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Introduction to the Course

Mathematics is the art of reducing any problem
to linear algebra.

WILLIAM STEIN

What is linear algebra?

Most mathematicians see mathematics as falling into two broad cate-
gories: applied math and pure math. Applied mathematics is the math
that is concerned with solving “real world” problems that occur in en-
gineering, economics, and the sciences, and is probably what most edu-
cated non-mathematicians think of when they think of math. Pure math-
ematics, however, is more akin to philosophy or art: it is the mathematics
that is studied because it is considered interesting or beautiful.

Linear algebra is one of the few mathematical disciplines that falls
squarely in both categories. It is a collection of ideas and techniques that
are intrinsically interesting, but also profoundly useful. It is extremely
difficult, and perhaps impossible, to name an area of modern mathemat-
ics, science, technology, or engineering that does not use linear algebra
in some way. Not only are the tools of linear algebra useful in prac-
tical applications, they are fundamental in other advanced areas. For
example, much of algebraic topology involves associating certain vec-
tor spaces (which are the principal objects of study in linear algebra) to
topological spaces, reducing topological problems into linear algebraic
problems.

What is the structure of this course?

Some of the topics that we will study in this course are things you may
have seen before in a high school algebra class; systems of linear equa-
tions and matrices are often (but not always) studied in high school.
Some ideas, such as sets, will be familiar to students that have already
taken courses in discrete mathematics or logic and proof, but will be new
to other students. And some topics will be completely alien to everyone
in the class.

vi



INTRODUCTION TO THE COURSE vii

This course will start at the beginning by reviewing systems of linear
equations. Because this is a topic that should be somewhat familiar to
most students in the course, we will go through this material relatively
quickly in lecture, but detailed lecture notes will be provided if you want
or need to see a deeper explanation than what is mentioned in class.

After we have covered the basics (solving systems of linear equations
and matrix algebra) we will begin to move into more advanced territory,
and we will consider topics which at first will seem very abstract and
esoteric. However, we will see that even these strange and exotic ideas
have real world applications. One of the reasons we will go through the
early material quickly is so that we will have more time to discuss the
more difficult material in the second half of the course.

There is no denying that this course will require a level of abstraction
and sophistication that you are likely not used to. This may seem very
jarring, especially if you are the type of student that has typically under-
stood material in previous mathematics courses without a great deal of
trouble. I mention this not to scare you away from the course, but just to
reassure you that feeling frustrated and confused is a normal part of the
learning process, especially when you are faced with ideas that are unlike
anything you have seen before. I have every confidence that each student
is capable of understanding the material in this course, but you have to
accept that this course will require you to work hard and sometimes you
will be frustrated.

How can students succeed?

I firmly believe that every student is capable of succeeding in this course,
butI also know that some students will struggle and so I want to mention
a few concrete things that you can do to succeed in the course.

Recognize that this class is difficult

In the first couple of weeks of the semester this class may seem relatively
straight-forward, but you should not let this lull you into thinking the en-
tire semester will be easy. One of the difficult things about this course is
that we will cover a lot of material, and each new topic will build off the
previous ones. If you start to fall behind, you will have a very small win-
dow of time to get back up to speed before being behind will negatively
affect your grade.
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Study every day

To do well in this course you will need to invest a significant amount of
time into studying outside of class. Sitting in lecture, even if you feel like
you understand what is going on during the lecture, will not be enough.
You should get into the habit of studying every day: not just the days the
class meets, not just on weekdays, but every day. Something as simple
as putting aside one hour for individual studying outside of class each
day can have a huge impact on your grade and keep you from falling
behind. Sometimes you will have other commitments that prevent you
from getting an hour each day, but when at all possible, you should really
try to study at least one hour each day. If you can’t manage an hour one
day, do what you can; even fifteen or twenty minutes of studying is much
better than no studying at all.

When you study you should first review your notes from class; notice
this implies that you need to be taking notes in class. If there is something
from your notes that you don’t understand, try to figure it out. It’s best
if you try to figure things out on your own first without having to look
in a book or online: sometimes you just need to spend a few minutes
thinking through the details of some calculation or the logic behind some
argument before it starts to make sense.

Read your book and the posted lecture notes. The book and the lec-
ture notes cover the same material, but sometimes presented in different
ways. By reading both you see the same ideas from two different points
of view. This can be helpful because one point of view may “click” when
the other does not.

Be incredulous

To do well in advanced math courses you should try to think like a math-
ematician. This means trying to understand the ins and outs of every
argument, why each step in a computation was performed, what ear-
lier results were used, etc. In general, you should be incredulous: you
should not simply take it on faith that what we have learned in class is
true (even though it is!), but you should instead always ask why it’s true
and try to figure out the reason. This one piece of advice, if taken to heart,
subsumes everything else.
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Practice, then practice some more

You know that you understand a concept well and are prepared for an
exam when you have practiced so much that solving problems becomes
mechanical. For example, think about solving for z in an equation such
as ©* = 2 + 2x. The first time you started learning algebra this may have
seemed very odd and difficult, but as you did more examples you started
to notice the patterns and the tricks, and now you (hopefully) are able to
solve for x in equations like the one above without any trouble.

Similarly, in this class you will probably find some computations and
some logical arguments very difficult and time-consuming at first. If you
do enough examples, however, then the things that at first seem difficult
and confusing will over time become second nature. The only way for
this to happen is to invest time in practicing. When you review your
notes and see an example that we did in class, try to reproduce the result
without looking at the notes and then look back at the notes if you get
stuck or make a mistake. Do the practice problems at the end of each set
of lecture notes; pick and choose extra problems at the end of the sec-
tions in the book; make up your own problems; look for extra problems
online. The more practice you do, the easier everything will be when you
actually sit down to take an exam.

Prepare for exams

The biggest mistake you can make when an exam is coming up is to
put off studying for it. The earlier you start preparing for an exam, the
better. When an exam is coming up, start adding more time to your usual
study sessions. Ideally you should add an extra hour each day for a week
leading up to an exam. It’s probably best to try to split this up into two
one-hour study sessions each day instead of doing two hours at once.

When you're preparing for an exam, you should study as if the up-
coming exam is the hardest one you have ever taken in your life. (This
isn’t to say that it necessarily will be the hardest exam you ever take, but
it’s better to over-prepare than to under-prepare.) If there is a topic you
don’t feel comfortable with or are worried about, don’t ignore it! Study
as if the problems you dislike and find hard will be on the exam: chances
are at least a couple types of problems you dislike will make their way
onto an exam at some point.

To prepare for an exam you should review all of the relevant notes,
look over any returned homeworks or quizzes, and try to understand any
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mistakes that you made. It is very likely that problems from homework
or quizzes will reappear on an exam.

Come to class

For some strange reason there always seem to be people who think it’s
okay to skip class. You should come to class each and every day which
you are physically able. In class you should be actively paying attention
to the lecture and trying to think through examples as they are done on
the board. If you have questions in class, then that’s good! Having ques-
tions means that you're thinking, which is what you should be doing in
class.

You should not be daydreaming, working on assignments for other
classes, playing games on your phone, or checking Facebook / X (for-
merly known as Twitter) / Tumblr / Instagram / Snapchat / Tinder /
YikYak / etc.

Start assignments early and work on them often

You will usually have at least a week to do a homework assignment, and
that is for a reason. Some of the questions on these assignments will be
difficult and you will have to spend some time thinking in order to do the
assignment. You should really try to start on assignments early, meaning
the day they are assigned, and try to do a few problems each day. You
should also anticipate that some questions are going to require a lot of
time — maybe an hour or more for the hardest questions. If you wait until
the last minute to do an assignment, you won’t have time to get it done.

Get help when you need help

Sometimes this class will be hard, but if you're willing to ask questions
and get help when you really need help, you will find the material much
easier. I encourage you to work with other students and look up re-
sources online like Khan Academy and MIT’s Open Course Ware when
you're having difficulty with a problem or concept. You can also email
me (c johnson@wcu. edu) or drop in during my office hours.

In general when you have a specific concern about an assignment or
a topic from class, you should try to address your concern by taking ad-
vantage of resources in the following order:


cjohnson@wcu.edu
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1. Try to figure things out yourself. There will be plenty of times when
you just need to spend a little bit of time thinking on your own and
you can figure things out.

2. Check in the book or lecture notes. Many questions you have will
be answered in the book or notes, you just have to take the time to
look through the book/notes and find it.

3. Ask a classmate. Sometimes you may have a misconception or mis-
heard something in lecture, and asking a friend might be all it takes
for you to realize your mistake.

4. Ask other students in the Math Tutoring Center.

5. Email me or come to office hours. I put this at the end of the list not
because I'm trying to avoid seeing you or talking to you, but just
as a matter of practicality. If everyone in the class came to me the
instant they had a question I would spend my entire day answering
their questions. I am fine with answering your questions or talking
to you when you have concerns, but I also have other classes and
other responsibilities that I have to attend to.

If you have more serious concerns about your standing in the class —
not simply a homework problem you can’t figure out — then by all means
contact me first.

Don’t stress out (too much)

There will be times when this class frustrates you: maybe there is a topic
you can’t seem to wrap your head around, or a problem that you feel like
you're staring at and have no idea how to get started. This is completely
normal and you shouldn’t get too stressed out about it. This class is going
to be hard and you are going to get confused and feel stuck sometimes,
but that is just a normal part of learning difficult material. The important
thing to remember is that you should persevere. If you're getting frus-
trated, take a break: go get something to eat, play a game, read a book,
take a nap; do something you enjoy for a little while and then get back to
work when you're ready.

The lecture notes

The notes you are reading are in their third incarnation, having evolved
from the handwritten examples I used when I first taught a version of
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this course at Wake Forest University, and then updated when I taught
the course at Indiana University. There may be places where the notes are
“rough around the edges” and may contain typos and mistakes (though
hopefully those are all minor). If you see something in the notes you
think is a mistake, it may very well be, and it would be greatly appreci-
ated if you would email me (¢ johnson@wcu. edu) to let me know about
any mistakes. While these notes are my primary resource for the exam-
ples I use in the lectures, they should not be a substitute for the textbook.
Besides the fact that your textbook has fewer mistakes than these notes
(probably not mistake-free, but relatively few and minor mistakes) since
it was professionally edited, the textbook also has lots of exercises and
practice problems, which these notes do not. I hope these notes are help-
ful to you, but you should not use them as your only source of study
material.

Chris Johnson
Fall 2024


cjohnson@wcu.edu

Part 1

Linear Systems and Matrices



Systems of Linear Equations

“Begin at the beginning,” the King said, very
gravely, “and go on till you come to the end:
then stop.”

LEWIS CARROLL
Alice in Wonderland

Linear algebra is one of the most fundamental tools in mathematics,
engineering, and the sciences. Many objects in both mathematics and
physics are defined in terms of linear algebra, and the tools of linear
algebra are then used to study those objects. From differential geome-
try and Einstein’s theory of general relativity to the practical, real-world
optimization problems that occur in industry, linear algebra is every-
where. One reason for this is because linear algebra is extremely well-
understood, but also because linear algebra can be done very efficiently
on a computer. This means that describing a problem of interest in terms
of linear algebra is often the first step to understanding and ultimately
solving that problem.

In this class we will describe the fundamentals of linear algebra, in-
cluding linear transformations, matrix algebra, determinants, eigenvec-
tors & eigenvalues, and inner products & orthogonality (if time allows).
The starting point for all of this, however, is solving systems of linear
equations. Systems of linear equations appear throughout mathematics,
and over the years people have developed a set of algorithms (mathe-
matical recipes) for how to solve such systems, or determine that they
can not be solved. Everything else in linear algebra is built upon the
ideas involved in solving a system of linear equations, so understanding
these systems is necessarily the proper place to begin a study of linear
algebra.

