over this infinite region with integrals over simpler, finite
regions that become larger and larger and larger. That is, we want
to say something along the lines of∫ ∞

1

dx

x2
≈
∫ b

1

dx

x2
for very large values of b.

Of course, there are some subtle issues here that we’ll have to worry
about, but we’d like something like this to be true.

Let’s notice that∫ b

1

dx

x2
=

∫ b

1

x−2 dx = −x−1

∣∣∣∣b
1

= 1− 1

b
.
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Thus ∫ 10

1

dx

x2
= 1− 1

10
= 0.9∫ 100

1

dx

x2
= 1− 1

100
= 0.99∫ 106

1

dx

x2
= 1− 1

106
= 0.999999

As b gets larger and larger, the value of
∫ b

1
dx/x2 seems to get closer

and closer to 1. To make this more precise, we should use limits and
define

∫∞
1

dx/x2 as ∫ ∞
1

dx

x2
:= lim

b→∞

∫ b

1

dx

x2
.

Of course, in this case we would simply have∫ ∞
1

dx

x2
= lim

b→∞

∫ b

1

dx

x2
= lim

b→∞

(
1− 1

b

)
= 1.

In general, we will define∫ ∞
a

f(x)dx = lim
b→∞

∫ b

a

f(x) dx

provided this limit exists. Of course, it’s possible the limit will not exist.
For example, ∫ ∞

0

cos(x) dx = lim
b→∞

sin(b) DNE.

Or, the limit could blow up to infinity:∫ ∞
0

x dx = lim
b→∞

∫ b

0

x dx = lim
b→∞

b2

2
=∞.

We say that the integral
∫∞
a
f(x) dx converges if the corresponding

limit exists and is finite, and we say
∫∞
a
f(x) dx diverges otherwise.

In the examples we’ve seen thus far,
∫∞

1
dx/x2 converges while

∫∞
0

cos(x) dx
and

∫∞
0
x dx both diverge.

Of course, an integral over a region (−∞, a] is defined similarly:∫ a

−∞
f(x) dx := lim

b→−∞

∫ a

b

f(x) dx.



CHAPTER 3. INTEGRATION TECHNIQUES 129

Example 3.21.
Compute

∫ 0

−∞ xe
x dx.

By definition we must compute the limit∫ 0

−∞
xex dx = lim

b→−∞

∫ 0

b

xex dx.

Let’s first evaluate the integral on the right-hand side using integra-
tion by parts with u = x and dv = ex dx, so du = dx and v = ex. We
then have ∫ 0

b

xex dx = xex
∣∣∣∣0
b

−
∫ 0

b

ex dx

=
(
0 · e0 − b · eb

)
− ex

∣∣∣∣0
b

= −beb −
(
e0 − eb

)
= −beb − 1 + eb

= eb(1− b)− 1.

Thus our integral is given by∫ 0

−∞
xex dx = lim

b→−∞

∫ 0

b

xex dx

= lim
b→−∞

(
eb(1− b)− 1

)
=

(
lim
b→−∞

eb(1− b)
)
− 1

=

(
lim
b→−∞

1− b
e−b

)
− 1

=L

(
lim
b→−∞

−1

−e−b

)
− 1

=

(
lim
b→−∞

1

e−b

)
− 1

= 0− 1

= −1
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If we wished to integral a function f(x) over the entire real line, what
we could do is split the integral into two pieces, such as∫ ∞

−∞
f(x) dx =

∫ a

−∞
f(x) dx+

∫ ∞
a

f(x) dx

= lim
b→−∞

∫ a

b

f(x) dx+ lim
c→∞

∫ c

a

f(x) dx

Example 3.22.

Compute
∫ ∞
−∞

dx

1 + x2
.

First we break the integral up as∫ ∞
−∞

dx

1 + x2
=

∫ 0

−∞

dx

1 + x2
+

∫ ∞
0

dx

1 + x2

Now let’s recall that the antiderivative of 1
1+x2

is computed by per-
forming the trig substitution x = tan(θ), dx = sec2(θ) dθ. Thus

∫
dx

1+x2

becomes∫
sec2(θ)

1 + tan2(θ)
dθ =

∫
sec2(θ)

sec2(θ)
dθ =

∫
1 dθ = θ + C

Since x = tan(θ), we must have θ = tan−1(x) and so
∫

dx
1+x2

is simply
tan−1(x) + C.

Now we can compute our integral as∫ ∞
−∞

dx

1 + x2
= lim

b→−∞

∫ 0

b

dx

1 + x2
+ lim

c→∞

∫ c

0

dx

1 + x2

= lim
b→−∞

tan−1(x)

∣∣∣∣0
b

+ lim
c→∞

tan−1(x)

∣∣∣∣c
0

= lim
b→−∞

(
tan−1(0)− tan−1(b)

)
+ lim

c→∞

(
tan−1(c)− tan−1(0)

)
= lim

b→−∞
− tan−1(b) + lim

c→∞
tan−1(c)

Now to evaluate these limits, we need to think about what values
of θ can be plugged into tan(θ) to give us larger and larger values
(as c→∞) as well as more and more negative values (as b→ −∞).
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To do this, we note that as θ → π/2, tan(θ) goes to infinity, and as
θ → − π/2, tan(θ) goes to negative infinity. This tells us∫ ∞

−∞

dx

1 + x2
= lim

b→−∞
− tan−1(b) + lim

c→∞
tan−1(c)

= −
(
−π
2

)
+
π

2

= π

Above we observed that
∫∞

1
dx/x2 converged, but what about other

powers of 1/x?

Example 3.23.

Compute
∫ ∞

1

dx

x3
.

∫ ∞
1

dx

x3
= lim

b→∞

∫ b

1

x−3 dx

= lim
b→∞

−1

2x2

∣∣∣∣b
1

= lim
b→∞

(
−1

2b2
− −1

2 · 12

)
= lim

b→∞

(
1

2
− 1

2b2

)
=

1

2

Example 3.24.

Compute
∫ ∞

1

dx√
x

.
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∫ ∞
1

dx√
x

= lim
b→∞

∫ b

1

x−
1/2 dx

= lim
b→∞

2x
1/2

∣∣∣∣b
1

= lim
b→∞

(
2
√
b− 2

)
=∞

In general,
∫ ∞

1

dx

xp
may converge or diverge, depending on the value

of p. Let’s examine this by first supposing p 6= 1. If p 6= then we may
compute ∫ ∞

1

dx

xp
= lim

b→∞

∫ b

1

x−p dx

= lim
b→∞

x−p+1

−p+ 1

∣∣∣∣b
1

= lim
b→∞

(
b−p+1

−p+ 1
− 1

−p+ 1

)
= lim

b→∞

(
1

p− 1
− b−p+1

p− 1

)
=

1

p− 1
− lim

b→∞

b−(p−1)

p− 1

=
1

p− 1
− 1

p− 1
· lim
b→∞

(
1

b

)p−1

.

Let’s now notice that as b → ∞, 1
b
→ 0. We are assuming p 6= 1, so there

are two things that can happen: either p > 1 or p < 1. Let’s examine each
of these cases.

• If p > 1, then we have a fraction smaller than one (the 1
b

above as
b becomes larger) being raised to positive powers, and these go to
zero as b goes to zero. Thus our integral converges to 1

p−1
.

• If p < 1, then our fraction 1
b

becomes smaller than 1 as b gets large,
but we are raising this number smaller than 1 to negative powers,
as we’re raising to p − 1. Raising a small number to a negative
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power gives us a larger fraction. For example, consider the case
when b = 4 and p = 1/2. Then we’d have(

1

b

)p−1

=

(
1

4

)− 1/2

= 4
1/2 = 2.

As b gets larger and larger, this expression
(

1
b

)p−1 will also get larger
and larger and will go off to infinity. Thus if p < 1, our integral
diverges.

The other case we have to consider is when p = 1. In this case the
integral is just ∫ ∞

1

dx

x
= lim

b→∞
ln |x|

∣∣∣∣b
1

= lim
b→∞

ln(b) =∞

and again the integral diverges.
We have thus proven the following theorem:

Theorem 3.3.
The integral

∫ ∞
1

1

xp
dx converges if and only if p > 1.

This is a helpful observation because we can often combine it with the
following theorem.

Theorem 3.4.
Suppose f(x) ≥ g(x) ≥ 0 for all x in [a,∞).

• If
∫∞
a
f(x) dx converges, then

∫∞
a
g(x) dx must converge as well.

• If
∫∞
a
g(x) dx diverges, then

∫∞
a
f(x) dx must diverge as well.

In some problems we just want to know if an integral will converge
or diverge, and combining our two theorems above can be useful if we
can compare an integral we’re interest in to

∫∞
1

dx
xp

and use the theorem
above to say if that integral converges or diverges.
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Example 3.25.

Does the integral
∫ ∞

1

2x+ 3

x2 − 1
dx converge or diverge?

Our strategy here will be to compare this integral to one of the
integrals

∫∞
1

dx
xp

. We’ll do this by making two simple observations
about fractions:

1. If the numerator of a fraction is replaced with something smaller,
the entire fraction is smaller. I.e., if a > b, then

a

c
>
b

c
.

For example, 7 > 5 and so 7
3
> 5

3
.

2. If the denominator of a fraction is replaced by something larger,
the entire fraction is smaller. I.e., if c < d, then

a

c
>
a

d
.

For example, 2 > 3 and so 1
2
> 1

3
.

We will apply these rules repeatedly until we can say if 2x+3
x2−1

is
larger or smaller than a fraction 1

xp
.

2x+ 3

x2 − 1
>

2x

x2 − 1
(Numerator decreases, fraction decreases.)

>
x

x2 − 1
(Numerator decreases, fraction decreases.)

>
x

x2
(Denominator increases, fraction decreases.)

=
1

x

Thus, 2x+3
x2−1

> 1
x
. Taking f(x) = 2x+3

x2−1
and g(x) = 1

x
in Theorem 3.4,

then since
∫∞

1
dx
x

diverges by Theorem 3.3, Theorem 3.4 tells us
∫ ∞

1

2x+ 3

x2 − 1
must diverge as well.

Just to summarize what we’ve said so far: When an integral goes to
±∞ on one side, we write this as a limit of integrals as b → ±∞, write
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the value of our integral as a function of b, and then take the limit.
Now let’s examine another type of integral. Suppose that we are in-

tegrating on a closed, bounded interval [a, b], but our function has a dis-
continuity. In particular, suppose our function had a vertical asymptote.
For example, perhaps we wanted to evaluate the integral∫ 3

0

dx

x− 2
.

Notice the function has a vertical asymptote at x = 2.

We can not simply apply the fundamental theorem of calculus and eval-
uate at the endpoints x = 0 and x = 3 here. We haven’t made a big deal
about it because we didn’t need to up until this point, but to apply the
fundamental theorem of calculus we really need that the function we’re
integrating is continuous on the interval we’re integrating over, but that’s
not the case here. To get around this, we’ll break our integral up into two
parts, where our function is continuous on each part. Since 1

x−2
is contin-

uous on (0, 2) and on (2, 3) (just removing the point x = 2 where we have
a discontinuity), we will write ore integral as∫ 3

0

dx

x− 2
=

∫ 2

0

dx

x− 2
+

∫ 3

2

dx

x− 2
.

We could do this even if our function was continuous, but let’s notice the
issue with the discontinuity is really highlighted here. If you were try to
apply the fundamental theorem of calculus on each of these pieces you’d
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have something like∫ 3

2

dx

x− 2
= ln |x− 2|

∣∣∣∣3
2

= ln(1)− ln(0)

and now you see that there’s a problem: ln(0) is undefined! Since we
can’t actually integrate all the up to 2, because our supposed antideriva-
tive is undefined there, we’ll do the next best thing: take the limit as we
get really, really close to 2.

In particular, to evaluate
∫ 3

2
dx
x−2

, we’ll take the limit of integrals of the
form ∫ 3

b

dx

x− 2

as b gets closer and closer to 2. Notice, though, that we need to be careful
that our b’s never move “past” 2, or we’ll run into this same issue again.
So, we’ll only take the right-hand limit as b approaches 2 and calculate∫ 3

2

dx

x− 2
= lim

b→2+

dx

x− 2

= lim
b→2+

ln |x− 2|
∣∣∣∣3
b

= ln(1)− lim
b→2+

ln(b− 2)

Notice that as b approaches 2 from the right, b − 2 is always positive
(which is good, since the natural log is not defined for negative numbers),
and in particular b− 2 shrinks down to zero. Thus ln(b− 2) goes down to
−∞ and our limit above becomes∫ 3

2

dx

x− 2
= ln(1)− lim

b→2+
ln(b− 2) = 0− (−∞) =∞.

And so our integral blows up to infinity; there is an infinite area between
the graph y = 1

x−2
and the interval (2, 3) on the x-axis!

Similarly, we can compute
∫ 2

0
dx
x−2

by taking the limit of integrals over
(0, b) as b moves closer and closer to 2 from the left. (Notice we’re taking
the left-hand limit here because our interval is to the left of the asymptote,
whereas earlier we took the right-hand limit because the interval was to
the right of the asymptote.)
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∫ 2

0

dx

x− 2
= lim

b→2−

∫ b

0

dx

x− 2

= lim
b→2−

ln |x− 2|
∣∣∣∣b
0

= lim
b→2−

ln |b− 2| − ln |0− 2|.

Here we might point out that since b approaches 2 from the left, b is al-
ways less than 2, and so b− 2 < 0. Thus |b− 2| = −(b− 2) = 2− b and the
integral becomes∫ 2

0

dx

x− 2
= lim

b→2−
ln |b− 2| − ln |0− 2|. = lim

b→2−
ln(2− b)− ln(2).

Let’s notice that as b gets closer and closer 2 from the left, 2−b is a positive
number (so ln(2 − b) is defined), and 2 − b approaches 0 as b approaches
2, thus the limit goes to −∞ again:∫ 2

0

dx

x− 2
= −∞.

Now, we might be tempted to put these two integrals back together to
obtain −∞+∞, but here we have a problem: −∞+∞ is not defined. In
particular, negative infinity plus infinity is not zero! That is, we can not
assign a value to

∫ 3

0
dx
x−2

! The best we can do is say that it diverges.

Remark.
Notice that if we did naively try to apply the fundamental theorem
of calculus we would have computed ln(1)− ln(2) ≈ −0.6932, which
is very much the wrong answer!

In general, if a function f(x) is continuous on an interval [a, b) but is
discontinuous at b, then we define∫ b

a

f(x) dx := lim
t→b−

∫ t

a

f(x) dx provided the limit exists.
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If the limit exists (which implies the limit is a finite value), then we say
the integral converges to that limit. If the limit does not exist (and this
includes the cases when the limit is ±∞), we say the integral diverges.

Similarly, if f(x) is continuous on (a, b] and discontinuous at a we
define ∫ b

a

f(x) dx := lim
t→a+

∫ b

t

f(x) dx provided the limit exists.

If f(x) is defined on [a, b] but has a discontinuity at some point c inside
the interval, a < c < b, we define∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

and calculate those two integrals as limits,∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

= lim
t→c−

∫ t

a

f(x) dx+

∫
s→c+

∫ b

s

f(x) dx provided both limits exist.

If both of the limits in the last expression exist (and so are finite), then
we say the integral converges to the sum of those limits. If either of the
limits in the last expression above do not exist, which includes the case
that either is ±∞, then we say the integral diverges.

Remark.
If it happens that both limits are infinity, then there’s not really any
ambiguity or concern with writing∞ +∞ =∞, and so we may be
more precise and say the integral “diverges to infinity.” Similarly
if both limits were to go to −∞, we can say −∞ + −∞ = −∞ and
say the integral “diverges to negative infinity.” The issue we worry
about is when one integral is∞ and the other is−∞. In those situa-
tions we can’t assign a value to∞+−∞, and so the best we can do
is say that the integral diverges.

To summarize, when a function we’re integrating has a discontinuity,
we need to approximate the integral by integrating over intervals that
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get closer and closer to that point of discontinuity, taking care that our
intervals don’t cross the discontinuity. This means we have to use one-
sided limits, and we need to just pay close attention to which side we
need to take the limit on.

Example 3.26.

Compute
∫ 3

2

dx√
3− x

.

Let’s notice this function has a discontinuity at x = 3, so we’ll
approximate the integral by integrating∫ b

2

dx√
3− x

for values of b that get closer and closer to 3. Since 2 is to the left of
3, our intervals (2, b) will always end to the left of 3, and we’ll want
to take the left-hand limit as b approaches 3.

∫ 3

2

dx

3− x
= lim

b→3−

∫ b

2

dx

3− x

Now we’ll perform a u-substitution with u = 3 − x and du = − dx.
The integral then becomes

lim
b→3−

−
∫ 3−b

1

1√
u
du = lim

b→3−

∫ 1

3−b
u
− 1/2 du

= lim
b→3−

2u
1/2

∣∣∣∣1
3−b

= lim
b→3−

2
(√

1−
√

3− b
)

Notice that as b approaches 3 from the left, we have that 3 − b ap-
proaches 0. (Also note b < 3 so 3− b > 0 and the square roots we’re
evaluating are defined.) Thus our limit is 2 and so∫ 3

2

dx√
3− x

= 2.
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3.6 Numerical integration
As we’ve seen, integration has a number of different uses. Usually the
way we calculate an integral is by finding an antiderivative and evaluat-
ing it at the endpoints of the integral. Even for improper integrals this is
basically our main tool, we just have to be a little bit careful and need to
take limits sometimes. However, there are some integrals which simply
cannot be computed in this way. One particularly important example is
the following:

1√
2π

∫ b

a

e− x
2/2 dx.

The expression above is extremely important in probability and statistics
because it represents the probability that the standard normal random
variable takes on a value between a and b. People that are interested in
statistics really care about this because the main work horse of statistics,
called the central limit theorem, allows us to basically treat very large
random samples as if they were normal random variables.

The exact details of what a “random variable” is or what it means to
be “normally distributed” are outside the scope of this class so we won’t
spend any time saying exactly what this means, we just want to point
out that the integral above is something that has a lot of importance and
application in the real world.

So, statisticians are interested in evaluating integrals like the one above,
but there’s a big problem. Even though the fundamental theorem of cal-
culus promises us that the function appearing in the integral above does
have an antiderivative (since it’s continuous), we actually can not write
the antiderivative as anything simpler than

F (x) =

∫ x

a

e− t
2/2 dt.

That is, we have several tricks up our sleeves for calculating antideriva-
tives at this point, but none of them help for this particular antiderivative.
And it’s not simply that we haven’t learned the right trick yet, it’s that
there is no trick that helps with this antiderivative. Furthermore, it’s not
even that no one has been clever enough to come up with the right trick
yet: there are in fact theoretical reasons (extremely beyond the scope of
this class) why no trick can exist.

This is a huge problem. We have an integral that we really, really want
to be able to evaluate for real-world applications, but we have no hope of
writing its antiderivative as something we can actually compute. In situ-
ations like this we must resort to numerically approximating the integral.
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This means that we basically are never able to say what the exact value
of the integral will be, but we can at least get an approximation. In fact,
as we’ll see, we can even go so far as to say how good our approximation
is.

The simplest thing we could try to do to approximate an integral nu-
merically is to use a simple Riemann sum. Using n rectangles of equal
width, and using the left-hand edge of the rectangle to determine its
height, we can approximate a definite integral as∫ b

a

f(x) dx ≈
n∑
i=1

f

(
a+

(b− a)i

n

)
· b− a

n
.

Intuitively we expect these to be good approximations when n is large,
but can we say anything more precise? In particular, can we say how
large n needs to be in order to guarantee our integral is within some
given distance of the true value?

That is, maybe we want to estimate the integral to within one one-
millionth of the true value. Do we have any hope of saying how large n
will need to be to guarantee that?

The main tool for answering this question is the following.

Theorem 3.5.
If f(x) is a continuously differentiable function defined on [a, b], then the
error in approximating

∫ b
a
f(x) dx by the Riemann sum above satisfies the

following inequality:∣∣∣∣∣
∫ b

a

f(x) dx−
n∑
i=1

f

(
a+

(b− a)i

n

)
· b− a

n

∣∣∣∣∣ ≤ R(b− a)2

2n

where R is the maximum of |f ′(x)| on [a, b].

Let’s first try to unravel exactly what this theorem means. Here we
have some unknown true quantity we’re interested in,

∫ b
a
f(x) dx, and

some approximation given by our expression with Riemann sums. The
left-hand side of the inequality above is simply measuring the error in
approximating the true value of the integral by the given Riemann sum.
The right-hand side is an upper bound for that error on the left-hand
side: it’s just some quantity that we know for sure will be bigger. The
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exact value of the right-hand side depends on three things: the size of
the interval, the number of rectangles, and the function. Intuitively, how
good or bad a given approximation with some fixed number of rectangles
is depends on the function, and in particular it depends on how quickly
the function changes. (If our function changes really, really slowly then
we shouldn’t have a hard time approximating it with a few rectangles.
If the function changes very quickly, however, then we’ll need more and
more approximations to account for that quick change in the function.)
This is what the R = max|f ′(x)| factor is measuring.

Example 3.27.

If
∫ 1

−1

e−x
2/2 dx is approximated by the Riemann sum

n∑
i=1

e−(−1+ 2i
n )

2
/2 · 2

n
,

then the error in this approximation is no more than

R(1− (−1))2

2n
=

4R

2n
=

2R

n

where R is the maximum of∣∣∣∣ ddxe−x2/2
∣∣∣∣ =

∣∣e−x2/2 · (−x)
∣∣ =

∣∣xe−x2/2∣∣
on [−1, 1]. This is a calculus maximization problem which we can
easily check is maximized at x = −1, and so

R =
∣∣(−1)e−(−1)2/2

∣∣ = e−
1/2 =

1√
e
.

Thus the Riemann sum approximation is within

2

n
√
e
≈ 1.2131

n

of the true value.
If we wanted to estimate the integral and stay within one one-

millionth, 1/106, of the true value, then we would need to find the n
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that guarantees 1.2131
n

is less than 1
106

:

1.2131

n
<

1

106

=⇒ 1.2131 · 106 < n

=⇒ n > 1, 213, 100

In the previous example we saw that we required over 1, 213, 000 rect-
angles to estimate the value of our given integral to within one one-
millionth of the true value. This is a lot of rectangles, but perhaps we
could modify the way we approximate the integral and get more accu-
rate approximations. In particular, if we used a more accurate approxi-
mation, we might be able to get just as good of an estimate but without
requiring as many computations.

We will discuss three more methods for approximating the value of
an integral numerically. One, the “midpoint rule,” is very similar to our
Riemann sum approximation, but with one minor change that improves
our error bound. The second, the “trapezoid rule,” is motivated by an ob-
servation we’ll make in discussing the midpoint rule, and is essentially a
Riemann sum where we use trapezoids instead of rectangles. This makes
a modest change to the midpoint rule’s error bound. The final method,
however, which is called “Simpson’s rule,” is more sophisticated and of-
fers a huge improvement in the error. If you ever compute an integral
numerically on a calculator or computer, the calculator/computer is very
likely using Simpson’s rule.

The midpoint rule is essentially using a Riemann sum but where we
used the midpoint of the rectangle’s base to determine the height. That
is, if our rectangle has base [xi, xi+1], we will get the height by plugging
the midpoint xi+xi+1

2
into the function f(x).

In particular, we have∫ b

a

f(x) dx ≈
n∑
i=1

f

(
a+

(
b− a
n

)
·
(
i− 1

2

))
· b− a

n
.

At first you might not expect this small change to make a big differ-
ence in the accuracy of our estimate, but there’s a neat observation. The
area of the rectangle computed in this way is equal to the area of the
trapezoid whose top is tangent to the curve y = f(x) at the midpoint.
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≈ =

Thinking of our areas as areas of these trapezoids instead of rectan-
gles, it’s pretty easy to believe this will give a much better approximation.

Theorem 3.6.
If f(x) is a twice continuously differentiable functiona, then the error that
occurs in approximating

∫ b
a
f(x) dx using the midpoint rule satisfies the

following inequality:∣∣∣∣∣
∫ b

a

f(x) dx−
n∑
i=1

f

(
a+

b− a
n
·
(
i− 1

2

))
· b− a

n

∣∣∣∣∣ < M(b− a)3

24n2

where M is the maximum value of |f ′′(x)| on [a, b].
aThis just means that the second derivative f ′′(x) is defined and is continuous.

Virtually every function we’ll care about in this class will have this property.

Example 3.28.

Approximating
∫ 1

−1

e−x
2/2 dx using the midpoint rule, the error is

bounded by
M · 23

24n2
=

8M

24n2
=

M

3n2
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where M is the maximum value of∣∣∣∣ d2

dx2
e−x

2/2

∣∣∣∣ =

∣∣∣∣x2 − 1

ex
2/2

∣∣∣∣
on [−1, 1], which occurs at x = 0, and so M = e−1/2. The error is then
bounded by

1

3
√
en2
≈ 0.2022

n2

To guarantee the error is within one one-millionth, 1/106, of the
true value, we require

0.2022

n2
<

1

106

=⇒ n2 > 202, 000

=⇒ n >
√

202, 000 ≈ 449.441.

Notice that using the midpoint rule we are guaranteed that the error
in our approximation is within one one-millionth of the true value if the
number of rectangles used is just 450, as opposed to over one million
rectangles in the normal Riemann sum!

Remark.
It’s worth pointing out that our theorems are only giving us a guar-
antee that if we use at least “this” many rectangles, our error will
be “this” small. The theorems are not telling us that we must use
that many rectangles. I.e., it could be that our estimate using the
normal Riemann sum is within one one-millionth of the true value
with fewer rectangles, we just don’t have any guarantees based on
these theorems.

Since the midpoint rule is basically adding up the areas of certain
trapezoids approximating our curve, one natural thing we might try is
to just find the areas of trapezoids that touch the curve at two points.
This is slightly different than the midpoint rule. In the midpoint rule we
basically have areas that are equal to the area of a trapezoid tangent to the
curve at one point. Depending on how much the curve wiggles around,
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though, these trapezoids could still have very different areas than the
area under the curve. To fix this we’ll instead force our trapezoids to
touch two points on the curve.

That is, instead of using areas under rectangles, we’ll use areas under
trapezoids and we’ll set our trapezoids up so that their left- and right-
hand edges are both on the curve.

Let’s notice that the area of a trapezoids of base b and heights h and
H ,

b

H

h

has area
b · h+H

2

Writing out what this means in terms of sums, we are approximating the
area under the graph y = f(x) by∫ b

a

f(x) dx ≈ b− a
2n

(
f(a) + f(b) + 2

n−1∑
i=1

f

(
a+

(
b− a
n

)
i

))
.

(What’s happening here is that every term that appears as a “height” of
a trapezoids appears twice, once on he left and once on the right, except
the very first and very last terms which only appear once.)

Theorem 3.7.
If f(x) is a twice continuously differentiable function, then the error that
occurs in approximating

∫ b
a
f(x) dx using the trapezoid rule satisfies the
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following inequality:∣∣∣∣∣
∫ b

a

f(x) dx− b− a
2n

(
f(a) + f(b) + 2

n−1∑
i=1

f

(
a+

(
b− a
n

)
i

))∣∣∣∣∣ < M(b− a)3

12n2

where M is the maximum value of |f ′′(x)| on [a, b].

Notice this is a modest change to the error bound from the midpoint
rule.

Exercise 3.5.
Determine the number of trapezoids required to estimate the value

of
∫ 1

−1

e−x
2/2 dx, using the trapezoid method, to within one one-millionth

of the true value.
Our calculation is almost exactly the same as for the midpoint

method, in particular the value of M is the same. The only differ-
ence is that the 24 that originally appeared in our midpoint method’s
error bound becomes a 12. Then have

1√
e
23

12n2
<

1

106

=⇒ 2

3
√
en2

<
1

106

=⇒ 0.4044

n2
<

1

106

=⇒ n >
√

404, 000 ≈ 635.9

Thus we require at least 635 trapezoids.

The last method of numerical approximation we’ll mention is a bit
more sophisticated. For our last method what we’ll do is approximate the
area under the curve not with rectangles or trapezoids, but with parabo-
las. That is, we’ll look at triples of points on the curve at a time, and will
find the parabola that goes through those three points, then compute the
area under that one little parabolic piece, and add up the areas coming
from each parabolic piece.
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Let’s first notice that the parabola that goes through three given points
in the xy-plane, say (a,A), (b, B), and (c, C), is given by

y =
(x− b)(x− c)
(a− b)(a− c)

· A+
(x− a)(x− c)
(b− a)(b− c)

·B +
(x− a)(x− b)
(c− a)(c− b)

· C

It’s easy to notice that this will be parabola since each term in the expres-
sion is quadratic, and we can easily check that it passes through the given
points. The terms that appear above are basically set up exactly so that
the second two will cancel out when a is plugged in for x and the stuff
that remains will be A. That is, plugging x = a into the above gives us

(a− b)(a− c)
(a− b)(a− c)

· A+
(a− a)(a− c)
(b− a)(b− c)

·B +
(a− a)(a− b)
(c− a)(c− b)

· C = A

Thus (a,A) is on the curve. You can similarly check (b, B) and (c, C) are
also on the curve.

Now to find the area under this piece of the parabola between a and
c, we need to integrate the function above,∫ C

a

[
(x− b)(x− c)
(a− b)(a− c)

· A+
(x− a)(x− c)
(b− a)(b− c)

·B +
(x− a)(x− b)
(c− a)(c− b)

· C
]
dx.

This is not a hard integral; it’s just a polynomial. It is a bit tedious to
write out all the details of simplifying the expression above before inte-
grating, however, so we won’t take the time to do that here. The take
away, though, is that the integral will evaluate to

c− a
3

(A+ 4B + C)

Now, when we’re approximating an integral
∫ b
a
f(x) dx, what we’ll

do is divide the interval [a, b] up into some even number of pieces, say
[x0, x1], [x1, x2], [x2, x3], ..., [x2n−1, x2n]. Now we’ll look at parabolas that
pass through three consecutive points in this partition of [a, b]. For exam-
ple, the parabola that passes through (x0, f(x0)), (x1, f(x1)), (x2, f(x2)).
Using these coordinates as our (a,A), (b, B), and (c, C) above we see the
area under the parabola is

x2 − x0

3
(f(x0) + 4f(x1) + f(x2)) .

This is just the first of our parabolas. For our second parabola we’ll want
to use the coordinates (x2, f(x2)), (x3, f(x3)), and (x4, f(x4)). Notice that
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we skipped over x1 since we want our parabolas to not have any overlap.
Using our formula above, the area under this parabolic piece is

x4 − x2

3
(f(x2) + 4f(x3) + f(x4)) .

Continuing to compute these areas and add them up we obtain∫ b

a

f(x) dx ≈ b− a
3n

 n/2∑
i=1

[
f
(
x2(i−1)

)
+ f (x2i)

]
+ 4

n/2∑
i=1

f (x2i−1)

 .

This calculation is known as Simpson’s rule, and while it looks consid-
erably more involved than our other approximations, it is very useful
because of the following theorem.

Theorem 3.8.
Suppose f(x) is 4-times continuously differentiable on [a, b] and

∫ b
a
f(x) dx

is approximated using Simpson’s rule and a partition of n equally-spaced
parabolic pieces where n is even (i.e., there are n/2 parabolic pieces). Then
the absolute error in this approximation is bounded above by

K(b− a)5

180n4

where K is the maximum value of |f (4)(x)| on the interval [a, b].

In our running example of estimating
∫ 1

−1

e−x
2/2 dx, the value ofK will

wind up being 3. The expression K(b−a)5

180n4 will then become

3 · 25

180n4
.

If we wish for the error to be less than one one-millionth, then we need
the n that makes this expression less than 1/106:

3 · 25

180n4
<

1

106

=⇒ n4 >
96

180
· 106

=⇒ n > 27.024.
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Keeping in mind n is twice the number of parabolas, this means we need
only 14 parabolas to estimate the value of our integral to within one one-
millionth of the true value using Simpson’s rule. This is a huge improve-
ment over the previous methods, and it means that we can get good esti-
mates using a much, much smaller number of calculations, which is why
most computers and calculators will use Simpson’s rule to numerically
estimate integrals.

3.7 Practice problems

Problems about integration by parts

Problem 3.1. What is the antiderivative of
∫

(4x3 + 2x) ln(x) dx?