1.1 Linear Equations
A real linear function is a map from R" to R which has the form
(X1, ey Tp) > @121 + A2y + + -+ + Ay

where the x4, 25, ..., x,, are independent variables (i.e., values that are al-
lowed to change), and the ay, ..., a,, are constants that have been chosen

2



CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS 3

and will not change. These a4, ...,a, values are called the coefficients.
Here we are assuming the coefficients and the variables are all real num-
bers.

We could define a complex linear function similarly: this is a map
from C" to C of the form

(215 ooy Zn) > Q121 + Qoo + -+ - + 2y

where the o; and z; are complex numbers.

The majority of the material in this class will apply equally well to
both real and complex numbers, and other more exotic number systems.
Whenver we say a function is linear without specifying whether we meal
real linear or complex linear, we mean that either a real linear function or
a complex linear function can be used.

The number n tells us how many variables and coefficients there are.
In this class n will be allowed to be any positive integer or infinity. Usu-
ally if there are only two variables (i.e., we have a function from R? to R),
then we will call the variables = and y instead of x; and z,; similarly, if
there are only three variables (the linear function is from R? to R), then
we will use z, y, and z as the variables.

Example 1.1.
Each of the following are linear functions:

(@ T(x,y,2) =3z —2y+ 7z
(b) f(z,y) = =62 + Fy

(c) 6x1 — Tz + 4x4 — 225
(d) (Zl, 22) — iZl —+ 222

(e) (LUI,IQ, ,I‘n) — 0

Example 1.2.
The following are not linear functions:

(a) g(I,y,Z) = ‘7:2 +2y—32
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(b) h(z,y) =zy
() T(x,y,2) =3z —2y+mz—4
(d) (21,22) — 21 + €%

(e) (x1,z2,...,xy) — 1

Exercise 1.1.
Why is Example 1.1(e) linear, but Example 1.2(e) not?

A linear equation is an equation where each side of the equation is a
linear function or a constant.

Example 1.3.
Each of the following is a linear equation:

(@) 6x+2y =3
(b) $1—$2+3ZE3+%$4:2

Qz—y+2z=0

Example 1.4.
The following are not linear equations:

(@) zy=1

(b) == = g, — a
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() z2=z+y

Let’s go ahead and notice at this point that the set of all solutions
to a linear equation in two variables gives us a line. For example, the
collection of all (z,y) pairs that satisfy the linear equation

6x + 2y =3

is a line. This might be easiest to see if we take our linear equation and
rewrite in the more familiar slope-intercept form of a line by solving for

y:
6x + 2y =3
— 2y = —06x+3

3

This is a line of slope —3 which passes through the point (0,3/2) as in
Figure 1.1.

Figure 1.1: The set of points satisfying the linear equation 6x + 2y = 3 is
a line in the plane.

It is because of this graphical interpretation that equations of the form
ax + by = cin two dimensions give lines that we call the functions above
linear functions and equations with linear functions are linear equations.
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Notice that in three dimensions the set of solutions to a linear equation
give a plane and not a line, as in Figure 1.2, but we still use the term
“linear.”

g

Figure 1.2: The set of points satisfying the linear equation x —y + 2z = 0
is a plane in 3-space.

A system of linear equations is a collection of linear equations, all in
the same number of variables.

Example 1.5.
Each of the following are systems of linear equations:

(a)

3z + 2y =4
6z —y =9

(b)
dr 4+ 3y =3

4o + 3y =2
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(©)

T+y+z=3
2z —y+ 32 =0

A solution to a system of a linear equations is a collection of num-
bers, one for each variable, which makes all of the equations true simul-
taneously. In the case of Example 1.5(a) it’s easy to check that (z,y) =
(22/15, —1/5) is a solution to the system by simply plugging = = 22/15 and
y = —!/5 into each equation in the system and verifying that both equa-
tions are true:

22 -1 22 2
ST T s
20
=%
=4

In Example 1.5(b) it’s also easy to see that there are no solutions to the
system: there is no choice of # and y that can make 4z + 3y = 3 and
4z + 3y = 2 at the same time, since 3 # 2.

It’s a little bit harder to see, but there are actually infinitely-many dif-
ferent solutions to Example 1.5(c). Let’s try to explain why this is. If we
solve the first equation for y we have

y=3—x— 2.

So triple (z, y, z) solving the system has to also satisfy this equation (since
this is just the first equation rewritten). Now if (z,y, 2) is a solution to the
system, then it must also solve the second equation as wellasy = 3—z—z.
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This means we can rewrite the second equation as
20 —(3—x—2)+32=0.
If we now solve this equation for z we have

2t —3—2—2)+32=0
—3r+42—-3=0
3— 3z

— = .
: 4

If we now plug this back into y = 3 — z — z we have

3 — 3z
—3_r—
12—-4x 3-3a
4 4
_9—x
==

So, what does this mean? It means if (z,y, 2) is a solution to the system,
then y and z are both determined by x:
9—=x 3—3z

1 and 2z = 1

y:

Here x can be whatever value you'd like (in a situation like this we some-
times call x a free variable) and once you've chosen z, you know what y
and z must be. Since there are infinitely-many different choices for = (x
can be any real number you’d like), there are infinitely-many solutions.

Right now the above algebra probably seems tedious — easy, but a
little bit of boring work to figure out. We will quickly see that there are
some algorithms that make finding solutions to systems like this much
easier. Before doing that, however, let’s talk about the geometry of the
set of solutions to a system of linear equations.

1.2 Solution Sets

Given a system of linear equations our goal will typically be to find all
possible solutions to the system. The collection of all possible solutions
is called the solution set of the system. In principle, the solution set of an
arbitrary system of equations could be very complicated, but for systems
of linear equations, the solution sets are actually very nice.
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In fact, the solution set of a system of linear equation comes in one of
three flavors: it could be empty (no solutions), it could contain exactly
one point (a unique solution), or it could contain infinitely-many points.
Let’s think about why this is in two variables.

Let’s suppose that you had a system of linear equations in two vari-
ables: say there are n equations, and the i-th equation has the form a;z +
b;y = c;, so the system looks something like the following;:

arr + by =1
as + boy =co
anx + by =cy,.

Each one of the equations determines a line in the plane. The solution set
of the system is the collection of points that are simultaneously on all of
the lines. It could be that all of the lines intersect at a single point giving
a unique solution; it could be that no point is on all of the lines at the
same time (no solution); or it could be that all the lines are actually the
same and there are infinitely-many solutions (every point on the line is a
solution).

Let’s consider one example of each situation just by considering the
graphs of the lines.

Example 1.6.
The following system has one unique solution:
z—y=1
2z +y =7

=iy =+ Gy =2l
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Here there is a unique solution because there is exactly one point
that is on all three lines.

Example 1.7.
The following system has no solutions:
T +y =5
—2x 4+ 8y =10

20 — 3y =7
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There are no solutions because there is not a point that is on all three
lines simultaneously.

Example 1.8.
The following system has infinitely-many solutions:
—z+y=1
2z — 2y =—2
—3z + 3y =3

In this case all three lines are actually the same line on top of one
another, so any solution to one equation is instantly a solution to
both of the other equations.

The same situation can happen in any number of variables: regardless
of whether your system of equation is in 2 variables, 3 variables, or 457
variables, a system of linear equations has either no solutions, one unique
solution, or infinitely-many solutions.'

Exercise 1.2.

IThis is true if we’re talking about real or complex linear systems. We will see later
in the semester that there are some applications where we’d like to use another type of
number system, and in that case it could be possible to have only finitely-many distinct
solutions to a system.
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(a) Plot each of the lines in the system below, and determine if the
system has no solutions, one solution, or infinitely-many solu-
tions. If there is one unique solution, determine what that solu-
tion is.

z+y=1
T — 2y =3

(b) Repeat part (a), but add 4z + 7y = 9 as a third equation to the
system.

Whenever a system of equations has a solution (regardless of whether
it has one solution or infinitely-many) we say the system is consistent. If
the system does not have any solutions, however, we say the system is
inconsistent. So the systems in Example 1.6 and Example 1.8 are consis-
tent, while the system in Example 1.7 is inconsistent.

1.3 Solving a System of Linear Equations

Now that we what a linear system is and the different “flavors” the solu-
tion can come in, how do we go about determining the solutions?

Let’s consider “manually” solving a couple of different systems be-
fore we try to come up with an algorithm.

Example 1.9.
Solve the following system:

T —y =7
y =3

This is a system everyone can solve without any knowledge of lin-
ear algebra: the second equation tells us explicitly what y has to be,
so all of the (x,y) solutions to the system have to take y to be three.
Plugging this back into the first equation we then have z —3 = 7
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and we can easily solve z = 10. Thus (z,y) = (10, 3) is a solution,
the unique solution, to this system.

Example 1.10.
Solve the following system:

r—y =7
20 —y =17
To solve this system we might first try to isolate a variable in one of

the equations. For example, if we subtract twice the first equation
from the second equaton we would have

2 —y—2z—y)=171—2-7
—2r—y—2x+2y=17-4
—y=3

We are then back to exactly the same situation as the previous ex-
ample and so the solution is again (10, 3).

When two different systems of equations have the same set of solu-

tions, such as the examples above, we say the systems are equivalent.

Notice that certain types of systems of equations are very easy to
solve, and others can seem more complicated. Here is another easy ex-

ample:

Example 1.11.
Solve the following system

2r+3y—z2=14
W= % —

z=—1
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This system is very easy to solve because one of the equations in-
stantly tells us what one of the variables has to be: we know that
z must be —1. If we plug this into the second equation we have
y —2 = 2,s0y = 4. Now that we know y and 2, we can plug back

into the first equation to determine 2241241 = 4, and thus = = 3.

We really like the types of systems as in the last example because they
are almost trivial to solve: we just plug back into our equations and get
one variable at a time. We would like it, then, if when given a more
complicated system we were somehow able to determine an equivalent,
but easy-to-solve, system. Since the systems are equivalent, solving the
easy system tells us the solution to the complicated system.

The main question, then, is how do we determine if two systems are
equivalent?

To do this, let’'s come up with a list of some simple operations that
we can perform on a system of equations to come up with an equivalent
system. What we are about to describe will work for any number of
systems in any number of variables, so we'll state things very generally
but then do some simpler examples.

Theorem 1.1.
If two rows in a linear system are exchanged, the newly obtained system is
equivalent to the original one.

Proof.
The equations defining the system haven’t been changed, just re-
ordered. O

Example 1.12.
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The following two systems are equivalent:
2x+3y—z=4 —x + 6y +4z = -2
T—y+3z=9 T—y+3z=9

—z+6y+4z= -2 2z +3y—z=4

Theorem 1.2.

If one equation in a linear system is modified by adding a multiple of an-
other equation to it, the newly obtained system is equivalent to the original
one.

Before proving this theorem in general, let’s consider a very simple
case: two variables and two equations. Say our system looks like

a1x + asy = b
ax +agy =

Suppose the system is consistent and so there’s some point (s, s3) that
satisfies the system: if we plug in = s; and y = s,, then both equations
are solved simultaneously.

Now say that we modify the system by adding a multiple of the sec-
ond equation to the first. That is, we will replace the first equation by
adding c times the second equation to it, for some constant c. We then
have the following system:

(a1 4+ con)x + (ag + caz)y =b+cf
T+ axy =
We claim that (s, s2) is still a solution to this system. Since (s, s3) satis-
tied the second equation before, and that second equation hasn’t changed,
all we need to do is verify that (s, s2) satisfies the modified first equation,
but this is easy:
(a1 + caq)sy + (ag + cag) sy
= @181 + Cc1S1 + G282 + CaS2
= (a181 + CLQSQ) + c(a131 + OégSQ)

=b+cp
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A solution to the original system is thus a solution to this modified sys-
tem as well. This shows that the solution set of the first system is a subset
of the solution set of the second system. We still need to show that a so-
lution to the modified system is also a solution to the original system,
but the idea is basically the same as the above, so we will leave that as an
exercise.

Exercise 1.3.
Show that if (¢, t2) is a solution to the system

(a1 + caq)x + (az + can)y = b+ ¢f
1T+ agy = f3,

then it is also a solution to the system

a1x + asy = b
a1T + ay = .

Proving the general theorem is basically repeating the same argument
above, just with more equations and variables.

Proof of Theorem 1.2.
Consider a linear system of m equations in n variables. Say two of
the equations in this system are

a1$1+"'+an£n:b and Oéll‘l‘i‘""l’anxn:ﬁ'

We want to leave the second equation alone, but replace the first
equation with

(a1 + con)xy + -+ + (an + cap) Ty, = b+ cfB

for some constant c. The claim is that doing so doesn’t change the
set of solutions.

Let’s call the set of solutions to the original system S, and the set
of solutions to the modified system 7. We want to show these two
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sets are the same: we want to show that S = T, which means we
need to show that S C T"and T C S.

Let (s1,...,s,) € S be a solution to the original system. We need
to show this is also a solution to the modified system. Of the equa-
tions defining the systems, however, m — 1 of the equations are the
same. So the only thing we need to check is that (s, ..., s,) is also a
solution to

(a1 + cor)xy + -+ + (an + can)z, = b+

We simply plug in (21, ..., z,) = (51, ..., s,) and verify that the equa-
tion holds:

(a1 + coq)sy + -+ + (an + can)sy
=a181 + ca1S1 + - -+ + AnSy + cap Sy
=(a181 + -+ apsp) +c(agsy + -+ - + ansy)
=b+ cf

This shows that S C T..
We leave the second part of the proof, that 7' C S, as an exercise.
O

Exercise 1.4.
Finish the proof of Theorem 1.2.

Finally, there’s one last operation that we will introduce that can be
used to replace one system of equations with an equivalent one.

Theorem 1.3.

If each term (both the left- and right-hand sides) of one equation is multi-
pled by a nonzero constant c, then the newly obtained system is equivalent
to the original system.
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Again, let’s consider what’s happening with two variables and two
equations. If our original system was
a1x + asy = b
T+ agy = f8
then we claim that the following system is equivalent

ca1r + casy = cb
T+ ay = 0

when c is any nonzero constant.

To prove this, again suppose that (si, s2) is a system to the original
system. We can easily verify that (s, s3) solves the modified system. Of
course, the second equation has remained the same, so (s1, s2) still satis-
ties it. For the first equation we have

Ca181 + CagSs
=c(a1s1 + ass2)
=cb
To prove that a solution (¢;,t2) to the modified system is also a solu-
tion to the original system we can perform the exact same procedure: just
multiply through by 2 to get the ¢’s to cancel! In more variables and/or

equations, the argument is exactly the same, so we will leave that as an
exercise.

Exercise 1.5.
Prove Theorem 1.3.

1.4 A Procedure for Solving Linear Systems

We now want to use the three theorems above to develop a scheme for
solving systems of linear equations, or determining that there is no solu-
tion. As we saw in an earlier example, it would be nice if the system we
wanted to solve had the following sort of form:

ar + by = « ar +by +cz =«
cy=_p dy +ez=p
fz =1
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In this situation it is super-easy to “work backwards,” solving for one
variable at a time, and then determining the others. Let’s give systems
of this form a special name so it’s easier to refer to them: we will call a
system like this is in echelon form.

To solve a system that is not in echelon, let’s try to replace the sys-
tem with an equivalent system that is in echelon form. We’ll do this by
repeatedly applying our three theorems above, modifying the system a
little bit at a time until it is in the form we’d like.

Example 1.13.
Solve the following system of equations.

r+4y =3
2c —y =1

All we need to do to put the system in echelon form is get rid of
the 2z in the second equation. We can do this by subtracting twice
the first equation from the second. We will then replace the second
equation with

2t —y—2(x+4y)=1-2-3
= —9y=-5

thus y = 2, and pluggin this back into the first equation,

5
4.- =3
x + 9

:>:1:—3—@—Z
n 9 9

and so the system has a unique solution, (z,y) = (°/9,7/0).

Example 1.14.
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Solve the following system of equations.

20 — 5y =17
—6x + 15y = 10

We again try to put the system into echelon form by getting rid of
the —62 in the second equation. To do this, we add three times the
first equation to the second:

— 6+ 15432 —5y)=7+3-10
= 0 =237

Now we have a problem: zero is not equal to thirty-seven! What
this means is that there is no solution to the system.

Geometrically, the lines determined by each of the equations
above are parallel. A solution to the system would be where the two
lines intersect, but two parallel lines never intersect, hence there is
no solution.

/

Example 1.15.
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Solve the following system:

3z+2y—2=3
120 —4y + 22 =1
152 —2y+2=14

To put this system into echelon form we need to first get rid of the x

terms in the second and third equations. We will replace the second

equation by subtracting four times the first equation, and we’ll re-

place the third equation by subtracting five times the first equation.
The second equation then becomes,

120 —4y+22—4(3z+2y—2)=1—-4-3
= — 12y + 62z =—11

While the thid equation becomes

152 —2y+2—53x+2y—2)=4—-5-3
— — 12y 462 =—11

Our system thus far is

3r+2y—2=3
— == bz = =111l
—12y + 6z = —11

To put the system in echelon form we need to get rid of the y term in
the third equation, but doing this will of course get rid of all of the
terms in the third equation. Thus the echelon form of the system is

ShE =F 2 — 24— 3
—12y + 6z = —11

(If you want, there’s an equation Oz + Oy + 0z = 0 at the bottom of
this.)

Let’s notice that if we try to kill of y in the second equation by
adding six times the first equation, we would also kill of z and our
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system would become

S d= Gy — 2 — 3
18z =17

So x = 7/18: no matter what y and z happen to be, x must be 7/1s.

Geometrically, this means all (z, y, z) solutions to our system must
live in the plane z = 7/1s.

We could rewrite the first equation as

7
6+2y—z:3

and solving for y we would have

_z+11
=57 12

This means that each solution to our system has the form

7 z+ 11
182 127

and z can take on any value: our set of solutions is a line in the plane
7
Tr =
7z 11
S RY.
{(18’2 * 12’2) 7€ }

EZ
In the previous example, z is called a free variable because it can take
on any value we wish. When we express the solution set in terms of free
variables, such as above, we have a parametrization of the solution set.

Example 1.16.
Solve the following system of equations.

z+y—3z2=4
=Mz =3
—3r+y+4z=0
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Let’s first try to kill off the x in the second equation by subtracting
the first equation from it (i.e., we we are applying Theorem 1.2 by
adding —1 times the first equation to the second equation). The
second equation is then replaced with

r—2y+z—(r+y—32)=3-4
= —Jy+4z=-1

Now our system looks like

rT+y—3z2=4
—3y +4z = -1
—3r+y+42=0

We still need to kill of the —3z in the third equation, so let’s add
three times the first equation to it. The third equation then becomes

—3zx+y+4z+3xz+y—32)=0+3-4
— 4y —5r=12

So far we have replaced our original system with the following
equivalent one:

r+y—3z=14
—3y +4z = -1
4y — 5z = 12

We need to perform one last step to put the system in echelon form.
Let’s get rid of the 4y in the third equation by adding 3 the second
equation:

4 4

4y — 5z + g(—3y I 42) =12+ 3(-1)
4

= —52+16/3z2=12—

3
1 32
- = —

3 3
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We now have a system in echelon form that’s equivalent to our orig-
inal system:

r+y—3z=14

—3y+4z=-1
1 32
- = —
3 3

The system is already in echelon form, but let’s kill off that 3 in the
third equation by using Theorem 1.3 to multiply the third equation
by three:

r+y—3z=4
-3y +4z= -1
z =32

This is a system we can easily solve by back-substitution. Plugging
in z = 32 into the second equation gives us

—3y+128 = —1

which tells us y = 43. Plugging z = 32 and y = 43 into the first
equation gives us
x+43 -96 =4

and so z = 57.
Since this system is equivalent to our original system, the solu-
tion to our original system is

=B

y =43
z =232
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1.5 Practice Problems

Solve each of the following systems by applying the three theorems above
to replace the system with an equivalent system using the three theorems
described above.

Problem 1.1.
6x +2y=1
3r—4y =0
Problem 1.2.
rT—y=3
—2r+4y =2
Problem 1.3.
dr +y =95
8xr + 2y = 10
122 + 3y = 15
Problem 1.4.
r—y+z=3
2043y —z=4
Problem 1.5.
r—y+z=23
2043y —z=4
—x — 5y + 22 =—7
Problem 1.6.
20+ 3y =4
y—4z=3

20 +4y —42z=0



Matrices

No one can be told what The Matrix is: you
have to see it for yourself.

MORPHEUS
The Matrix

Matrices are one efficient way of organizing the information in a sys-
tem of linear equations, and as we will see later also have a variety of
other uses.

2.1 Definitions and Examples

Matrices

A matrix is a rectangular table of numbers, usually written inbetween
parentheses or square brackets. The size of a matrix is a pair of numbers
telling us how many rows and columns the matrix has: if the matrix has
m rows and n columns, we say the size of the matrix is m x n, pronounced
m by n.

Example 2.1.
The following matrices have respective sizes 2 x 4 and 5 x 3.
o 1 0
A -7 0 -1 2 14
15 2 11 ST T
' -7 -5 -2
5 4 2

Matrices associated to a linear system

One use of matrices is in encoding a system of linear equations. If we
have a system of linear equations, all we really need to know about the
system is what the coefficients are, and what the values on the right-hand

26
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side of the equations are: what we call the variables (z and y versus z;
and z,, for instance) doesn’t really matter. If we record all of the coeffi-
cients of a system with m equations and n variables as an m x n matrix,
we have the coefficient matrix of the system.

Example 2.2.
Consider the following system of three equations in four unknowns:

6v+3z—2y+2=14

dv—zrz+y—22=3

2r+4y+42=9
v+z=-—1

The corresponding coefficient matrix of this system is

6 3 -2 1
4 -1 1 =2
0 2 4 4
1 0 0 1

Notice that we pick up zeroes in the coefficient matrix when a variable
is missing. The reason for this is that if a variable is missing, such as the
missing v in the third equation of the system in Example 2.2, we can write
it as 0 times that variable. The system in Example 2.2, for instance, may
be written as

6v+3r—2y+z2=14

dv—-—x+y—22=3

Ov+2x4+4y+42=9
v+0z+0y+2z=-1

Our goal will be to solve systems of linear equations by manipulating
matrices. In doing so we of course also want to keep track of the values
on the right-hand side of the equations. We will do this by just adding an
extra column onto our coefficient matrix containing the right-hand sides.
This gives us the augmented coefficient matrix of the system.



CHAPTER 2. MATRICES 28

Example 2.3.
The augmented coefficient matrix of Example 2.2 is
6 3 -2 1 4
4 -1 1 -2 3
0 2 4 4 9
1 0 0 1 -1

Remark.

Some people like to write a vertical bar in the augmented coefficient
matrix to separate the coefficients of the left-hand sides of the equa-
tions from the values on the right-hand sides of the equations, such
as

6 3 -2 1| 4
4 -1 1 -2 3
0 2 4 419
1 0 0 1 ]-1

The addition of this vertical line is purely cosmetic. Our textbook
does not use the bar, but it is fairly common. You are free to use the
vertical bar if you'd like.