Problem 3.2. Compute the antiderivative of e2x sin(3x).

Problem 3.3. Compute the antiderivative of sec3(x). (Hint: At some point
you will need to integrate sec(x). You can do this by multiplying and
dividing sec(x) by sec(x) + tan(x).)

Problem 3.4. Use the shell method to determine the volume of the solid
obtained by rotating the region bounded by y = e−x, y = 0, x = −1 and
x = 0 (the shaded region below) around the line x = 1.

x

y

x = 1

Problem 3.5. What is the antiderivative of ln(
√
x)? (Hint: Compare to

how the antiderivative of ln(x) is computed earlier in the notes.)

Problem 3.6. What is the antiderivative of x2ex?
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Practice problems about powers of trig functions

Problem 3.7. Find the antiderivative of sin4(x).

Problem 3.8. Find the antiderivative of tan2(x) sin(x).

Practice problems about trig substitution

Problem 3.9. Compute the antiderivative of
x√

36− x2
.

Problem 3.10. Compute the antiderivative of
x5

√
x2 + 2

.

Problem 3.11. Find the antiderivative of
x√

x2 − 1
dx.

Practice problems about partial fractions

Problem 3.12. Find the antiderivative of 5x−1
x2−1

.

Problem 3.13. Find the antiderivative of
−35

x2 + x− 12
.

Problem 3.14. Find the antiderivative of
4x2 + 12x− 4

(x+ 2)2(x− 4)
.

Problem 3.15. Find the antiderivative of 8x2−x+3
x3+x

.

Practice problems about improper integrals

Problem 3.16. Compute
∫ ∞

4/π

sec2 (1/x)

x2
dx.

Problem 3.17. Compute
∫ 1

0

x ln(x) dx.

Problem 3.18. Compute
∫ 2

−2

dy√
4− y2

.
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Practice problems about numerical integration

Problem 3.19. Recall that the area between the parabola through (a,A),
(b, B), and (c, C) (where b is half-way between a and c) and the x-axis is
given by

c− a
6

(A+ 4B + C) .

Use this to approximate
∫ 4

0

x2 + x+ 1

x2 + 2x+ 2
dx using two parabolic pieces of

equal width (i.e., Simpson’s rule with n = 4). Your final answer should
be a sum of fractions of integers which you do not need to simplify.



4More Applications
The irreducible price of learning is realizing
that you do not know.

JAMES BALDWIN

4.1 Arclength
In this section we want to determine the “arclength” of certain curves in
the plane. That is, if our curve were to represent a road and you were to
drive along that road from one end to the other, we want to know how
far you would drive. Another way to think about arclength is if we were
to lay a piece of string perfectly along a curve, how much string would
we need?

Figure 4.1: How long is this curve?

153
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Given an arbitrary curve in the plane this seems like a pretty difficult
problem. We will thus do what we always do in calculus when we have a
quantity we want to calculate but aren’t sure how to do it: estimate with
something we can calculate, and then find a way to improve our estimate.
In particular, we can pretty easily determine the length of a line segment,
so what we might try to do is approximate our curve with a “broken
line,” which is just several line segments that are joined together at their
ends. It is easy for us to determine the length of this broken line: just add
the lengths of each segment!

Figure 4.2: The length of this “broken line” is easier to compute.

We will see that by taking the limit as each line segment gets smaller
and smaller, we get better and better estimates. Ultimately we’d like for
this to be a limit of Riemann sums so we can write the value as an inte-
gral, but as we’ll see below there is a slightly non-obvious step required
to convert the sum we’ll write down as an integral we can compute.

Remark.
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For simplicity, all of the curves we will be interested will be graphs
of functions. Later in the semester we’ll talk about how to repre-
sent other types of curves, and in the third semester calculus course
you’ll see a generalization of the procedure we’re described here for
computing arclengths of those more general curves.

Let’s begin, though, by recalling that the distance between two points
(x0, y0) and (x1, y1) is given by

√
(x1 − x0)2 + (y1 − y0)2. Letting ∆x =

x1 − x0 and ∆y = y1 − y0, we may write this as
√

∆x2 + ∆y2. Of course,
this is really just the Pythagorean theorem, where the length of our line
segment is the hypotenuse of a right triangle with sides of length ∆x and
∆y, as in Figure 4.3

√ ∆x
2 +

∆y
2

∆y

∆x

Figure 4.3: We compute length of a line segment with the Pythagorean
theorem.

A single line won’t give us a very good approximation to a general
curve, so we need to consider something a little bit more general. A
broken line is simply a finite collection of line segments concatenated to-
gether. That is, the end of one segment is the start of another segment,
with the possible exception of the very first and last segments. Let’s sup-
pose the coordinates of the endpoints of our line segments are denoted
(x0, y0), (x1, y1), (x2, y2), and so on, up to (xn, yn), as indicated in Fig-
ure 4.4.

Notice the length of the line segment connecting (xi−1, yi−1) to (xi, yi)
is √

(xi − xi−1)2 + (yi − yi−1)2,

and so adding up the lengths of all of the line segments gives us that the
length of the broken line is

n∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2.
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(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)
... (xn−1, yn−1)

(xn, yn)

Figure 4.4: A broken line with the endpoints of each segment labeled.

So, if we wanted to estimate the length of the graph y = f(x) where
a ≤ x ≤ b, then we could take our xi values in the expressions above to
be points between a and b, and yi = f(xi). For example, if we were to use
n + 1 equally spaced points (this would give us n line segments in our
broken line), we could take

xi = a+
(b− a)i

n

yi = f(xi) = f

(
a+

(b− a)i

n

)
where 0 ≤ i ≤ n. For notational simplicity we’ll continue to just write
xi and yi for the moment, but keep in mind we’re just selecting some
x values and then plugging those into f(x) to get the corresponding y
values, in order to have points on our curve.

Our goal now is to somehow recognize the expression above as a Rie-
mann sum we can take a limit of and compute as an integral. To simplify
notation a little, let’s write ∆xi and ∆yi for xi− xi−1 and yi− yi−1, respec-
tively. Then our sum above becomes

n∑
i=1

√
∆x2

i + ∆y2
i .

We would like to somehow turn this square root into something of the
form “an expression in f(xi) multiplied by ∆xi” so that we could easily
write down our integral. In order do this we’ll have to do some simple,
but not entirely obvious, manipulations to our quantity above.

Caution: The work that appears below is mostly included for the sake
of completeness and fills in the details about how our estimate above
becomes an integral in the limit. If these details feel a little too technical
for you and you don’t want to take the time to digest them, you can safely
skip the discussion below and jump to Theorem 4.1
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Let’s first factor a ∆x2
i from each term under our radical. That is,

terms will be rewritten as√
∆x2

i + ∆y2
i =

√
∆x2

i + ∆y2
i ·

∆x2
i

∆x2
i

=

√(
1 +

∆y2
i

∆x2
i

)
∆x2

i

=

√
1 +

(
∆yi
∆xi

)2

∆xi

And so our sum is now

n∑
i=1

√
1 +

(
∆yi
∆xi

)2

∆xi

Keeping in mind ∆yi = f(xi) − f(xi−1), this is closer to what we want,
but the ∆xi that appears in the denominator of our fraction is a little bit
problematic. To get rid of the ∆xi in that denominator we’ll need to apply
the mean value theorem. Recall that the mean value theorem says if f(x)
is continuously differentiable on the interval [a, b], then there exists some
value c between a and b such that

f ′(c) =
f(b)− f(a)

b− a
.

To take advantage of the mean value theorem here, let’s notice that our
fraction is really equal to the following:

∆yi
∆xi

=
f(xi)− f(xi−1)

xi − xi−1

.

Now, supposing our function f(x) is continuously differentiable, the mean
value theorem applied to the interval [xi−1, xi], promises us there exists
some value, let’s call it x∗i , in-between xi−1 and xi such that

f ′(x∗i ) =
f(xi)− f(xi−1)

xi − xi−1

.

Thus the length of our broken line is equal to

n∑
i=1

√
1 + [f ′(x∗i )]

2 ∆xi.
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Notice that this is only an approximation to the arclength of y = f(x)
that we are searching for. We get better and better approximations by
moving the points in our broken line closer together, and this happens as
we use more and more points in the setup above. Taking the limit as the
number of points goes to infinity, we see that our approximation is really
a Riemann sum for the integral∫ b

a

√
1 + [f ′(x)]2 dx

This establishes the following theorem:

Theorem 4.1.
If f(x) is a continuously differentiable function, then the length of the

curve y = f(x) where a ≤ x ≤ b is given by∫ b

a

√
1 + [f ′(x)]2 dx

Remark.
In our class virtually every function we consider is continuously
differentiable, so for our purposes you can avoid thinking about
this condition if you feel like you don’t understand it.

To start using this theorem, let’s first consider a few simple examples
where the arclength is something we can compute through some other
method, just to verify this gives us the values we’d expect.

Example 4.1.
Compute the arclength of the line segment connecting (0, 0) to (4, 3)
using the integral in Theorem 4.1.

We don’t need the integral above to do this calculation, but we’ll
use it here just to verify this calculates the length we’d expect. First
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we have to write our line segment as the graph of a function. Since
the line segment goes through (0, 0), that graph will have the form
y = mx (the y-intercept is zero). We can determine m using the
slope formula of rise over run (i.e., change in y-values over change
in x-values). That tells us the slope is 3

4
, and so our line segment is

y = 3
4
x where 0 ≤ x ≤ 4. The integral is then

Arclength =

∫ 4

0

√
1 +

(
d

dx

3

4
x

)2

dx

=

∫ 4

0

√
1 +

(
3

4

)2

dx

=

∫ 4

0

√
1 +

9

16
dx

=

∫ 4

0

√
16 + 9

16
dx

=

∫ 4

0

√
25

16
dx

=

∫ 4

0

5

4
dx

=
5

4
x

∣∣∣∣4
0

=
5

4
· 4− 5

4
· 0

= 5

Notice this agrees with the value the distance formula would give
us, √

(4− 0)2 + (3− 0)2 =
√

16 + 9 =
√

25 = 5.

Example 4.2.
Find the arclength of the semicircle of radius r, thought of as the

graph y =
√
r2 − x2 on the interval [−r, r].

Let’s notice that since this is the arclength of a semicircle, we
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should expect it to be half the circumference of the entire circle. This
is a circle of radius r, so its circumference is 2πr and half of that is
πr. Now let’s verify our integral will give us the same value.

Here our function f(x) that appears in
∫ b
a

√
1 + [f ′(x)]2 dx is f(x) =√

r2 − x2, and the derivative is simply

f ′(x) =
−x√
r2 − x2

.

We then compute the following:

Arclength =

∫ r

−r

√
1 +

(
−x√
r2 − x2

)2

dx

=

∫ r

−r

√
1 +

x2

r2 − x2
dx

=

∫ r

−r

√
r2 − x2

r2 − x2
+

x2

r2 − x2
dx

=

∫ r

−r

√
r2

r2 − x2
dx

=

∫ r

−r

r√
r2 − x2

dx

To compute this integral we’ll need to perform a trig substitution.
We notice that the r2 − x2 that appears in the integral looks similar
to the left-hand side of the trig identity 1 − sin2(θ) = cos2(θ). To
account for the r we can multiply both sides of our identity by r2 to
obtain r2 − r2 sin2(θ) = r2 cos2(θ). Thus we will take x = r sin(θ) to
take advantage of this identity.

Using the trig substitution x = r sin(θ), dx = r cos(x) dx, we will
rewrite our integral in terms of θ. Since we have a definite integral,
we need to change the bounds from x-values to θ-values. Notice
that we can solve the expression above for θ to obtain θ = sin−1

(
x
r

)
.

Now when we plug in the bounds x = −r and x = r, we obtain
new bounds θ = sin−1(−1) and θ = sin−1(1). A moment’s thought
reveals these can be written more simply as θ = − π/2 and θ = π/2.
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Our integral then becomes∫ π/2

−π/2

r2 cos(θ)√
r2 − r2 sin2(θ)

dθ =

∫ π/2

−π/2

r2 cos(θ)√
r2 cos2(θ)

dθ

=

∫ π/2

−π/2

r2 cos(θ)

r cos(θ)
dθ

=

∫ π/2

−π/2
r dθ

= rθ

∣∣∣∣π/2
−π/2

=
π

2
r −

(
−π
2
r

)
= πr

(Notice above that r is simply a constant and θ is the variable, hence∫
r dθ = rθ.)

Remark.
It’s worth pointing out here that you likely were told the circumfer-
ence of a circle of radius r was 2πr, but this was simply given to you
as a fact in your middle or high school math classes. If you’ve ever
wondered why the circumference was this particular value, versus
something else, you can think of the integration above as an expla-
nation for this expression.

Let’s now turn our attention to some examples where the arclength of
our curve is not given by some simple geometric formula.

Example 4.3.

Compute the arclength of the graph y =
(x2+2)

3/2

3
where 0 ≤ x ≤ 1.
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Notice the derivative of our function is

dy

dx
=

1

3
· 3

2

(
x2 + 2

)1/2 · 2x = x
√
x2 + 2,

and so our arclength is computed as

Arclength =

∫ 1

0

√
1 +

(
x
√
x2 + 2

)2

dx

=

∫ 1

0

√
1 + x2 (x2 + 2) dx

=

∫ 1

0

√
x4 + 2x2 + 1 dx

=

∫ 1

0

√
(x2 + 1)2 dx

=

∫ 1

0

(
x2 + 1

)
dx

=

(
x3

3
+ x

)∣∣∣∣1
0

=
4

3

In our examples thus far our curve has been given as y = f(x), but
there’s nothing really special about using x as the independent variable.
That is, if our curve was given to us as x = g(y) where c ≤ y ≤ d, we’d
compute the arclength in the same way, modifying our integral appro-
priately to obtain

Arclength =

∫ d

c

√
1 + [g′(y)]2 dy.

Example 4.4.
Find the arclength of x = y4

4
+ 1

8y2
where 1 ≤ y ≤ 2.

Let’s first compute our derivative that appears in the integrand:

dx

dy
=

d

dy

(
y4

4
+

1

8y2

)
=

4y3

4
+
−2

8y3
= y3 − 1

4y3
.
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Our integral is then

Arclength =

∫ 2

1

√
1 +

(
y3 − 1

4y3

)2

dy

=

∫ 2

1

√
1 + y6 − 1

2
+

1

16y6
dy

=

∫ 2

1

√
y6 +

1

2
+

1

16y6
dy

=

∫ 2

1

√(
y3 +

1

4y3

)2

dy

=

∫ 2

1

(
y3 +

1

4y3

)
dy

=

(
y4

4
− 1

8y2

)∣∣∣∣2
1

=

(
16

4
− 1

32

)
−
(

1

4
− 1

8

)
=

128− 1− 8 + 4

32

=
123

32

4.2 Surface area
We have previously seen how to compute the volume of a solid of rev-
olution. Today we want to determine the surface area of a surface of
revolution. That is, we consider surfaces (two-dimensional objects living
in three-dimensional space) constructed by rotating a curve in the plane
around an axis. For us this curve will always be the graph of a function.
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Note we’re only rotating a curve, not a two-dimensional region around
an axis. The resulting object is infinitesimally thin, and we are concerned
with the surface area of this object. E.g., if this object were produced by
bending infinitely thin sheets of plastic, how many square feet of plastic
would we need?

Let’s begin by considering a very simple situation: suppose our curve
was some line segment being rotated around the x-axis. If that line seg-
ment touches the axis, then our surface is a cone.
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What’s the surface area of this cone? To figure this out, suppose the
length of our line segment is ` and the radius of the (missing) base of our
cone is r.

If you were to cut this cone from the tip to the edge along a straight
line and flatten it, you would have a sector of a disc.

To find the area of our cone, it suffices the find the area of this sector
of a disc. Notice the radius of our disc would be `, and so the area of the
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entire disc (including the piece we’re missing) would be π`2. To find the
area of our sector, we need to determine what proportion of our disc the
sector takes up. In order to do this, let’s suppose the radius of the base of
the cone is r and notice that the circumference of the base of our cone is
2πr, and so the circumference (arclength) of our sector is 2πr. But this is
some proportion θ of the total circumference of the disc.

`

2πr

That is, we have 2πr = θ2π` where θ is some number between 0 and 1
that tells us what proportion of the disc we have. Solving this for θ tells
us θ = r/̀ . That is, our sector is proportion r/̀ of the entire disc. Hence
the area of our sector (the lateral surface area of the cone above) is

r

`
π`2 = πr`.

This calculation was assuming the line segment we had touched the
axis of rotation at one point, but this need not happen. If we rotate a line
segment not touching the axis of rotation, then we don’t get a complete
cone. Instead, we get a portion of a cone called a frustum. Let’s again let `
be the length of our line segment, and let’s let r and R denote the smaller
and larger radii of the frustum. Let’s let h be the distance between the
centers of the circles at the extreme ends of the frustum.
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To find the area of the frustum, we’ll imagine completing the frustum
to get a cone. We just need to find the radii and the side lengths of these
cones. We already have the radii, since they’re the same as the frustum.
To get the side lengths, we need to do just a little bit of trigonometry.

h
`

R

r
L

Letting θ be the angle at the top of the triangle above, we see that
sin(θ) can be computed as the length of the opposite side over the length
of the hypotenuse using either the smaller or the larger triangle. Since
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these are equal (as they both equal sin(θ)), we have

R

L
=

r

L− `

We can now solve for L:

R

L
=

r

L− `
=⇒ R(L− `) = rL

=⇒ RL−R` = rL

=⇒ RL− rL = R`

=⇒ L(R− r) = R`

=⇒ L =
R`

R− r
.

That is the big cone has lateral surface area

πRL = π
R2`

R− r
,

and the small cone has lateral surface area

πr(L− `) = πr

(
R`

R− r
− `
)

= πr

(
R`

R− r
− `R− r

R− r

)
= πr

(
R`−R`+ r`

R− r

)
=

πr2`

R− r
.

The frustum thus has lateral surface area

πR2`

R− r
− πr2`

R− r
=

π`

R− r
(
R2 − r2

)
=

π`

R− r
(R− r)(R + r)

= π`(R + r).

Now, supposing the points at the ends of our line segment are (x0, y0)
and (x1, y1), and we are rotating around the x-axis as in the figure below,
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then in our corresponding frustum we have

R = y1,

r = y0, and

` =
√

∆x2 + ∆y2,

and so the lateral surface area of the frustum is

π (y0 + y1)
√

∆x2 + ∆y2.

If the y-values come from a graph y = f(x) and if f is continuously dif-
ferentiable, then this becomes

π (f(x0) + f(x1))

√
(x1 − x0)2 + (f (x1)− f (x0))2

=π (f(x0) + f(x1))

√
1 +

[
f(x1)− f(x0)

x1 − x0

]2

· (x1 − x0) .

By the mean value theorem there exists some x∗ between x0 and x1 so
that f ′(x∗) = f(x1)−f(x0)

x1−x0 , and so we can write the expression above as

π (f(x0) + f(x1))
√

1 + f ′(x∗)2 ∆x.

Repeating this for each line segment in a broken line that approximates
our graph y = f(x), we see the approximate surface area of our surface
of rotation is

n∑
i=1

π (f(xi−1) + f(xi))
√

1 + f ′(x∗i )
2 ∆xi.

In the limit, both xi and xi−1 move closer and closer together, and so
we have f(xi−1) ≈ f(xi) since the function is continuous. Thus we can
replace the above sum with

n∑
i=1

2πf(xi)
√

1 + f ′(x∗i )
2 ∆xi.
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Taking the limit this gives us the integral∫ b

a

2πf(x)
√

1 + f ′(x)2 dx.

Example 4.5.
Find the surface area of the surface obtained by rotating y = x3

around the x axis, with 0 ≤ x ≤ 2.

Here our f(x) is f(x) = x3 and so f ′(x) = 3x2. Our integral is
thus

Area =

∫ 2

0

2πx3

√
1 + (3x2)2 dx = 2π

∫ 2

0

x3
√

1 + 9x4 dx.

Performing the substitution u = 1 + 9x4, du = 36x3 dx, the integral
becomes

2π

36

∫ 145

1

√
u du

=
2π

36

∫ 145

1

u
1/2 du

=
π

18
· 2

3
u

3/2

∣∣∣∣145

1

=
π

27

(
145

3/2 − 1
)

≈ 203.046.
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Example 4.6.
Find the surface area of the surface obtained by rotating y =

√
1− x

around the x-axis with 0 ≤ x ≤ 1/2.

In this example we have f(x) =
√

1− x, and so f ′(x) = −1
2
√

1−x .
Our integral is thus

Area =

∫ 1/2

0

2π
√

1− x ·

√
1 +

(
−1

2
√

1− x

)2

dx

= 2π

∫ 1/2

0

√
1− x

√
1 +

1

4− 4x
dx

= 2π

∫ 1/2

0

√
1− x

√
4− 4x+ 1

4− 4x
dx

= 2π

∫ 1/2

0

√
1− x ·

√
5− 4x

2
√

1− x
dx

= π

∫ 1/2

0

√
5− 4x dx.

Now we perform the substitution u = 5 − 4x, du = −4 dx and our
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integral becomes

−π
4

∫ 3

5

u
1/2 du =

π

4

∫ 5

3

u
1/2 du

=
2πu3/2

3 · 4

∣∣∣∣5
3

=
π

6

(
5
3/2 − 3

3/2
)

≈ 3.133

Example 4.7.
Find the surface area of the unit sphere.

We get the unit sphere by rotating the semicircle of radius 1
around the x-axis. The semicircle is the graph y =

√
1− x2, and

so
dy

dx
=

−x√
1− x2

.

The integral giving us the surface area is then

Area =

∫ 1

−1

2π
√

1− x2

√
1 +

(
−x√
1− x2

)2

dx

= 2π

∫ 1

−1

√
1− x2

√
1 +

x2

1− x2
dx

= 2π

∫ 1

−1

√
1− x2

√
1− x2 + x2

1− x2
dx
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= 2π

∫ 1

−1

√
1− x2

√
1

1− x2
dx

= 2π

∫ 1

−1

√
1− x2 · 1√

1− x2
dx

= 2π

∫ 1

−1

dx

= 2πx

∣∣∣∣1
−1

= 2π − (−2π)

= 4π.

Example 4.8.
Find both the volume and the surface area of Gabriel’s horn, which is
obtained by rotating y = 1

x
around the x-axis for 1 ≤ x <∞.

We will first calculate the volume. This is a straight-forward disc
method problem:

Volume =

∫ ∞
1

π

(
1

x

)2

dx = π lim
b→∞

∫ b

1

x−2 dx

= π lim
b→∞

(
−x−1

)∣∣∣∣b
1

dx

= π lim
b→∞

(
1− 1

b

)
dx

= π

For the surface area we need to compute

Area =

∫ ∞
1

2π
1

x

√
1 +

(
−1

x2

)2

dx = 2π

∫ ∞
1

√
1 + 1

x4

x
dx
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Let’s now notice that 1+ 1
x4

is greater than 1, and so
√

1 + 1
x4
>
√

1 =

1. This means √
1 + 1

x4

x
>

1

x
.

We already know, however, that
∫∞

1
1
x
dx diverges to infinity, and so

the integral giving us our surface area

2π

∫ ∞
1

√
1 + 1

x4

x
dx

must diverge to infinity as well.
Notice this means Gabriel’s horn has a finite volume by an infi-

nite surface area. That is, you could fill completely the horn up with
(a finite amount of) paint, but that would not be enough to paint the
outside of the horn!

Let’s end by doing one example where we rotate a curve which is
the graph of a function of y around the y-axis. That is, we rotate some
x = g(y) around the y-axis for c ≤ y ≤ d to obtain our surface.

Modifying the integral for our surface area appropriately, we have

Area =

∫ d

c

2πg(y)

√
1 + [g′(y)]2 dy.

Example 4.9.
Find the surface area of the surface obtained by rotating y = 3

√
x

around the y-axis for 0 ≤ y ≤ 2.
To apply the formula above we need to write our curve as x =

g(y), but this is easily done by solving y = 3
√
x for x. This gives us

x = y3. Our integral is then

Area =

∫ 2

0

2πy3

√
1 + (3y2)2 dy

If we notice this is exactly the integral we did in Example 4.5, but
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with y’s in place of x’s, then we see the surface area is

π

27

(
145

3/2 − 1
)
.



5Sequences and Series
La mathématique est l’art de donner le même
nom à des choses différentes.
Mathematics is the art of giving the same
name to different things

HENRI POINCARÉ
L’avenir des mathématiques

5.1 Sequences
Before jumping into the next topic that will take up a considerable por-
tion of the remainder of the semester, series, we turn our attention to
a stepping stone called “sequences.” A sequence is simply an ordered,
infinite list of numbers, such as

2, 3, 5, 7, 9, 11, 13, 17, 19, ...

or
6

1
,
9

2
,
12

3
,
18

5
,
42

6
,
25

7
, ...

We often the the n-th term of a sequence as an. For example, the fourth
term of a sequence is denoted a4. This subscript is sometimes called the
index of the term.

Many times a sequence is specified by an expression which deter-
mines the n-th term as a function of n, such as

an =
n2 + 2

3n2 + n+ 1
.

This expression tells us the general terms of the sequence

3

5
,

6

15
,
11

30
,
18

59
, ...

Though sequences often start at the index n = 1, they don’t have to. For
example, we may want the sequence given by the an expression above to
start at n = −2 to obtain the series

6

13
,
3

3
,
2

1
,
3

5
,

6

15
,
11

30
, ...

176
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Even though a sequence may start at any index, we’ll usually have our
sequences start at the index n = 1. If you aren’t explicitly told a sequence
starts somewhere else, you should assume it starts at n = 1.

Sometimes sequences are specified by a recurrence relation where the
first few terms are given explicitly, but the subsequent terms are specified
via expressions involving earlier terms. For example, consider the series
where we are told

a1 = 1, a2 = 1, an = an−1 + an−2.

This means the first two terms of the sequence are explicitly given to us
as 1, but afterwards each term is the sum of the previous two terms. This
gives us the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

As another example, suppose are told

a1 = 1, an = 2an−1 + 1.

The corresponding sequence is then

1, 3, 7, 15, 31, 63, ...

As one last example of a sequence defined by a recurrence relation, con-
sider

a0 = 1, an = n · an−1

The sequence is then
1, 1, 2, 6, 4, 120, 720, ...

Often sequences arise as successive approximations of quantities we
care about. For example, the area between the graph y = x2 and the
interval [0, 1] on the x-axis is approximated by sequences of Riemann
sums. If an were to represent the Riemann sum with n rectangles, for
example, we could then compute

an =
n∑
i=1

(
i

n

)2

· 1

n

=
1

n3

n∑
i=1

i2

=
1

n3
· n(n+ 1)(2n+ 1)

6

=
2n3 + 3n2 + n

6n3
.
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In such a situation we want to know what values these terms in the
sequence are approaching. That is, we want to have some notion of a
“limit” of a sequence.

Informally, we say thatL is the limit of a sequence an, denoted lim
n→∞

an =

L, if the values an get “arbitrarily close” to L as n gets large. The precise
definition of a limit is the following: we say L is the limit of the sequence
an if for every ε > 0 there exists an N > 0 such that |an − L| < ε for all
n > N .

What this definition is conveying is that if L is the limit of our se-
quence, then you should get as close to L as you’d like, provided you go
far enough out in the sequence. The ε that appears is saying how close
you want to get, and the N is saying how far out you have to go to be
guaranteed that your terms remain within ε-distance of L.

Example 5.1.

Show that lim
n→∞

n+ 2

3n+ 1
is equal to 1

3
using the formal definition of the

limit.
We want to show that for every ε > 0, we can find an N > 0 so

that if n > N , then we must have∣∣∣∣ n+ 2

3n+ 1
− 1

3

∣∣∣∣ < ε.

I claim that taking N to be

N =
5− 3ε

9ε
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has this property. To see this, suppose n > N . We then have

n >
5− 3ε

9ε

=⇒ 9n >
5− 3ε

ε

=⇒ 9n >
5

ε
− 3

=⇒ 9n+ 3 >
5

ε

=⇒ ε >
5

9n+ 3

What we have thus far is that if n is large enough (namely, if n is
greater than N = 5−3ε

9ε
), then 5

9n+3
< ε. Our goal is to show that∣∣ n+2

3n+1
− 1

3

∣∣ < ε, so now we are going to try to show 5
9n+3

is really∣∣ n+2
3n+1

− 1
3

∣∣. This requires a little bit of arithmetic where we will try
to rewrite our fraction a bit at a time to turn it into the expression
we want. Let’s notice

ε >
5

9n+ 3
=

6− 1

9n+ 3

=
3n+ 6− 3n− 1

9n+ 3

=
3n+ 6

9n+ 3
− 3n+ 1

9n+ 3

=
3

3
· n+ 2

3n+ 1
− 3n+ 1

3n+ 1
· 1

3

=
n+ 2

3n+ 1
− 1

3
.

Now notice that if n ≥ 1, then n+2
3n+1

> 1
3

since 3n + 6 > 3n + 1, and
hence we have

n+ 2

3n+ 1
− 1

3
=

∣∣∣∣ n+ 2

3n+ 1
− 1

3

∣∣∣∣ .
We have thus shown that∣∣∣∣ n+ 2

3n+ 1
− 1

3

∣∣∣∣ < ε

provide n > N = 5−3ε
9ε

.



CHAPTER 5. SEQUENCES AND SERIES 180

The obvious question now is where did the 5−3ε
9ε

in the problem come
from? Often these types of problems are solved by “reverse-engineering”
the definition. That is, we know that we want to ultimately have∣∣∣∣ n+ 2

3n+ 1
− 1

3

∣∣∣∣ < ε,

and so we will try to work backwards from this to determine what con-
ditions this will impose on n. For example,∣∣∣∣ n+ 2

3n+ 1
− 1

3

∣∣∣∣ < ε

=⇒
∣∣∣∣ 3(n+ 2)

3(3n+ 1)
− (3n+ 1) · 1

(3n+ 1) · 3

∣∣∣∣ < ε

=⇒
∣∣∣∣3n+ 6− (3n+ 1)

9n+ 3

∣∣∣∣ < ε

=⇒
∣∣∣∣ 5

9n+ 3

∣∣∣∣ < ε

=⇒ 5

9n+ 3
< ε

=⇒ 5

ε
< 9n+ 3

=⇒ 5

ε
− 3 < 9n

=⇒ 5− 3ε

9ε
< n.

When a real number L satisfying the definition above exists, we say
the sequence an converges to L. If no such real number L exists, then we
say the sequence diverges.

For example, the sequence a1 = 1, an = −an−1 – i.e., the sequence 1,
−1, 1, −1, 1, −1, ... – diverges. No choice of L will satisfy the conditions
described above for all ε. In particular, if ε = 1

2
, then for every N there

are n > N such that |an − L| is greater than ε.
We say the sequence an diverges to infinity if for every M > 0 there

exists an N > 0 such that an > M for all n > N . This simply makes pre-
cise the idea that the terms of the sequence get larger and larger without
bound.



CHAPTER 5. SEQUENCES AND SERIES 181

Example 5.2.
Show that the sequence an = 2n,

2, 4, 8, 16, 32, 64, ...

diverges to infinity.
We must show that for any M > 0 there exists some N such that

an > M for all n > N . That is, we require 2n > M . By taking
the base-2 logarithm of each side, this becomes n > log2(M), and
so we claim that N = log2(M) will have the property that an > M
for n > N . This easy to double-check: if n > N , then n > log2(M)
and so an = 2n > 2log2(M) = M . And so our sequence diverges to
infinity.

We a sequence diverges to infinity we sometimes write lim
n→∞

an = ∞,
however this notation is somewhat misleading. In this situation the limit
does not exist, but it does not exist for a particular reason: the terms get
larger and larger without any upper bound.

The definition of a sequence diverging to negative infinity is similar:
we say limn→∞ an diverges to negative infinity if for every M < 0 there
exists an N such that an < M for all n > N .

In your first semester calculus class you learned various methods for
taking the limit of a function of x, and it would be convenient if we could
also use those same tools for calculating the limit of a sequence. The
following theorem makes this precise.

Theorem 5.1.
If f(x) is a function with the property that an = f(n) and if limx→∞ f(x)
exists and equals L, then limn→∞ an exists and equals L as well.