Elementary row operations

Recall from the last lecture that we had three different procedures that
we could perform to a system of linear equations to obtain an equivalent
system:

1. Swap two rows.

2. Replace one row with the sum of the original row and a multiple of
another row.

3. Multiply every term in a row by the same non-zero constant.
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We can perform these same three operations on the augmented coeffi-
cient matrix of a linear system and we obtain the augmented coefficient
matrix of the equivalent linear system. Usually when we’re performing
these three operations to a matrix, we refer to them as the elementary
row operations. The process of using elementary row operations to turn
one matrix into another is called row reduction.

By repeatedly applying the elementary row operations to the aug-
mented coefficient of a matrix, we can replace the turn our system of
linear equations into an equivalent one which we can easily solve. In
particular, we have a system that is easy to solve when we have put our
matrix into echelon form. Before define the echelon form of a matrix, let’s
introduce one preliminary definition that will make the language a little
easier.

The leading entry of a row in a matrix is the left-most non-zero ele-
ment in that row.

We say that a matrix is in echelon form if the following three condi-
tions are satisfied:

1. If the matrix has any rows consisting of only zeros, they occur at
the bottom of the matrix.

2. The leading entry on each row in the matrix is to the right of the
leading entry of the above rows.

3. All entries in the same column and below the leading entry in a row
are zero.

Let’s first see some examples of some things that are, and some things
that are not, in echelon form.

Example 2.4.
The following matrices are all in echelon form:

S O W
S
N © N
- L
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<t N O O
— _ (@)
N — OO

O O O O

-1 3 2

0 4 2

OJ

2

000 3

|

000 0 0O

None of the following matrices are in echelon form:

Example 2.5.

00 00O
0000 2
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We can always put a matrix into echelon form by applying elementary
row operations. One way to solve a system of linear equations, then, is
to write out the augmented coefficient matrix, put it into echelon form,
and then use back substitution (solving for the variables one at a time).

Example 2.6.
Put the following matrix into echelon form:

=N
Ot = N
B~ Ot
DN =~ Ot

The first thing we need to do is zero-out the entries below 1 in
the first column. Let’s subtract twice the first row from the second
to obtain:

12 4 5
00 -3 -6
4 5 4 2

Now subtract four times the first row from the third:

1 2 4 )
0 0 -3 -6
0 -3 —-12 -18

Now let’s swap the second and third rows,
1 2 4 )

0 -3 —12 -—-18
0 0 -3 -6

Writing out what we're doing in words is always okay to do, but it can
get tedious sometimes, so let’s introduce some notation to save ourselves
some writing. When we perform a row operation on a matrix A to obtain
a matrix A’, let’'s draw an arrow from A to A’ and label the arrow to
describe which operation we are performing.

If we obtain A’ from A by swapping row i and row j, we will write

A—2 A
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For example,

1 2 4 5 1 2 4 5
0 0 -3 —2 | 22810 _3 _4 _18
0 —3 —4 —18 0 0 -3 —2

If we add ¢ times row j to row i, we will write

A Ri+CRj—>R7; A,
E.g.
1 2 4 5 1 2 4 5
2 4 5 4|22 (o0 -3 —2
4 5 4 2 4 5 4 2
If we multiply each element in row ¢ by ¢, we will write
A cR;,—R; A/_
For example,
4 7 2 4 7 2
0 4 3 —2R3—R3 O 4 3
-1 2 2 2 —4 —4
5 =21 5 —2 1

Notice that the echelon form of a matrix is not unique: if you give
the same matrix to two people and ask them to put the matrix in echelon
form, each person may give you back a different (but correct!) matrix in
echelon form. The matrix in Example 2.6, for instance, could be put into

echelon form in the following way:

Example 2.7.
Put the following matrix into echelon form:

=N
Ot = DN
=~ O
DN =~ Ot
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1245 1 2 4 5
9 4 5 4| B2 (9 4 5 4
45 4 2 0 -3 —6 -6
1 2 4 5

Ro—2R1—R> O 0 _3 —6

0 -3 —6 —6

1 2 4 5

Lol 1o -3 —6 —6

0 0 -3 —6

In Example 2.6 and Example 2.7 we started with the same matrix, but
produced two different matrices in echelon form because we performed
two different sequences of elementary row operations.

Remark.

The above is something to consider if you compare answers to home-
work problems with another student. If you were both trying to put
a matrix into echelon form, you may both come up with different,
correct answers!

It would be nice if there was a way to modify echelon form so that we
would always calculate the same matrix. This can be done if we modify
the conditions of echelon form slightly to get row-reduced echelon form.

We say a matrix A is in row-reduced echelon form (abbreviated RREF)
if the following four conditions are satsified:

1. If the matrix has any rows consisting of only zeros, they occur at
the bottom of the matrix.

2. The leading entry on each row in the matrix is to the right of the
leading entry of the above rows.

3. All entries in the same column above and below the leading entry
in a row are zero.
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4. Every leading entry is a one.

So RREF is very similar to echelon form, but we’ll make sure that
leading entries are always equal to one, and that everything directly above
and below a leading entry is zero.

Remark.
Some people simply say reduced echelon form where we have said
row-reduced echelon form, but this is the same thing.

Let’s take our two matrices in echelon form from Example 2.6 and
Example 2.7 and convert them to RREFE.

Example 2.8.
Convert the following matrix to RREF:

1 2 4 )
0 -3 —12 —18
o 0 -3 -6
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1 2 4 5
0 -3 —-12 -18
0 0 -3 -6

_TIR2—>R2

R1—2Ro— R
—_—>

7%R3~)R3

Ro—4R3—R2
—_—

Ri14+4R3— Ry
TR L

SO OO, OO+, OO, OO+

O O OO O, O O, O O I
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Example 2.9.

Convert the following matrix to RREF:
1 2 4 5
0 -3 -6 —6

0 0 -3 —6
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1 2 4 5) L 1 2 4 5)
7§R2*>R2
0O -3 -6 6] ——(0 1 2 2
0O 0 -3 —6 0 0 -3 —6
1 2 4 5
LN R
0 01 2
1 0 01
R172R24)R1 0 1 2 2
0 01 2
1 00 1
R2—2R3—R> 0 1 O )
0 01 2

The main thing about main reason we prefer RREF over echelon form
is that every matrix is equivalent to exactly one matrix in RREF.

Theorem 2.1.
Performing elementary row operations to put a matrix in row-reduced ech-
elon form produces exactly one matrix.

The proof of this fact will be easier to explain after we talk about linear
independence, so we will postpone the proof of this theorem for now.

Example 2.10.
Solve the following system of linear equations by putting the aug-
mented coefficient matrix in RREF.

r+2y+4z=5
2r +4y+ 52 =4
Adr + by + 4z = 2

We have seen that the augmented coefficient matrix of this system
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can be put into the following matrix in RREF:

which is the augmented coefficient matrix of the equivalent system

and so the only solution to our system of equations is (z,y,2) =
(1,-2,2).

1
=7
2

S O =
O = O
—_ o O

r=1
y= -2
z =2

We are now in a position to describe an algorithm for putting a matrix
in RREF, but before presenting the algorithm we introduce one piece of
terminology.

If a matrix is in RREF, then the location of the leading entries are called
the pivot positions; the columns containing pivot positions are called
pivot columns. More generally, if A can be reduced to a matrix A’ in
RREEF, then the pivot positions and columns of A are defined to be the
pivot positions and columns of A’.

By performing elementary row operations, we can always put a non-
zero value in a pivot position. When we do this, the non-zero value we
place in the pivot position is called a pivot.

The algorithm for putting a matrix into RREF is as follows:

1.

Starting from the top row of the matrix, the left-most position which
is not in a column of all zeros will be a pivot position.

Swap rows if necessary so that the entry in the pivot position is
Non-zero.

. Divide the row containing this pivot position by the new non-zero

pivot value.

Add multiples of the row to the other rows so that we have only
zeros above and below the pivot in the pivot column.

. Repeat the process, but use the submatrix obtained by deleting ev-

erything to the left of and above the pivot position (including the
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row and column containing the pivot position) to determine the
next pivot position.

Example 2.11.

Put the following matrix in RREF:
000037
002014
0040 21
053042

We need to work with our pivots one at a time, from the top left-
most pivot down to the bottom right-most pivot. We will color code
which pivot we are considering as follows: The pivot we are cur-
rently considering will be yellow, and the pivots we have finished
working with will be pink.

We start with the top row. First finding the left-most entry which
is not in an all-zero column.

oo oo
cno oo
Wk N O
oo oo
BN /o
RO — s~

Now swap the top and bottom columns to put a 5 in the pivot
position:

0 5 3042
0 0 201 4
0 0 4021
0 0 0037

Divide the first row by 5 to put a 1 into the pivot position:

o O e e
o O o
O = NDulw
o O O O
W DN e
~J = R~ oo

The matrix already has zeros below the pivot, so we move onto the
pivot.
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0o @ ¢
0 0 2
0 0 4
0 0 O
tion:
0 1 g
0 0 1
0 0 4
0 0 O

row from the first:

o O O O
S O O =
S = = O

o O O O
S O O =
o O = O

into the pivot position:

o O O O
o O O
S O = O

S O O O

o O O O

o O O O

o O O O

0
0
0
0

W DN = g

DO N = Ot

3

LW NN

W O

O W NI=N|=

First find the left-most entry in the second row which is to the
right of the previous pivot and not in a column of all zeros.

~J = & au

Now divide the second row by 2 to put a 1 into the next pivot posi-

= DO gl

\]

We need to zero out the non-zero entries in the pivot column
above and below our pivot position. First we subtract 3/5 the second

_4
5

2
1
7

Now subtract four times the second row from the third row:

_4
5
2
=7
7

We move on to the third pivot. Since we have a zero in the pivot
position, we need to swap the third and fourth rows to put the 3

39
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Divide the third row by 3 to put a 1 into the pivot position:

oM o0 ; —3
00 1 0 35 2
00 001 12
00 00 0 -7

Now zero out the entries above the third pivot. First subtract one-
half the third row from the first:

o1 o0 0 -2
00 1 0 5 2
00 001 I
00 00 0 -7

Finally subtract one-half the third row from the second:

01 00 0 -2
00 1o0o0 2
00 001 I
00 000 -7

For the very last pivot we will simply divide by —7 to make the
pivot a 1, and then zero out the entries above the pivot. Finally
subtract one-half the third row from the second:

_ 99
0

ot

o O O O
S O O =
o O B o
o O O O
o R o o
— wlxlcmoxwl

We now have the RREF of our original matrix:

010000
001000
000010
00 0O0O01

40
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Exercise 2.1.
Determine the number of pivot columns of the following matrix:

3 40 2
4 0 01
-1 0 0 2
6 0 0 7

Once we put an augmented coefficient matrix into RREF, it is then
very easy to solve the corresponding system of linear equations.

Example 2.12.
Determine all solutions to the following system of equations:
3IL‘5 =7
2LL’3 + x5 = 4
41’3 + 21’5 = 1

59 + 3x3 + 45 = 2

The augmented coefficient matrix of this system is precisely our ma-
trix from before, so the RREF of that matrix tells us the following
system is equivalent:

9 =10
3 =0
x5 =0
0=1

Because of this last equation, the system has no solutions!

Example 2.13.
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Solve the following system of linear equations.

3r+Ty+ 172 =21
20+42=06
4r + 10y + 24z = 30

To solve the system, let’s put the augmented coefficient matrix, which
is

3 7 17|21
0 2 4|6 |,
4 10 24|30
into RREF:
7 17
3 7 17 21 e 1 5 oy 7
0 2 4 6|2—[0 2 4 6
4 10 24 30 4 10 24 30
Lo
3 3
R374R1~>R3 0 2 4 6
2 4
0 = = 2
) ioL2E
2femfe [0 ] 5 3
2 4
0 = 5 2
Ri— IRy Ry 1 010
— 10 1 2 3
4
0 2 3 2
Ram2 Rams R, 1 010
——— 10 1 2 3
0 0 0O

The last matrix above is in RREF. This tells us that our original sys-
tem of equations is equivalent to

xr+2=0
y+2z2=3
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Notice that we could solve both of these equations to express = and
y in terms of z:

r=—=z

y=3— 2z
That is, if we know what z is, then we instantly know what z and y
must be. However, z could be anything! There are infinitely-many
different choices for z, and each one gives us a different solution to

our system. Thus there are infinitely-many solutions to the system,
all of which have the form

(—2,3 — 2z, 2)

where z can be any real number.

Notice that in Example 2.13, not only did we determine that there
were infinitely-many solutions to the system, but we said explicitly what
the solutions had to look like. In such a situation, where we describe all
of the solutions in terms of some variable, we say that we have given a
parametrization of the solution set and call the variable that is allowed
to change a free variable.

Example 2.14.
Solve the following system of linear equations:

Sx1 + 319 — 813 — 224 =5
221 + 4x9 — 613 + 2004 = 2
201+ 1oy — 323 — x4 = 2
4r1 4+ 3x9 — Tos — x4 =4

We again put the augmented coefficient matrix into RREF to get an
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=N N Ot

W = o W

=7
2

=1l

—1l

equivalent, easier-to-solve system:

éRl—)Rl

=N N Ot

Ro—2R1—R>
—_—

R372R1 %Rg
—

R4—4R1— R4
—

5
ﬂRQ%RQ

Rl—%RQ—)Rl
—_—

R3+%R24)R3
_—

R4—%R2—)R4
—

O OO OOOHEH OO0 OO0, OOOF R OOF BRDNDNOHF =N

44

3fs =85 —2/5 1
4 —6 2 2
1 -3 -1 2
3 =7 -1 4
3 =85 —2/5 1
14/s _14f5 14fs 0
1 =3 =l 7
3 -7 -1 4
3fs =85 —2/5 1
45—l 14/ ()
-1k s =15 0
3 -7 -1 4
3 =8k —2/5 1
)5 —14fs 145
—15 s =15 0
3fs. =35 3 0
3 —8l —2/5 1
1 -1 1 0
—1fs 155 15 0
3fs =35 3/ 0
0 =1 =1 1
1 —1 1 0
—lf5 1 1/ Q)
3/s =35 3k 0
0 -1 -1 1

1 -1 1 0

0 0 0 0
35 =35 3/ 0

0 -1 -1 1

1 -1 1 0

0 0 0 O

0 0 0 O

We now know that our original system of equations is equivalent to
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the following system:

Z‘l—l’g—$4:1

To— a3+ 24 =0

Solving the first two equations for x; and x4, respectively, tells us
that

$1:1+$3+I4

Lo = T3 — T4

Here there are no restrictions on either =3 or x4, each of these can be
any real number, and so we have two free variables. A parametriza-
tion of the solution set is

(14 x5+ x4, 3 — x4, T3, T4).

2.2 Consistency and Inconsistency in Terms of
RREF

After we put the augmented coefficient matrix of a system into RREF, we
can quickly determine whether the system is consistent or not, and if it is
consistent whether it has a unique solution or infinitely-many solutions.
If the matrix in RREF has a row of the form

(000 - 00]b)

where b # 0, then the system is inconsistent. The existence of such a row
tells us that the system is equivalent to a system that has an equation of
the form

01‘1+0$2+01‘3+"'+03§'n71+0$n:b

It doesn’t matter what the other equations (or rows in the matrix) look
like: there is no way to solve this one, so the system has no solutions.
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If the matrix in RREF has the form

1000 -+ 000 b

100 - 000 b
0010 --000 bs
0000 --010 by
0000 --001 b,

then the system has a single unique solution, (by, bo, ..., by,).

Notice that if we took the previous matrix in RREF and added rows
of zeros to the bottom, then this doesn’t change the solutions. When this
happens some of the equations in the original system were “redundant.”

Example 2.15.

Consider the following system:
z+y=1
m=1="%

r+y=+4

The augmented coefficient matrix of the system is

1 1 1
1 —1 2
3 1 4
The RREF of this matrix is
1 0 3k
01 —1p
00 O

The system thus has a unique solution of (3/2, —1/2). The third equa-
tion of the original system doesn’t give us any additional informa-
tion about the system because it is twice the first equation plus the
second: once you know what the solution to the two equations are,
you instantly know what the solution to the third equation is as
well, so there’s no real need to have the third equation.
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If the matrix in RREF has rows of zeros, but there is not a unique so-
lution to the system, then the system has infinitely-many solutions. The
number of free variables is determined by the number of rows of zeros.
Each non-zero row gives us an equation relating the variables, and each
zero row (up to the number of variables) gives us a free variable. No-
tice that the number of variables is one less than the number of columns
in the augmented coefficient matrix: each variable gives us one column,
plus we have one more column for the right-hand sides. This means that
the number of free variables in our solution to a system is determined
by the number of non-pivot columns (ignoring the right-most column
corresponding to the right-hand sides of equations in our system).

In Example 2.13 we had one non-pivot column (ignoring the column
corresponding to the RHS) and so one free variable; in Example 2.14 we
had two non-pivot columns, so two free variables.

Exercise 2.2.

Determine the set of solutions to the following system by putting the
augmented coefficient matrix into RREF. How many free variables
are there?

5x1 4+ 3xy — 813 — 224 =5
2x1 + 4wy — 613 + 224 = 2
201 + 1lzg — 323 — 24 = 2
4r1 +3x9 — Tx3 — x4 = 4
—6x1 — 325 + 923 + 324 = —6
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2.3 Practice Problems

Problem 2.1.
Put the following matrices into echelon form, but not RREF.

(a)

21 3
4 2 -1
3 0 2
(b)
02 -1 7 2
34 2 0 1
00 0 1 -3
11 1 1 1
Problem 2.2.
Put the following matrices in RREF:
(a)
—4 —4 -8 —12
2 3 6 7
3 4 9 10
(b)
2 3 7 11
1 1 3 4
(c)
6 0 4 14 24
1 04 9 14
4 0 6 16 26
1 0 2 5 8
Problem 2.3.

Solve the following system of equations by writing the augmented co-
efficient matrix in RREF. If there are infinitely-many solutions, give a
parametrization of the solution set.

(a)
3y + 6z =12
19
x+2y+3z:?

20 + 2y + 62 =13
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(b)

6x + 7y + 192 = 18
3r+2y+82 =9
r+2y+4z=3

ox + 6y + 162 = 15

()

3r+oy+1lz =1
20 +4y+82 =1
4o + Ty + 152 = 2



Vectors

Algebra is the offer made by the devil to the
mathematician.

SIR MICHAEL ATIYAH

Vectors appear in many different areas of mathematics and sciences,
and you have seen vectors before if you've taken a course in physics of
multivariable calculus. In these classes vectors are usually described as
quantities that have both a magnitude and a direction. We will see later
in the course that many different types of quantities can be thought of as
vectors, even things that don’t obviously have a magnitude or direction
(for exmaple, polynomials can be thought of as vectors). In this lecture
we start with the basics though, first defining vectors as “arrows” in R?
and R?3, and then generalizing vectors to R" for any dimension n. We also
see that some of the questions we are naturally lead to about vectors are
really questions about systems of linear equations in disguise.

3.1 Vectors in R? and R?

We will see that vectors can be defined in any number of dimensions,
but to get started we will consider vectors in two and three dimensions
which will be familiar to anyone that has taken an introductory course in
physics or multivariable calculus.

A vector is often described as a quantity which has both a direction
and a magnitude. One physical example is force: every force has a direc-
tion (where the force is pushing from or pulling towards) and a magni-
tude (how strong the force is). Consider the gravitational force between
the Earth and an object near the surface of the Earth. The object is being
pulled “down” towards the Earth (this is the direction) and that object
has some weight (this is the magnitude). If the object has more mass,
then it will have a greater weight and gravity is pulling more strongly on
the object. (Consider trying to hold a one kilogram object over your head
versus a fifteen kilogram object. Gravity is pulling harder on the 15 kg
object which is why that object feels heavier and harder to hold up.)

In two or three dimensions we represent these “direction together
with a magnitude” quantities as arrows where the direction of the ar-
row is the direction of the vector, and the length of the vector represents

50
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the magnitude. We will focus on the two-dimensional case at first simply
because it’s slightly easier to draw pictures representing these quantities.

Two-dimensional vectors

A vector in R? is simply an arrow in the plane: a line segment from some
point (z¢, yo) to another point (z1,y;) with an arrowhead at (z1, 1), as in
Figure 3.1

Figure 3.1: Vectors in R%.

One thing about vectors that may seem a little strange is that we only
care about the direction the vector points in and its magnitude, and we
do not care about where that vector is drawn in space. That is, given
any vector we can move it around the plane or 3-space as much as we’d
like and provided we don’t stretch the vector (which would change its
magnitude) or rotate it (which would change its direction) we still have
the same vector. See Figure 3.2.

We usually give vectors a name, just like any other mathematical
quantity, to make it easier to describe. Instead of just calling a vector
v, however, it is common to write the letter in bold, v, or to write an
arrow over the letter, ¥, to denote that this quantity is a vector. Almost
everyone writes the arrow when they are writing vectors by hand on pa-
per or a blackboard, and only some books (including our textbook) use
the bold letters to denote vectors.
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=

Figure 3.2: Each arrow in this picture represents the same vector since
the direction and magnitude (length) is the same for each arrow.

We will sometimes call the beginning point of the arrow represent a
vector (the part without an arrowhead) the tail of the vector, and the
other point (the part with an arrowhead) the tip of the vector.

Given two vectors, 77 and 7, we can add the two vectors together to
get a new vector, v} + ¥U,. There are a few ways we can describe this new
vector. One way to describe v + v is to slide ¢} and v, around so that the
tip of ; is at the tail of #,. We then draw in an arrow from the tail of ¢}
to the tip of 75, and this new vector we’ve drawn is 0, + ¥,. This is called
the triangle law for vector addition and is illustrated in Figure 3.3.

Another, equivalent way to describe vector addition is with the par-
allelogram law. Here we make copies of 7, and v, and slide them around
to make a parallelogram, and then draw in the diagonal of this parallel-
ogram connecting the corner that has two tails to the corner that has two
tips. This diagonal vector is the sum ¥, + 5. See Figure 3.4

Remark.

It is important that the diagonal vector drawn in the parallelogram
law starts at the corner where two tails meet and goes to the corner
where two tips meet. If you connect the corners in the wrong way,
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Figure 3.3: We can add two vectors by sliding them tip-to-tail and then
completing the triangle.

Figure 3.4: Vector addition can also be described by drawing in the diag-
onal of a parallelogram.

you will have the wrong vector.

If you've never seen vector addition before, it may seem a little bit like
an odd thing to do, but let’s consider one physical application. Suppose
that two different forces act on an object: e.g., you and a friend are re-
arranging furniture in your dorm with one of you pushing a bed in one
direction, and the other pushing the bed in another direction. Say you
push the bed to the East and your friend pushes the bed to the North.
Though you're applying two different forces, the net effect is the same as
if you were to push the bed to the North-East. This is exactly what’s hap-
pening when you add the two forces: the sum of two individual forces
acting on an object is the net force that acts on that object.

There’s another operation we can perform on vectors. Given a real
number A and a vector ¢, we can define a new vector A\ by stretching the
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vector out by a factor of \. For example, 20 points in the same direction
as U but is twice as long; £ points in the same direction as @ but is one
third as long.