Example 5.3.
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Consider the sequence

an =
4n2 + 2n− 1

8n2 + 3n+ 5
.

Notice the terms of this sequence are given by evaluating

f(x) =
4x2 + 2x− 1

8x2 + 3x+ 5

at integer values of n. Thus if limx→∞ f(x) were to exist, then the
limit of our sequence must exist and equal the same value. We can
compute this limit, however, by using l’Hôpital’s rule:

lim
x→∞

f(x) = lim
x→∞

4x2 + 2x− 1

8x2 + 3x+ 5
L
= lim

x→∞

8x+ 2

16x+ 3
L
= lim

x→∞

8

16

=
1

2

and thus
lim
n→∞

an =
1

2
.

Notice, though, that limn→∞ an may exist even if limx→∞ f(x) does
not!

Example 5.4.
Consider the squence an = cos(2πn). Notice limx→∞ cos(2πx) does
not exist, but limn→∞ cos(2πn) = 1 since every term of the sequence
is 1!

Just as we have limit laws for computing limits of functions, we have
corresponding laws for computing limits of sequences:
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Theorem 5.2.
Suppose that an and bn are two sequences such that limn→∞ an = L and
limn→∞ bn = M . (Neither L nor M is ±∞.) Then

• lim
n→∞

(an ± bn) = L±M ,

• lim
n→∞

(an · bn) = LM ,

• lim
n→∞

an
bn

=
L

M
provided M 6= 0, and

• lim
n→∞

kan = kL for all constants k.

There is also a version of the sandwich theorem (aka squeeze theo-
rem) for sequences.

Theorem 5.3 (The sandwich theorem for sequences).
If an, bn, and cn are three sequences with the property that an ≤ bn ≤ cn
for all n > N , for some value of N , and if limn→∞ an = limn→∞ cn = L,
then limn→∞ bn = L as well.

In our next example we will use the sandwich theorem for sequences
to compute a certain limit, but first we make one definition. The factorial
of a non-negative integer n, denoted n!, is defined to be 1 if n = 0, and is
otherwise defined as n! = n · (n− 1)!. For example,

0! = 1

1! = 1 · 0! = 1

2! = 2 · 1! = 2

3! = 3 · 2! = 6

4! = 4 · 3! = 24

5! = 5 · 4! = 120

...
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It’s worth noting that if n > 0, then we can also write n! as

n! = n · (n− 1) · (n− 2) · . . . · 3 · 2 · 1.

For instance, 5! = 5 · 4 · 3 · 2 · 1 = 120.

Example 5.5.
Compute the limit limn→∞

n2

(n+1)!
.

To apply the sandwich theorem, we want the “middle sequence”
to be the sequence in question. That is, we want bn = n2

(n+1)!
. We then

need to find sequences an and cn such that an ≤ bn ≤ cn for every n,
and the an and cn sequences have the same limit.

Let’s notice that for every value of n ≥ 2 we must have

1

n!
<

n2

(n+ 1)!
.

This is not completely obvious, but let’s notice that if n ≥ 2 then we
must have n+ 1 < n2 and so

n+ 1 < n2

=⇒ (n+ 1)n! < n2 · n!

=⇒ (n+ 1)! < n2 · n!

=⇒ 1

n!
<

n2

(n+ 1)!
.

Thus we will take an = 1
n!

.
For our cn sequence let’s just notice that n2 < (n + 1)2 and so

n2

(n+1)!
< (n+1)2

(n+1)!
. We will take our cn sequence as cn = (n+1)2

(n+1)!
.

It’s easy to see that

lim
n→∞

an = lim
n→∞

1

n!
= 0

as we are have ever larger values in the denominator.
To apply the sandwich theorem we need that our cn sequence

also goes to zero, and right now this may not be so clear. Let’s notice
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we can rewrite the terms of the cn sequence, however, as

cn =
(n+ 1)2

(n+ 1)!
=
n+ 1

n!
=

n

n!
+

1

n!
=

1

(n− 1)!
+

1

n!

It is easy to see each of these terms goes to zero, however, and so
their sum also goes to zero.

Thus we have limn→∞
n2

(n+1)!
= 0 since

1

n!
≤ n2

(n+ 1)!
≤ (n+ 1)2

(n+ 1)!

and

lim
n→∞

1

n!
= lim

n→∞

(n+ 1)2

(n+ 1)!
= 0.

We say that a sequence an is bounded above if there exists a number
M such that an < M for every n. Similarly, we say an is bounded below
if there is an m such that m < an for every n. If a sequence is simulta-
neously bounded above and below, then we simply say the sequence is
bounded.

Theorem 5.4.
If a sequence is convergent, then it must be bounded.

Corollary 5.5.
If a sequence is unbounded, then it is not convergent.

Example 5.6.
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The sequence given by

an =
(−1)n · n2

n+ 1

that is, the sequence
1

2
,
−4

3
,
9

4
,
−25

6
, ...

is unbounded and so does not converge.
(To see this sequence is unbounded, we need to show that for

any M we can find an n such that n2

n+1
> M , but this is really just an

algebra problem. We could rewrite the above as n2 > M(n + 1) =
Mn+M , and thus we want n2−Mn+M > 0. We can find the roots
of this equation for any given M using the quadratic formula, and
then slightly modify n to satisfy the inequality.)

Notice that just because a sequence is bounded does not imply the
sequence converges. For example, the sequence an = (−1)n+1,

1,−1, 1,−1, 1,−1, ...

is bounded, but does not converge.
There are some special cases, however, where knowing a sequence is

bounded together with one other condition will imply convergence.
We say a sequence an is increasing if an ≤ an+1,

a1 ≤ a2 ≤ a3 ≤ a4 ≤ · · · ;

we say the sequence is decreasing if an ≥ an+1,

a1 ≥ a2 ≥ a3 ≥ a4 ≥ · · · .

We say a sequence is monotonic if it is either increasing or decreasing,
whichever it happens to be.

Theorem 5.6.
Every bounded, monotonic sequence converges.
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That is, if you can show that a sequence is bounded and is either in-
creasing or decreasing, then the sequence must converge. Determining
what the sequence converges to can be difficult sometimes, but at least
you can say that the sequence will converge.

Theorem 5.7.
Consider the sequence given by

a1 =
√

5, an =
√

5 · an−1.

That is, the terms of our sequence are

√
5,

√
5
√

5,

√
5

√
5
√

5,

√
5

√
5

√
5
√

5, · · ·

Let’s notice that this sequence is bounded. To see this, first note that
√

5 <
5. Now notice that an =

√
5 · an−1 =

√
5 · √an−1, and so if an−1 < 5 we

must have
an =

√
5 · √an−1 <

√
5 ·
√

5 = 5.

That is, each an < 5 and so the sequence is bounded.
This sequence is also increasing: since 5 > an−1, we must have

an =
√

5an−1 >
√
an−1 · an−1 =

√
a2
n−1 = an−1,

and so an > an−1.
Since the sequence is bounded and monotonic, it must converge.

We will end with one theorem that will be very useful later in the
semester:

Theorem 5.8.
Let r be a fixed constant, and consider the sequence an = rn. This sequence
converges if |r| < 1 or if r = 1, but diverges otherwise.
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5.2 Series
“Series” are simply infinite sums and appear throughout mathematics.
As we’ll see soon, many functions can be represented as series, and this
representation greatly simplifies the study of these functions. To begin,
though, we just consider summing individual values.

Given any sequence an, we would like to consider the sum of all the
terms of the sequence,

∞∑
n=1

an.

This infinite sum is called a series. The first and most obvious question
that comes to mind is how do we make sense of an infinite sum like this?
We simply do what we always do in calculus: approximate something
we care about with something simpler. In this case, we approximate the
infinite sum with finite sums which we will call the partial sums of the
series.

To be more precise, the N-th partial sum of the series
∞∑
n=1

an is the

sum of the first N terms of the series, and denoted SN . In general,

SN =
N∑
n=1

an.

The first few partial sums of a series are given below:

S1 =
1∑

n=1

an = a1

S2 =
2∑

n=1

an = a1 + a2

S3 =
3∑

n=1

an = a1 + a2 + a3

...

SN =
N∑
n=1

an = a1 + a2 + a3 + · · ·+ aN .
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For example, consider the series
∞∑
n=1

(1/2)n. The first four partial sums of

this series are

S1 =
1

2

S2 =
1

2
+

1

4
=

3

4

S3 =
1

2
+

1

4
+

1

8
=

7

8

S4 =
1

2
+

1

4
+

1

8
+

1

16
=

15

16

Notice that the partial sums of a series form a sequence. We say that

the series
∞∑
n=1

an converges to L, and write
∞∑
n=1

an = L, if the sequence of

partial sums SN converges to L. If the sequence of partial sums diverges,
then we say the corresponding series diverges as well.

Remark.
Notice that we have already discussed what it means for a sequence
to converge or diverge, so we are translating this idea of a series con-
verging/diverging into this language of sequences that we already
understand.

Example 5.7.

Does the series
∞∑
n=1

(1/2)n converge? And if so, what does the series

converge to?
This question is tantamount to asking what does the sequence of

partial sums associated to this series converge to. To answer that it
would be nice if we had a simpler way to write down the terms of
that sequence of partial sums.

By definite, theN -th term of the sequence of partial sums for this
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series is

SN =
N∑
n=1

(
1

2

)N
.

It may not be very clear at this moment what will happen with this
sequence as N goes to infinity, and so we would like to rewrite this
expression for SN as something that will be easier to work with.

In order to get an easier to work with expression, let’s make the
observation that 1

2
SN is equal to

1

2
·
N∑
n=1

(
1

2

)n
=

N∑
n=1

(
1

2

)n+1

Now also notice that we could write 1
2
SN as SN − 1

2
SN . Combining

these two expressions together we have the following:

1

2
SN = SN −

1

2
SN

=
N∑
n=1

(
1

2

)n
−
∞∑
n=1

(
1

2

)n+1

=

(
1

2
+

1

4
+

1

8
+ · · ·+ 1

2N−1
+

1

2N

)
−
(

1

4
+

1

8
+

1

16
+ · · ·+ 1

2N
+

1

2N+1

)
Now notice that after we distribute the negative, everything in this
last expression will appear twice: once as a positive value and once
as a negative value, except the very first and last terms. That is,
every term but the very first and very last in the above expression
will cancel, leaving us with

1

2
SN =

1

2
− 1

2N+1
.

Multiplying through by 2, we then have

SN = 1− 1

2N
.

Notice this agrees with our earlier computation of the first four val-
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ues of SN :

S1 = 1− 1

2
=

1

2

S2 = 1− 1

4
=

3

4

S3 = 1− 1

8
=

7

8

S4 = 1− 1

16
=

15

16

We really do have the same values we had before, but they’re writ-
ten in a way that makes it easier for us to calculate the limit. In
particular we see

lim
N→∞

SN = lim
n→∞

(
1− 1

2N

)
= 1

and thus our series
∞∑
n=1

(
1

2

)n
is equal to 1.

Remark.

There is another way to think about the series
∞∑
n=1

(
1

2

)n
which is a

little more geometrical. Imagine taking a 1 × 1 square, whose area
is obvious 1, and dividing it in half into two pieces. Now divide
one of the remaining pieces in two, and then one of those remain-
ing smaller pieces in two. In this way you obtain a collection of
rectangles of areas 1/2, 1/4, 1/8, and so on. This infinite collection of
rectangles fits back together to give you the entire square which had
area 1, so the infinite sum of these areas must equal 1 as well.
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1/2

1/4

1/8

1/16

1/32 . . .

Of course, if the limit of partial sums does not exist, then we say that
the serives diverges. If the sequence of partial sums goes to infinity, then
we say the series diverges to infinity.

In general, for a series to converge we must have all of the terms of
the series go to zero. Intuitively, if the terms converged to something else
(say, 1) then our series would basically be adding up that value infinitely
often (e.g., 1 + 1 + 1 + · · · ) and we would expect this to diverge.

Theorem 5.9.
If
∑
an converges, then limn→∞ an = 0. Conversely, if limn→∞ an 6= 0,

then
∑
an diverges.

Remark.
Notice in the statement of the theorem above we simply write our
series as

∑
an instead of the more correct

∑∞
n=1 an. While many of

our sums will start at n = 1, they don’t strictly have to: all of our
notions of partial sums, convergence, divergence, etc., would carry
over just fine if our series started at n = 3 or n = −17 or some
other finite value. In some of our statements of theorems we will
thus simply write

∑
an to emphasize that the important thing is

that we have an infinite sum, and where the series begins doesn’t
really matter.

In other theorems, however, we will explicitly need to know the
series starts at n = 1 or n = 0 for some of our calculations, and
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when that happens we will explicitly say where the series starts in
our notation.

Example 5.8.

The series
∞∑
n=1

n− 1

2n+ 1
must diverge as limn→∞

n−1
2n+1

= 1
2
6= 0.

Even though we require the individual terms of a series to go to zero
in order to have convergence, this is not enough to guarantee conver-
gence. (Sometimes mathematicians will express this by saying the con-
dition is necessary but not sufficient. It is necessary that the terms go to
zero to have convergence, but it is not sufficient.) The following example
shows one particular case where the terms of the series go to zero, yet the
series does not converge.

Example 5.9.
Consider the harmonic series which is the following:

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · · .

The terms of this series certainly go to zero, yet the series diverges
to infinity because of the following observation.

Notice that the first and second terms of the series are greater
than or equal to 1/2. The next two terms are each greater than or
equal to 1/4. The next four terms are greater than or equal to 1/8. The
next eight terms are greater than or equal to 1/16, and so on:

1︸︷︷︸
≥1/2

+
1

2︸︷︷︸
≥1/2

+
1

3
+

1

4︸ ︷︷ ︸
≥1/4+1/4=1/2

+
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
≥1/8+1/8+1/8+1/8=1/2

+ · · ·
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Noticing these groups of terms add up to something that is at least
1/2, we see that our series must be larger than the series that simply
adds up 1/2 infinitely many times, and thus diverges to infinity.

It can be tricky in general to determine if a series converges or di-
verges, but there are a few special cases where it is easy. One important
example are the geometric series.

A series of the form
∞∑
n=0

krn

k and r are constants is called a geometric series. Geometric series are
nice because we can find a nice, simple, closed form expression for their
partial sums. Mimicking what we did in Example 5.7, we can find an
expression for the N -th partial sum as follows:

SN − rSN =
N−1∑
n=0

krn − r
N−1∑
n=0

krn

=
N−1∑
n=0

krn −
N−1∑
n=0

krn+1

=
(
k + kr + kr2 + · · ·+ krN−2 + krN−1

)
−
(
kr + kr2 + kr3 + · · ·+ krN−1 + krN

)
= k − krN = k(1− rN)

Now we can rewrite the left-hand side of the first expression as SN(1−r),
then divide the 1− r over to obtain

SN =
k(1− rN)

1− r

Now, we are interested in taking the limit of these partial sums as N goes
to infinity. Since only one portion of our expression relies on N , though,
we easily see

∞∑
n=0

krn = lim
N→∞

SN =
k
(
1− limN→∞ r

N
)

1− r
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Notice that rN converges to zero if |r| < 1 and diverges if |r| > 1. Thus

∞∑
n=0

krn =
k

1− r
if |r| < 1

∞∑
n=0

krn diverges to infinity if |r| > 1

If r = 1, then the above derivation doesn’t apply because we would di-
vide by zero when we divide by 1− r above. Notice in this, however, our
series becomes simply k+k+k+ · · · which diverges for any k 6= 0. When
r = −1, the series becomes k−k+k−k+k−k+ · · · which again diverges
(the terms do not go to zero, for example) when k 6= 0. Combining these
together we have proven the following theorem.

Theorem 5.10.

The geometric series
∞∑
n=0

krn with k 6= 0 converges if and only if |r| < 1,

and in particular converges to k/(1− r).

Example 5.10.

The geometric series
∞∑
n=0

8 ·
(

1

3

)n
has k = 8 and r = 1/3, thus con-

verges to
8

1− 1
3

=
8(
2
3

) =
3

2
· 8 =

24

2
= 12.

Example 5.11.

The geometric series
∞∑
n=0

(
1

2

)n
has k = 1 and r = 1/2, and so con-
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verges to
1

1− 1
2

= 2.

We can often manipulate series so that our sums start at another in-
dex. This is helpful, in particular, for geometric series because our result
in Theorem 5.10 requires the series to start at n = 0.

Often these manipulations work by adding extra terms or subtracting
unwanted terms. For example, consider the series

∞∑
n=1

(
1

2

)n
.

We can not immediately apply our result from Theorem 5.10 here since
the series does not start at n = 0. In particular, this series is lacking a term
compared to the corresponding series starting at n = 0. Thus we can
rewrite this in terms of the serires which begins at n = 0 by subtracting
off the unnecessary term:

∞∑
n=1

(
1

2

)n
=
∞∑
n=0

(
1

2

)n
−
(

1

2

)0

Now we can apply the formula for geometric series above, and simply
subtract off (1/2)0 = 1, giving us

∞∑
n=1

(
1

2

)n
=
∞∑
n=0

(
1

2

)n
−
(

1

2

)0

=
1

1− 1
2

− 1

= 2− 1

= 1.

In general, when using the formula from Theorem 5.10 above, we
must have the series start at n = 0. If you want to compute the value of a
geometric series that starts somewhere other than n = 0, then you need
to manipulate the series so that it starts at n = 0, apply the formula, and
then remove any unnecessary terms or add back any required terms.

In the example below we consider a geometric series which starts at
n = −2, and our strategy will be to write this as the series starting at
n = 0, plus the n = −1 and the n = −2 terms.
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Example 5.12.

Compute
∞∑

n=−2

3

5n
.

Let’s begin by writing out the first several terms of this series:

3

5−2
+

3

5−1
+

3

50
+

3

51
+

3

52
+ · · ·

Notice that we can think of this as the series which begins at n = 0,
but has two additional terms tacked on:

3

5−2
+

3

5−1
+

3

50
+

3

51
+

3

52
+ · · ·︸ ︷︷ ︸

=
∑∞
n=0

3
5n

Thus we can use Theorem 5.10 on that portion fo our series, and we
simply need to add on the two extra terms:

∞∑
n=−2

3

5n
=

3

5−2
+

3

5−1
+
∞∑
n=0

3

5n

= 3 · 25 + 3 · 5 +
3

1− 1/5

= 75 + 15 +
3

4/5

= 90 + 3 · 5

4

= 90 +
15

4

=
360 + 15

4

=
375

4

It can sometimes be helpful to think of one series as a sum of two
other series, as we will see in a moment. First, though, let’s notice that in
general we can manipulate series in some of the same ways that we ma-
nipulate integrals: breaking up sums/differences, and pulling out con-
stant factors.
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Theorem 5.11.

If
∞∑
n=k

an and
∞∑
n=k

bn both converge, say

∞∑
n=k

an = L and
∞∑
n=k

bn = M

then the series
∞∑
n=k

(an ± bn) converges to L±M :

∞∑
n=k

(an ± bn) =
∞∑
n=k

an ±
∞∑
n=k

bn = L±M.

If c is any constant, then the series
∞∑
n=k

can converges to cL:

∞∑
n=k

can = c
∞∑
n=k

an = cL.

These two properties are sometimes called the linearity properties of
series.1

We can often use the linearity properties of Theorem 5.11 to help us
take more complicated series and break them up into simpler pieces, as
in the following example.

Example 5.13.

Compute
∞∑
n=0

2 · 5n + 4 · 3n

15n
.

Let’s first notice that this is not a geometric series. Taking ad-
vatange of Theorem 5.11, though, we can write our series as the

1“Linearity” may sound like a strange term, since it’s not clear what these properties
have to do with lines, but the language comes from a branch of mathematics called lin-
ear algebra where functions having these two properties, splitting up sums and pulling
out constants, are particularly important.
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sum of two geometric series. To see this, let’s perform a little bit of
arithmetic on the terms of our series:

2 · 5n + 4 · 3n

15
=

2 · 5n

15n
+

4 · 3n

15n

= 2 ·
(

5

15

)n
+ 4 ·

(
3

15

)n
=

2

3n
+

4

5n

Now we can compute our original series as follows:

∞∑
n=0

2 · 5n + 4 · 3n

15n
=
∞∑
n=0

(
2

3n
+

4

5n

)
=
∞∑
n=0

2

3n
+
∞∑
n=0

4

5n

=
2

1− 1/3
+

4

1− 1/5

=
2

2/3
+

4
4/5

= 2 · 3

2
+

4

·
5

4
= 3 + 5

= 8

5.3 Series with only positive terms
Determining if a given series diverges or not is often difficult, but if we’re
in the special case where all of the terms of the series are positive, then
we have some tools called “divergence tests” which can at least tell us
whether a series converges or not, even if the test can’t tell us what the
series converges to. Later we’ll see there are also some convergence tests
for series where the terms aren’t necessarily positive.

Let’s first notice that if every term an that appears in a series
∑
an

is positive, then the sequence of partial sums must be increasing since
we’re always adding positive values onto the partial sums. As we’d seen
earlier, if SN is the N -th partial sum of

∑
an, then we have SN = SN−1 +
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aN . If aN > 0, though, then we have

aN > 0

=⇒ SN−1 + aN > SN−1

=⇒ SN > SN−1.

Since the sequence of partial sums is increasing, it must converge if it’s
bounded and diverge to infinity if it is not bounded. That is, if all the
an terms of the series

∑
an are positive, determining whether the series

converges or not is tantamount to determiining if the sequence of partial
sums is bounded.

To understand the first convergence test we’ll introduce, let’s draw
the following picture: For the series

∑∞
n=1 an where each an > 0, let’s

draw a rectangle in the plane for each term where the base of the rectan-
gle is the interval [n, n + 1] on the x-axis, and the height of the rectangle
is an.

For example, for the series
∑∞

n=1
2

3n
, we consider the following:

The value of
∑∞

n=1
2

3n
is thus the same as the sum of the areas of these

rectangles. To determine if the series converges or diverges, we need to
see if that area is finite or infinite. We know that areas under curves are
calculated by integrals, so let’s try to relate the series we care about to an
integral. The reason we want to do this is that we know how to calculate
lots of integrals, so it’d be nice if we could use some of those tools to help
us understand series.

Consider the function f(x) = 2
3x

. The area under the graph y = f(x)
over [1,∞) on the x-axis fits into our above picture as follows:
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Notice that the area is smaller than the area we care about, so if that area
was infinite, the area we care about would be infinite too: If

∫∞
1

2
3x
dx

diverges to infinity, then
∑∞

n=1
2

3n
diverges to infinity as well.

If the integral
∫∞

1
2
3x
dx was finite, however, that doesn’t necessarily

mean
∑∞

n=1
2

3n
is finite since the areas of the rectangles are larger than the

area under the curve. What we need to do to fix this is consider a curve
that sits above our rectangles. Here there’s a little trick: if we slide all
of our rectangles one unit to the left, then our earlier curve y = 2

3x
over

[1,∞) sits over the rectangles corresponding to a2, a3, a4, ...

Since the area of the first rectangle is some finite value, whatever it hap-
pens to be, adding or subtracting it doesn’t affect whether the series con-
verges or diverges. But what we have now, just from our picture above,
is that

∑∞
n=2

2
3n

<
∫∞

1
2
3x
dx. That is, if

∫∞
1

2
3x
dx is finite, then

∑∞
n=2

2
3n

is finite as well, but that implies our original sum
∑∞

n=1
2

3n
must also be

finite.
Combining this with our earlier observation that if

∫∞
1

2
3x
dx was in-

finite, then
∑∞

n=1
2

3n
would be infinite as well, we see that

∑∞
n=1

2
3n

con-
verges if and only if

∫∞
1

2
3x
dx converges.

Of course, we’d like to generalize this to other series, and this is what
the next theorem, called the integral test, allows us to do.

Theorem 5.12 (The integral test).
If f(x) is a positive, decreasing, continuous function defined on [1,∞),
then the series

∑∞
n=1 an where an = f(n) converges (or diverges) if and

only if
∫∞

1
f(x) dx converges (or diverges).

Example 5.14.
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Does the series
∑∞

n=1
2n+1

n2+n+1
converge?

Let’s notice that the terms of this series are given by an = f(n)
where f(x) = 2x+1

x2+x+1
. This function is defined and continuous ev-

erywhere (the denominator x2 + x + 1 has no real roots), and to see
that it is decreasing we need to consider its derivative. We simply
calculate

f ′(x) =
(x2 + x+ 1) · 2− (2x+ 1)(2x+ 1)

(x2 + x+ 1)2

=
2x2 + 2x+ 2− 4x2 − 4x− 1

(x2 + x+ 1)2

=
−2x2 − 2x+ 1

(x2 + x+ 1)2
.

Notice f ′(x) < 0 for all x ≥ 1, so f(x) is decreasing. Thus, by the
integral test, our original series converges or diverges if and only
if the integral

∫∞
1
f(x) dx does, and so we simply need to compute∫∞

1
2x+1

x2+x+1
dx.

To do this, let’s perform the substitution u = x2 + x + 1, du =
(2x+ 1)dx so the integral becomes∫ ∞

1

2x+ 1

x2 + x+ 1
dx =

∫ ∞
3

du

u

= lim
b→∞

∫ b

3

du

u

= lim
b→∞

ln |u|
∣∣∣∣b
3

= lim
b→∞

ln(b)− ln(3)

=∞

Since the integral diverges, our series
∑∞

n=1
2n+1

n2+n+1
must diverge as

well.
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Example 5.15.
Does the series

∑∞
n=1

1
n3 converge or diverge?

Consider the function f(x) = 1
x3

= x−3. This is positive, continu-
ous, and decreasing on [1,∞). Thus

∑∞
n=1

1
n3 converges (or diverges)

if and only if
∫∞

1
dx
x3

converges (or diverges). Thus we only need to
compute the following improper integral:∫ ∞

1

dx

x3
= lim

b→∞

∫ b

1

x−3 dx

= lim
b→∞

−x−2

2

∣∣∣∣b
1

= lim
b→∞

(
−1

2b
− −1

2

)
= lim

b→∞

(
1

2
− 1

2b

)
=

1

2
.

Thus
∫∞

1
dx
x3

converges and so by the integral test our series
∑∞

n=1
1
n3

converges as well.

In general, series of the form

∞∑
n=1

1

np

where p is a positive constant are called p-series and we can use the inte-
gral test to prove the following:

Theorem 5.13 (p-series test).
The p-series

∑∞
n=1

1
np

converges if and only if p > 1.
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Example 5.16.

• The series
∑∞

n=1

√
n−3 converges as it’s a p series (

√
n−3 = 1

n3/2 )
with p > 1.

• The series
∑∞

n=1
1√
n

diverges as it’s a p-series with p ≤ 1. (Here
p = 1/2.)

The idea behind the integral test was that we compared the series we
cared about to an integral we could compute. We could also compare a
series to another, easier to work with, series.

Consider, for example, the series

∞∑
n=1

9n

(3n+ 1)3
.

Let’s notice that for each n we must have

9n

(3n+ 1)3
<

9n

(3n)3

as the denominator on the left is greater than the denominator on the
right. That means that if

∑∞
n=1

9n
(3n)3

converges, then we should expect
our original series to converge as well, since each term of our original
series is smaller than the corresponding term of this new series. Notice,
however, that we may write

9n

(3n)3
=

9n

27n3
=

1

3n2
=

1

3
· 1

n2
.

Thus
∞∑
n=1

9n

(3n)3
=

1

3

∞∑
n=1

1

n2

and this series converges by the p-series test. Thus our original series
must also converge.

As another example, consider

∞∑
n=1

2
n
3
− 1

.
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Notice that
n

3
− 1 <

n

3
< n,

and so
1

n
3
− 1

>
1

n
if n > 2

and hence
2

n
3
− 1

>
1

n
if n > 2

The right-hand side of this inequality, though, corresponds to the terms
of the harmonic series, and we know the harmonic series diverges. Thus
the terms of our series are larger than the terms of another series we
know diverges to infinity – at least once we get past the first two terms.
Ignoring the first few terms, which is just going to give us some finite
number, we should expect our series to diverge. Adding back these few
finitely-many terms we are missing does not change the fact the series
still diverges to infinity.

Remark.
In general, the convergence or divergence of a series is unchanged
if we add or remove finitely-many terms to the series.

The reasoning behind the examples above essentially proves the fol-
lowing, called the direct comparison test.

Theorem 5.14 (Direct comparison test).
Suppose

∑
an and

∑
bn are two series such that there exists some number

N > 0 such that 0 < an ≤ bn for all n > N .

• If
∑
an diverges, then

∑
bn diverges as well.

• If
∑
bn converges, then

∑
an converges as well.

Notice that when we’re concerned with the convergence or diverges
we can always ignore any finite number of terms at the start of the series.
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The only thing that matters is what the series does “in the long run.” In
fact, when comparing two series we can compare the limits of the terms.

Theorem 5.15 (Limit comparison test).
Suppose

∑
an and

∑
bn are two series of positive terms and the limit of

the ratios an
bn

exists and equals L:

L = lim
n→∞

an
bn
.

• If L > 0, then
∑
an converges (or diverges) if and only if

∑
bn

converges (or diverges).

• If L = 0 and
∑
bn converges, then

∑
an converges.

• If L =∞ and
∑
an converges, then

∑
bn diverges too.

Intuitively, what the limit comparison test is doing is comparing the
sizes of terms of the sequences. If the ratio an

bn
is a finite, positive num-

ber then we should think the terms are “basically” growing at the same
rate, so if one series converges or diverges, the other series should do the
same thing. If the ratio an

bn
goes to zero, though, that should mean that

the bn terms are growing much faster than the an terms, and if bn series
converges, the an series with smaller terms should too.

Example 5.17.
Does the series

∑∞
n=1

n√
n6+1

converge?
To use the limit comparison test, we need something to compare

our series to. Since we’ll be taking the limit as n goes to infinity, let’s
notice that for very, very large values of n the “+1” that appears
in the square root of our series matters very little; for large n’s we
should think of our terms as being approximately 1

n2 :

n√
n6 + 1

≈ n√
n6

=
n

n3
=

1

n2
.

Thus, let’s compare our series to
∑

1
n2 .
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Letting an = n√
n6+1

and bn = 1
n2 for the limit comparison test,

we’re interested in the limit:

lim
n→∞

(
n√
n6+1

)
(

1
n2

) = lim
n→∞

n3

√
n6 + 1

= lim
n→∞

n3

√
n6 + 1

·
1/n3

1/n3

= lim
n→∞

n3

√
n6 + 1

·
1/n3√

1/n6

= lim
n→∞

n3/n3√
n6/n6 + 1/n6

= lim
n→∞

1√
1 + 1/n6

= 1

Thus, by the limit comparison test, both of our series

∞∑
n=1

n√
n6 + 1

and
∞∑
n=1

1

n2

converge or they both diverge. Since
∑

1
n2 is a p-series with p = 2 >

1, however, this series converges, and so the limit comparison test
tells us our original series converges as well.

5.4 Absolute convergence, conditional
convergence, and alternating series

We saw in the last section that there are some convergence tests for de-
termining if a series converges or diverges, but the test we learned thus
far have required that the terms of the series to all be positive, which is
a pretty significant restriction. However, there is one “cheap” trick for
associating a series of all positive terms to an arbitrary series: just take
the absolute value of each term.
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For example, consider the series

∞∑
n=1

sin
(
nπ
2

+ π
4

)
3n

=
sin
(

3π
4

)
3

+
sin
(

5π
4

)
9

+
sin
(

7π
4

)
27

+
sin
(

9π
4

)
81

+
sin
(

11π
4

)
243

+ · · ·

=

√
2/2

3
+
−
√

2/2

9
+
−
√

2/2

27
+

√
2/2

81
+

√
2/2

243
+ · · ·

=

√
2

2

(
1

3
− 1

9
− 1

27
+

1

81
+

1

243
− 1

729
− · · ·

)
This is “basically” the geometric series with k =

√
2/2 and r = 1/3, but

the signs flip every other term: after the first term we have two nega-
tive terms, then two positive terms, then two negative terms, then two
positive terms, and so on.