/ 20
2

Figure 3.5: Multiplying a vector by a positive number stretches the vec-
tor.

If we multiply a vector v by a negative )\, then we stretch the vector
out by a factor of |\|, but make the vector point in the opposite direction.

7 i

—v

Figure 3.6: Multiplying a vector by a negative number stretches the vec-
tor and flips the vector’s direction.

To distinguish “regular” numbers from vectors we sometimes call the
numbers scalars because they scale vectors. The operation of multiply-
ing a scalar and a vector is called scalar multiplication.

Notice that we could describe a vector in the plane by saying how
much the z and y coordinates change when you walk from the tail of
the vector to the tip. That is, if we’ve positioned the vector so that its
tail is at the point (z¢,yo) and its tip is at the point (z1,y;), then all we
really need to know is the change in the z-coordinates, z; — 7, and the
change in the y-coordinates, y; — yo. Regardless of where we’ve drawn
the vector, if we don'’t stretch it or rotate it, we have the same change in
x- and y-coordinates.

Example 3.1.
Suppose v'is a vector which we’ve drawn in the plane so that its tail
is at the point (3,1) and its tip is at the point (5,2). The change in
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the z-coordinates is 5 — 3 = 2 and the change in the y-coordinates is
2—-1=1.

If we were to have moved the vector around so that its tail was
instead at (—2,2), then its tip would be at (0,3). Again we have
the change in the z-coordinates is 0 — (—2) = 2 and the change in
y-coordinatesis 3 — 2 = 1.

If we placed the tail of the vector at (—1, 1), then the tip would
be at (1,2), and once again the change in z- and y-coordinates is 2
and 1, respectively.

So we could describe the vector simply by recording this change in
z- and y-coordinates. There are several different ways we could record
this, but two common ways would be to make a 2 x 1 matrix listing the
change in z- and y-, or a 1 x 2 matrix:

() =

In the first situation, with the 2 x 1 matrix we say we have a column
vector, and the 1 x 2 matrix is called a row vector. We will usually, but
not always, use column vectors in this class. There’s nothing magical
about why we choose column vectors instead of row vectors, it’s just a
choice.

Notice that vector addition and scalar multiplication are very easy to
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express once we have coordinates like this:
)+ () =)
—+ =
(! Y2 Y1+ Yo
x AT
A pr—
(y> (Ay>

Three-dimensional vectors

Vectors in R? are completely analogous to vectors in R?: we they are ar-
rows connecting a point at the tail of the vector to the tip, the direction
of the vector is the direction of this arrow, and the length of the arrows is
the magnitude. Adding three-dimensional vectors or doing scalar multi-
plication is exactly the same as adding two-dimensional vectors or doing
scalar multiplication: we can use the parallelogram or triangle laws and
stretch a vector out by a given amount. It’s slightly harder to draw the
pictures on a two-dimensional screen or piece of paper, but everything is
defined exactly the same.

Just as we can represent a two-dimensional vector using two pieces
of information, telling us the displacement in the z- and y-coordinates
between the vector’s tail and tip, we can do precisely the same thing in
three dimensions and we simply have one more piece of information to
deal with: the change in the z-coordinates.

Just as in the two-dimensional vectors can be represented as column
or row vectors, so can three-dimensional vectors: A 3 x 1 matrix is a
column vector in three dimensions, and a 1 x 3 matrix is a row vector in

three dimensions.
T

Y or (x Y z)
z

and again, vector addition and scalar multiplication are easily expressed:

T ) T + i)
il +ly]l =1ty
21 ) Z1+ 29
T AT
MMyl =1\
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3.2 Vectors in R"

We can define vectors in R" completely analogously to how we defined
row vectors (or column) vectors in R? and R?. If we’re in R" for n > 4
we can’t really visualize the vectors as arrows anymore, but we can still
define them algebraically.

A column vector in R" is a n x 1 matrix, and a row vectorisal x n
matrix. We will typically use column vectors and just say vector to mean
column vectors — but this is just a convenient choice.

Given two vectors in R", say

I (A
o T2 . Yo
=1 . and ¢y =

Tn Yn

then we define their sum, ¥ + ¢ by adding the components of the vectors
together,

1 Y1 r1+ %
o T2 Yo To + Yo
r+y=1 .|+ . |= .

xn yn xn +yn

We define scalar multiplication by multiplying each component of the
vector by the same scalar,

I )\ZL’l

T AT
M=M=

Tn ALy,

We will usually denote the vector —1 - #'as just —v, and define “vector
subtraction” to be vector addition, but with —1 times one of the vectors:

U — i = U+ ().
By 0 we always mean the vector of all zeros:

0
0
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Two vectors, ¢ and 1, are equal precisely when their components are
equal:

U1 Uy
v = = . = U
U, Uy,
really means
V1 = Uy
Vg = U2
Uy, = U,

3.3 Complex Vectors

Just as a real vector is an element of R” — an n-tuple of real numbers —
a complex vector is an element of C", an n-tuple of complex numbers.
Algebraically, vector addition and scalar multiplication are exactly like
for vectors in R", except we do allow complex numbers to be scalars.

If (21,...,2,) and ((1, ..., (,,) are elements of C", we define the vector
addition of these two vectors to be

(217 ceey Zn) + (Cla >Cn) = (Zl + Cla <y Zn + Cn)

Given any complex number A € C, we define scalar multiplication be-
tween \ and a vector (z1, ..., 2,) € C" to be

A (21,00 20) = (A2, oo, Az).
For example, in C* we have
(24 30,3,4) + (1 - 3,2,1 1) = (3,2 44,5+ 1)

and
i (24 3i0,4) = (=3 + 2i, —1,44).

We can’t draw arrows for complex vectors except in the case of C',
but this is completely identical to the case of R?, with one important ex-
ception. If X is a real number and z = z + iy € C = C' is a complex
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number (thought of as an arrow from 0 to = + iy), then Az stretches the
arrow out in exactly the same way as \(z,y) gets stretched out in R?. If
A is a complex number though, then multiplying by A not only stretches
the vector, but it can rotate it as well!.

Every complex number ) can be written in the form re”” where r and
¢ are real numbers, and we may assume r > 0. In real and imaginary
components we may write this number as

re’ = r cos(0) 4 ir sin(f).

It’s also easy to write a number a + b in this form: r = v/a? 4 b? and
6 = tan™! (v/a).

When we multiply z € C by A = re?, the corresponding arrow gets
stretched out by a factor of 7, but rotated counter-clockwise by 0.

3.4 Properties of Vectors

Vector addition and scalar multiplication satisfy some of the basic alge-
braic properties that you would expect:

Proposition 3.1.

Let @, v, and 1 all be vectors in R™ (resp., C") and let \, j1 be scalars in
R (resp. C). Then vector addition and scalar multiplication satisfy the
following properties:

1. (+0)+ W =u+ (V+ )

o N S o = W
<y
_|_
N
=
I
(==J)



CHAPTER 3. VECTORS 60

9.1-v=79

Exercise 3.1.
Verify each of the properties in the previous proposition.

3.5 Vector Equations

Just we have equations involving numbers, we can have equations in-
volving scalars. For example, consider the vectors

=) w0

Now consider the equation

" . (4)
TV + Yva = 3]

A solution to this vector equation would be a choice of scalars = and y
making the equation hold.

Let’s think about what would happen if we write out all of the details
in the above vector equation

4y — 4
Ty ?JU2 - 3
N 1 . 1y (4
1) TV\2) T3
x y\ (4
=)+ @)=
. (® +y\ (4
r+2y)  \3
Since two vectors are equal only when their components are equal, this
means we really want to find = and y solving the system

r+y=4
x4+ 2y = 3.
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So vector equations are really systems of equations in disguise! Further-
more, notice that the columns of the coefficient matrix for this system are
exactly the original vectors in our vector equation!

3.6 Linear Combinations

We have two algebraic operations we can perform to vectors: scalar mul-
tiplication and vector addition. If we’re given some vectors vy, vy, ..., Uy,
and we multiply each one by a some scalar — say we multiply v; by \; -
and then sum these vectors, we say that the resulting vector is a linear
combination of the vectors vy, Us, ..., Uy,.

That is, a linear combination of v, 0, ..., U, is a vector that may be
written as

)\1171 + )\2?72 + -+ )\mgm

for any choice of scalars Ay, Ay, ..., Ap,.

Example 3.2.
Consider the following two vectors in three-space:
1 3
’171 = —1 172 = 3
2 0

One possible linear combination of these vectors is

7 —12 -5
T —4dvp=|-T|+[—-12| = | —-19
14 0 14

Given v, ..., U,, — all vectors of the same dimension, say n — the collec-
tion of all possible linear combinations of the vectors is called the span of
the vectors and is denoted

span{vy, Ua, ..., U }
In set-builder notation,

span{Ul,Ug, ,ﬁm} = {/\1’(71 + e 4 )\ml_fm | )\1, )\2, e A € R}
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Notice that in both R? and R?, the span of a single, non-zero vector is
a line through the origin. The span of two vectors could be plane (in R?
this would give us all possible vectors — the only plane sitting inside of
R? is the entire xy-plane), or it could be line. This second situation occurs
when one vector is a multiple of another. That is, if our two vectors @
and 7, have the property that v, = n7;, then any linear combination of 7
and 7 is really just a multiple of v;:

AMUL + AoTs = A\U1 + Aoptly = (A1 + Aop) 0.

In a situation like we say the vectors v} and ¥, are linearly dependent:
meaning that one vector is a linear combination of another.

More generally, we say that a set of vectors {ty, ..., 0, } is linearly de-
pendent if it’s possible to write one vector as a linear combination of the
others. If this can’t be done — no vector is a linear combination of the
others — then we say the set is linearly independent.

Proposition 3.2.
A set of vectors {v}, Vs, ..., U, } is linearly independent if and only if the
only scalars A1, Aa, ..., A, making the following equation hold,

)\1771+)\262++)‘m77m:0

are\y =g =---=\,, = 0.

Proof of Proposition 3.2.
If we could write

)\1171+)\2?72++)‘m77m:0

for some non-zero choice of the );, then we could pick one of the
vectors v; where \; # 0 and move it to the other side of the equation
and divide by —\; to write

_)\ivl-i-"'-i-THvi—l‘l'vaz‘—s—l‘l'"'—f-_—)\ivmzvi-
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Thus if it is impossible to write one of the ¥ as a linear combination
of the other vectors (i.e., the vectors are linearly independent), then
the only way to write A\ ¥} + X\o¥ + - - - + A\, 0, = O is if every \; was
Zero.

Conversely, if one of the vectors was a linear combination of the
others,

Wit + -+ pic10-1 + Pi1Uie1 + 00 F U = G
Then we can write
pat1 + -+ im0 — Uihlip1 U1 + 000+ fnUm = 0.

Thus if we can not write A\, ¥} +- - -+ \,,,¥,, = 0, then the vectors must
be linearly independent. O

63
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3.7 Practice Problems

Problem 3.1.
We saw that there was a graphical “triangle law” for vector addition.
Come up with a similar law for vector subtraction.

Problem 3.2.
Find the values of z and y which solve the vector equation zv + yu = W
where

3 5 2
v=| -2 u=10 w=|-3
8 9 8

Problem 3.3.
Show that every vector in R? can be written as a linear combination of

the vectors
1 0

) = ()
Problem 3.4.
Show that every vector in R? can be written as a linear combination of
the vectors

- and 4

3 —2
Problem 3.5.