Notice that if we were to take the absolute value of each term we
would have

∞∑
n=1

∣∣∣∣∣sin
(
nπ
2

+ π
4

)
3n

∣∣∣∣∣ =

√
2/2

3
+

√
2/2

9
+

√
2/2

27
+

√
2/2

81
+

√
2/2

243
+ · · ·

and this new series of positive terms is very easy for us to compute:

∞∑
n=1

∣∣∣∣∣sin
(
nπ
2

+ π
4

)
3n

∣∣∣∣∣ =
∞∑
n=1

√
2/2

3n

=
∞∑
n=0

√
2/2

3n
−
√

2

2

=

√
2/2

1− 1/3
−
√

2

2

=

√
2/2

2/3
−
√

2

2

=

√
22

·
3

2
−
√

2

2

=
3
√

2− 2
√

2

4

=

√
2

4

It would be nice if we could relate this series of all positive terms
to the original series we started with. In particular, it would be nice if
convergence of

∑
|an| told us something about the convergence of

∑
an.
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Before describing this relationship, we make a definition. We will
say that the series

∑
an is absolutely convergent if the corresponding

series of absolute values of terms,
∑
|an| converges. The reason we are

interested in absolute convergence is the following theorem:

Theorem 5.16.
If a series is absolutely convergent, then it is convergent. I.e., if

∑
|an|

converges, then
∑
an must converge as well.

Thus, by Theorem 5.16, our earlier series
∑

(sin(nπ/2 + π/4))/3n must con-
verge since it is absolutely convergent: the series

∑
|(sin(nπ/2 + π/4))/3n| con-

verges.

Example 5.18.
Does the series

∑∞
n=1

sin(n)
n2 converge?

If this series is absolutely convergent, then it is convergence. No-
tice, though, that since | sin(n)| ≤ 1 we have∣∣∣∣sin(n)

n2

∣∣∣∣ ≤ 1

n2

and by the direct comparison test,
∑∞

n=1

∣∣∣ sin(n)
n2

∣∣∣ converges as
∑∞

n=1
1
n2

converges. Thus the series
∑∞

n=1
sin(n)
n2 is absolutely convergent, and

hence convergent.

While convergence of
∑
|an| implies convergence of

∑
an, in general

the opposite is false:
∑
an may converge even if

∑
|an| diverges, as the

next example shows.

Example 5.19.
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The alternating harmonic series is the series

∞∑
n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

The sum of absolute values of these terms gives the harmonic series
which we had seen diverges,

∞∑
n=1

∣∣∣∣(−1)n−1

n

∣∣∣∣ =
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · · =∞

We claim, however, that the alternating harmonic series converges,
and will briefly sketch why this is the case by showing geometri-
cally that the partial sums of terms in the alternating harmonic se-
ries can be thought of as a very special type of Riemann sum.

We begin by imagining a 1× 1 square in the plane whose base is
the interval [1, 2] on the x-axis.

1 2

The area of the square is of course 1. Now remove the right-hand
half of the square to get a rectangle of area 1− 1/2:

1 2
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Now we add back a rectangle of height 2
3

and width 1
2

onto the re-
gion where we removed a rectangle in the previous step. Notice this
rectangle has area 2

3
· 1

2
= 1

3
, and so the total area of the shaded region

below is 1− 1/2 + 1/3:

1 2

We then removing the rectangle with base [5/4, 3/2] on the x-axis. No-
tice the rectangle we remove has width 1/4 and height 1, so we are
removing an area of 1/4. Thus the area of the shaded region below is
1− 1/2 + 1/3− 1/4:

1 2

Now we add back a rectangle with base [5/4, 3/2] and height 4/5, and
the area of the shaded region below is 1− 1/2 + 1/3− 1/4 + 1/5
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1 2

We can continue in this way, removing a rectangle of area 1/6,
then adding back a rectangle of area 1/7, removing a rectangle of
area 1/8, adding a rectangle of 1/9, and so on, while staying inside the
initial 1 × 1 square we started with. Since the area of the square is
finite, the sum we are computing must be finite as well.

In fact, each time we add a rectangle to the area we have re-
moved, we have a collection of rectangles which give a Riemann
sum approximation to the integral of 1/x over [1, 2], and so the limit
of the sequence of partial sums of the alternating harmonic series
converges to

∫ 2

1
dx
x

, hence

∞∑
n=1

(−1)n−1

n
= ln(2).

Remark.
Later we will see another way of justifying the alternating harmonic
series converges to ln(2) by replacing this strange Riemann sum ar-
gument by an argument involving the Taylor series expansion for
ln(1 + x), but that will have to wait until after we’ve defined Taylor
series.

The main take-away from the above example is that absolute con-
vergence is a stronger condition than convergence since absolute conver-
gence implies convergence, but the converse is not true.
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If
∑
an converges but

∑
|an| diverges, as in Example 5.19 above, then

we say the series
∑
an is conditionally convergent. Generally, absolute

convergence is more desirable than conditional convergence because, for
one thing, we have some tests for convergence that require us to have a
series of positive terms. Another important, but slightly technical, reason
has to do with re-ordering the terms of our series. It is not intuitive, but if
a series is only conditionally convergent, then its terms can be re-ordered
so that the series converges to any real value you would like. This is
an extremely strange and disconcerting fact (known as the Riemann series
theorem). For finite sums we knowA+B+C = A+C+B = B+C+A = ...;
any rearrangement of the values being summed gives us the same value.
However, for infinite sums this is not true unless the series is absolutely
convergent!

Example 5.20.
We will show that the terms of the alternating harmonic series, which
is conditionally convergent by Example 5.19, can be rearranged to
sum to another value.

Let us write out all the values of the series, which we have seen
converges to ln(2) and write

ln(2) = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

If multiply both sides of this equation by 2 we have

2 ln(2) = 2− 1 +
2

3
− 2

4
+

2

5
− 2

6
+ · · ·

Now, “half” of these terms will simplify. In particular, each term
with an even denominator now has two in its numerator, so we can
rewrite it. For example, 2

4
we can rewrite as 1

2
, and 2

6
we can rewrite

as 1
3
, and so on. Thus

2 ln(2) = 2− 1 +
2

3
− 1

2
+

2

5
− 1

3
+ · · ·

Everything we have done up to this point is totally fine: all we’ve
done is multiply by 2 and then simplify some of our fractions. Now
comes the possibly questionable step of rearranging the terms. Let’s
notice that if we could rearrange terms in the series and not change the
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value of the series, then we could combine our terms 2
3

and −1
3

to ob-
tain 1

3
. Similarly, there will be a −2

10
later in our series which we can

write as −1
5

and combine with the 2
5

that appears above to obtain 1
5
.

Doing this for all terms (combining terms with the same denomina-
tor after simplifying), as well as writing 2− 1 = 1 at the start of our
series, we would have

2 ln(2) = 1− 1

2
+

1

3
− 1

4
+

1

5
+ · · ·

But we already determined in Example 5.19 that the right-hand side
converges to ln(2), thus we arrive at

2 ln(2) = ln(2) =⇒ 2 = 1.

Since 2 6= 1, there must be an incorrect step in our work above. The
only unjustified step, though, was our assumption that we could
rearrange terms in an infinite sum without changing what the sum
converges to, so that assumption must be incorrect.

Bernhard Riemann took the example above a step further and showed
that in fact you can take any conditionally convergent series and rear-
range the terms so that the series converges to any number you would
like. That is, there is some way to rearrange the terms of

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

so that the series converges to π or −7 or
√
e, or any other crazy number

you’d like! Thus the value of a conditionally convergent series is highly
dependent on how you list the terms, which is something we generally
do not like. For absolutely convergent series, though, there is no ambigu-
ity: any rearrangement of terms in an absolutely convergent series will
still sum to the same value.

Theorem 5.17.
If
∑
an is an absolutely convergent series, then any rearrangement of the

terms of the series will give a series that converges to the same value.
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In the alternating harmonic series we had terms that kept switching
back and forth from positive to negative to positive to negative, ... Series
like this are called alternating series and can be written in the form

∞∑
n=1

(−1)n−1bn or
∞∑
n=1

(−1)nbn

where each bn > 0. (The difference between the two series above boils
down to whether the first term will be positive or negative.)

Recall that in general having terms that shrink down to zero is nec-
essary but not sufficient to know that a series converges. For alternating
series, however, this is good enough:

Theorem 5.18 (Alternating series test).
If
∑

(−1)nbn (or
∑

(−1)n−1bn) is an alternating series where b1 > b2 >
· · · and limn→∞ bn = 0, then the series must converge.

Example 5.21.

The series
∞∑
n=1

(−1)n

n2/3
is conditionally convergent: it converges be-

cause it’s an alternating series whose absolute value of terms goes to
zero as n goes to infinity, but it is not absolutely convergent because
the series absolute values of these terms is a p-series with p < 1.

So, one of the reasons we like alternating series is it is very easy to de-
termine if the series will converge or not. Another very important reason
is that it is extremely easy to estimate the value of the series.

Theorem 5.19.

If
∞∑
n=1

(−1)nbn (or
∞∑
n=1

(−1)n−1bn) is an alternating series with b1 > b2 >
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· · · and bn → 0, then for each N we have∣∣∣∣∣SN −
∞∑
n=1

(−1)nbn

∣∣∣∣∣ < bN+1.

That is, the (N +1)-st term of the series gives an upper bound on how
close the N -th partial sum is to the limit of the series. This gives us an
effective tool for estimating the value that a series converges to.

For the series
∞∑
n=1

(−1)n

n2/3
, for example, we can easily compute that the

1000-th partial sum is
S1000 = 27.5574

By the above theorem, this is within

1

10012/3
≈ 0.00999

of the true value of the series.

Example 5.22.
What value of N guarantees the partial sum SN of the alternating
series is within one one-millionth of the true value of the series?

Here the bn values 1
n

, and by our above theorem we only need to
find the value of N such that bN+1 < 10−6:

bN+1 <
1

106

=⇒ 1

N + 1
<

1

106

=⇒ 106 < N + 1

=⇒ 106 − 1 < N.

Thus for the alternating harmonic series, any N > 999, 999 will give
an estimate SN within 10−6 of the true value of the series.
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5.5 The ratio and root tests
In this section we’ll introduce two more tests for helping us determine
if a given series converges or not. The first test, called “the ratio test,”
is similar to the limit comparison test we had seen earlier but, unlike
the limit comparison test, we don’t need to find another another series
to compare our given series against. Instead, we basically just compare
terms of our series to the next term in the series and see how quickly the
terms are growing or shrinking.

Theorem 5.20 (The ratio test).

Suppose a series
∑
an has terms such that the limit lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ exist, and

call this value ρ.

• If ρ < 1, then the series
∑
an is absolutely convergent.

• If ρ > 1, then the series
∑
an diverges.

• If ρ = 1, then the test is inconclusive.

The idea behind the ratio test is that we’re seeing how quickly the an
terms of the series are growing or shrinking. If ρ < 1, then the terms
of the series are shrinking quickly enough that the series converges. In
fact, because we’re looking atthe absolute values of the ratios, the series
is absolutely convergent. If, on the other hand, ρ > 1, then that means
the terms are growing and the series must diverge. The ρ = 1 case is the
tricky situation; there are examples of series where ρ = 1 and the series
converges, but also examples where ρ = 1 and the series diverges. Thus
if ρ = 1 we basically don’t have enough information to determine if the
series converges or diverges or not, and so we say the test is inconclusive.

Remark.
Just because the ratio test is inconclusive does not mean that we can’t
determine whether the series converges or not, it just means the ra-
tio test isn’t the right tool for the job.
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Example 5.23.

Does the series
∞∑
n=1

n3

3n
converge?

To answer this question we’ll apply the ratio test with an = n3

3n
.

Notice that an+1 = (n+1)3

3n+1 . Thus we want to consider the limit

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

((n+ 1)3/3n+1)

(n3/3n)

= lim
n→∞

3n · (n+ 1)3

3n+1 · n3

= lim
n→∞

3n · (n+ 1)3

3 · 3n · n3

= lim
n→∞

(n+ 1)3

3n3

= lim
n→∞

n3 + 3n2 + 3n+ 1

3n3

=
1

3

Thus the series converges by the ratio test. (The ratio test actually
tells us the series is absolutely convergent, but here all the terms
were already positive anyway.)

Example 5.24.
Does the series

∞∑
n=1

2n · 5n+1

n2 + 1

converge?
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Here an = 2n5n+1

n2+1
and an+1 = 2n+15n+2

(n+1)2+1
, thus we consider the limit

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(
2n+15n+2

(n+1)2+1

)
(

2n5n+1

n2+1

)
= lim

n→∞

2n+15n+2

2n5n+1
· n2 + 1

(n+ 1)2 + 1

= lim
n→∞

2n+15n+2

2n5n+1
· n2 + 1

n2 + 2n+ 2

= lim
n→∞

2 · 5 · n2 + 1

n2 + 2n+ 1

= 10

As 10 > 1, the series diverges by the ratio test.

Example 5.25.
We have seen that the harmonic series

∑∞
n=1

1
n

while the alternating
harmonic series converges, but notice that in either case the ratio
test is inconclusive as our limits of ratios of consecutive terms are

lim
n→∞

∣∣∣∣1/(n+ 1)

1/n

∣∣∣∣ = lim
n→∞

n

n+ 1
= 1, and

lim
n→∞

∣∣∣∣ (−1)n/(n+ 1)

(−1)n−1/n

∣∣∣∣ = lim
n→∞

n

n+ 1
= 1.

As one final convergence test, we have the “root test” below which is
especially useful for series

∑
an where an involves a power of n.

Theorem 5.21 (The root test).
Suppose

∑
an is a series where limn→∞

n
√
|an| exists or is infinite.

• If limn→∞
n
√
|an| < 1, then the series

∑
an is absolutely convergent.
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• If limn→∞
n
√
|an| > 1 or is infinite, then

∑
an is divergent.

• If limn→∞
n
√
|an| = 1, then the root test is inconclusive.

Example 5.26.
Does the series following series converge?

∞∑
n=1

(
−n2 − 3

2n2 + n

)n
Applying the root test we have

lim
n→∞

n

√∣∣∣∣(−n2 − 3

2n2 + n

)n∣∣∣∣ = lim
n→∞

n

√∣∣∣∣−n2 − 3

2n2 + n

∣∣∣∣n
= lim

n→∞

∣∣∣∣−n2 − 3

2n2 + n

∣∣∣∣
= lim

n→∞

∣∣∣∣(−1)(n2 + 3)

2n2 + n

∣∣∣∣
= lim

n→∞

n2 + 3

2n2 + n

=
1

2

As this limit is less than 1, the series is absolutely convergent.

Example 5.27.
Does the following series converge?

∞∑
n=1

(
1− 1

n

)n2
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Applying the root test we have

lim
n→∞

n

√∣∣∣∣1− 1

n

∣∣∣∣n2

= lim
n→∞

[(
1− 1

n

)n2
]1/n

= lim
n→∞

(
1− 1

n

)n
= lim

n→∞
eln((1− 1

n)
n
)

= elimn→∞ n·ln(1− 1
n)

= elimn→∞
ln(1−n−1)

n−1

L
= e

limn→∞
(1/(1 − n−1))·n−2

−n−2

= elimn→∞
−1

1−1/n

= e−1 < 1

Thus the series converges by the root test.



6Power series, Taylor polynomials, and
Taylor series

“Obvious” is the most dangerous word in
mathematics.

E. T. BELL

At this point we have built up some knowledge about series, but we
haven’t really applied series to solve any interesting problems. Even
if you feel confident and comfortable with the material we have intro-
duced, you may very well wonder what the “point” is, or why we’d
study series in calculus.

In this chapter we will start to answer these questions about what
series have to do with calculus and why we care about series. In Sec-
tion 6.1, we will review some very basic facts about polynomials and
then consider “power series” which can be thought of as infinite degree
polynomials. In Section 6.2 we show how we can associate polynomi-
als to “nice” functions that give good approximations to those functions,
reminiscient of the linearizations you learned about in your first semester
calculus class. Finally, in Section 6.3 we combine the previous sections to-
gether by considering “Taylor series,” which are the infinite-degree ana-
logues of the polynomials discussed in Section 6.2.

6.1 Power series
Recall that a polynomial is an expression of the form

cnx
n + cn−1x

n−1 + · · ·+ c2x
2 + c1x+ c0

where the ci are constants called the coefficients of the polynomial, and
(assuming cn 6= 0) we call n the degree of the polynomial. For example,
3x2 − 34x+ 96 is a polynomial of degree two.

In calculus we really like functions that are defined by polynomials
because they are very easy to work with; it’s really easy to both inte-
grate and differentiate polynomials. More fundamentally, though, they
are functions that we can effectively evaluate. That is, if f(x) is a func-
tion defined by some polynomial, say f(x) = 7x2 − 2x + 3, then we can

222
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actually sit down with pencil and paper and compute quantities such as
f(−2) or f(3.6). For other types of functions, however, it’s not nearly as
clear how to actually evaluate the function: if f(x) =

√
ex, for instance,

how on Earth do you actually compute f(−2) or f(3.6)?
A naive answer to how to evaluate these functions would be “use a

calculator or computer,” but then we may ask how does the calculator or
computer perform that calculation? A human being designed and built
that machine, so someone somewhere had to “tell” the computer how to
perform those calculations, and so in principle someone could do those
calculations by hand, and our question is “how?”

The point here is that polynomials are nice for a variety of reasons,
but they are also a pretty restrictive class of functions. There are lots and
lots of functions, like

√
x, ex, or sin(x), which are not polynomials. Our

goal in this chapter will be to use series to introduce a sort of generaliza-
tion of polynomials that have a lot of the nice properties of polynomials
(such as being very easy to integrate or differentiate), but which aren’t as
restrictive.

Before jumping directly into that generalization, though, let’s men-
tion one convenient property of polynomials that you might not be aware
of: For every number a, every polynomial f(x) = cnx

n+ · · ·+ c1x+ c0 can
be written in the form f(x) = dn(x− a)n + · · ·+ d1(x− a) + d0.

For example, the polynomial

f(x) = 3x2 − 34x+ 36

can be rewritten as

f(x) = 3(x− 5)2 − 4(x− 5) + 1.

By expanding the the last expression and combining like-terms, you will
see that these two polynomials really are the same thing. However, the
second form is convenient to use sometimes because it is very easy to
read off quantities such as f(5), f ′(5), and f ′′(5). To see this, let’s compute
f(5) using the first and second expressions for f(x) above:

f(5) = 3 · 52 − 34 · 5 + 96 = 75− 170 + 96 + 1 = 1 (Using the first expression.)
f(5) = 3 · (5− 5)2 − 4 · (5− 5) + 1 = 1 (Using the second expression.)

The first derivative we can compute as

f ′(x) = 6x− 34 (Using the first expression.)
f ′(x) = 6(x− 5)− 4 (Using the second expression.)
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thus

f ′(5) = 6 · 5− 34 = −4 (Using the first expression.)
f ′(5) = 6 · (5− 5)− 4 = −4 (Using the second expression.)

And for the second derivative we simply have f ′′(x) = 6 using either
expression, and so f ′′(5) = 6.

The key observation is that the coefficients 3, −4, and 1 that appear in
the expression

f(x) = 3(x− 5)2 − 4(x− 5) + 1

are very closely related to the values of f ′′(5), f ′(5), and f(5). This will
be come very useful later.

In general, to convert a polynomial cnxn+· · ·+c1x+c0 into the expres-
sion dn(x−a)n+ · · · d1(x−1)+d0, we have to solve a system of equations.
For example, to find the 3, −4, and 1 above we hvae to write

3x2 − 34x+ 96 = A(x− 5)2 +B(x− 5) + C

we can expand the terms on the right-hand side, giving us

Ax2 − 10Ax+ 25A+Bx− 5B + C,

and combining like-terms we can write this as

Ax2 + (−10A+B)x+ 25A− 5B + C.

As this is supposed to equal 3x2−34x+96, we have the following system
of equations:

A = 3

−10A+B = −34

25A− 5B + C = 96

and solving this system of equations yields the coefficients above.

Example 6.1.
Rewrite 6x2 + 4x+ 5 in the form A(x− 2)2 +B(x− 2) + C.

First we expand and combine like-terms ofA(x−2)2+B(x−2)+C
to write it as

Ax2 − 4Ax+ 4A+Bx− 2B + C

=Ax2 + (−4A+B)x+ 4A− 2B + C
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Now we set up our system of equations,

A = 6

−4A+B = 4

4A− 2B + C = 5

The first equation instantly tells us that A = 6, and so the second
equation becomes

− 4 · 6 +B = 4

=⇒ − 24 +B = 4

=⇒ B = 28

We can now easily solve the third equation:

4 · 6− 2 · 28 + C = 5

=⇒ 24− 56 + C = 5

=⇒ − 32 + C = 5

=⇒ C = 37

Hence our polynomial may be written as

6(x− 2)2 + 28(x− 2) + 37.

When a polynomial is written in this way, the coefficients are closely
related to the value of the function and its derivatives at x = a.

Proposition 6.1.
If f(x) is a polynomial expressed as

f(x) =
d∑
i=0

di(x− a)i,

then di =
f (i)(a)

i!
.
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Remark.
Recall that f (n)(x) is notation for the n-th derivative of f , and n!,
pronounced “n factorial,” is the quantity

n! = n · (n− 1) · (n− 2) · . . . · 3 · 2 · 1.

and by convention we define 0! = 1.

For example, the proposition above says that we can find the co-
efficients required to rewrite our polynomial simply by evaluating the
derivative. For our f(x) = 6x2 + 4x + 5 example above, we have f ′(x) =
12x+4 and f ′′(x) = 12. Notice we can evaluate f(2) = 37, f ′(2) = 28, and
f ′′(2) = 12 to obtain

f(x) =
f ′′(2)

2!
(x− 2)2 +

f ′(2)

1!
(x− 2)1 +

f(2)

0!
(x− 2)0

=
12

2
(x− 2)2 +

28

1
(x− 2) +

37

1
· 1

= 6(x− 2)2 + 28(x− 2) + 37

Remark.
You should basically interpret Proposition 6.1 as giving you a short-
cut to the solution to the system of linear equations described ear-
lier.

We now define a power series as an expression of the form

∞∑
i=0

ci(x− a)i = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

The “a” that appears above is called the center of the series.
A power series thus a kind of “infinite degree” polynomial. If we

want to use this expression to define a function,

f(x) =
∞∑
i=0

ci(x− a)i
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then the very first question we should ask ourserlves is what is the do-
main of this function; what values of x “make sense” in the expression
above, meaning for what values of x will the above expression result in
a convergent series?

For example, consider the function below defined by a power series,

f(x) =
∞∑
i=0

(
1

5

)i
(x− 3)i

Here our coefficients ci are simply
(

1
5

)i, and the center of the power series
is 3. Does this expression “make sense” at x = 4? What about at x = 12?

If we try to evalute f(4) by replacing all of the x’s in our power series
expression above by 4’s, then we have

∞∑
i=0

(
1

5

)i
· (4− 3)i =

∞∑
i=0

(
1

5

)i
=

1

1− 1/5

=
1

4/5

=
5

4

where the last few steps followed from noticing
∑∞

i=1

(
1
5

)i is a geometric
series. Thus our expression above “makes sense” for x = 4, and so we
should say 4 is in the domain of our function and f(4) = 5

4
.

If we try to evaluate the expression above at x = 12, though, we obtain

∞∑
i=0

(
1

5

)i
(12− 3)i =

∞∑
i=0

(
9

5

)i
.

However, this series diverges since it is a geometric series with r > 1.
Since the expression defining f(x) doesn’t converge to a finite value at
x = 12, we are forced to conclude that x = 12 is not in the domain of this
function.

More generally, once we’ve picked a value of x to plug into our series,

∞∑
i=0

(
1

5

)i
(x− 3)i ,
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then x− 3 becomes some number, and we really have a geometric series
with r = x−3

5
. We know that geometric series converge if |r| < 1, and so

this expression will converge if∣∣∣∣x− 3

5

∣∣∣∣ < 1

=⇒ |x− 3| < 5

=⇒ − 5 < x− 3 < 5

=⇒ − 2 < x < 8.

Thus, the interval (−2, 8) is definitively in the domain of our function.
Notice that points in the interval (−∞,−2]∪[8,∞) are definitively outside
of the domain of the function since for these values we have

|x− 3| > 5

=⇒
∣∣∣∣x− 3

5

∣∣∣∣ > 1

=⇒
∞∑
i=0

(
x− 3

5

)i
diverges.

Thus the domain of

f(x) =
∞∑
i=0

(
x− 3

5

)i
is (−2, 8).

In general, a power series
∞∑
n=0

cn(x− a)n

may converge for some values of x and diverge for other values. Above
we noticed that our series was really a geometric series “in disguise,”
but that was kind of special: power series are not necessarily geometric
series after a value is plugged in for x. So, how can we determine where
our power series converges or diverges in general? Recall that the ratio

test promises a series
∑
an converges absolutely if lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 and

diverges if limn→∞

∣∣∣an+1

an

∣∣∣ > 1.
For the power series

∑
cn(x− a)n, this means we are interested in the

limit

lim
n→∞

∣∣∣∣cn+1(x− a)n+1

cn(x− a)n

∣∣∣∣ = lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ · |x− a|
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Notice the |x − a| factor does not depend on n, and so we can write the
limit as

|x− a| · lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ .
Let’s momentarily suppose this limit is a finite, non-zero number which
we’ll denote by 1

R
. Then the series converges absolutely if

|x− a| · 1

R
< 1

=⇒ |x− a| < R

=⇒ −R < x− a < R

=⇒ a−R < x < a+R.

And so the series converges absolutely for all x in the interval (a−R, a+
R). Similarly, the series diverges by the ratio test if |x − a| · 1

R
> 1 which

means x < a − R or x > a − R; the series diverges for all x in (−∞, a −
R) ∪ (a+R,∞).

The points x = a − R and x = a + R, the endpoints of the interval
above, are trickier. At those points the limit is 1, so the ratio test is incon-
clusive: the series may converge or diverge at these points and we have
to “manually” test each endpoint with some other test.

Regardless of whether the endpoints converge or not, note the power
series definitely converges absolutely if −R < x − a < R. That is, if x is
within distance R from a. This region of guaranteed convergence around
a is called the radius of convergence of the power series. Since a is in the
middle of the region of guaranteed convergence, it is called the center of
the series. Adding whichever endpoints give convergence gives us the
interval of convergence of the series.

In the case of our earlier power series

∞∑
i=0

(
1

5

)i
(x− 3)i

the center of the series is 3, the radius of convergence is 5, and the interval
of convergence is (−2, 8).

Example 6.2.
Find the center, radius of convergence, and interval of convergence
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of the series
∞∑
n=1

1

n
(3x+ 9)n .

To find the center, we need to write our series as
∑
cn(x − a)n.

To do that here, let’s factor a 3 out as follows:

∞∑
n=1

1

n
(3x+ 9)n

=
∞∑
n=1

1

n
(3 (x+ 9))n

=
∞∑
n=1

3n

n
(x+ 3)n

Thus our “cn” coefficients are 3n

n
, and x−a is equal to x+ 3, thus the

center a is a = −3.
For the radius of convergence we need to compute the limit

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = lim
n→∞

3n+1/(n+ 1)

3n/n

= lim
n→∞

3n+1 · n
3n · (n+ 1)

= lim
n→∞

3n

n+ 1
= 3

Keep in mind this is one over the radius, and so our radius is 1/3.
That is, the series definitively converges in the interval(

−3− 1

3
,−3 +

1

3

)
=

(
−10

3
,
−8

3

)
.

Now to find the interval of convergence we also need to check if the
series converges at the endpoints of −8

3
and −10

3
or not.
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At x = −8
3

, our series becomes

∞∑
n=1

3n

n

(
−8

3
+ 3

)n
=
∞∑
n=1

3n

n
·
(

1

3

)n
=
∞∑
n=1

1

n
.

Since this is the harmonic series, this diverges.
At x = −10

3
we have

∞∑
n=1

3n

n

(
−10

3
+ 3

)n
=
∞∑
n=1

3n

n

(
−1

n

)n
=
∞∑
n=1

(−1)n

n
.

Since this is the alternating harmonic series, this series converges.
Thus the interval of convergence of our power series is

[−10
3
, 8

3

)
.

The ratio test is our primary tool for determining the radius of con-
vergence of a series. Many times this radius will be a finite, positive
number meaning we have convergence inside some finite interval and
convergence outside the interval, and the endpoints of the interval have
to be “manually” checked. However, there are a few other possibilities
that can occur.

For example, consider the power series

∞∑
n=0

xn

n!
.

By the ratio test this series will be absolutely convergent for all values of
x satisfying

lim
n→∞

∣∣∣∣(xn+1/(n+ 1)!)

(xn/n!)

∣∣∣∣ < 1.

When we calculate this limit, however, we have

lim
n→∞

∣∣∣∣ n!

(n+ 1)!
· x

n+1

xn

∣∣∣∣ = |x| · lim
n→∞

1

n+ 1
= 0.
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That is, this limit is zero for all choices of x, and since 0 < 1, this series
must be absolutely convergent for all x; the interval of convergence is the
entire real line (−∞,∞) and the radius of convergence is infinite.

As another example, consider the series

∞∑
n=0

n!(x− 3)n.

If we wish to find the interval of convergence of this series, we first need
to determine all of the x values where

lim
n→∞

∣∣∣∣(n+ 1)!(x− 3)n+1

n!(x− 3)

∣∣∣∣ < 1.

Notice, though,

lim
n→∞

∣∣∣∣(n+ 1)!(x− 3)n+1

n!(x− 3)n

∣∣∣∣ = |x− 3| · lim
n→∞

(n+ 1).

This limit will below up to infinity for all values of x except x = 3: when
x = 3 each term of the sequence

(n+ 1)!(x− 3)n+1

n!(x− 3)n

is zero, and so the corresponding series is absolutely convergent. Thus
the interval of convergence for this series simply the single point x = 3,
which as an interval is [3, 3]. The radius of convergence is zero.

In general, a power series will always converge at its center since

∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

will have every term except the first term, c0, vanish when x = a. Note
too that if f(x) =

∑∞
n=0 cn(x − a)n, then the coefficient c0 is exactly f(a),

regardless of what other points may happen to be in the interval of con-
vergence.

Example 6.3.
What is the center, radius of convergence, and the interval of con-
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vergence for the power series

∞∑
n=0

(2x+ 3)2n

42n+1
=

1

4
+

(2x+ 3)2

43
+

(2x+ 3)4

45
+

(2x+ 3)6

47
+ · · ·

Let’s first notice that we may rewrite this series as

∞∑
n=0

22n

4 · 42n

(
x+

3

2

)2n

=
∞∑
n=0

1

4

(
1

2

)2n(
x+

3

2

)2n

From this we see that the center of the series is −3
2

.
For the radius of convergence we apply the ratio test:

lim
n→∞

∣∣∣∣∣ 1
4
·
(

1
2

)2(n+1) (
x+ 3

2

)2(n+1)

1
4
·
(

1
2

)2n (
x+ 3

2

)2n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(

1
2

)2n+2 (
x+ 3

2

)2n+2(
1
2

)2n (
x+ 3

2

)2n

∣∣∣∣∣
=

(
1

2

)2 ∣∣∣∣x+
3

2

∣∣∣∣2
Thus our series converges absolutely when the following inequal-

ities are satisfied:

1

4

∣∣∣∣x+
3

2

∣∣∣∣2 < 1

=⇒
∣∣∣∣x+

3

2

∣∣∣∣2 < 4

=⇒
∣∣∣∣x+

3

2

∣∣∣∣ < 2

=⇒ − 2 < x+
3

2
< 2

=⇒ − 3

2
− 2 < x < −3

2
+ 2

=⇒ −7

2
< x <

1

2

So our power series converges absolutely for all x in the interval(−7
2
, 1

2

)
, and the radius of convergence is 2. To find the interval of

convergence we must “manually” check if the series converges at
the endpoints x = −7

2
and x = 1

2
.
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At x = −7
2

, the series becomes

∞∑
n=0

1

4
·
(

1

2

)2n(−7

2
+

3

2

)2n

=
∞∑
n=0

1

4

(
1

2

)2n(−4

2

)2n

=
∞∑
n=1

1

4
(−1)2n

=
1

4
+

1

4
+

1

4
+ · · ·

thus the series diverges.
At x = 1

2
we have

∞∑
n=0

1

4

(
1

2

)2n(
1

2
+

5

2

)2n

=
∞∑
n=0

1

4

(
1

2

)2n

· 32n

=
∞∑
n=0

1

4

(
3

2

)2n

=
∞∑
n=0

1

4

(
9

4

)n
which is also a divergent geometric series. Thus the interval of con-
vergence is just (−7/2, 1/2).

We had previously mentioned that power series are sort of like infinite-
degree polynomials, and one of the nice things about polynomials is that
they are easy to integrate and differentiate. The following theorem says
this is basically true for power series as well.

Theorem 6.2.

Suppose f(x) is determined by the power series
∞∑
n=0

cn(x− a)n which has
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radius of convergence R > 0. Then inside the interval (a − R, a + R) we
have the following:

• f is continuous;

• f is infinitely differentiablea;

• f ′(x) is given by the power series obtained by differentiating
∑
cn(x−

a)n term-by-term and this series has radius of converge R as well:

f ′(x) =
d

dx

∞∑
n=0

cn(x− a)n

=
∞∑
n=0

d

dx
cn(x− a)n

=
∞∑
n=0

cnn(x− a)n−1

=
∞∑
n=0

(n+ 1)cn+1(x− a)n

• the antiderivative F (x) is given by a power series obtained by anti-
differentiating

∑
cn(x − a)n term-by-term and this also has radius

of convergence R:

F (x) =

∫ ∞∑
n=0

cn(x− a)n dx

=
∞∑
n=0

∑
cn(x− a)n dx

=
∞∑
n=0

cn(x− a)n+1

n+ 1
+ C

=
∞∑
n=1

cn(x− a)n

n
+ C

aBeing “infinitely differentiable” simply means that all the derivatives of f
exist: the first derivative, second derivative, third derivative, etc.
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Example 6.4.

If f(x) =
∞∑
n=0

(
x− 3

5

)n
, then we had seen before the radius of con-

vergence of this series is 5. The derivative is then

f ′(x) =
∞∑
n=0

n

(
x− 3

5

)n−1

=
∞∑
n=1

n

(
x− 3

5

)n−1

=
∞∑
n=0

(n+ 1)

(
x− 3

5

)n
and this series also has radius of convergence 5.

The antiderivative is

F (x) =
∞∑
n=0

1

n+ 1

(
x− 3

5

)n+1

+ C

=
∞∑
n=1

1

n

(
x− 3

5

)n
+ C

and this series also has radius of convergence 5.

That power series are very easy to integrate and differentiate has nu-
merous applications in calculus. For instance, this can be helpful in solv-
ing certain differential equations which arise in areas as diverse as eco-
nomics and engineering. We haven’t discussed differential equations this
semester simply for the purposes of time, so you will have to take this on
faith until you take a course in differential equations, but power series
can be used to make otherwise difficult problems much easier, precisely
because they are so easy to integrate and differentiate.

6.2 Taylor polynomials
We had previously mentioned that functions defined by polynomials can
be “efficiently computed;” i.e., you can do the computation by hand, or
have a computer do the computation for you, since we have “recipes”



CHAPTER 6. POWER SERIES, TAYLOR POLYNOMIALS, AND
TAYLOR SERIES 237

(algorithms) for how to add, subtract, multiply, and divide, and this is all
that’s required to evaluate a polynomial. Lots of functions we care about
are not polynomials, however. To work with those functions, such as ex,
sin(x), and

√
x, what we’ll do instead is approximate the function with a

polynomial.
You had previously seen a simple version of this in your first semester

of calculus where you learned about linearization. Recall that the lin-
earization of a differentiable function f(x) at a point a is given by

L(x) = f(a) + f ′(a) · (x− a)

Notice this is really just the function whose graph is the tangent line to
y = f(x) at x = a.

Another way of saying this is that L(x) is the polynomial of degree
one which agrees with f(x) and f ′9x) at x = a. I.e., L(a) = f(a) and
L′(a) = f ′(a). Recall that we think of L(x) as an approximation to f(x)
near zero. To get a better approximation we can look at higher degree
polynomials. Motivated by the observation that the linear approximation
agrees with the first derivative, we might ask that an n-th degree poly-
nomial approximating f(x) agrees with the first n derivatives of f(x).

To be more precise, we define the n-th order Taylor polynomial of
f(x) centered at x = a, denoted Tn(x), to be the degree n polynomial
such that

Tn(a) = f(a)

T ′n(a) = f ′(a)

T ′′n (a) = f ′′(a)

...

T (n)
n (a) = f (n)(a)

Writing Tn(x) in the form

Tn(x) =
n∑
i=0

ci(x− a)i = c0 + c1(x− a) + c2(x− a)2 + . . .+ cn(x− a)n

we could explicitly compute each of Tn(x), T ′n(x), T ′′n (x) and so on, and
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we’d find

Tn(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + . . .+ cn(x− a)n

T ′n(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + . . .+ ncn(x− a)n−1

T ′′n (x) = 2c2 + 3 · 2c3(x− a) + 4 · 3 · c4(x− a)2 + . . .+ n(n− 1)cn(x− a)n−2

T ′′′n (x) = 3 · 2 · c3 + 4 · 3 · 2 · c4(x− a) + . . .+ n(n− 1)(n− 2)(x− a)n−3

...

T (n)
n (x) = n!cn.

Evaluating these at x = a, we see that In general, T (i)
n (a) = i!ci, and so

our assumption that the i-th derivative of Tn(x) at x = a evaluates with
the i-th derivative of f(x) at x = a tells us

i!ci = f (i)(a)

=⇒ ci =
f (i)(a)

i!

Thus the n-th degree Taylor polynomial of f(x) centered at x = a is

Tn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . .+

f (n)(a)

n!
(x− a)n

=
n∑
i=0

f (i)(a)

i!
(x− a)i

Example 6.5.
Find the third order Taylor polynomial for f(x) =

√
x centered at

x = 1.
Using the formula derived above, we need to compute the first

three derivatives of f(x) =
√
x, and then evaluate these at x = 1.

We simply compute

f(x) = x
1/2 =

√
x f(1) = 1

f ′(x) =
1

2
x−

1/2 =
1

2
√
x

f ′(1) =
1

2

f ′′(x) =
−1

4
x
− 3/2 =

−1

4
√
x3

f ′′(1) =
−1

4

f ′′′(x) =
3

8
x−

5/2 =
3

8
√
x5

f ′′′(1) =
3

8
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The Taylor polynomial is thus

T3(x) = 1 +
1

2
(x− 1) +

−1/4

2!
(x− 1)2 +

3/8

3!
(x− 1)3

= 1 +
1

2
(x− 1)− 1

8
(x− 1)2 +

3

48
(x− 1)2

The main point of Taylor polynomials is that they give us approxima-
tions to the function near the center, and we can actually explicitly com-
pute those approximations. For instance, using the approximation T3(x)
for
√
x in Example 6.5 we may approximate square roots near x = 1 by

simply plugging those values into T3(x):
√

1.2 ≈ T3(1.2)

= 1 +
1

2
(1.2− 1)− 1

8
(1.2− 1)2 +

3

48
(1.2− 1)3

= 1 +
1

2
· 0.2− 1

8
· 0.004 +

3

48
· 0.008

= 1.0955

√
2 ≈ T3(2)

= 1 +
1

2
− 1

8
+

3

48
= 1.4375

Example 6.6.
Find the fourth-order Taylor polynomial of f(x) = ex centered at
x = 0.

Notice that since every derivative of ex is simply ex, each coeffi-
cient in T4(x) is just 1

i!
, and so we have

T4(x) =
1

0!
+

1

1!
x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4

= 1 + x+
x2

2
+
x3

6
+
x4

24



CHAPTER 6. POWER SERIES, TAYLOR POLYNOMIALS, AND
TAYLOR SERIES 240

We can thus approximate ex for values of x near 0 by simply plugging
into the polynomial T4(x) computed in Example 6.6.

e0.5 ≈ 1 + 0.5 +
0.5

2
+

0.125

6
+

0.0625

24
= 1.64844

e = e1 ≈ 1 +
1

2
+

1

6
+

1

24
= 2.70833

These are only approximations to f(x), ao reasonable question is how
good are these approximations. To answer that question we need the
following, which is essentially a more sophisticated version of the mean
value theorem.

Theorem 6.3 (Taylor’s remainder theorem).
If f(x) is N + 1-times continuously differentiable and Tn(x) is the n-th

order Taylor polynomial for f(x) centered at x = a, then for every value of
x there exists a number τx between a and x such that

f(x) = Tn(x) +
f (n+1)(τx)

(n+ 1)!
(x− a)n+1

The quantity f (n+1)(τx)
(n+1)!

(x − a)n+1 appearing in Theorem 6.3 is some-
times called the remainder of the n-th order Taylor polynomial and de-
noted Rn(x).

Notice that the remainder edepends on the value τx, but the theorem
does not give us any hint about how to compute τx – it only promises
us that such a τx exists. This is very similar to the mean value theorem
from your first semester calculus course. In fact, if we take n to be zero,
then Tn(x) is simply f(a) and the expression above in Taylor’s remainder
theorem becomes

f(x) = T0(x) +
f (0+1)(τx)

(0 + 1)!
(x− a)0+1 = f(a) + f ′(τx)(x− a)

=⇒ f(x)− f(a) = f ′(τx)(x− a)

=⇒ f ′(τx) =
f(x)− f(a)

x− a

It is in this sense that Taylor’s remainder theorem is a generalization of
the mean value theorem for higher-order derivatives.
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Notice that by moving Tn(x) to the left-hand side of the equation that
appears in Taylor’s remainder theorem, we have an expression for the
error in approximating f(x) by Tn(x),

f(x)− Tn(x) =
f (n+1)(τx)

(n+ 1)!
(x− a)n+1.

Thus to bound the error in approximating f(x) by Tn(x), we need to
bound this expression on the right-hand side. So, as a corollary to Tay-
lor’s remainder theorem we obtain the following:

Corollary 6.4.
If
∣∣f (n+1)(x)

∣∣ < K for all x in the interval [c, d], then for every c ≤ x ≤ d,
we have

|f(x)− Tn(x)| ≤ K

(n+ 1)!
|x− a|n+1

This corollary gives us an effective tool in saying exactly how “good”
an approximation Tn(x) is to f(x) – at least for x’s in the interval where
we can bound |f (n+1)(x)|.

Example 6.7.
What is the maximum amount of error that can appear in approx-
imating f(x) = sin(x) by the third-order Taylor polynomial T3(x)
centered at x = 0 for all x in the interval (−π/2, π/2).

Notice that the remainder for T3(x) is

R3(x) =

d4

dx4

∣∣∣∣
τx

sin(x)

4!
(x− 0)4

Since the fourth derivative of sin(x) is simply sin(x), we have | sin(x)| ≤
1 for all x. Since we are explicitly concerned with x’s in the interval
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(−π/2, π/2), however, we also know |x| < π/2, and thus

|R3(x)| =
∣∣∣∣sin(τx)

24
x4

∣∣∣∣
=
| sin(τx)|

24
· |x|4

<
1

24

(π
2

)4

=
π4

384
≈ 0.2537

Thus the worst possible error that can occur by approximating sin(x)
by T3(x) for x’s between −π/2 and π/2 is no more than 0.2537.

Perhaps the more interesting question, though, would be what value
of n guarantees that the Taylor polynomial approximating f(x) is within
some desired accuracy, at least for all x-values in some given interval.

Example 6.8.
What n guarantees that the n-th order Taylor polynomial for sin(x)
centered at a = 0 approximates sin(x) to within 10−6 of the true
value for −π/2 < x < π/2?

We want to find the n that guarantees |Rn(x)| < 10−6 when |x| <
π/2. That is,

|Rn(x)| < 10−6

=⇒

∣∣∣∣ d
dxn

∣∣∣∣
τx

sin(x)

∣∣∣∣
(n+ 1)!

|x|n+1 < 10−6

Since every derivative of sin(x) is ± sin(x) or ± cos(x), all of which
are bounded by 1, and we explicitly only care about |x| < π/2, it
suffices to find the n such that

1

(n+ 1)!

∣∣∣π
2

∣∣∣n+1

< 10−6.

The factorial makes it difficult for us to algebraically solve for n, so
here we must resort to trying various values of n until the expres-
sion on the left is less than 10−6. Fortunately, factorials grow very
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quickly and – while tedious to do by hand – on a computer it is ex-
tremely easy to determine this inequality is satisfied when n ≥ 13.
Thus, we are guaranteed that the n-th order Taylor approximation
to sin(x), centered at 0, accurate to within one one-millionth of the
true value for x in (−π/2, π/2) provided n is at least 13.

6.3 Taylor series
In Section 6.2 we saw that functions could be approximated by polyno-
mials. Notice that the error in this approximation degreases as the degree
of the polynomial increases. Intuitively, the higher the degree of a poly-
nomial, the more the polynomial’s graph is allowed to bend and change
directions, and so presumably is able to “hug” the graph of the original
function. To be a little more precise, let’s suppose that we knew all of the
original function’s derivatives were bounded by some value K at least
for x’s in the interval (a − R, a + R). For the x’s in that interval we then
have |x − a| < R. By Theorem 6.3, the n-th order Taylor polynomial of
f(x) centered at x = a would then satisfy the following inequality for all
values of n:

|f(x)− Tn(x)| < K

(n+ 1)!
|x− a|n+1 < K

Rn+1

(n+ 1)!
.

Now notice that for any value value of R we would have

Rn+1

(n+ 1)!
=
R

1
· R

2
· R

3
· . . . · R

n− 1
· R
n
· R

n+ 1
.

We would like to use this to say that the error in the approximation will
go to zero as n goes to infinity. To see this, first notice that as n gets larger
and larger, we eventually have n > R, meaning R

n
< 1, R

n+1
< 1, R

n+2
< 1,

and so on. If we let N be the smallest whole number larger than R (e.g.,
if R was 12.37, then we’d take N = 13), we could write

Rn+1

(n+ 1)!
=
R

1
· R

2
· R

3
· . . . · R

N − 1
· R
N
· R

N + 1
· . . . · R

n+ 1

=
RN−1

(N − 1)!
· R
N
· R

N + 1
· . . . · R

n+ 1
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But notice 1 > R
N
> R

N+1
> · · · > R

n1
, thus

Rn+1

(n+ 1)!
<

RN−1

(N − 1)!
·
(
R

N

)n−N
But R(N−1)

(N−1)!
is just some constant, and since R

N
is a constant less than 1, we

see that as n goes to infinity this quantity gets arbitrarily small, and so

lim
n→∞

|f(x)− Tn(x)| = 0.

This, provided that the derivative of f is bounded for all x in the interval
(a−R, a+R), means the Taylor polynomials approach the true value of x
for each x in (a−R, a+R), as the degree n increases. As we increase the
degree of the polynomial to infinity, however, our polynomial becomes a
power series called the “Taylor series” of the function.

That is, the Taylor series of a function f(x) is the power series that
appears as the limit of the Taylor polynomials for f(x) as the degree goes
to infinity. Using our Taylor polynomial formula this is the series

∞∑
n=0

f (n)(a)

n!
(x− a)n.

Just as with any other power series, we have to worry about what the
interval of convergence of this series is. However, the above discussion
shows that for values of x within the interval of convergence, our series
equals f(x). That is, we can think of our function as being defined by the
Taylor series provided we are in the interval of convergence.

Example 6.9.
Find the Taylor series for f(x) = ex centered at a = 0 and determine
its interval of convergence.

Notice that every derivative is f (n)(x) = ex and when evaluated
at x = 0 this gives us f (n)(0) = e0 = 1. Thus the Taylor series is

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

To find the interval of convergence, we first apply the ratio test to
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find the radius of convergence:

lim
n→∞

∣∣∣∣∣∣
(

xn+1

(n+1)!

)
(
xn

n!

)
∣∣∣∣∣∣ = |x| · lim

n→∞

1

n+ 1
= 0.

Thus the series convergence everywhere – the radius of conver-
gence is infinite – and so the interval of convergence is (−∞,∞).

Just to recap: the example above tells us that for every value of x we
have

ex = 1 + x+
x2

2
+
x3

3!
+
x4

4!
+ · · ·

When a Taylor series is centered at a = 0, as in the example above, it
is sometimes referred to as a Maclaurin series.

Example 6.10.
Find the Maclaurin series for f(x) = ln(1 + x) and determine its
interval of convergence.

We must compute our derivatives:

d

dx
ln(1 + x) =

1

1 + x
= (1 + x)−1

d2

dx2
ln(1 + x) =

d

dx
(1 + x)−1 = −(1 + x)−2

d3

dx3
ln(1 + x) =

d

dx
− (1 + x)−2 = 2(1 + x)−3

d4

dx4
ln(1 + x) =

d

dx
2(1 + x)−3 = −6(1 + x)−4.

Notice that each time we differentiate we pull down a negative power,
combining it with what we already have. This gives us factorials
that alternate between positive and negative. In general,

dn

dxn
ln(1 + x) = (−1)n−1(n− 1)!(1 + x)−n
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Evaluating this at x = 0, the n-th coefficient of our series will be

(−1)n−1(n− 1)!

n!
= (−1)n−1 1

n

and so our Maclaurin series is
∞∑
n=0

(−1)n−1x
n

n
.

Now we apply the ratio test to determine the radius of convergence:

lim
n→∞

∣∣∣∣ (−1)nxn+1/(n+ 1)

(−1)n−1xn/n

∣∣∣∣ = lim
n→∞

n|x|n+1

(n+ 1)|x|n

= lim
n→∞

n

n+ 1
|x|

= |x|

Thus the series converges when |x| < 1, and so our interval of con-
vergence contains (−1, 1). Now we must check the endpoints.

At x = −1 our series becomes

∞∑
n=0

(−1)n−1 (−1)n

n
=
∞∑
n=0

(−1)2n−1n.

Notice that 2n− 1 is always odd, and −1 raised to an odd power is
always −1, so the series may be written

∞∑
n=0

−1

n
= −

∞∑
n=0

1

n

and this diverges since it is the (negative of the) harmonic series.
At x = 1 our series becomes

∞∑
n=0

(−1)n−1 1

n
.

This is an alternating series and so converges by the alternating se-
ries test.
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Thus the Maclaurin series of ln(1 + x) is

∞∑
n=0

(−1)n−1x
n

n

and this series converges for all x in (−1, 1].

Remark.
Notice that, in fact, when we evaluate the Maclaurin series for ln(1+
x) at x = 1 we get the alternating harmonic series. Thus the altner-
ating harmonic series converges to ln(1 + 1) = ln(2).

Example 6.11.
Find the Maclaurin series for f(x) = 1

1−x and determine its interval
of convergence.

To determine our series, we simply need to compute the deriva-
tives of f(x) = 1

1−x , evaluate these at zero, and use the formula for
the Taylor series above.

d

dx

1

1− x
=

d

dx
(1− x)−1 = (1− x)−2

d2

dx2

1

1− x
=

d

dx
(1− x)−2 = 2(1− x)−3

d3

dx3

1

1− x
=

d

dx
2(1− x)−3 = 6(1− x)−4.

In general, dn

dxn
1

1−x = n!(1 − x)−(n+1). When evaluated at x = 0 this
simply becomes n! are we see that our Maclaurin series is just

∞∑
n=0

xn.
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The radius of convergence can be computed using the ratio test or
the root test. Here the root test is very convenient, since it tells us
that we want to find the x’s that satisfy lim

n→∞
n
√
|xn| < 1. But of

course,
lim
n→∞

n
√
|xn| = lim

n→∞
n
√
|x|n = |x|

and so we want |x| < 1. That is, the radius of convergence is 1 and
we are guaranteed convergence inside the interval (−1, 1). We still
need to check the endpoints by plugging them into our series, but
of course these are simply

∞∑
n=0

(−1)n and
∞∑
n=0

1n,

both of which diverge. Thus the interval of convergence of our
Maclaurin series is (−1, 1).

Notice that the function 1
1−x is defined for all x except x = 1, but the

series above only makes sense for x in the interval (−1, 1). That is, we are
only justified in saying

1

1− x
=
∞∑
n=0

xn

when x is between −1 and 1. This doesn’t mean that 1
1−x can not be

written as a power series for other values of x, it just means it can’t be the

power series
∞∑
n=0

xn we have above.

Example 6.12.
Find the Taylor series of 1

1−x centered at x = −2.
As in our earlier example above, the derivatives are given by

dn

dxn
1

1− x
= n!(1− x)−(n+1).

Evaluating this at x = −2 we have n!3−(n+1). And so our power
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series is
∞∑
n=0

n!3−(n+1)

n!
(x+ 2)n =

∞∑
n=0

(x+ 2)n

3n+1
=

1

3

∞∑
n=0

(
x+ 2

3

)n
.

This is of course a geometric series with r = x+2
3

, and so the
series converges if

∣∣x+2
3

∣∣ < 1, meaning |x+ 2| < 3, or −5 < x < 1.
Thus

1

1− x
=
∞∑
n=0

(x+ 2)n

3n+1
for x in (−5, 1).

As the examples above show, the function 1
1−x can be written as mul-

tiple different power series with different intervals of convergence. The
power series representation that you want to use in some particular prob-
lem depends on the value of x you care about.

Sometimes we can compute a Taylor or Maclaurin series for a function
by manipulating a function whose series expression is already known.
For example, we determined the Maclaurin series for 1

1−x is equal to∑∞
n=0 x

n if −1 < x < 1. If we replace x by 3x in 1
1−x we get 1

1−3x
. Per-

forming the same substitution in our power series gives us
∑∞

n=0 (3x)n.
The original series converges if −1 < x < 1, and so our new series con-
verges if −1 < 3x < 1, or −1

3
< x < 1

3
. That is

1

1− 3x
=
∞∑
n=0

(3x)n if
−1

3
< x <

1

3
.

Similarly, replacing x by −x2 we would have

1

1 + x2
=
∞∑
n=0

(
−x2

)n
=
∞∑
n=0

(−1)nx2n if − 1 < −x2 < 1.

Writing −1 < −x2 < 1 as x2 < 1, this simply means we still have conver-
gence in the interval −1 < x < 1.

Now, notice that since the expressions above are equal, at least pro-
vided −1 < x < 1, their antiderivatives must be equal for −1 < x < 1.
That is, ∫

1

1 + x2
dx =

∫ ∞∑
n=0

(−1)nx2n dx.
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However, we know that the antiderivative of 1
1+x2

is tan−1(x) + C, and
we can integrate our power series above term-by-term to obtain

tan−1(x)+C =
∞∑
n=0

∫
(−1)nx2n dx+C =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
+C if −1 < x < 1.

Taking the unique antiderivative whose output at x = 0 is zero, we then
have

tan−1(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
if − 1 < x < 1.

Notice we thus have obtained the Maclaurin series for tan−1(x) with-
out having to compute dn

dxn
tan−1(x), which would require considerable

amount of work!



7Parametric Curves and Polar
Coordiantes

There is no real ending. It’s just the place where
you stop the story.

FRANK HERBERT

For the last little bit of the semester we will study two topics which
at first may seem very different or unrelated to what we have studied
thus far in this class: parametric curves and polar coordinates. These two
topics are often very useful in more advanced courses, and discussing
them here is really setting the stage for material that is covered in the
third semester calculus class.

As we will see, parametric curves give us another way to describe
curves in the plane, and in particular it allows us to represent curves
that are not simply graphs of functions. Many applications in computer
graphics rely heavily on parametric curves (and the related idea of para-
metric surfaces discussed in multivariable calculus). Polar coordinates
are another way of representing points in the plane where we record an
angle and a distance from the origin, instead of the distance to the x-
and y-axes. Certain problems are often much easier to describe in polar
coordinates than they are in our familiar Cartesian coordinate system.

7.1 Parametric curves
Most of the curves we have seen in this class have been graphs of func-
tions, y = f(x), but we have also seen a few curves defined implicitly by
an equation, such as the a circle:

251
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a

b

(x− a)2 + (y − b)2 = R2R

In many applications, though, it can be hard to work with curves given
in such a way. Graphs are very limited since they must pass the vertical
line test, and implicitly-defined equations can be difficult to use because
there’s no obvious way to determine all of the points. For example, how
would you determine all of the points on the curve defined by y2 + y =
x3 + x2?

It is often desirable to have a way of explicitly describing every point
on a curve, and this can be accomplished by “parametrizing” the curve.
This means we have two functions which tell us the x-coordinates and
y-coordinates of points on the curve.

Imagine, for example, you watched a bug crawling on the ceiling
and at each moment in time t (say, t is the number of seconds that have
elapsed since you first began observing the bug) you recorded how far
the bug was from one edge of the ceiling, maybe you call this value x(t),
and also how far the bug was from another edge, call this y(t):
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x(t)

y(t)

If you kept track of both of these quantities, x(t) and y(t), for all t (or
for all t in some interval, say 0 ≤ t ≤ 60), you could then trace out the
path the bug walked on the ceiling.
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Remark.
Watching a bug walk on a ceiling like this is, supposedly, what lead
René Descartes to the discovery of the Cartesian coordinate system,
our familiar (x, y) coordinates for the plane.

In general, a pair of functions x(t) and y(t) define a parametric curve,
which is the set of all points in the plane of the form (x(t), y(t)) for some
choice of t.

Notice that the graph of a function y = f(x) can easily be parametrized
by x(t) = t and y(t) = f(t). However, much more interesting curves can
be described. Let’s start with some simple examples.

Example 7.1.
Using x(t) = cos(t) and y(t) = sin(t) for 0 ≤ t ≤ 2π gives a parametriza-
tion of the unit circle, essentially by the definition of sine and cosine.

x

y

Example 7.2.
The curve parametrized by x(t) = t cos(t), y(t) = t sin(t), 0 ≤ t ≤ 4π
is a spiral emanating from the origin which winds around twice.
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x

y

Notice that there may be multiple different ways to parametrize the
same curve. For example, the parametrizations

(x1(t), y1(t)) = (t, 2t+ 1) 0 ≤ t ≤ 1

(x2(t), y2(t)) = (2t, 4t+ 1) 0 ≤ t ≤ 1/2

both give the line segment from (0, 1) to (1, 3).

x

y

(x1(t), y1(t))

x

y

(x2(t), y2(t))
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Yet another way of parametrizing the same line segment would be

(x3(t), y3(t)) = (sin(t2), 2 sin(t2) + 1), 0 ≤ t ≤
√
π

2
.

All of these give the same set of points in the plane, but in slightly differ-
ent ways. This is because a parametrization actually gives you not just a
curve, but a way of moving across the curve. In particular, if we imag-
ine a particle moving along our curve at position (x(t), y(t)) at time t, the
particle’s speed depends on which parametrization we use.

To determine the speed of the particle at some particular moment in
time t, let’s approximate the speed by comparing the particle’s position
at time t to its position at some nearby moment in time, say t + h. Over
a change in time of h, the particle’s position changes from (x(t), y(t)) to
(x(t+ h), y(t+ h)) is distance√

(x(t+ h)− x(t))2 + (y(t+ h)− y(t))2

away. Since the time at it took to get from one point to the other is h, the
speed is approximately√

(x(t+ h)− x(t))2 + (y(t+ h)− y(t))2

h
.

This is only an approximation to the speed and we get better and better
approximations by using smaller and smaller h’s. Taking the limit as h
goes to zero tells us that the instantaneous speed of the particle at time t
is

lim
h→0

√
(x(t+ h)− x(t))2 + (y(t+ h)− y(t))2

h
.

= lim
h→0

√
(x(t+ h)− x(t))2 + (y(t+ h)− y(t))2

h2

= lim
h→0

√(
x(t+ h)− x(t)

h

)2

+

(
y(t+ h)− y(t)

h

)2

= lim
h→0

√(
lim
h→0

x(t+ h)− x(t)

h

)2

+

(
lim
h→0

y(t+ h)− y(t)

h

)2

=
√
x′(t)2 + y′(t)2
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Example 7.3.
The speed of a particle moving along the spiral above, (x(t), y(t)) =
(t cos(t), t sin(t)), at time t is√(

d

dt
t cos(t)

)2

+

(
d

dt
t sin(t)

)2

=

√
(cos(t)− t sin(t))2 + (sin(t) + t cos(t))2

=
√

cos2(t)− 2t cos(t) sin(t) + t2 sin2(t) + sin 62(t) + 2t cos(t) sin(t) + t2 cos2(t)

=
√

1 + t2

So at time t = π/2, for example, the speed is
√

1 + π2/4 ≈ 2.0351; and
at time t = 4 the speed is

√
17 ≈ 4.123.

Keeping in mind that the speed is the change of position, we can use
our notion of speed to help us determine the arclength of the curve above.
In particular, suppose that a curve is parametrized by (x(t), y(t)) with
a ≤ t ≤ b. Let s(τ) denote the arclength of the portion of the curve
parametrized with this same parametrization, but only over the interval
of time a ≤ t ≤ τ . Notice that s(a) = 0 and s(b) is the arclength of the
curve. The speed defined above is then exactly s′(t), that is

s′(t) =
√
x′(t)2 + y′(t)2,

since velocity is the derivative of position. Keeping in mind that s(b) is
the arclength of the curve and s(a) is zero (by definition of the function
s(t) above), the fundamental theorem of calculus then tells us the follow-
ing:

Arclength = s(b)

= s(b)− 0

= s(b)− s(a)

=

∫ b

a

s′(t) dt

=

∫ b

a

√
x′(t)2 + y′(t)2 dt.
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Thus by integrating
√
x′(t)2 + y′(t)2 we obtain the arclength of the curve.

Notice in particular that if our curve is the graph of a function y =
f(x) for a ≤ x ≤ b, then we can use the parametrization (x(t), y(t)) =
(t, f(t)), a ≤ t ≤ b and the above integral becomes∫ b

a

√
1 + f ′(t)2 dt =

∫ b

a

√
1 + f ′(x)2 dx

and we recover the arclength formula we had earlier.

Remark.
Since s′(t) =

√
x′(t)2 + y′(t)2, the differential of the function s is

ds = s′(t) dt =
√
x′(t)2 + y′(t)2 dt

and so sometimes the arclength is written as simply
∫ b
a
ds.

Example 7.4.
Compute the arclength of the spiral parametrized by (t cos(t), t sin(t))
for 0 ≤ t ≤ 4π.

As we had calculated in Example 7.3,

s′(t) =
√

1 + t2

and so we simply need to compute the integral∫ 4π

0

√
1 + t2 dt.

Now, using the trig substitution t = tan(θ), dt = sec2(θ)dθ the inte-
gral becomes∫ tan−1(4π)

tan−1(0)

√
1 + tan2(θ) sec2(θ) dθ =

∫ tan−1(4π)

0

sec3(θ) dθ.
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Earlier in the course we had computed that∫
sec3(θ)dθ =

1

2
(sec(θ) tan(θ) + ln | sec(θ) + tan(θ)|) + C

(This can be computed using integration by parts with u = sec(θ)
and dv = sec2(θ) dθ.) Plugging this into our arclength calculation
above, we have that the arclength is given by the expression

1

2

(
sec(tan−1(4π)) tan(tan−1(4π)) + ln | sec(tan−1(4π)) + tan(tan−1(4π))|

)
−1

2
(sec(0) tan(0) + ln | sec(0) + tan(0)|)

We note that if tan(θ) = 4π, then by simple trigonometry we can
determine that

sec(θ) =
1√

1 + 16π2
.

Now our expression above becomes

1

2

(√
1 + 16π2 · 4π + ln |

√
1 + 16π2 + 4π|

)
− 1

2
(0 + ln |1|)

Of course, the second term is simply zero, and so the first term gives
the arclength of the spiral, which is approximately 80.8192.

At a given point on the curve parametrized by (x(t), y(t)) we may be
interested in the line tangent to the curve at that point. To determine the
slope, we may approximate the tangent line by the secant line through
(x(t), y(t)) and (x(t+ h), y(t+ h)) which has slope

y(t+ h)− y(t)

x(t+ h)− x(t)
.

If we multiple and divide this quantity by 1/h over itself, then we can
write the slope as (

y(t+h)−y(t)
h

)
(
x(t+h)−x(t)

h

) .
Taking the limit as h goes to zero, the slope of the tangent line is thus

y′(t)

x′(t)
.
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Example 7.5.
Determine the equation of the line tangent to the spiral parametrized
by (t cos(t), t sin(t)) at t = π/4.