Determine each of the following sets of vectors in R? is linearly depen-
dent or linearly independent:

1 0 5)
(a) —2 ) 1 ) —6

0 2 8

1 0 2
(b) —2 ) 1 ) -1

0 2 6

1 0 5 2
(C) —2 ) 1 ) —6 ) -1

0 2 8 6
Problem 3.6.

Suppose you are given m + 1 vectors in R", ¢, 0y, ..., U,,, and «. How can
you determine if @ is in the span of o3, 0, ..., U,,?
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Problem 3.7.
Is the vector
4
o 7
2
-3
in the span of
1 0 3
0 1 2
21711}’ 1 ’
1 4 -2

If so, how can i be written as a linear combination of these vectors? If
not, explain why « can not be written as a linear combination of these
vectors.



The equation Ax = b

The further a mathematical theory is developed,
the more harmoniously and uniformly does its
construction proceed, and unsuspected
relations are disclosed between hitherto
separated branches of the science.

DAVID HILBERT

In the last lecture we introduced vectors and saw that there were two
algebraic operations that could be performed on vectors: vector addition
and scalar multiplication. In general we can not multiply two vectors,
but we can actually define the product of a matrix and a vector — at least
if the sizes of the matrix and vector agree in a particular way. We will
also see that this gives us a very concise way of expressing a system of a
linear equations which will pave the way to later showing that properties
of a linear system’s coefficient matrix are directly related to the solutions
of the system.

4,1 Products of Matrices and Vectors

Suppose that @y, d@y, ..., @, are vectors in R™. In the last lecture we con-
sidered linear combinations of vectors which were scalar multiples of the
vectors added together:

;Elﬁl + 1’2172 + -+ l’n17n

Notice that these scalars, z;, s, ..., z,, that we multiply each vector
by could be regarded as the components of some n-dimensional vector
which we might call 7"

We could also think of each vector dj, ..., d@,, as forming the columns of
some matrix A:
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Example 4.1.
Suppose we have four three-dimensional vectors,
2 -1 1 4
a= (1 =10 as= |1 ay=| 2
0 3 1 -7

and we considered the linear combination
5d, — 3dy + 203 + 2dy.

Then our vector £ would be

5
o |-3
- 2
2
and our matrix A would be
2 -1 1 4
A=1]1 0 1 2
0o 3 1 -7

In general, we will define the product of an m x n matrix A with an
n-dimensional vectors 7 as the linear combination of the columns of A
with scalars given by the components of 7.

Example 4.2.
If A is the matrix
3 4 0
A= 2 1 -1

-5 7 2

and Z is the vector
—1
=1 2
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then the product Az is the the linear combination

68

3 4 0 —-3+8+0 5
— |l 2 | +2l1]+3l-1]=|-2+2-3]=1-3
-5 7 2 5+144+6 25
Example 4.3.
If A is the matrix

and 7 is the matrix

then the product A7 is the linear combination

(o) =2(2) +(7") +2 ()
=M=t )

(7)

Remark.

In order for this definition of the product of a matrix and a vector to
make sense, it is absolutely essential that the number of columns of
the matrix equals the number of rows in the vector (the dimension
of the vector).
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Example 4.4.

3 2 4 5 6+0+12
1 -2 3 ol = 2+0+9
0 4 5 ~|0+0+12
1 = 2+0-3

18

|11

| 12

-1

4.2 The Matrix Equation A7z = b

If b is some particular vector n-dimensional vector, we may want to know
if there is a solution to the vector equation

$161+$252+"'+$n6n =0
which can be more easily concisely written as
AT =b

where A is the matrix whose columns are given by aj, ..., @,,, and 7 is the
vector containing the variables z, ..., z,,.

Example 4.5.
Asking for x1, x5, and z3 solving the vector equation
1 2 4 3
| =1 +a |3 +as|T] =11
2 0 7 2
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is the same as asking if there is a vector
T
ii" = )
€3
such that
1 2 4 955 3
2 07 T3 2

Notice that this is really just a system of linear equations with vari-
ables x1, x4, x3 with coefficient matrix A and augmented coefficient ma-
trix

A b

Thus solving systems of linear equations and solving the matrix equation
AZ = b are two sides of the same coin.

Example 4.6.
If Aand b are
1 2 4 3
A=|-13 7] b=|1
2 07 2

Then finding a vector # solving A7 = b is the same as finding a
solution (1, 9, x3) to the system

$1+2$2+4Qf3:3
—ZE1+3ZE2+7ZL‘3:1
21’1—|—$3:2

That solving systems of linear equations and solving matrix equations
AZ = b are really the same thing leads to the following theorem.



CHAPTER 4. THE EQUATION Az =b 71

Proposition 4.1.
Let A be an m x n matrix. Then the system of linear equations with

augmented coefficient matrix (A ‘ 5) has a solution if and only if b is in
the span of the columns of A: @, ds, ..., Gy.

Notice that nothing deep is going on in this proposition: we’re just
translating the language of systems of linear equations to the language
of matrix equations.

Exercise 4.1.
Prove Proposition 4.1.

Remark.

Sometimes the hardest part of solving a mathematical problem is
determining the right way to express it: some problems seem eas-
ier or more difficult depending on the language you use to describe
them. We are in the process of taking the ideas we described at the
start of the semester (systems of linear equations) and converting
them into another language (matrices and vectors) because, as we
will see, it is actually a lot easier to think about many problems in
terms of matrices and vectors. This may sound strange at first, espe-
cially if you're learning about matrices and vectors for the first time,
but using the language matrices will actually make many problems
much easier to think about and ultimately solve.

Example 4.7.



CHAPTER 4. THE EQUATION Az =b 72

Is there a solution to the following matrix equation?

2 3 4 o) 2
6 18 24 Ty | = | —12
2 3 9 T3 —13

By the definition of the product of a matrix and a vector, this really
means we want to find z;, x5, and z3 such that

2 3 4 2
T 6 + X9 18 + x3 24 = —12
2 3 9 —13

But if we do the scalar multiplication and vector addition we can
rewrite the left-hand side of this equation to obtain

211 + 3xo + 423 2
6I1 T 181’2 ol 24.733 — —12
2I1 + 31‘2 + 91’3 —13

Equating components of the vectors, this is really a system of equa-
tions,

201 + 3x9 + 4y = 2
6!131 + 18l‘2 + 241’3 = —12
21’1 + 31’2 = 9$3 =—-13

We know how to solve a system like this, though: we write down
the augmented coefficient matrix (which we could have easily read
off from the original matrix equation),

2 3 4 2
6 18 24| —12
2 3 9|-13

then proceed to put the matrix in RREF, which gives us

4
2

S O =
S = O
_ o O

-3
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This tells us the system of equations is equivalent to

25'1:4
.1'2:2
1'3:—3

and so we have a unique solution to the system.
In terms of the vector equation, we have

2 3 4 2
416 +2118| =324 =112
2 3 9 —13

And so the vector solving our original matrix equation is

4
=1 2
-3
That is,
2 3 4 4 2
6 18 24 2 = | —-12
2 3 9 -3 —13

73

4.3 Existence of Solutions

We have seen that systems of linear equations sometimes have a unique

solution, sometimes have no solution, and sometimes have infinitely-
many solutions. Whether a solution exists or not depends less on the
right-hand side of the equations of the system, and more about the coef-
ficients of the system. In the language of matrices and vectors, solving

AZ = b depends more on what A is than on what b is. In particular, we

have the following theorem:

Theorem 4.2.

Suppose that A is an m x n matrix and ¥ and b are m-dimensional vectors.

Then the following are equivalent:
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(a) The equation AT = b has a solution for every choice of b.

(b) Every m-dimensional vector b is a linear combination of the columns
of A.

(c) The columns of A span R™.

(d) A has a pivot position in every row.

74

Remark.

The theorem above uses the phrase the following are equivalent. This
means that if one of the statements is true, then all of the statements
are true; if one of the statements is false, then all of the statements
are false. This is really a shorthand for several if and only if state-
ments. When we say “the following are equivalent: (a) ... (b) ... (c)
... (d) ...” what we really means is that statement (a) happens if and
only if statement (b) happens if and only if statement (c) happens if
and only if statement (d) happens.

We’ve seen before that “if and only if” statements are really two
statements: there’s actually two things to prove. If you want to
prove “(a) if and only if (b)” then you need to show that statement
(a) implies statement (b) and also that statement (b) implies state-
ment (a). Thus it might seem like for the above we need to show
twelve different things: (a) implies (b), (b) implies (a), (a) implies
(c), (c) implies (a), (a) implies (d), (d) implies (a), (b) implies (c), (c)
implies (b), and so on.

It would be completely correct to show all of these implications,
but luckily there’s an easier way. We can instead show that (a) im-
plies (b), (b) implies (c), (c) implies (d), and finally (d) implies (a). If
we show this then everything else can be deduced. For example, if
we show the four implications above, then the fact that (c) implies
(a), for instance comes for free: we know (c) implies (d) and also
that (d) implies (a), hence (c) implies (a) as well.

In hand-written notes, the following are equivalent is often abbre-
viated TFAE.
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Proof of Theorem 4.2.

(a) = (b)
Because of the way we have defined the product of a matrix
and a vector, saying A7 = b means exactly that b is a linear
combination of the columns of A. Hence if AZ = b has a so-
lution for every b, then it must be the case that every b can be
written as a linear combination of the columns of A.

(b)) = (9
The span of a set of vectors is exactly the set of all possible
linear combinations of those vectors. So if every vector in R™
can be written as a linear combination of the columns of A,
then the span of the columns of A is all of R™.

(c) = (d)
We will prove the contrapositive: if (d) does not occur, then (c)
can’t occur either.

So suppose that there was some row that did not have a pivot.
This means precisely that the row-reduced echelon form of A
has a row of all zeros (otherwise we would have a leading en-
try of 1 which would be our pivot). We could then find choices

of b so that the row-reduced echelon form of (A ‘ 5) has a row

of all zeros followed by a 1. Thus the system has no solution

which means b can’t be written as a linear combination of the
columns of A.

We’ve proven the contrapositive “if not (d), then not (c)” which
is logically equivalent to the original statement “if (c), then
(d).ll

(d) = (a)
Finally, suppose that A has a pivot position in every row. Then
the row-reduced echelon form of A has no rows of all zeros,
and we can solve any system Az = b.

O
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4.4 Properties of Ax

Algebraic properties

We have defined a new algebraic operation: multiplying an m x n matrix
A with an m-dimensional vector 7. Anytime we introduce a new opera-
tion, it’s natural to ask what kind of algebraic properties that operation
satisfies. The following two properties are absolutely fundamental and
will form the basis for what’s to come when we define linear transforma-
tions.

Theorem 4.3.
If Ais an m x n matrix, then for every pair of n-dimensional vectors i and
y, and every scalar A € R, we have the following properties:

(a) A(Z+7) = AT+ Ay
(b)) A\-T) = \- AT

Proof.
We do a direct proof, and simply verify these properties hold for any
arbitrary m x n matrix A, arbitrary m-dimensional vectors ¥ and ¢,
and arbitrary scalar \.

We may suppose that A has the form

A= \|d, ds ay,
and that
151 U1
= T2 . Yo
I‘ g y =

Tm Ym
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(a)

T hn
AG+p=Al| T+
tm)  \m
1+ U
_ 4 962—.|‘y2
T+ Y

= (21 +y1)d1 + (T2 +y2)d2 + - + (T + Ym) A
= 2101 + Y1@1 + T2y + Yolo + -+ - + TGy + YT,

=210y + Tola + +++ + Tyl + Y181 + Yol + - + YO,

x n
x

_ 4 2 1A ?{2
Tm Ym

= AT + Ay

(b)

)\1'1
)\.CCQ
AN-B)=A| "
AL,

= /\xlc_il ol /\1'252 + -+ )\xmc_im
=\ (%161 == x252 SFcooSF .Tm(_im)
=\ AT
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Computational properties

There is an alternative way to think about the product A7 that is some-
times handy. Notice that if A is an m xn matrix and # is an m-dimensional
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vector, then the product A7 is also an n-dimensional vector: it’s a linear
combination of n-dimensional vectors (the columns of A). This vector
can be generated one element at a time by walking across each row of
the matrix A, while simultaneously going down the column vector Z ele-
ment by element, multiplying the elements and adding them up.