To write the equation of the line we need the coordinates of a
point on the line and the slope. The coordinates we get by simply
plugging t = π/4 into our parametrization, which gives us

(
(
π

4
cos
(π

4

)
,
π

4
sin
(π

4

))
=

(
π
√

2

8
,
π
√

2

8

)
.

To determine the slope we use the formula above. First we differen-
tiate both of x(t) and y(t), giving us

x′(t) = cos(t)− t sin(t)

y′(t) = sin(t) + t cos(t).

Plugging t = π/4 in gives us

x′(π/4) =

√
2

2
− π
√

2

8
=

4
√

2− π
√

2

8

y′(π/4) =

√
2

2
+
π
√

2

8
=

4
√

2 + π
√

2

8

The slope of the line is then

y′(π/4)

x′(π/4)
=

4 + π

4− π
.

The equation of the line is thus

y − π
√

2

8
=

4 + π

4− π

(
x− π

√
2

8

)
.

7.2 Polar Coordinates
We usually represent points in the plane in Cartesian coordinates, where
we have two axes meeting at 90◦ and record how far we are to the left/right
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and above/below the axes by two numbers.

a

b

This isn’t the only way we can represent points, however. There are other
coordinate systems which are useful in some types of problems. We’ll
end our discussion of calculus this semester by introducing a new coor-
dinate system called polar coordinates.

The polar coordinates of a point in the plane consist of two numbers,
denoted r and θ, and are usually presented as an ordered pair (r, θ). The
r represents the distance from the point to the origin, and θ is the angle
from the positive x-axis. (Usually θ will be measured in radians.)

r

θ



CHAPTER 7. PARAMETRIC AND POLAR 262

For example, each point marked below is given in these (r, θ) coor-
dinates where r is the distance from the point to the origin, and θ is the
angle measured above the positive x-axis.

(2, π/6)
(1, π/2)(1, 3π/4)

By convention, if r is a negative number, we interpret this as giving
the point (−r, θ), but rotated 180◦ about the origin.

(1, π/4)

(−1, π/4)

It’s actually very easy to go back and forth between these new polar
coordinates and our familiar Cartesian coordinates.

Cartesian to polar
Given a point (x, y) in Cartesian coordinates, the corresponding
point in polar coordinates is (r, θ) where

r =
√
x2 + y2 θ = tan−1

(y
x

)
.

Polar to Cartesian
Given a point (r, θ) in polar coordinates, the corresponding Carte-
sian coordinates are (x, y) where

x = r cos(θ) y = r sin(θ).
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Exercise 7.1.
Justify the conversions above using simple trigonometry and the
Pythagorean theorem.

For example, if (x, y) = (2
√

3, 6), then the same point in polar coordi-
nates is (r, θ) where

r =

√
(2
√

3)2 + y2 =
√

4 · 3 + 36 =
√

48 = 4
√

3

θ = tan−1(6/2
√

3) = tan−1(
√

3) = π/6

The point (r, θ) = (2, 2π/3) in polar coordinates is represented in Carte-
sian coordinates by (x, y) where

x = 2 cos(2π/3) = 2 · 1/2 = 1

y = 2 sin(2π/3) = 2 ·
√

3/2 =
√

3.

So, Cartesian coordinates and polar coordinates really carry the same
amount of information, they’re just two different ways of represent points
in the plane. However, certain objects can be represented in one coordi-
nate system more easily than in the other coordinates.

For example, a circle of radius 3 centered at the origin in Cartesian
coordinates is given by x2 + y2 = 9. In polar coordinates, though, this is
simply r = 3. The set of (r, θ) points satisfying r = 2 + sin(7θ) gives a
curve called a seven-petaled flower
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In Cartesian coordinates we’d have to use parametrizations to create
such a curve. Notice in polar this easily parametrized by θ(t) = t, r(t) =
2+sin(7t). To parametrize this in Cartesian coordinates we’d need to take
advantage of our conversion formulas x = r cos(θ), y = r sin(θ) to obtain

x(t) = (2 + sin(7t)) cos(t)

y(t) = (2 + sin(7t)) sin(t).

In general, we can convert parametric curves in Cartesian to polar
and vice versa fairly easily, but can not generally write graphs y = f(x) as
graphs r = g(θ), or the other way around. The flower above, for example,
is given as a graph where r equals a function of θ, but can not be written
as y equals a function of x since this curve fails vertical line test.

To represent a Cartesian graph in polar, for example the graph y =
x4 − 5x3 + 5x2, we can first write the curve parametrically as

(x(t), y(t)) = (t, t4 − 5t3 + 5t2),

and we can now convert to polar using our formulas above,

r(t) =
√
x(t)2 + y(t)2 =

√
t2 + (t4 − 5t3 + 5t2)2

θ(t) = tan−1

(
y(t)

x(t)

)
= tan−1

(
t3 = t2 + 5t

)
.

Though we can convert parametric curves between polar and Carte-
sian coordinates like this, it is sometimes helpful to do more direct con-
versions. For example, let’s try to plot r = 8 cos(θ) by first getting a
corresponding Cartesian equation. Notice that cos(θ) is only a factor of r
away from being r cos(θ), i.e., x in Cartesian coordinates. So, let’s multi-
ply through by r to obtain

r2 = 8r cos(θ).

Now notice r2 = x2 = y2 and r cos(θ) = x, so the equation becomes,

x2 + y2 = 8x

=⇒ x2 − 8x+ y2 = 0

Now we can try to complete the square for x2 − 8x to obtain

x2 − 8x+ 16 + y2 = 16

=⇒ (x− 4)2 + y2 = 16

And this is the familiar equation of a circle of radius 4 centered at (4, 0).
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As another example, let’s graph r = 1/(2 cos(θ) + 3 sin(θ)) by first rewrit-
ing it in Cartesian coordinates. Notice if we cross-multiply this becomes
2r cos(θ)+3r sin(θ) = 1, which we easily convert to Cartesian coordinates
2x+ 3y = 1, or y = −2

3
x+ 1

3
, and thus we have a line!

Using our knowledge of parametric curves, we can find the slope of
tangent lines to curves expressed in polar coordinates. In particular, re-
call the slope of a parametric curve (x(t), y(t)) is given by y′(t)/x′(t). Given
r = f(θ), we may parametrize this in polar as

(r(t), θ(t)) = (f(t), t).

Now we can convert to a Cartesian parametrization by

(x(t), y(t)) = (f(t) cos(t), f(t) sin(t)).
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Using the expression y′(t)/x′(t) above, the slope becomes

f ′(t) sin(t) + f(t) cos(t)

f ′(t) cos(t)− f(t) sin(t)
.

Keeping in mind θ = t is our (polar) parametrization, we have the slope
of the tangent line to r = f(θ) is

f ′(θ) sin(θ) + f(θ) cos(θ)

f ′(θ) cos(θ)− f(θ) sin(θ)
.

Example 7.6.
Find the equation (in Cartesian coordinates) of the line tangent to
the rose with four leaves given in polar coordinates by r = 3 sin(2θ)
at the point (3

√
3/2, π/6) (in polar).

The slope of the tangent line at a point on this curve is given by(
d
dθ

3 sin(2θ)
)

sin(θ) + 3 sin(2θ) cos(θ)(
d
dθ

3 sin(2θ)
)

cos(θ)− 3 sin(2θ) sin(θ)
=

6 cos(2θ) sin(θ) + 3 sin(2θ) cos(θ)

6 cos(2θ) cos(θ)− 3 sin(2θ) sin(θ)

At θ = π/6 this becomes 5/
√

3.
The Cartesian coordinates of our point are

(x, y) =

(
3
√

3

2
cos
(π

6

)
,
3
√

3

2
sin
(π

6

))
=

(
9

4
,
3
√

3

4

)

so the equation of the tangent line is

y − 3
√

3

4
=

5√
3

(
x− 9

4

)
.

Let’s end our discussion of polar coordinates by discussing how to
find the area of a region enclosed by r = f(θ) with α ≤ θ ≤ β.
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By partitioning the interval [α, β] into pieces,

α = θ0 < θ1 < θ2 < · · · < θn−1 < θn = β,

we will approximate our region by circular wedges between θ = θi−1 and
θ = θi of radius f(θ∗i ) for some θ∗i between θi−1 and θi.

We need to add up the areas of all sectors obtained in this way to get an
approximation to the area we are interested in. Let’s notice that a circle
of radius R has area πR2, and so a wedge accounting for proportion p
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(0 ≤ p ≤ 1) of the circle has area πR2p. If the angle of our sector is ∆θ,
then our proportion of the circle is p = ∆θ/2π, so the area of the sector is

πR2 ∆θ

2π
=

1

2
R2∆θ.

In our situation the angle is ∆θi = θi−θi−1, and the radius is f(θ∗i ), so our
approximation to the area is

n∑
i=1

1

2
f (θ∗i ) ∆θi

The area of our region is then∫ β

α

1

2
f(θ)2 dθ.

Example 7.7.
The area of a single leaf (corresponding to 0 ≤ θ ≤ π/2) of the rose
r = 3 sin(2θ) is∫ π/2

0

1

2
(3 sin(2θ))2 dθ =

9

2

∫ π/2

0

sin2(2θ) dθ

=
9

2

∫ π/2

0

1− cos(4θ)

2
dθ

=
9

4

(
θ − 1

4
sin(4θ)

)∣∣∣∣π/2
0

=
9

4

((
π

2
− 1

4
sin(2θ)

)
−
(

0− 1

4
sin(θ)

))
=

9

4
· π

2
=

9π

8

The area between two regions r = f(θ) and r = g(θ), with f(θ) > g(θ)
and α ≤ θ ≤ β, as in the figure below,
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is given by
1

2

∫ β

α

(
f(θ)2 − g(θ)2

)
dθ

Example 7.8.
Find the area of the region inside the circle r = 2 cos(θ) but outside
of the circle r = 1.

To find our area, we first need to determine the limits of inte-
gration. We can find these by determining the θ’s corresponding
to the intersection points of our two circles, which is accomplished
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by setting the two functions equal to one another. (This is just like
how you would determine where the Cartesian graphs y = f(x)
and y = g(x) intersect by solving f(x) = g(x).)

2 cos(θ) = 1

=⇒ cos(θ) =
1

2

=⇒ θ =
−π
3
,
π

3

Since r = 2 cos(θ) is the “outer” curve, we now simply compute

1

2

∫ π/3

−π/3

(
(2 cos(θ))2 − 12

)
dθ =

1

2

∫ π/3

−π/3

(
4 cos2(θ)− 1

)
dθ

=
1

2

∫ π/3

−π/3

(
4 · 1 + cos(2θ)

2
− 1

)
dθ

=
1

2

∫ π/3

−π/3
(2 + 2 cos(2θ)− 1) dθ

=
1

2

∫ π/3

−π/3
(1 + 2 cos(2θ)) dθ

=
1

2
(θ + sin(2θ))

∣∣∣∣π/3
−π/3

=
π

3
+

√
3

2

=
2π + 3

√
3

6
.
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ADetailed Review of Pre-Calculus
Material
Though students in Calculus II have passed Calculus I, and so should
already have a solid understanding of algebra, trigonometry, and related
topics, it may sometimes be convenient to have a single source to refer
to for some of this background information. This appendix is not an
exhaustive review of all possible pre-calculus topics relevant to our class,
but is instead focused on some of the topics which will be needed in
Calculus II but which many students have forgotten the details of.

A.1 Notation
Before jumping into algebra and trig, we should discuss spend a minute
to discuss notation. In mathematics in general, and in this class in partic-
ular, notation is extremely important. By notation we mean the standard
symbols that have meaning in mathematics. Most notation you’ve used
so frequently that you probably don’t even give it a second though (e.g.,
using + for addition or = for equality), but there are a few bits of notation
that students often get confused by.

Mathematical sentences and implication

The best way to think about mathematical notation is that it is the “gram-
mar” for a mathematical expression. Just as a complete sentence in En-
glish should have a subject, a verb, and an object, so should mathematical
expressions. For example, consider the equation

x2 + 2 = x+ 8.

This equation is like a “mathematical sentence” where the subject is x2+2,
the verb is “equals,” and the object is x + 8. This sentence expresses
that there is some kind of relationship between the quantities x2 + 2 and
x + 8. If we wish to find all of the solutions to this equation – all the
x-values that we could plug in and satisfy the equation – then we need
to manipulate this expression a little bit. Of course, the way that we will
manipulate this expression in order to find the x’s is to put everything on
one side of the equals sign. When we subtract x+ 8 over to the other side
of the equation we have a new equation,

x2 − x− 6 = 0.

272
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This equation did not appear out of the blue, however; instead, it is a
logical consequence of the first equation. To denote this, we often connect
the first expression and the second expression with an implication arrow
which looks like =⇒ . We do this by writing the first equation on one
line, the second equation on the next line, but putting the implication
arrow to the left of the second equation:

x2 + 2 = x+ 8

=⇒ x2 − x− 6 = 0.

In general, when we use the implication arrow we are saying that one
expression is a logical consequence of another. Put into English, the two
expressions above mean “If x2 + 2 is equal to x + 8, then it must be the
case that x2 − x− 6 equals 0.”

As we work problems in this class you will see the implication arrow
used many, many times, so it’s important to understand what it means
and how to use it. Again, =⇒ means that one expression is a logical
consequence of another expression.

Continuing to solve the problem we were given, we would continue
to use implication arrows as follows:

x2 + 2 = x+ 8

=⇒ x2 − x− 6 = 0

=⇒ (x+ 2)(x− 3) = 0

=⇒ x = −2 or x = 3.

Notice that we continue to string expressions together using =⇒ say-
ing one expression implies another which implies another which implies
another. Many arguments in mathematics follow this pattern: start with
some initial problem, follow by a logical consequence, follow by another
logical consequence, follow by another consequence, and so on, until we
arrive at our final conclusion.

Though we want to use correct mathematical notation as much as
possible, simply because it is very precise, it’s always okay to annotate
your work with word. For example, to make it clear how the third step
follows from the second, you could write “Factor” off to the side to indi-
cate how (x+ 2)(x− 3) was obtained from x2 − x− 6:

x2 + 2 = x+ 8

=⇒ x2 − x− 6 = 0

=⇒ (x+ 2)(x− 3) = 0 (Factor.)
=⇒ x = −2 or x = 3.
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Equality

Though we will use =⇒ many times in this class to connect different
mathematical statements together, it is not the only piece of notation we
will use. In particular, it is very common for us to manipulate an ex-
pression by simply rewriting it in a different, but equivalent, way. When
we do this, we use strings of equals signs. For example, in simplifying
a complicated expression we may write down the original expression,
then rewrite it in a slightly different (but equal) way, and connect these
two expressions with an equals sign:√

x2 · (x4 + 6x3 + 9x2) =
√
x2 · x2 · (x2 + 6x+ 9)

We may continually rewrite the expression, making it slightly simpler at
each step, and putting all of these together with equals signs:√
x2 · x2 · (x2 + 6x+ 9) =

√
x4 · (x+ 3)2 =

√
x4
√

(x+ 3)2 = x2(x+3) = x3+3x2

When there are several expressions in such a string of equalities, we may
break them up across multiple lines, just to facilitate readability.√

x2 · (x4 + 6x3 + 9x2) =
√
x2 · x2 · (x2 + 6x+ 9)

=
√
x4 · (x+ 3)2

=
√
x4
√

(x+ 3)2

= x2(x+ 3)

= x3 + 3x2

Remark.
Implication and equality are different! We will use strings of im-
plications and strings of equalities many times in this class, but stu-
dents often confuse the two, using implication arrows where they
should use equals signs and vice versa.

The rule of thumb for keeping this straight is to remember that
you’re constructing a sentence, and the verb you choose matters.
When you want to say two things are equal, use “=,” and when you
want to say one thing expression implies another expression.

For example, the following incorrect work is often turned in by
students: √

x4 · (x+ 3)2 =⇒
√
x4
√

(x+ 3)2
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This expression does not mean anything because the “verb” doesn’t
make sense. The implication arrow connects different statements
by saying one is a consequence of another, but the expressions on
the left and the right in the erroneous example above are not state-
ments. It’s almost like saying “If dog, then cat.” That sentence does
not make sense because “dog” and “cat” are individual nouns, not
expressions.

A.2 Real numbers, intervals, and unions

Real numbers

A real number is a number which represents a point on the number line,
and every real number can be written as an infinite decimal expansion.
Sometimes we can get away with finite decimal expansions, but you can
think of this as an infinite decimal expansion with infinitely-many zeros
at the end. When you think of a “number,” you are almost certainly
thinking of a real number, but there other types of numbers.

A complex number is a number which represents a point in the plane,
and every complex number can be written as a+ ib (this is like the point
(a, b) in the plane). Because of the way multiplication is defined with
complex numbers, the number i (or 0 + i1 if you insist on writing it as
a+ ib) squares to −1: i2 = −1.

We will not use complex numbers in this class, except possibly to-
wards the very end of the semester, but I want to mention them here
just so what you know that when I say something is a “real number”
there are some specific types of numbers that I am not including. For our
purposes in this class, you should always think of a “number” as a real
number unless explicitly told otherwise.

The real numbers can be broken down into a few important families.
An integer is just another word for a whole number. For example, −3,
0, 4 and 1, 238 are all integers. A positive integer is sometimes called a
natural number. The numbers 4, 1, 238 are natural numbers, while −3
and 0 are not. A number which can be represented as a ratio of integers,
where the denominator is not zero, is called a rational number. For ex-
ample, 1

2
, 0.25 and −17 are rational numbers. A real number which can

not be represented as a ratio of integers is called an irrational number.
This doesn’t mean the number is somehow “crazy” or “bad,” we just use
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the word irrational to mean the number is not a rational number, and we
call fractions rational simply because they are ratios. Numbers like π, e,
and
√

2 are irrational. It’s usually pretty tricky to show that a given num-
ber, like π or e, is actually irrational, that there is no way whatsoever to
write it as a ratio of integers.

In many (but not all!) of the examples we will do in class we will use
rational numbers (or even simpler, integers) just to make the calculations
a little bit easier, but we could always replace everything with irrational
numbers and the math would still work out just fine.

Decimal expansions

Students often have trouble appreciating that most real numbers can not
be represented by a finite decimal expansion. Every real number can be
written as a decimal expansion, but often this requires infinitely-many
digits after the decimal point. For example,

π = 3.14159...

where the ellipsis (the “...”) indicates the numbers continue forever. If
you really want the number π you have to use infinitely-many digits.
Anything short of that, anything where you write only finitely-many dig-
its, is incorrect. For example, π is not equal to 3.14, or 3.141, or 3.14159, or
even 3.14159265358979323846. Each of these is incorrect because they’re
all just a little bit off. Thus if the answer to a problem is truly π, you
should write the symbol π and not simply 3.14 or some other finite deci-
mal expansion.

Some rational numbers (ratio of integers) can be represented exactly
using a finite decimal expansion, such as 1/4 = 0.25. Really this is an infi-
nite expansion, it’s just everything after the 0.25 is zeros: 1/4 = 0.25000000....
However, not every fraction can be written with a finite decimal expan-
sion. For example, the number 1/9 has the infinite decimal expansion
0.1111... where the ones repeat forever. Thus if the answer to a problem
is 1/9, writing something like 0.1111 is actually incorrect!

In this class we often want exact answers, which means we want to
use fractions and symbols as much as possible. It is totally acceptable,
and even encouraged, that you leave answers in terms of things like
π, e,

√
17, sin(3/8), and so on instead of decimal approximations! The

one possible exception to this will be homework completed in WebWork.
Some problems in WebWork will ask you for a decimal approximation,
and will usually say exactly how many decimals to use. (This is just
for simplicity with having WebWork grade problems.) For example, a
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problem on WeBWorK may have an answer of π, but explicitly ask you
to give your answer to five decimals and in that situation you would
want to enter 3.14159. In all other situations, though, you should use
exact answers unless explicitly told to use a decimal approximation!

Intervals

Sometimes we will care about all of the real numbers between two given
values. This is called an interval. We write [a, b] to mean the collection
of all real numbers x that satisfy a ≤ x ≤ b: everything between a and
b, including the endpoints. If we don’t want to include an endpoint, we
use a parenthesis instead of a square bracket. For example, [a, b) is the set
of numbers x satisfying a ≤ x < b; (a, b] is the set of numbers x satisfying
a < x ≤ b; and (a, b) is the set of all numbers satisfying a < x < b.

Remark.
Thought most mathematical notation is standard and independent
of language, intervals are one minor exception. Some European
mathematicians use square brackets pointing in the other direction,
where we have used parentheses. For example, a French mathe-
matician might write ]a, b] and ]c, d[ where an American mathemati-
cian would write (a, b] and (c, d). This isn’t really a big deal, but it
is something you may see from time to time if you look at sources
online or books written by a mathematician trained in Europe.

If we don’t want to cap our interval off at one point, for example say
we want all numbers bigger than a, we write (a,∞) (or [a,∞) if we want
to include a). Likewise, the interval containing everything less than b is
(−∞, b) (or (−∞, b] if we want to include b). Notice that we will always
put a parenthesis around∞ or −∞: infinity is not a real number, so we
can’t include it!

Sometimes we will want to represent the collection of all real numbers
as an interval, and we can do this as (−∞,∞). This is the set of all real
numbers that are bigger than −∞ but less than∞, which is everything.
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Unions

On odd occasion we will want to take two intervals and glue them to-
gether. We can do this by taking the union of two intervals, which is
denoted by the symbol ∪. For example, (0, 1] ∪ (2, 3) consists of all the
numbers which are in (0, 1] or (2, 3). We literally just glue the two inter-
vals together to get a new collection of numbers.

A.3 Functions, graphs, and inverse functions

Functions

Recall that a function is just a rule for turning some real numbers into
other real numbers: it’s just a way of transforming numbers into other
(usually different) numbers. We often specify a function by writing some-
thing like

f(x) = how to convert x into something else.

For example, if we write

f(x) =
√
x2 + 7

then we are saying that f is the function that takes a given value of x,
squares it, adds seven, then takes the square root. For example, f(−3) =√

(−3)2 + 7 =
√

16 = 4.
Functions can do all sorts of weird and crazy things to transform their

inputs into outputs: in fact there are some functions where it’s not possi-
ble to write down a simple rule like

√
x2 + 7! The only requirement that

a function has to satisfy is that it takes inputs and converts them into a
single output. If f is some function where f(3) = 19, then each and every
time we plug 3 into f we have to get 19 back out.

The collection of all the values we can plug into a function is called
the function’s domain. For this class, being able to plug a number into a
function means we can evaluate the function and get a real number.

For example, the domain of the function f(x) =
√
x+ 2 is [−2,∞).

Everything that’s bigger than or equal to −2 can be plugged into the
function and we get back a real number, but anything smaller than −2
would give us a complex number, and for this class we will avoid com-
plex numbers unless explicitly stated otherwise.

As another example, the domain of the function 1
x

is (−∞, 0)∪ (0,∞):
the function is defined everywhere except 0: we can’t divide by 0 and get
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a real number. Notice that we cut out the single number 0 from the real
line by gluing everything to the left of 0, (−∞, 0), and everything to the
right of 0, (0,∞), with a union.

Graphs

It is often convenient to visualize a function by considering its graph,
which is the set of all (x, y) points in the plane that satisfy the equation
y = f(x). For example, with the function f(x) =

√
x2 + 7, the point

(−3, 4) is on the graph since 4 = f(−3), but the point (2, 0) is not on the
graph as 0 6= f(2) =

√
11.

The requirement that a function converts an input into a single output
means that if we were to draw a vertical line in the plane, whenever that
line intersects the graph it can do so only in one point. (It may miss
the graph sometimes if we draw the line over a point which isn’t in the
domain, but if a vertical line intersects the graph of a function, it can only
intersect it once.)

Inverse functions

Functions take inputs and convert them into outputs. In terms of graphs
we usually use the x-coordinate to represent the input to the function and
the y-coordinate to represent the output. (Although there are times when
we may reverse the roles of the x- and y-coordinates.) One question we
are sometimes interested in is whether we can reverse the process, taking
an output from a function and determining the corresponding input.

In general this question does not have a unique answer: there may
be multiple different inputs which give the same output. For example,
consider the function f(x) = x2. Both inputs x = −2 and x = 2 have the
same output, f(±2) = 4. Sometimes, however, there is a unique input for
each output. For instance the function f(x) = x3 has this property; there
is exactly one input, namely x = 2, which has the output of 8. This isn’t
true simply for the output 8, however, it’s true for all possible outputs.
When a function has this special property that for each possible output
there is exactly one corresponding input, we say the function is invertible
or one-to-one.

In terms of the graph of a function, we can easily determine if a func-
tion is one-to-one or not by seeing if it passes the horizontal line test: If
every horizontal line in the plane crosses the graph y = f(x) at most once,
then the function is invertible. This condition exactly says that for each
possible output (this determines the horizontal line, y = c for the output
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c) there is at most one possible input (the x-coordinate of the intersection
point of the line y = c and the graph y = f(x)) we can plug into the func-
tion to obtain that output. That is, if y = c intersects y = f(x) at the point
(x0, c), then that exactly means f(x0) = c. If this is the only place the line
and the graph intersect, then that means there is only one input we can
plug into the function, namely x0, to get the output c.

A.4 Algebra
When I first took calculus, the professor stated at the start of the semester
that “no one fails calculus because they can’t do calculus, they fail be-
cause they can’t do algebra,” and I think there is a lot of truth to this
statement. In particular, calculus instructors instructors do not expect
their students to already know calculus and so they take the time to care-
fully explain calculus material, however they do expect students to have
a solid understanding of algebra and so don’t often spend much time
reviewing algebra. This portion of the notes is meant to be a quick re-
minder of some of the algebra that will be useful in the class, but which
students may have forgotten. This is not a comprehensive review of all
algebra, though. If you need a more thorough review of algebra, you
may want to consider the following websites:

1. The online algebra review written by James Stewart,
http://www.stewartcalculus.com/data/default/upfiles/
AlgebraReview.pdf

2. Paul’s Online Algebra Notes,
http://tutorial.math.lamar.edu/Classes/Alg/Alg.aspx

3. The Wikibook for Algebra,
https://en.wikibooks.org/wiki/Algebra

4. The KhanAcademy sites for
Algebra I, https://www.khanacademy.org/math/algebra
Algebra II, https://www.khanacademy.org/math/algebra2

Polynomials

A polynomial is an expression of the form

anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

http://www.stewartcalculus.com/data/default/upfiles/AlgebraReview.pdf
http://www.stewartcalculus.com/data/default/upfiles/AlgebraReview.pdf
http://tutorial.math.lamar.edu/Classes/Alg/Alg.aspx
https://en.wikibooks.org/wiki/Algebra
https://www.khanacademy.org/math/algebra
https://www.khanacademy.org/math/algebra2
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where the a0, a1, a2, ..., an−1 and an are all real numbers. If an 6= 0, then
we say the polynomial has degree n. The a0, a1, ..., an are called the coef-
ficients of the polynomial.

For example, 7x3 + 4x2 − 2 is a polynomial of degree three. Here
a0 = −2, a1 = 0, a2 = 4 and a3 = 7. As another example, 0x5 − 4x2 + x is
a polynomial of degree 2, since x2 is the term with the largest power, but
a non-zero coefficient.

There’s nothing really special about the x that appears in the polyno-
mial above; we can just as well have polynomials in y like −3y3 + 2y − 4,
or z like 9z + 2. We can even have polynomials with both x’s and y’s,
such as x2 + y2, although in our class we will primarily be interested in
polynomials of one variable.

There’s nothing special about having integer coefficients, by the way:
πx3 + ex2 − ln(13)x+

√
8 is a perfectly legitimate polynomial.

Notice that every polynomial defines a function: if we write

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

then we have a perfectly legitimate function: a way of converting an
input x into an output f(x).

There is some common vocabulary that is associated with polynomi-
als: polynomials of degree 1 are called linear, polynomials of degree 2
are called quadratic, polynomials of degree 3 are called cubic, degree 4
polynomials are quartic, degree 5 polynomials are quintic, and so on. We
will see polynomials of all sorts of different degrees, so just be aware that
if I say something is “cubic” that means it’s a polynomial of degree 3, or
something that’s “quadratic” is a polynomial of degree 2.

Factoring

We can multiply two polynomials together by distributing. For example,
we can multiply

(x+ 3) · (4x2 − x+ 1)

by distributing the x+ 3 to each term of 4x2 − x+ 1,

(x+ 3) · (4x2 − x+ 1) = 4x2(x+ 3)− x(x+ 3) + 1 · (x+ 3),

then further distributing each term into its copy of x+ 3,

(x+ 3) · (4x2 − x+ 1) = 4x2(x+ 3)− x(x+ 3) + 1 · (x+ 3)

= 4x3 + 12x2 − x2 − 3x+ x+ 3
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and finally combining like terms to obtain

(x+ 3) · (4x2 − x+ 1) = 4x3 + 11x2 − 2x+ 3.

Sometimes (for a reason we will explain in just a moment) it is conve-
nient to go backwards, and break up a given polynomial into a product
of two or more simpler polynomials.

For example, we can factor 2x2 + 5x + 1 as (2x + 3)(x + 1): we have
broken 2x2 + 5x + 1 up into a product of two polynomials, so we have
factored it. The simpler polynomials we get when we factor are called
(naturally enough) factors of the original polynomial.

Factoring is extremely useful in calculus. We will see examples through
the semester which at first glance may look difficult, but become much
easier after factoring.

Here’s a simple example: suppose we wanted to figure out what the
graph of f(x) = x2−4

x−2
looked like without using a computer or graphing

calculator. This doesn’t look so easy at first, but becomes a lot easier if
we factor x2 − 4 as (x+ 2)(x− 2). We can now write

x2 − 4

x− 2
=

(x+ 2)(x− 2)

x− 2
= x+ 2

and you might say the graph is a line with a slope of 1 and y-intercept
of 2. Here factoring let’s us figure that out pretty easily, and little tricks
and simplifications that come by factoring like this are very common in
calculus.

(There’s one slight problem with the graph described above, however.
The graph is indeed a line as described, but it has a hole in it at x = 2.
Keep in mind we’re graphing y = f(x), but 2 is not in the domain of the
function: the domain is (−∞, 2) ∪ (2,∞), so (2, 4) is actually not a point
on the graph.)

It turns out that factoring and finding the roots of a polynomial go
hand-in-hand because of the following fact: if x = a is a root of a polyno-
mial f(x), then x−a is a factor of f(x). That is, if f(x) is a polynomial and
f(a) = 0, then f will factor as f(x) = (x − a) · g(x) for some polynomial
g(x). Furthermore, we can find the polynomial g(x) by using polynomial
long division.

For example, consider the polynomial f(x) = 3x3 − 6x2 + x − 2 and
say we want to factor it. At first glance this doesn’t seem very easy at all,
but if somehow knew that x = 2 was a factor (e.g., maybe we graphed
y = f(x) or had some additional information that clued us in to this fact),
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then we would know f(x) = (x− 2) · g(x) for some polynomial g(x). We
could divide the x− 2 over, however, to solve for g(x):

f(x)

x− 2
= g(x).

This is something we can actually do with polynomial long division:

3x2 + 1

x− 2
)

3x3 − 6x2 + x− 2
− 3x3 + 6x2

x− 2
− x + 2

0

Thus 3x2 + 1 is our g(x), and we can factor our original polynomial,

3x3 − 6x2 + x− 2 = (x− 2)(3x2 + 1)

If you notice that 3x2 + 1 is a parabola which sits above the x-axis,
then you know that 3x2 + 1 has no (real) roots. This implies that we can’t
factor 3x2 + 1 anymore: if we could factor it, say as (x − a)(x − b), then
a and b would both be roots of 3x2 + 1, but 3x2 + 1 has no roots, thus we
can’t factor it.

When this happens, when a polynomial can not be factored any fur-
ther, we say the polynomial is irreducible. The polynomial 3x2 + 1, for
example, is irreducible.

The trick above where we determined 3x2 + 1 couldn’t be irreducible
because it didn’t have any roots is only useful for quadratics, by the way.
The polynomial 2x4 + 5x2 + 3, for example, doesn’t have any roots as
graphing it will show you. However, it does factor as (x2 + 1)(2x2 + 3).
Each of these factors is irreducible, though, since they are both quadrat-
ics and can’t have any roots (if the factors had roots, then so would the
original polynomial), so we can’t break this down any further.

In general it is difficult to determine whether a polynomial is irre-
ducible or not, but despite that it is important to know the basics of fac-
toring.

Difference of perfect squares

One of the simplest types of polynomials to factor is one of the form

x2 − a2,
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which is often called a difference of perfect squares. It is easy to verify by
FOIL-ing that if you multiply x + a and x − a, you will get back x2 − a2.
That is, we can factor x2 − a2 as

x2 − a2 = (x+ a)(x− a).

This simple trick will come up many times in the class, so you should
get in the habit of immediately recognizing x2 − a2 as factoring into (x+
a)(x− a).

Notice that we can apply the difference of perfect squares trick even
if we don’t have a variable. For example, if a and b are constants, we can
write a2−b2 as (a+b)(a−b). This is sometimes helpful in calculus because
we may have a problem which will look difficult at first, but then greatly
simplify after factoring in this way.

Completing the square and the quadratic formula

Notice that an expression of the form (x+ a)2 will always FOIL into x2 +
2ax+a2. This simple observation can be reversed to say that x2 +2ax+a2

factors as (x+a)2. In some problems we can use this to rewrite an expres-
sion or an equation as something more useful. For example, suppose we
wanted to find all of the values of x that solved the equation

x2 + 6x+ 9 = 0.

If we recognize this has the above form (with a = 3), then we would see
that the polynomial factors and our equation becomes

(x+ 3)2 = 0.

At this point it’s clear the only solutions are x = −3. For a slightly more
involved example, suppose we wished to solve

x2 + 6x = 7.

Your first guess might be to write x(x + 6) = 7. While this equation is
certainly true, it’s not actually helpful. Now we have to find a value of
x so that x times x + 6 equals seven, and that’s not so obvious. If the
left-hand side were actually a square, though, then we could just take
a square root. So, what we will do is make the left-hand side a square
by recognizing that it almost has the form x2 + 2ax + a2 (with a = 3),
except we’re missing the +a2 term which would be 9 in our example.
We’re missing 9, so let’s just put a 9 in. When we do that, however, we’re
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modifying the equation and if we modify one side of the equation we
have to modify the other side of the equation in the same way to still
have an equality.

x2 + 6x = 7

=⇒ x2 + 6x+ 9 = 7 + 9

We can now factor the left-hand side as (x + 3)2, and we may as well
simplify the right-hand side to 16:

x2 + 6x = 7

=⇒ x2 + 6x+ 9 = 7 + 9

=⇒ (x+ 3)2 = 16

Now we are basically home-free. Let’s just take the square-root of both
sides, and since the square roots of 16 are ±4 we have

x+ 3 = ±4.

Now we can just move the −3 to the other side of the equation to obtain

x = −3± 4.

Keep in mind this is really short-hand for two equations, x = −3 + 4 and
x = −3− 4. Of course these really just tell us the possible values of x are
x = 1 and x = −7, and we can very easily verify that these satisfy our
original equation, x2 + 6x = 7:

12 + 6 · 1 = 1 + 6 = 7

(−7)2 + 6 · (−7) = 49− 36 = 7.

This process of adding something to both sides of our equation above
so that we could write one side as a square is often referred to as complet-
ing the square. Notice that in general if we want to complete the square
using x2 + Bx, the constant B plays the role of our 2a from above and
so when we add a2, what we’re really doing is adding half of B squared.
(E.g., half of 6 is 3 and we added 32 = 9 above.)

x2 +Bx = x2 +Bx+

(
B

2

)2

−
(
B

2

)2

= x2 +Bx+
B2

4
− B2

4

=

(
x+

B

2

)2

− B2

4
.
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The procedure outlined above may not have been your first choice for
solving the equation x2 + 6x = 7: you may instead wanted to write the
equation as x2 + 6x − 7 = 0 and then apply the quadratic formula. That
is a totally fine and valid thing to do, but it’s worth pointing out that the
quadratic formula is really just completing the square in disguise.

In particular, let’s try to solve the quadratic

ax2 + bx+ c = 0

but by completing the square, and we’ll see that we recover the famil-
iar quadratic formula. The first thing we need to do is divide out the a
that appears as the coefficient in the x2, since our completing the square
procedure requires the coefficient on the highest degree term to be a 1:

ax2 + bx+ c = 0

=⇒ x2 +
b

a
x+

c

a
= 0.

Now we can move c/a to the right-hand side to obtain

x2 +
b

a
x =
−c
a
.

We will complete the square by adding half of the middle term’s coeffi-
cient, b/a, squared to each side of the equation, obtaining

x2 +
b

a
x+

(
b

2a

)2

=
−c
a

+

(
b

2a

)2

.

Now we’re set up to factor the right-hand side as(
x+

b

2a

)2

=
−c
a

+
b2

4a2
.

Let’s go ahead and simplify the right-hand side by getting a common
denominator as follows: (

x+
b

2a

)2

=
b2 − 4ac

4a2
.

Now we take the square-root of each side to obtain

x+
b

2a
= ±
√
b2 − 4ac

2a
.
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Finally we will move the b/2a from the left-hand side to the right-hand
side and simplify, giving us the familiar quadratic formula:

x =
−b
2a
±
√
b2 − 4ac

2a

=
−b±

√
b2 − 4ac

2a

Tricks with fractions

While everyone has certainly had plenty of experience with fractions at
this point in their mathematical careers, some tricks can be easy to forget
if you don’t use them regularly, so it’s worth quickly recalling some basic
facts.

The first fact is that we can multiply fractions by just multiplying their
numerators and denominators separately. For example,

2

3
· 5

4
=

2 · 5
3 · 4

=
10

12
.

The second fact is that any number other than zero divided by itself
is 1:

1 =
2

2
=

3

3
=
−17

−17
=
π

π
.

This rule does not apply to 0
0

because division by zero is undefined.
When adding fractions, we must have a common denominator. For

example, in order to add 2/3 and 5/4 we must rewrite both fractions so
they have the same denominator. A very reasonable question to ask at
this point is why do we need to do this: why is a common denominator
necessary? You should think of the denominator as being a type of unit,
such as inches or yards. You can’t just add eighteen inches and two yards
together together and call it twenty of something: you have to either
convert your inches to yards, or your yards to inches, or both yards and
inches to some common unit like feet. It’s the same with fractions. If the
units are “thirds” and “fourths,” as in the fractions above, we have to get
a common unit.

One easy way to get a common denominator, though not the only
way, is to just multiply the denominators together. Since our denomina-
tors are 3 and 4 above, we’ll get a common denominator of 3 · 4 = 12.
We can’t just replace the denominators with 12 though, we also need to
change the numerators. In terms of our “eighteen inches plus two yards”
idea above, it’s analogous to how we have to convert eighteen inches (for
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example) into 1.5 feet, we can’t just magically decide eighteen inches is
eighteen feet because they’re very different quantities!

Now the question is how do we appropriately change the numera-
tors? To change our numerators and denominators at the same time,
we’ll just multiply by 1, but we’ll write 1 as the denominator of the other
fraction over itself. For example,

2

3
+

5

4

=
2

3
· 1 +

5

4
· 1

=
2

3
· 4

4
+

5

4
· 3

3
.

We can now just multiply these fractions together by multiplying numer-
ators and multiplying denominators:

2

3
· 4

4
+

5

4
· 3

3

=
8

12
+

15

12
.

Now that our fractions have a common denominator (i.e., they’re in the
same “units”) we can just add the numerators together:

2

3
+

5

4
=

8

12
+

15

12
=

23

12
.

Sometimes we will need to deal with “compound fractions,” which
are fractions whose numerator and/or denominator are themselves frac-
tions, such as (

3
7

)(
5
2

) .
It is often convenient to rewrite compound fractions as “simple frac-
tions” (i.e., the numerator and denominator are just integers, not frac-
tions). This is easily accomplished in two steps. First we will multiply
the fraction by 1, but written in a special way, to remove the fraction in
the denominator: (

3
7

)(
5
2

) · 2

2
.

Notice that we can now multiply the numerators by 2 and the denomi-
nators by 2 and in this example, this kills off the 2 in the original denom-
inator: (

3
7

)(
5
2

) · 2

2
=

(
6
7

)
5
.
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Now we can get rid of the denominator in the numerator 6/7 in the same
way, by multiplying by 1 written as 7

7
:(

6
7

)
5

=

(
6
7

)
5
· 7

7
=

6

35

Another way of accomplishing this is to notice that when we have a
compound fraction with whose denominator is 1, such as

1(
5
2

) ,
this is equal to a fraction which is simply the denominator, but with the
roles of the numerator and denominator reversed. The reason for this is
again we can just multiply by 1, but with 1 written in a special way:

1(
5
2

) =
1(
5
2

) · (2
5

)(
2
5

) ==

(
2
5

)
1

=
2

5
.

We could then calculate our compound fraction above by thinking of
the division by 5/2 as multiplication by one over 5/2:(

3
7

)(
5
2

) =
3

7
· 1(

5
2

) =
3

7
· 2

5
=

6

35
.



BDetailed Review of Calculus I
Here we collect some odds and ends from a typical Calculus I course
which are necessary for Calculus II. The title of this appendix, “Detailed
Review of Calculus I,” is slightly misleading in that this is not a compre-
hensive review of all Calculus I material. Rather, this appendix fills in
some of the details about topics from Calculus I that students in Calcu-
lus II will need from time to time, but may have forgotten or never fully
understood.

B.1 Summations and sigma notation
A large portion of Calculus II deals with integrals and with series, both
of which are essentially special types of infinite summations. To deal
with summations, whether infinite or finite, in a concise way we often
use “sigma notation,” named for the capital Greek letter sigma, Σ, that
appears.

Suppose that f is a function and we want to sum the function evalu-
ated at several different integers. For example, we may want to evaluate

f(1) + f(2) + f(3) + · · ·+ f(50).

We can use the following sigma notation to express this sum. We write
a large capital Greek Σ, and below the Σ we say where we want the sum
to start, above the Σ we say where we want the sum to stop, and to the
right of Σ we say what we’re summing up.

For example,

50∑
i=1

f(i) =f(1) + f(2) + · · · f(3)

7∑
i=−3

f(i) =f(−3) + f(−2) + f(−1) + f(0) + · · ·+ f(7)

This is simply a convenient way to write out certain sums.
The i that appears in such a summation is called the index, and is

reallly just a place-holder for numbers that start at the value indicated
below the Σ and increase by one up to and including the number above
the Σ. For our purposes these starting and stopping points will always be
integers (whole numbers), and the index increases by one for each term
in the sum.

290



APPENDIX B. DETAILED REVIEW OF CALCULUS I 291

We will typically use i as the index variable, but there’s nothing mag-
ical about this choice. We could just as well use j or x or ,; the choice
of index variable is immaterial. For example, the expressions in sigma
notation below all represent the exact same sum:

5∑
i=1

f(i) =
5∑
j=1

f(j) =
5∑

x=1

f(x) =
5∑

,=1

f(,)

=f(1) + f(2) + f(3) + f(4) + f(5).

Sometimes we the function we’re trying to sum up won’t have a given
name: we may simply give an expression in place of f(i):

5∑
i=0

i2 = 02 + 12 + 22 + 32 + 42 + 52

2∑
i=−2

(2i− 1) = (2 · (−2)− 1))+(2 · (−1)− 1)+(2 · 0− 1)+(2 · 1− 1)+(2 · 2− 1)

Remark.
A small word about notation: when using sigma notation, we of-
ten put parentheses around the expression describing the terms of
the sum if these terms are made up of other terms (i.e., contain ad-
ditions or subtractions). This aids in clarity. If the parentheses in
the expression above were removed, for example, then that “minus
one” that appears at the end would appear after the terms are added
up:

2∑
i=−2

2i− 1 = 2 · (−2) + 2 · (−1) + 2 · 0 + 2 · 1 + 2 · 2− 1

which is not the same as the earlier sum. Thus if we want each term
to have a “minus one,” then we need the parentheses.
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Properties of sums

Let’s go ahead and notice a few simple properties of sums written in this
Σ-notation:

Theorem B.1.
For any two functions f and g, and for any constant k we have

b∑
i=a

(f(i) + g(i)) =
b∑
i=a

f(i) +
b∑
i=a

g(i)

b∑
i=a

kf(i) =k
b∑
i=a

f(i)

Proof.

b∑
i=a

(f(i) + g(i)) =f(a) + g(a) + f(a+ 1) + g(a+ 1) + · · ·+ f(b) + g(b)

=f(a) + f(a+ 1) + · · · f(b) + g(a) + g(a+ 1) + · · · g(b)

=
b∑
i=a

f(i) +
b∑
i=a

g(i)

b∑
i=a

kf(i) =kf(a) + kf(a+ 1) + · · ·+ kf(b)

=k (f(a) + f(a+ 1) + · · ·+ f(b))

=k
b∑
i=a

f(a).

Notice that the above properties are really just basic properties of
sums that you learned in elementary school (you can rearrange the terms
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in a sum, and you can factor out any constant appearing in each term),
they’re just written in sigma notation.

The “constant” k in the above simply can not depend on i, but it could
depend on some other quantity. For example,

lim
n→∞

n∑
i=1

n2f(i) = lim
n→∞

n2

n∑
i=1

f(i).

Some helpful formulas

We will be dealing with sums like

n∑
i=1

1,
n∑
i=1

i, and
n∑
i=1

i2

a lot, so it would be helpful if we had some formula for calculating these
sums.

Theorem B.2.

n∑
i=1

1 = n

Proof.

n∑
i=1

1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

That is, we are simply adding up the number 1 a total of n times, and so
we get n.
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Theorem B.3.

n∑
i=1

i =
n(n+ 1)

2

Proof.
Let S = 1 + 2 + · · ·+n. Notice we can write this as S = n+ (n− 1) +
· · ·+ 1. Adding S to itself we have

2S = (n+ 1) + (n+ 1) + · · ·+ (n+ 1)︸ ︷︷ ︸
n times

= n(n+ 1)

and so dividing by 2 gives the sum.

The proof above is supposedly due to Carl Gauss. Carl Gauss was a
German mathematician who lived in the 19th century, and is often con-
sidered to be one of the greatest mathematicians to ever live. Gauss was
a prodigy and is said to have discovered the above formula when he was
eight years old. The story goes that the young Gauss was being very
rambunctious in school one day and so his teacher, knowing Gauss en-
joyed math, decided to give Gauss some busy work to occupy him. She
asked Gauss to add up the numbers 1 + 2 + 3 + · · · + 98 + 99 + 100, ex-
pecting this to take him all afternoon. Unfortunately for the teacher, she
greatly underestimated Gauss who noted that we could write the sum
1 + 2 + 3 + · · ·+ 98 + 99 + 100 backwards, 100 + 99 + 98 + · · ·+ 3 + 2 + 1,
and it would still be the same thing – call this value S. If we added these
two expressions (once written forwards and once written backwards) to-
gether, we would have twice S. However, the young Gauss noticed that
when we add the terms 1 and 100 we get 101; when we add the terms 2
and 99 we get 101; when we add the terms 3 and 98 we get 101; and so
forth. Thus we have 101 being added to itself one-hundred times, mean-
ing 2S = 101 ·100 = 10, 100. Dividing this by 2 gives S = 5, 050. So in just
a few minutes Gauss computed what his teacher was expecting would
take all afternoon.
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Theorem B.4.

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

Proof.
To prove this we will use a technique called mathematical induction,
which students usually first see in a course on Logic and Proof. That
is, this proof requires a technique students usually don’t learn until
after they’ve finished their Calculus sequence. Because of this, you
should not dwell on the proof or worry if it doesn’t make sense to
you; it’s only included here for the sake of completeness.

We easily verify the formula in the case n = 1:

1∑
i=1

i2 = 11 = 1 =
1 · 2 · 3

6
.

Now suppose the formula has already been verified for all inte-
gers from 1 to n − 1. Then the formula will also hold for n because
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of the following string of expressions:

n∑
i=1

i2 =
n−1∑
i=1

i2 + n2

=
(n− 1)n(2(n− 1) + 1)

6
+ n2

=
(n2 − n)(2n− 1)

6
+ n2

=
2n3 − 3n2 + n

6
+ n2

=
2n3 − 3n2 + n+ 6n2

6

=
2n3 + 3n2 + n

6

=
n(2n2 + 3n+ 1)

6

=
n(2n2 + 2n+ n+ 1)

6

=
n(2n [n+ 1] + [n+ 1])

6

=
n(n+ 1)(2n+ 1)

6

Theorem B.5.

n∑
i=1

i3 =

(
n(n+ 1)

2

)2

B.2 Linearization and differentials
The whole idea behind calculus is to take hard problems and make them
simpler by approximating with something that’s easier to work with.
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One of the best examples of this occurs with linearization, which is the
idea that we should approximate complicated functions with simpler
ones and in particular with linear functions. This idea has had, and con-
tinues to have, a profound impact on applications of mathematics. If
you’ve ever wondered how it is a computer or calculator is able to com-
pute cos(22.091) or

√
16.29, then you may be surprised to learn that the

answer relies on calculus.

Motivation

If you think about the mathematical procedures that you can “really” do,
the things that you can in principle sit down and work out with pencil
and paper, you may come to the realization that you only know how
to do four things: add, subtract, multiply, and divide. Of course, you
can do some other things like square or cube a number, but this is just
multiplication applied several times. Other operations – even ones as
simple as taking square roots! – are much, much harder to do by hand.
Without a calculator there are probably only a small handful of numbers
whose square roots you can actually calculate: things you can actually
work out the answer to with just a pencil and paper.

A computer is no different. Computers are programmed by people,
so if the computer is about to determine the square root of 384.193, then
someone had to tell it how to do that. And computers don’t posess some
magical computational ability that you don’t: when you get down to the
nuts and bolts of it, a computer can also only add, subtract, multiply, and
divide. This is meant quite literally, by the way. In terms of what the
hardware of a computer is actually able to do there are special circuits
that use combinations of logical operators (AND, OR, NOT) to do arith-
metic with numbers represented in binary (base 2). In some sense you
are actually much better at arithmetic than a computer: a computer only
has a finite amount of space to store numbers, but in principle there’s no
actual limitation on what a person with pen and paper can do (even if
there are serious practical limitations).

So, this still begs the question: if you can only add, substract, mul-
tiply, or divide, how is it that you’re supposed to compute a quantity
like tan−1(

√
17 + 3π)? In terms of the functions you can build with the

four arithmetic operations – i.e., the functions you can actually evaluate
– all you have are rational functions: these are things built from addition,
subtraction, multiplication, and division. In fact, for what we’re going to
consider right now, we’re going to replace complicated “transcendental”
functions with about the simplest type of function of all: a linear func-
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tion. A linear function, by the way, is just a function whose graph is a
line. So it’s a function that looks something like

f(x) = ax+ b.

Notice that to evaluate such a linear function we only need to be able to
multiply and add.

Given a differentiable function f(x) and a value a where we can com-
pute the true values of f(a) and f ′(a), then for “nearby” x-values f(x)
can be approximated by the linearization L(x),

L(x) = f ′(a)(x− a) + f(a).

If we’re doing several calculations of nearby x-values, then we certainly
don’t need to re-compute the function L(x) each time. For example, sup-
pose we want to approximate

√
8.99 and 9.1. We can use the linearization

of f(x) =
√
x at a = 9:

L(x) =
1

6
(x− 9) + 3.

Plugging in 8.99 and 9.1 into this linearization, the only difference be-
tween the two expressions for L(8.99) and L(9.1) is the quantity x− 9:

L(8.99) =
1

6
(8.99− 9) + 3 =

1

6
(−0.01) + 3 = 2.998333...

L(9.1) =
1

6
(9.1− 9) + 3 =

1

6
(0.1) + 3 = 3.01666...

So, once we’ve determined the formula for our linearization, the only
thing that can change when we approximate nearby points is the factor
of x − a. This quantity represents how much our x-value has changed
from a, and so we’re justified in representing this quantity as ∆x.

We could now reasonably write the linearization of our function as

L(x) = f ′(a)∆x+ f(a).

Since f(a) is the same for any quantity we compute with this lineariza-
tion, what we really care about is how much L(x) differs from f(a). If we
notice that L(a) = f(a), we could rewrite this as follows

L(x) = f ′(a)∆x+ f(a)

=⇒ L(x) = f ′(a)∆x+ L(a)

=⇒ L(x)− L(a) = f ′(a)∆x.
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This quantity, L(x) − L(a) is really what we’re interested in: it tells us
how much our approximation changes as we change the x-value. Notice
too that this quantity is a change in y-values, so you might be tempted
to denote this quantity by ∆y. However, the convention that has been
adopted is that ∆y should mean the change in the true value of the func-
tion and not the change in the approximation. Since the Greek letter ∆ is
already taken, let’s instead use the Latin letter d to write

dy = L(x)− L(a).

We could then write dy = f ′(a)∆x, but since we’re adopting the con-
vention that we reserve ∆ to mean the “true” change and d means the
“approximate” change, we will write dx in place of ∆x – although this is
exactly the same quantity. We thus arrive at the formula dy = f ′(a)dx

So, in the example above where f(x) =
√
x and a = 9, we have

dy =
1

6
dx.

This quantity is called the differential of f(x) =
√
x at 9.

Of course, we could have calculated this dy quantity at another place –
using something other than 9 – so we should really imagine that quantity
is variable, which is the x-coordinate of our original function, so let’s
continue to call it x.

We then define the differential of f(x) to be

dy = f ′(x)dx.

(The notation df = f ′(x)dx is also common and is also called the differ-
ential.)

There are a few things to notice about these differentials we’ve de-
fined. The first is that dy and dx here area actual numeric values: they’re
not just symbols. In fact, dy depends on dx: dy is a function of dx with dx
being an independent variable.

An interesting byproduct of our definitions is that if we divide both
sides of the equation dy = f ′(x)dx by dx, then we have dy

dx
= f ′(x). This

isn’t simply a coincidence: by definition, f ′(x) is a limit of changes in y-
values over changes in x-values. The intuition behind dy and dx is that
they should represent “infinitesimal changes” in x or y, and this is how
people like Newton and Leibniz originally thought about derivatives.
(There is a way to make “infinitesimal changes” precise, but discussing
it would take us very far afield.)
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The other important thing to notice is that this dy quantity is the im-
portant part of a linear approximation. We can write the linearization of
a function at a as

L(x) = dy + f(a).

We can use this to help us calculate linear approximations. In the case
of
√

8.99 and
√

9.1, for example, where we took a = 9, we have L(x) =
dy + 3 = 1

6
dx + 3. For 8.99, dx = 8.99 − 9 = −0.01, and so

√
8.99 ≈

−0.01
6

+3 = 2.998333..., just as before. So, again, differentials are really just
linearizations from another point of view.

Examples

We will first do some examples where we calculate differentials “for-
mally,” and then do some examples where we apply differentials to help
us solve some approximation problems.

Example B.1.

(a) Compute dy where y = 8x2 + 6x.

dy =
d

dx

(
8x2 + 6x

)
dx = (16x+ 6)dx

(b) Compute dy where y = sin(
√
x) cos(x2).

dy =

(
sin(
√
x)

2
√
x

cos(x2) + 2x sin(
√
x) cos(x2)

)
dx

(c) Compute df where f(x) = x2+1
x

.

df = f ′(x)dx =
x2 − 1

x2
dx.
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Example B.2.
Use differentials to approximate

√
24.9,

√
25.1, and

√
24.975.

Since these values are near
√

25 = 5, we should expect they are
all approximately dy+ 5 where dy is the differential of

√
x at x = 25.

y =
√
x

=⇒ dy =
1

2
√
x
dx

When x = 25 we have dy = dx
10

.
For
√

24.9, dx = −0.1 and so
√

24.9 ≈ −0.1
10

+ 5 = 4.99.
For
√

25.1, dx = 0.1 and so
√

25.1 ≈ 0.1
10

+ 5 = 5.01.
For
√

24.975, dx = −0.025, and so
√

24.975 ≈ −0.025
10

+ 5 = 5 −
0.0025 = 4.9975.

Example B.3.
Use differentials to estimate the amount of paint needed to apply
a coat of paint 0.05 cm thick on a hemispherical dome of diameter
50m.

The way to interpret this problem is that we want to know what
volume of paint is needed. We basically want the volume between
two spheres: one of radius 25, and one of radius 25.0005. We esti-
mate this using differentials: we want to change in volume as we go
from one sphere to the other. So our r in the problem will be 25 and
dr = 0.0005.

The volume of a sphere of radius r is

V =
4

3
πr3.

Since we have a hemisphere, we need half of this quantity,

V =
4

6
πr3.

Then
dV = 2πr2dr.
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When r = 25 and dr = 0.0005 we have

dV = 2π252 · 0.0005 = 1.964.

Let’s notice the units here: r is in metres and squared, and dr is
also in metres, so the units are cubic metres.

We need about 1.964 cubic metres of paint to paint the dome.

Example B.4.
Suppose a circular disc was measured to have a radius of 30 inches,
with a margin of error of 0.2in. What is the maximum error in the
calculation of the area of the disc?

Here we use different variables than before, but we know A =
πr2. The margin of error in our original measurement corresponds
to dr (how far the actual value is from 30), and the error in the area
of the disc is dA. We compute

dA = 2πrdr.

In our particular situation r = 30 and dr = 0.2 and so we have that
the error in the area of the disc is

dA = 2π · 30 · 0.2 ≈ 37.699



CSolutions to Exercises
C.1 Chapter 1, Review of Calculus I Material

1.1 We simply differentiate 2
3

(x3 + x− 2)
3/2

+ C to see that we get back√
x3 + x− 2 (3x2 + 1).

d

dx

(
2

3

(
x3 + x− 2

)3/2
+ C

)
=

2

3

d

dx

(
x3 + x− 2

)3/2
+

d

dx
C

=
2

3
· 3

2

(
x3 + x− 2

)1/2 · d
dx

(
x3 + x− 2

)1/2
+ 0

=
(
x3 + x− 2

)1/2 · (3x2 + 1
)

=
√
x3 + x− 2

(
3x2 + 1

)
.

1.2 We differentiate our supposed antiderivative, 1
6
(1 + 2x)3/2 − 1

2
(1 +

2x)1/2 + C, and verify that we get back x√
1+2x

.

d

dx

(
1

6
(1 + 2x)

3/2 − 1

2
(1 + 2x)

1/2 + C

)
=

1

6
· 3

2
(1 + 2x)

1/2 · 2− 1

2
· 1

2
(1 + 2x)−

1/2 · 2 + 0

=
1

2

√
1 + 2x− 1

2
√

1 + 2x

=
1

2

√
1 + 2x ·

√
1 + 2x√
1 + 2x

− 1

2
√

1 + 2x

=
1 + 2x

2
√

1 + 2x
− 1

2
√

1 + 2x

=
1 + 2x− 1

2
√

1 + 2x

=
x√

1 + 2x

C.2 Chapter 2, Applications
2.1 When we’re computing areas we want the function we’re integrating
to be positive so that we don’t end up computing a “negative area.” The

303
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whole “top minus bottom” thing is really just to be sure our integrand
is positive. Another way to do this is to integrate the absolute value,∫ b
a
|f(x) − g(x)| dx. Notice that to actually compute this value – even

though it’s written as one integral – you basically have to do the process
outlined earlier and break the integral up into pieces where you knew
f(x) > g(x) or g(x) > f(x).

2.2 If f(x) or g(x) were continuous at some point c in the interval [a, b] we
are integrating over, then the roles of “top” and “bottom” could change
at c, even though the curves don’t intersect. Thus when we break the
interval up into pieces where f(x) = g(x), we also need to break it up at
any point where either function is discontinuous.

2.3 The value r(y∗i )− `(y∗i ) is used because it corresponds to the width of
the rectangle, and it corresponds to the width because this is the larger
value minus the smaller value. If we instead have `(y∗i ) − r(y∗i ), then we
would have the negative of the width.

C.3 Chapter 3, Integration Techniques
3.4 As described just before the example, we may perform the substitu-
tion u = 2x, du = 2 dx to write the integral as

1

2

∫ √
9− u2 du

Using the answer computed in Example 3.13, we have

1

2

∫ √
9− u2 du =

1

2

(
9

2
sin−1

(u
3

)
+
u

2

√
9− u2

)
+ C.

Rewriting this in terms of x by writing u = 2x we have∫ √
9− 4x2 dx =

1

2

(
9

2
sin−1

(
2x

3

)
+ x
√

9− 4x2

)
+ C.



DSolutions to Practice Problems
D.1 Chapter 1, Review of Calculus I Material
1.1 We will perform the substitution u = x3 − 1. Notice this means du =
3x2 dx. We have an x2 but we lack 3, so we will multiply and divide by 3
to obtain∫

x2 sin
(
x3 − 1

)
dx =

3

3

∫
x2 sin

(
x3 − 1

)
dx =

1

3

∫
3x2 sin

(
x3 − 1

)
dx

Now performing the substitution the integral becomes

1

3

∫
sin(u) du =

−1

3
cos(u) + C.

Rewriting our antiderivative back in terms x we have∫
x2 sin

(
x3 − 1

)
dx =

−1

3
cos
(
x3 − 1

)
+ C.

1.2 After performing the substitution u = ln(x), du = 1
x
dx the integral

becomes ∫
u du =

u2

2
+ C

Rewriting in terms of x, we have∫
ln(x)

x
dx =

ln(x)2

2
+ C

1.3 Again performing the substitution u = ln(x), du = 1
x
dx, the integral

becomes ∫
1

u
du = ln |u|+ C

Rewriting in terms of x, we have∫
1

x ln(x)
dx = ln | ln(x)|+ C

1.4 We perform the substitution u = sin (4x), du = 4 cos (4x) dx. We are
missing a factor of 4 in the original integral, but this is easily fixed:∫

cos (4x) sin (4x) dx =
4

4

∫
cos (4x) sin (4x) dx =

1

4

∫
4 cos (4x) sin (4x) dx

305
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With the above substitution, our integral thus becomes

1

4

∫
u du =

u2

8
+ C

Rewriting this in terms of x gives us∫
cos (4x) sin (4x) dx =

sin2(4x)

8
+ C

1.5 First notice the integral may be written as∫
sin(tan(θ))

cos2(θ)
dθ =

∫
sin(tan(θ)) sec2(θ) dθ.

Performing the substitution u = tan(θ), du = sec2(θ) dθ the integral may
be rewritten as ∫

sin(u) du = − cos(u) + C.

Rewritten in terms of x, we thus have∫
sin(tan(θ))

cos2(θ)
dθ = − cos(tan(θ)) + C.

1.6 ∫
sec(x) dx =

∫
sec(x)

sec(x) + tan(x)

sec(x) + tan(x)
dx

=

∫
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx

If we now let u = sec(x) + tan(x), then du = (sec(x) tan(x) + sec2(x)) dx
and so our integral becomes∫

1

u
du = ln |u|+ C

Rewriting this in terms of x we have∫
sec(x) dx = ln | sec(x) + tan(x)|+ C.
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1.7 We will perform the substitution u = x2− 3 which means du = 2x dx.
Noting 2x3 = x2 · 2x, we can write our original integral as∫ 9

3

2x3
√
x2 − 3 dx =

∫ 9

3

x2
√
x2 − 3 2x dx

Let’s notice that since u = x2−3 we have x2 = u+3, so when we perform
the substitution the integrand becomes (u+ 3)

√
u. Since this is a definite

integral, though, we also need to change our limits of integration. When
x = 3, we have that u = 32 − 3 = 6; when x = 9 we have u = 92 − 3 = 78
and so∫ 9

3

2x3
√
x2 − 3 dx =

∫ 9

3

x2
√
x2 − 3 2x dx

=

∫ 78

6

(u+ 3)
√
u du

=

∫ 78

6

(
u
√
u+ 3

√
u
)
du

=

∫ 78

6

(
u

3/2 + 3u
1/2
)
du

=

(
u5/2

5/2
+ 3

u3/2

3/2

)∣∣∣∣78

6

=

(
2u5/2

5
+

6u3/2

3

)
|78
6

=

(
2 · 785/2

5
+

6 · 783/2

3

)
−
(

2 · 65/2

5
+

6 · 63/2

3

)
1.8 Letting u = 23 + 7x we have du = 7 dx. Noting that 14 = 2 · 7, our
original integral may be rewritten as∫ 3

−2

14

23 + 7x
dx =

∫ 3

−2

2

23 + 7x
7dx.

Now we perform the substitution, changing our limits of integration
since this is a definite integral. In particular, when x = −2 we have
u = 23 + 7 · (−2) = 9; when x = 3 we have u = 23 + 7 · 3 = 44 and so our
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integral becomes ∫ 3

−2

14

23 + 7x
dx =

∫ 3

−2

2

23 + 7x
7dx

=

∫ 44

9

2

u
du

=

∫ 44

9

2u−1 du

=2 ln |u|
∣∣∣∣44

9

=2 ln(44)− 2 ln(9)

= ln(442)− ln(92)

= ln(1936)− ln(81)

= ln

(
1936

81

)
.

A decimal approximation to this answer would be 3.1739.

1.9 Performing the substitution u = 2x, we have du = 2 dx, or dx = 1
2
du.

Our integral can then be rewritten as follows:∫ 1

0

f(2x) dx =
1

2

∫ 2

0

f(u) du =
5

2
.
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D.2 Chapter 2, Applications
2.1 To simplify the integral, we’ll integrate this with respect to y, doing
the right-hand side minus the left-hand side.∫ 4

1

(
y − (y − 2)2

)
dy =

∫ 4

1

(
y −

(
y2 − 4y + 4

))
dy

=

∫ 4

1

(
−y2 + 5y − 4

)
dy

=

(
−y3

3
+

5y2

2
− 4y

)∣∣∣∣4
1

=
−43

3
+

5 · 42

2
− 4 · 4−

(
−1

3
+

5

2
− 4

)
=
−64

3
+ 40− 16−

(
−2 + 15− 24

6

)
=
−64 + 72

3
− −11

6

=
8

3
+

11

6

=
27

6
=

9

2
= 4.5

2.2

Area =

∫ 2

0

(x
2

+ 1− sin(x)
)
dx

=

(
x2

4
+ x+ cos(x)

)∣∣∣∣2
0

= (1 + 2 + cos(2))− (0 + 0 + 1)

= 2 + cos(2)

2.3 We must determine where the curves intersect to determine the bounds
of our integral and how to break the integral up into pieces where one we
know which curve is on the right and which is on the left.

To see where the curves intersect we must solve the equation −y3 +
2y2 = −3y. Let’s first rewrite this equation as y3−2y2−3y = 0. Factoring
out a y we have y(y2− 2y− 3) = 0. Now we factor y2− 2y− 3 by looking
for two numbers that multiply to −3 and add to −2. Notice that −3 and
1 have these properties: −3 · 1 = −3 and −3 + 1 = −2. This tells us
that y2 − 2y − 3 factors as (y − 3)(y + 1). Thus our original equation is
ultimately rewritten as y(y−3)(y+ 1) = 0 which is solved by y = 0, y = 3
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and y = −1. This tells us that we’re ultimately going to integrate from−1
(the smallest value) to 3 (the largest value). However, the roles of which
curve is on the left and which curve is on the right may change at y = 0.

We can of course see this from the picture, but without a picture we
could plug in a y value between −1 and 0 to see which curve is on the
right for −1 ≤ y ≤ 0. Plugging y = − 1/2 into x = −3y, for example,
gives us an output of 3/2. When we plug the same y = − 1/2 into the other
expression, x = −y3 + 2y2, though, the corresponding output is 3

8
. Since

1
2
> 3

8
, this means that x = −3y is the curve on the right and x = −y3 +2y2

is the curve on the left, at least for −1 ≤ y ≤ 0.
For our other interval, 0 ≤ y ≤ 3, we plug in some y-value between 0

and 3 into both of our functions. Plugging y = 2 into x = −3y gives an
output of x = −6, whereas it gives an output of x = 0 when plugged into
x = −y3 + 2y2. This means that x = −y3 + 2y2 is on the right and x = −3y
is on the left for 0 ≤ y ≤ 3.

Now we compute the area by adding the corresponding integrals to-
gether,

Area =

∫ 0

−1

(
−3y −

(
−y3 + 2y2

))
dy +

∫ 3

0

(
−y3 + 2y2 − (−3y)

)
dy.

We’ll simply compute these integrals separately and then add them to-
gether. ∫ 0

−1

(
−3y −

(
−y3 + 2y2

))
dy =

∫ 0

−1

(
−3y + y3 − 2y2

)
dy

=

(
−3y2

2
+
y4

4
− 2y3

3

)∣∣∣∣0
−1

= 0−
(
−3

2
+

1

4
− −2

3

)
=

3

2
− 1

4
− 2

3

=
18− 3− 8

12

=
7

12
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∫ 3

0

(
−y3 + 2y2 − (−3y)

)
dy =

∫ 3

0

(
−y3 + 2y2 + 3y

)
dy

=

(
−y4

4
+

2y3

3
+

3y2

2

)∣∣∣∣3
0

=

(
−81

4
+

64

3
+

27

2

)
− 0

=
−243 + 256 + 162

12

=
175

12

Adding these together we have that the area is

7

12
+

175

12
=

185

12
.

2.4 We must find where these curves intersect by solving the equation
y2−2 = y, or y2−y−2 = 0. Notice the left-hand side factors as (y+1)(y−2),
and so the equation is solved by y = −1 and y = 2. Thus we will integrate
the right-hand curve minus the left-hand curve over the interval −1 ≤
y ≤ 2. To determine which curve is on the right we can plug a y-value
between −1 and 2 into each expression. Plugging y = 0 into y2− 2 yields
−2, whereas plugging y = 0 into y yields 0, and so x = y is the curve on
the right and x = y2 − 2 is the curve on the left.
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The area is thus

Area =

∫ 2

−1

(
y −

(
y2 − 2

))
dy

=

∫ 2

−1

(
−y2 + y + 2

)
dy

=

(
−y3

3
+
y2

2
+ 2y

)∣∣∣∣2
−1

=

(
−8

3
+ 2 + 4

)
−
(

1

3
+

1

2
− 2

)
=
−8 + 6 + 12

3
− 2 + 3− 12

6

=
10

3
− −7

6

=
20 + 7

6

=
27

6
=

9

2

2.5 We must determine where the curves intersect, which we can do by
solving the equation x4 = 2 − x2. We can rewrite this as x4 + x2 − 2 = 0.
Notice this is actually a quadratic “in disguise,” that is, we can think of
this as (x2)2+(x2)1−2 = 0 and apply the quadratic formula. Alternatively,
let u = x2 and our equation becomes u2 + u− 2 = 0 which the quadratic
formula tells us is solved by

u =
−1±

√
1− 4 · 1 · (−2)

2
=
−1±

√
9

2
=
−1± 3

2

and so u = 1 or u = −1. Notice that one of these values is negative. Since
u = x2 and the square of a real number is positive, the negative solution
is impossible and so we’re left with u = 1. As u = x2, though, we have
x2 = 1 so x = ±1.

To determine which of the curves is on the top we can plug in any x-
value between −1 and 1. Plugging x = 0 into x4 gives 0, while plugging
x = 0 into 2− x2 gives 2, and so 2− x2 is on top.
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The area of the enclosed region is thus

Area =

∫ 1

−1

(
2− x2 − x4

)
dx

=

(
2x− x3

3
− x5

5

)∣∣∣∣1
−1

=

(
2− 1

3
− 1

5

)
−
(
−2 +

1

3
+

1

5

)
= 2− 1

3
− 1

5
+ 2− 1

3
− 1

5

= 4 +
2

3
+

2

5

=
30 + 10 + 6

5

=
46

5

2.6 Notice that once we choose an x-value for our cross section, since the
cross section is a square, we only need to find the length of one side of
the square. In particular, since the cross section goes from the base of the
triangle to the top of the triangle, its length is just given by the equation
of the line corresponding to the top of the triangle. Since this line goes
through (0, 0) and (2, 1), this is just y = x/2.

Length of one side of the square

Thus the area of the cross section at a given x value is simply (x/2)2 =
x2/4.



APPENDIX D. SOLUTIONS TO PRACTICE PROBLEMS 314

Integrating the cross sectional areas we find that the volume is

Volume =

∫ 2

0

x2

4
dx

=
x3

12

∣∣∣∣2
0

=
8

12

=
2

3

2.7 Let’s first notice these curves intersect at x = 0 and x = 3, since these
are the solutions to x2 = 3x. Thus we will integrate from x = 0 to x = 3.
Using the washer method, notice the outer radius of our washers is given
by the line and the inner radius is given by the parabola. Thus the area
of each washer has the form

π
(

(3x)2 −
(
x2
)2
)

= π
(
−x4 + 9x2

)
.

Now we simply integrate this quantity from x = 0 to x = 3:

Volume =

∫ 3

0

π
(
−x4 + 9x2

)
dx

= π

(
−x5

5
+ 3x3

)∣∣∣∣3
0

= π

(
−243

5
+ 81

)
= π

405− 243

5

=
162

5
π.

2.8 Since we are using the shell method and rotating around the x-axis,
we need to express the heights of our shells as functions of x. In this we
can do this pretty easily by just solving each of y = x2 and y = 3x for x to
obtain x =

√
y and x = y/3.

As we will be integrating functions of y we need to know the y-
coordinates of where our curves intersect. We can do this by either solv-
ing
√
y = y/3 or plugging in the x = 0 and x = 3 from our solution to the

previous problem to see what the corresponding y’s are. We will solve√
y = y/3 here. Squaring both sides this becomes y = y2/9 or 9y = y2. We
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may rewrite this as y2− 9y = 0 and then factor this as y(y− 9) = 0, so the
solutions are y = 0 and y = 9.

The height of the shell associated with a given y value is the difference
between the highest and lowest x-values for that y. For our region this
gives us the heights

√
y − y

3
.

Now we can plug this into our formula for the shell method to obtain

Volume =

∫ 9

0

2πy
(√

y − y

3

)
dy

= 2π

∫ 9

0

(
y

3/2 − y2

3

)
dy

= 2π

(
2

5
y

5/2 − y3

9

)∣∣∣∣9
0

= 2π

(
2

5
9
5/2 − 81

)
= 2π

(
2

5
243− 81

)
= 2π

486− 405

5

= 2π
81

5

=
162

5
π

2.9 Since we are rotating around an axis paralell to the y-axis, the heights
of our shells will be functions of x. In particular, they will be the change
in the functions −x2 + 4x + 4 and x2; the height of the shell associated
with a point x in [−1, 2] is

−x2 + 4x+ 4− x3

(This is because the red curve, y = −x2 + 4x + 4 is on top and the blue
curve, y = x3, is on the bottom in the picture provided in the problem.)

The radius of the shell, however, is given by 3 − x since the axis of
rotation x = 3 is to the right of the figure we are rotating.
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This means the volume of the object is

Volume =

∫ 2

−1

2π(3− x)
(
−x3 − x2 + 4x+ 4

)
dx

= 2π

∫ 2

−1

(
−3x3 − 3x2 + 12x+ 12 + x4 + x3 − 4x2 − 4x

)
dx

= 2π

∫ 2

−1

(
x4 − 2x3 − 7x2 + 8x+ 12

)
dx

= 2π

(
x5

5
− x4

2
− 7x3

3
+ 4x2 + 12x

)∣∣∣∣2
−1

= 2π

(
296

15
− −191

30

)
=

783

15
π

=
261

5
π

2.10 If we use the washer method to rotate around an axis parallel to the
y-axis, then we will need to integrate a function of y. This means we
need to solve each of y = x3 and y = −x2 + 4x + 4 for x. The first one
is of course simply x = 3

√
y, and the other requies some more algebra. In

particular, let’s first rewrite our equation as −y = x2 − 4x − 4. Now we
will complete the square to obtain−y = x2−4x+4−4−4 which we may
rewrite as−y = (x−2)2−8, and from here we can solve 8−y = (x−2)2, so
x = 2±

√
8− y. Since all of the x-values in our region are to the left of 2 we

will need to use the negative square root and so we have x = 2−
√

8− y.
The outer radius of the washers will be

3−
(

2−
√

8− y
)

= 1 +
√

8− y

and the inner radius will be
3− 3
√
y.

To write our integral we need to determine where our curves inter-
sect. In the statement of the problem we were told the x’s varied from
x = −1 to x = 2. Plugging these x-values into the formulas for our y’s,
we see the y’s vary from y = (−1)3 = 1 to y = 23 = 8. Thus our integral
for the volume using the washer method is
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Volume =

∫ 8

−1

π

((
1 +

√
8− y

)2

−
(
3− y1/3

)2
)
dy

= π

∫ 8

−1

(
1 + 2

√
8− y + 8− y −

(
9− 6y

1/3 + y
2/3
))

dy

= π

∫ 8

−1

(
2
√

8− y − y + 6y
1/3 − y2/3

)
dy

To evaluate this integral we will break it into two pieces,

2π

∫ 8

−1

√
8− y dy + π

∫ 8

−1

(
−y + 6y

1/3 − y2/3
)
dy

For the first of these integrals we will use the substitution u = 8 − y,
du = −dy which allows us to write the integral as

−2π

∫ 0

9

u
1/2 du = 2π

∫ 9

0

u
1/2 du

=
4π

3
u

3/2

∣∣∣∣9
0

=
4π

3
· 27

= 36π

The second integral we can compute directly:

π

∫ 8

−1

(
−y + 6y

1/3 − y2/3
)
dy

=π

(
−y2

2
+

18

4
y

4/3 − 3

5
y

5/3

)∣∣∣∣8
−1

=π

((
−32 + 72− 96

5

)
−
(
−1

2
+

18

4
+

3

5

))
=π

(
104

5
− 23

5

)
=

81

5
π

Adding these together, the volume is

36π +
81

5
π =

180 + 81

5
π =

261

5
π
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2.11 As the force (900lb) is constant here, the work is just force times
distance, and so 9000 foot-pounds of work is done.

2.12 Notice that as the crane reels the chain in, the amount of chain de-
creases from 30 feet to 20 feet. As it decreases the weight of the re-
maining chain decreases. Letting y denote the height of the block above
the ground we will ultimately move the block ten feet, but because the
weight of the chain is changing (since its length is changing), the force
we’re applying changes.

In particular, when the block is y feet above the ground, the amount
of chain currently let out is 30− y. The weight of this portion of the chain
is then 50 · (30 − y) = 1500 − 50y. This is attached to a 900 lb block, so
we need to add this weight onto our force obtaining 2400− 50y. Now we
simply integrate this force along the ten feet the block moves:

Work =

∫ 10

0

(2400− 50y) dy

=
(
2400y − 25y2

)∣∣∣∣10

0

= 24000− 2500

= 21500

Thus 21,500 foot-pounds of work is done.

2.13 We imagine that the liquid in the tank is chopped into little discs of
height ∆y which are distance y from the bottom of the tank. The volume
of each disc is then π · 102∆y, and so the weight of that disc is 6500π∆y
pounds. Each disc moves from its current height y to the top of the tank.
Since the tank is 30 feet tall, that means the disc at height y needs to move
30− y feet. The work in moving that one disc is then

6500π(30− y)∆y.

This is just for one disc, and so we need to add up the work for each of
these, and then take the limit as we use more and more (skinnier and
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skinnier) discs, which gives us the following integral:

Work =

∫ 30

0

6500π(30− y) dy

= 6500π

∫ 30

0

(30− y) dy

= 6500π

(
30y − y2

2

)∣∣∣∣30

0

= 6500π

(
302 − 302

2

)
= 6500π

302

2
= 2925000π

where the units are foot-pounds.

D.3 Chapter 3, Integration Techniques
3.1 We will perform integration by parts using u = ln(x), dv = (4x3 +
2x) dx. We then have du = 1

x
dx and v = x4 + x2. Using the integration by

parts formula we then have∫ (
x3 + 2x

)
dx =

(
x4 + x2

)
ln(x)−

∫ (
x4 + x2

) 1

x
dx

=
(
x4 + x2

)
ln(x)−

∫ (
x3 + x

)
dx

=
(
x4 + x2

)
ln(x)−

(
x4

4
+
x2

2

)
+ C.

3.2 Let u = sin(3x), dv = e2x dx, then du = 3 cos(3x) and v = 1
2
e2x. We

then have
e2x sin(3x)

2
− 3

2

∫
e2x cos(3x) dx.

For the integral on the right we again do integration by parts with u2 =
cos(3x), dv2 = e2x, so du2 = −3 sin(3x), v2 = 1

2
e2x and then have∫

e2x cos(3x) dx =
e2x cos(3x)

2
+

3

2

∫
e2x sin(3x) dx.
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Putting this into the above we have∫
e2x sin(3x) =

e2x sin(3x)

2
− 3

2

(
e2x cos(3x)

2
+

3

2

∫
e2x sin(3x) dx

)
or simply∫

e2x sin(3x) =
e2x sin(3x)

2
− 3e2x cos(3x)

4
− 9

4

∫
e2x sin(3x) dx

Thus
13

4

∫
e2x sin(3x) =

e2x sin(3x)

2
− 3e2x cos(3x)

4

and ∫
e2x sin(3x) =

2e2x sin(3x)

13
− 3e2x cos(3x)

13
+ C

3.3 We first write the integral as
∫

sec(x) sec2(x) dx. Now perform inte-
gration by parts with u = sec(x), dv = sec2(x), so du = sec(x) tan(x)dx,
and v = tan(x). We then have∫

sec3(x) dx =

∫
sec(x) sec2(x) dx

= sec(x) tan(x)−
∫

tan(x) sec(x) tan(x) dx

= sec(x) tan(x)−
∫

tan2(x) sec(x) dx

= sec(x) tan(x)−
∫ (

sec2(x)− 1
)

sec(x) dx

= sec(x) tan(x)−
∫

sec3(x) dx+

∫
sec(x) dx

Moving the extra sec3(x) to the other side this becomes

2

∫
sec3(x) dx = sec(x) tan(x) +

∫
sec(x) dx.

To integrate sec(x) we multiply by 1 written as sec(x) + tan(x) over itself
to obtain∫

sec(x) dx =

∫
sec(x)

sec(x) + tan(x)

sec(x) + tan(x)
dx =

∫
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx

Letting w = sec(x)+tan(x) we have dw = (sec(x) tan(x) + sec2(x)) dx and
the integral becomes

∫
dw
w

which is simply ln |w| + C. Rewriting this in
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terms of x we find
∫

sec(x) dx = ln | sec(x) + tan(x)| + C. Plugging this
into the above and solving for

∫
sec3(x) dx we find∫

sec3(x) dx =
1

2
(sec(x) tan(x) + ln | sec(x) + tan(x)|) + C

3.4 The radius of the cylinder corresponding to x is 1 − x, and so the
volume is computed using the shell method as∫ 0

−1

2π(1− x)e−x dx = 2π

(∫ 0

−1

e−x dx−
∫ 0

−1

xe−x dx

)
Now we compute these two integrals. The first one is simply∫ 0

−1

e−x dx = −e−x
∣∣∣∣0
−1

= −e0 + e1 = e− 1.

The second integration requires integration by parts. Using u = x, dv =
e−x dx, du = dx, v = −e−x we have∫ 0

−1

xe−x dx = −xe−x
∣∣∣∣0
−1

+

∫ 0

−1

e−x dx

= −xe−x
∣∣∣∣0
−1

+
(
−e−x

)∣∣∣∣0
−1

=
(
−xe−x − e−x

)∣∣∣∣0
−1

= (0− 1)− (e− e)
= −1

The volume is thus
2π (e− 1− (−1)) = 2πe.

3.5 We will perform integration by parts with u = ln(
√
x) and dv = dx.

Then du = 1
2
√
x
√
x
dx = 1

2x
and v = x. The integration by parts formula

then gives us ∫
ln(
√
x) dx = x ln(

√
x)−

∫
x

1

2x
dx

= x ln(
√
x)−

∫
1

2
dx

= x ln(
√
x)− x

2
+ C
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3.6 Performing integration by parts with u = x2, dv = ex dx we have
du = 2x dx and v = ex. Thus∫

x2ex dx = x2ex −
∫
ex2x dx

= x2ex − 2

∫
xex dx.

We will compute
∫
xex using integration by parts a second time with

u2 = x, dv2 = ex dx and so du2 = dx and v2 = ex. This tells us∫
xex dx = xex −

∫
ex dx = xex − ex + C.

Plugging this into the
∫
xex dx that appeared in our earlier integral we

have ∫
x2ex dx = x2ex − 2xex − 2ex + C.

3.7∫
sin4(x) dx =

∫ (
sin2(x)

)2
dx =

∫ (
1− cos(2x)

2

)2

dx

=

∫
1− 2 cos(2x) + cos2(2x)

4
dx

=

∫
1− 2 cos(2x) + 1+cos(2x)

2

4
dx

=

∫ (
1

4
− cos(2x)

2
+

1

8
+

cos(4x)

8

)
dx

=

∫ (
3

8
− cos(2x)

2
+

cos(4x)

8

)
dx

=
3

8
x− sin(2x)

4
+

sin(4x)

32
+ C

3.8 Writing tan(x) as sin(x)
cos(x)

the integral becomes∫
sin2(x)

cos2(x)
sin(x) dx.

Now we can rewrite sin2(x) = 1− cos2(x) to obtain∫
1− cos2(x)

cos2(x)
sin(x) dx =

∫
sin(x)

cos2(x)
dx−

∫
sin(x) dx.
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The first integral we can compute with the substitution u = cos(x), du =
− sin(x) dx to obtain

−
∫
du

u2
=

1

u
+ C

which in terms of x tells us∫
sin(x)

cos2(x)
dx =

1

cos(x)
+ C = sec(x) + C.

(Alternatively, we might observe sin(x)
cos2(x)

= tan(x) sec(x).)
The second integral is simply

∫
sin(x) dx = − cos(x) + C.

Putting these together we have∫
tan2(x) sin(x) dx = sec(x)− cos(x) + C.

3.9 As our integrand involves the form a2 − x2, we will perform the
substitution x = a sin(θ), which in this case means x = 6 sin(θ), dx =
6 cos(θ) dθ. Our integral then becomes∫

6 sin(θ)√
36− 36 sin2(θ)

6 cos(θ) dθ = 6

∫
sin(θ)

cos(θ)
cos(θ) dθ

Of course, this becomes just 6
∫

sin(θ) dθ which is simply−6 cos(θ)+C. To
write this in terms of xwe consider the right triangle whose side opposite
of θ has length x and whose hypotenuse has length 6. By the Pythagorean
theorem, the length of the adjacent side is

√
36− x2.

6 x

√
36− x2

θ

Noting cos(θ) =
√

36−x2
6

, we have∫
x√

36− x2
dx = −

√
36− x2 + C
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3.10 Since this integrand involves an expression of the form x2 + a2,
where a =

√
2, we will perform the substitution x =

√
2 tan(θ), dx =√

2 sec2(θ) dθ. Our integral then becomes∫
25/2 tan5(θ)√
2 tan(θ) + 2

√
2 sec2(θ) dθ =

23

√
2

∫
tan5(θ)

sec(θ)
sec2(θ) dθ = 2

5/2

∫
tan5(θ) sec(θ) dθ

To integrate this we will rewrite tan(θ) and sec(θ) in terms of sines and
cosines to obtain

2
5/2

∫
sin5(θ)

cos5(θ)
· cos(θ) dθ

We may further rewrite this as

2
5/2

∫
sin5(θ)

cos4(θ)
dθ

=2
5/2

∫
sin4(θ)

cos4(θ)
sin(θ) dθ

=2
5/2

∫ [
sin2(θ)

]2
cos4(θ)

sin(θ) dθ

=2
5/2

∫
(1− cos2(θ))

2

cos4(θ)
sin(θ) dθ

Now we can perform the substitution u = cos(θ), du = − sin(θ) dθ and
the integral becomes

−
∫

(1− u2)2

u4
du = −

∫
1− 2u2 + u4

u4
du = −

∫ (
u−4 − 2u−2 + 1

)
du

Thus the antiderivative in terms of u is

1

3u3
− 1

u
+ u+ C

which in terms of θ is

1

cos3(θ)
− 1

cos(θ)
+ cos(θ) + C

Finally, to put this back in terms of x we recall that x =
√

2 tan(θ). Con-
sidering the right triangle where the side opposite the angle θ has length
x and the side adjacent to θ has length

√
2, the hypotenuse must have

side
√

2 + x2:



APPENDIX D. SOLUTIONS TO PRACTICE PROBLEMS 325

√ 2 +
x
2

x

2

θ

Thus cos(θ) =
√

2
2+x2

, we have that the antiderivative is

1

3
(

2
2+x2

)3/2 −
√

2 + x2

2
+

√
2

2 + x2
+ C

3.11 We will perform the substitution x = sec(θ), dx = sec(θ) tan(θ) and
the integral then becomes∫

sec(θ)√
sec2(θ)− 1

sec(θ) tan(θ) dθ =

∫
sec(θ)

tan(θ)
sec(θ) tan(θ) dθ =

∫
sec2(θ) dθ

Of course, the antiderivative of sec2(θ) is simply tan(θ) + C. To rewrite
this in terms of x we consider the right triangle where the side adjacent
to θ has length 1 and the hypotenuse has length x. The opposite side then
has length

√
x2 − 1. As tangent is opposite over hypotenuse we have that

our antiderivative is simply∫
x√

x2 − 1
dx =

√
x2 − 1 + C.

3.12 To write this as a sum of simpler fractions we must first factor the
denominator, which factors as (x + 1)(x − 1). Thus we will write the
fraction as

5x− 1

x2 − 1
=

A

x+ 1
+

B

x− 1
.

To determine the values of A and B we add the fractions on the right to
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obtain

A

x+ 1
+

B

x− 1

=
A

x+ 1
· x− 1

x− 1
+

B

x− 1
· x+ 1

x+ 1

=
Ax− A+Bx+B

x2 − 1

=
(A+B)x+ (−A+B)

x2 − 1

Equating coefficients with the numerator of the original fraction gives us
the following system of equations:

A+B = 5

−A+B = −1

Adding the equations together tells us 2B = 4, so B = 2. Once we know
B = 2, we easily see A = 3 and thus∫

5x− 1

x2 − 1
dx =

∫ (
3

x+ 1
+

2

x− 1

)
dx

= 3 ln |x+ 1|+ 2 ln |x− 1|+ C

3.13 We first factor the denominator as (x + 4)(x − 3). We thus want to
write our fraction as

−35

x2 + x− 12
=

A

x+ 4
+

B

x− 3
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We now write out the right-hand side as

A

x+ 4
+

B

x− 3

=
A(x− 3)

x+ 4
+
B(x+ 4)

x− 3

=
Ax− 3A+Bx+ 4B

x2 + x− 12

=
(A+B)x+ (−3A+ 4B)

x2 + x− 12

Comparing this to our earlir fraction we have

A+B = 0

−3A+ 4B = −35

The first equation tells us A = −B. Plugging this into the second equa-
tion, the second equation 3B+4B = −35, so 7B = −35, thus B = −5 and
A = 5. We now have∫

−35

x2 + x− 12
dx =

∫ (
5

x+ 4
− 5

x− 3

)
dx

= 5 ln |x+ 4| − 5 ln |x− 3|+ C

3.14 As we have a repeated root, we will write the fraction as

4x2 + 12x− 4

(x+ 2)2(x− 4)
=

A

x+ 2
+

B

(x+ 2)2
+

C

x− 4
.

Adding the terms on the right-hand side together gives us

A(x+ 2)(x− 4) +B(x− 4) + C(x+ 2)2

(x+ 2)2(x− 4)

which we may write as

Ax2 − 2Ax− 8A+Bx− 4B + Cx2 + 4Cx+ 4C

(x+ 2)2(x− 4)
.
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After combining like-terms this becomes

(A+ C)x2 + (−2A+B + 4C)x+ (−8A− 4B + 4C)

(x+ 2)2(x− 4)
.

Comparing this to our original fraction we have

A+ C = 4

−2A+B + 4C = 12

−8A− 4B + 4C = −4

Adding twice the first row to the second, the system becomes

A+ C = 4

B + 6C = 20

−8A− 4B + 4C = −4

We now add eight times the first row to the third to obtain

A+ C = 4

B + 6C = 20

−4B + 12C = 28

Now we add four times the second row to the third and we have

A+ C = 4

B + 6C = 20

36C = 108

From this we can determine C = 3, B = 2, and A = 1.
We now compute our integral as∫

4x2 + 12x− 4

(x+ 2)2(x− 4)
dx =

∫ (
1

x+ 2
+

2

(x+ 2)2
+

3

x− 4

)
dx.

We can integrate this term-by-term, where in each term we would per-
form a u-substitution with u being the denominator of the fraction in that
term. This would give us the final antiderivative

ln |x+ 2| − 2

x+ 2
+ 3 ln |x− 4|+ C.



APPENDIX D. SOLUTIONS TO PRACTICE PROBLEMS 329

3.15 The denominator simply factors as x(x2 + 1). Since there is an irre-
ducible quadratic, we will write our fraction as

A

x
+
Bx+ C

x2 + 1
.

Adding these together gives us

Ax2 + A+Bx2 + Cx

x2 + 1
=

(A+B)x2 + Cx+ A

x2 + 1
.

Comparing this to our original fraction, the corresponding system of
equations is

A+B = 8

C = −1

A = 3

This system is of course solved by A = 3, B = 5, and C = −1 and so our
integral becomes∫

8x2 − x+ 3

x3 + x
dx =

∫ (
3

x
+

5x− 1

x2 + 1

)
dx

The first term integrates to 3 ln |x|+C. For the second term we break the
integral up as ∫

5x

x2 + 1
dx−

∫
1

x2 + 1
dx.

The first integral is now solved by using the substitution u = x2 + 1,
du = 2x dx. This turns the integral into

1

2

∫
5

u
du = 5 ln |u|+ C

which in terms of x tells us∫
5x

x2 + 1
dx =

5

2
ln |x2 + 1|+ C

The last remaining integral is solved by performing the trig substitution
x = tan(θ), dx = sec2(θ) dx. The integral will then become

∫
1 dθ = θ + C

which in terms of x is just tan−1(x) + C.
Combining all the integrals above together, we have∫

8x2 − x+ 3

x3 + x
dx = 3 ln |x|+ 5

2
ln |x2 + 1|+ tan−1(x) + C
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3.16 We first write the integral as

lim
b→∞

∫ b

4/π

sec2 (1/x)

x2
dx

Now we can perform the substitution u = 1
x
, du = −dx

x2
, so the integral

becomes

lim
b→∞
−
∫ 1/b

π/4

sec2(u) du = lim
b→∞
− tan(u)

∣∣∣∣1/b
π/4

= lim
b→∞
− tan

(
1

b

)
+ tan

(π
4

)
= 1

3.17 Notice that ln(x) is undefined at x = 0, so we must consider the limit

lim
b→0+

∫ 1

b

x ln(x) dx.

Performing integration by parts with u = ln(x), dv = x dx we have du =
1
x
dx, v = x2

2
we may write the integral as

lim
b→0+

(
x2 ln(x)

2

∣∣∣∣1
b

−
∫ 1

b

x

2
dx

)

= lim
b→0+

−b2 ln(b)

2
− x2

4

∣∣∣∣1
b

= lim
b→0+

b2 − 2b2 ln(b)

4
− 1

4

= lim
b→0+

−2b2 ln(b)

4
− 1

4

Now, to take the limit of the first time we will want to use l’Hôpital’s
rule, but first we write that limit as

lim
b→0+

−2 ln(b)

4b−2

Then l’Hôpital’s rule tells us this is equal to

lim
b→0+

−2 · 1
b

−8b−3
= lim

b→0+

b3

4b
= lim

b→0+

b2

4
= 0.

Thus ∫ 1

0

x ln(x) dx = −1

4
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3.18 Since the integrand is undefined at ±2, we write our integral as the
limit

lim
b→2

∫ b

−b

dy√
4− y2

.

Now we perform the trig substitution y = 2 sin θ, then dy = 2 cos θdθ and
our antiderivative is computed as∫

2 cos θ√
4− 4 sin2 θ

dθ =

∫
dθ = θ + C

Writing this in terms of y we have θ = sin−1
(
y
2

)
and so our integral be-

comes ∫ 2

−2

dy√
4− y2

= lim
b→2

∫ b

−b

dy√
4− y2

= lim
b→2

sin−1
(y

2

)∣∣∣∣b
−b

= lim
b→2

(
sin−1

(
b

2

)
− sin−1

(
−b
2

))
=
π

2
− −π

2
= π
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