Example 4.8.

Consider the product
2 0 —-11 i
3.1 0 2ff
ho=z A 1

To get the first element in the product we look at the first row of the
matrix, multiplying the entry in the j-th column by the j-th entry in
the vector.

For the first entry we have

1:244-04(-2)-(-2)+1-1=T7.
We get the second entry,
1-3+4-14+(-2)-0+1-2=09.
For the third entry,
1:244-(=2)+(=2)-1+1-1=-T7.

And thus the product is
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4,5 Practice Problems

Problem 4.1. - ~
Find the values of 7 solving the system A% = b where A and b are given
in each problem below.

(a)
(b)
()
(d)

(e)

2 5 -1 . 4
A=10 1 -1 b= | -1
1 2 0 4

Problem 4.2.
Do the columns of the following matrix span R*?
141 2
01 3 —4
026 7
2 95 -7
Problem 4.3.
Do the columns of the following matrix span R*?
13 0 3
-1 -1 -1 1

0 -4 2 =8
2 0 3 -1
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Problem 4.4.
Do the vectors below span R*?

0 0
u=1| 0 v=|-3
-3 9

80



Solution Sets

I have not failed. I've just found 10,000 ways
that won't work.

THOMAS EDISON

Recall that a system of equations may have zero solutions, a single
unique solution, or infinitely-many solutions. Regardless of how many
solutions we have, we say that the collection of all possible solutions
to a system of n-variables (the collection of all points (z;, zo, ..., 2,) in
R™ whose coordinates simultaneously satisfy all of the equations in the
system) the solution set of the system.

Remark.
If a system has no solutions, then the solution set is the empty set

0.

5.1 Homogeneous Systems
A system of linear equations where the right-hand sides are all zeroes,

1121 + a1 2T + -+ a1 T, =0

2171 + Q22T + -+ + A2,T, =0

Am1T1 + Q2T + -+ ATy = 0

is called a homogeneous system. As a matrix equation, we have the coef-
ficient matrix A whose columns are given by

at,j

- az,j
Clj =

Am,j

81
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and we are interested in finding the vector

x
Tr =

Tn

so that A7 = 0.

Notice that homogeneous systems always have a solution: at the very
least we can take z; = 2o = --- = z,, = 0 —in terms of vectors, ¥ = 0.
This is called the trivial solution to the homogeneous system. If there
are other solutions, we call them non-trivial solutions.

Notice that there are only two options for a homogeneous system:
there is either only the trivial solution, or there are infinitely-many solu-
tions.

Exercise 5.1.
Suppose that there is an ¥ # 0 solving A7 = 0. Show that there
must in be infinitely-many other, non-trivial solutions.

Recall that when a linear system has infinitely-many solutions there is
some way to parametrize the solution set: there is some way to explicitly
describe all of the solutions as a function of the free variables.

In particular, suppose the solution set is spanned by vectors #, v, ...,
#;. Then the solution set to the system AZ = 0 is parametrized by the
linear combinations of the ;.

Example 5.1.
Parametrize all of the solutions to

60

Solving this matrix equation is the same as solving the system of
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linear equations

T — 21’2 =0
—31‘2+6$2 =0

If we put the augmented coefficient matrix of this system in RREF

we have
1 =210
0O 010

which means that our system is equivalent to
T, — 2.172 =0

so our solutions satisfy
T = 21’2.

That is, our vectors satisfying the matrix equation have the form

1\ 21]2 — 2
i) o ) 2 1
So our solutions live in the span of this one vector; the solutions are
parametrized by
L (2
r=t (1>

where ¢ can be any real number.
Notice that we could have instead rewritten the equation

$1—2$2:0

as
1
Tog = =X7.

2
and said that our solutions have the form

(5) = () = ()

and our solutions are also parametrized by

(3

83
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There is no contradicition here: we simply have parametrized
the set of all possible solutions in two different ways:

S (2 _ (1
ei()-+(3)
we could parametrize this in many other different ways:

S {2\ _ (1

7=(1) = (%)
(14
(528
—7\264)

The important thing here is the collection of all possible things we
can get as scalar multiples of these vectors, and they all describe the

IR}
[

o ({(1)))

For example, the vector (i) is a solution to the system; it’s each of
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the spans above,
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Example 5.2.
Parametrize all of the solutions to AZ = 0 where
3 1 -5 -1
01 1 -1
A= 21 -3 -1
1 2 0 =2

We are trying to describe all of the values of # that make the follow-
ing equaiton hold:

31 =5 —1\ [z 0
01 1 —1|[=]| [0
2 1 =3 1| |as| [0
12 0 -2/ \uz 0

If we put the augmented coefficient matrix of this system into RREF

we have

—2

=1l
0
0

S O O =
o O = O
o O = O
o O O O
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This means our system is equivalent to

$1—2I4:O

To + Ty — Ty = 0
Thus

T, = 224

To = —T3 + T4

and w3 and x4 are free variables. So, our vectors ¥ solving the equa-
tion look like

T 224
N ) —T3 + X4
xr = =
T3 T3
Ty Ty
which we can write as
0 2
. —1 1
T = T3 1 + 24 0
0 1

So the solutions to our equation are precisely the vectors in

0 2
— 1 1
11710
0 1

span

That is, our solutions are parametrized by

—
= O = N

where s and ¢ can be any real numbers.

86
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Now, this particular parametrization comes from the fact that
we took z3 and x4 to be free variables above. We could have instead
taken z; and z, to be free variables. If we rewrite the equations

1 = 21’4

To = —T3 + T4

so that x5 and x4 are functions of z; and z,, then we have

1
Ty = 21
2
1
$3:$4—I2:§I1—$2

which tells us that the solutions look like

X1
- Zo
Tr =
Zs3
Ty
X
T2
= 1
5%11 )
271
1 0
B 0 1
T 1/2 + i) 1
1/ 0

So the set of solutions to A% = 0 is

span

D= O
—_
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That is, every vector & has the form

1 0
o 0 1
r=o0 1 + 7 _1
1/ 0

Thus we have said that the set of solutions to A7 = 0 can be
described in two different ways:

+1

84
I
[V
|
—_
—_ O~ N

=0 1/2 + 7
1/ 0

Again there’s no contradiction here: if you write any one vector in
the solution set as

0 2
— 1
% =8 11 +1 0
0 1
you can write the same vector as
1 0
- 0 1
xT=0|, /o +7 1
1/5 0

by taking o = 2t and 7 = —s.
For example, the vector
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is a solution to the system. In terms of one parametrization we get
this vector by taking s = 3 and t = 2:

4 0 2

—1 —1 1
5 | = 3 1 + 2 0
2 0 1

In terms of the other parametrization we take 0 =4 and 7 = —3:

4 1 0

—1 0 1

3| - 1/ =3 -1

2 1/ 0

Example 5.3.
Parametrize the set of vectors solving the equation Az = 0 where A
is the matrix

4 2 9 3
3 2 7 2
A= 31 7 1
2 4 5 3
Notice that the RREF of A is
1 00 7
01 0 1
0 01 -3
0O 0 0 O

When we solve the system A% = 0, the RREF of the augmented
coefficient matrix is thus

100 710
01 0 110
001 =30
000 010
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which means that

.7}1+7$4:0
5L'2—|-$4:0

1‘3—3ZL‘4:0

Thus
T = —7£L'4
Lo = —XT4
T3 — 3274

and z, can be whatever we want.
That is, the solutions to the system Az = 0 have the form

—7!174
—Ty
31‘4

L4

which we could write as

So all the solutions to A7 = ( are scalar multiples of one vector.
Another way to think about this is to notice that our original
equation,

4 2 9 3 T 0
327 2| (=] |0
317 1 x| |O
2 45 3/ \a4 0
is equivalent to
100 7 1 0
010 1 za| |0
001 =3]|zs] |O
000 O T4 0
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But notice that when we multiply the matrix and vector on the left-
hand side we get

91

Ty + 7$4 0
To + T4 o 0
z3—3xz4] |0
0 0
We could rewrite this as
T 71’4 0
Ty T4 10
T3 * —3xy ] |0
Ty —XT4 0
which we could further write as
T 7 0
2 +x - = 0
T3 41 -3 0
Ty —1 0
but this implies
I -7
i) — —1
xT3 - 3
Tq 1
Example 5.4.
Parametrize the solutions of
5 2 =2 15 10 1 0
41 0 5 10 To 0
31 1 5 —25||x]=10
6 2 —3 15 45 Ty 0
10 -1 0 35 T 0
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Notice that the RREF of (A ‘ 6) is

1 00 -1 16 |0
01 0 9 540
001 -1 —-19|0
000 O 0 |0
000 O 0 |0

This means that our original system is equivalent to

1 00 -1 16 9551 0
01 0 9 -H4 T2 0
001 -1 —-19 3| =10
000 O 0 T4 0
000 O 0 T5 0

Multiplying the matrix and vector on the left gives

T1 — x4 + 165 0
To + 91’4 — 54£L‘5 0
T3— 24— 1925 | = | 0
0 0
0 0
We can rewrite this as
1 -1 16 0
T3 —+ x4 —1 + T5 —19 = 0
0 0 0 0
0 0 0 0
Let’s go one step furth and write this as
1 -1 16 0
Ty 9 —5h4 0
T3 | + x4 -1+ Ts —19 =10
Tyq —1 0 0
Ty O —1 O

92
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which then implies

1 1 —16
i) -9 54
T3 | =24 1 | +25] 19
Ty 1 0
Ts 0 1

So we may parametrize the set of all solutions as

1 1 —16
T —9 54
r=lz3|=s| 1 | +¢] 19
Ty 1 0
I 0 1

At this point you've probably noticed that there’s some sort of rela-
tionship between the solutions of a homogeneous system and the columns
of our matrix in RREE.

Example 5.5.
In Example 5.1 we saw that our matrix in RREF was

1 —2
0 0
Notice that one possible parametrization of the solution set of Ex-

ample 5.1 was the collection of all scalar mutliples of G) .

In Example 5.2 our matrix in RREF was

1 00 -2
011 -1
000 O
000 O
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and we could parametrize the solution set as linear combinations of

0 2
—1 1
1 and 0
0 1

In Example 5.3 the matrix in RREF was

100 7
010 1
001 -3
000 O

and the solution set could be parametrized as scalar multiples of

=

=1l
3
1

In Example 5.4 our matrix in RREF was

100 -1 16 |0
01 0 9 =540
001 -1 =190
000 O 0 |0
000 O 0 [0

and the solution set could be parametrized as linear combinations

1 —16
-9 54
1 and 19
1 0
0 1

Notice that in each example after we put the matrix into RREF some
of the columns of the matrix wind up telling us how to parametrize the
solution set.

Let’s look at one more example before we make the relationship be-
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tween the columns in RREF and the solution set precise.

Example 5.6.
Parametrize solutions to AZ = 0 where
4 12 2 6 10
A=11 3 1 3 3
3 9 2 6 8
In RREF this matrix becomes
1 3 0 0 2
00131
00 00O

So solving AZ = 0 is the same as solving

T+ 31’2 + 21’5 =0
T3 + 31‘4 + x5 =0

We could write this as

T = —333'2 — 2{E5

T3 = —3374 — XI5

So the solutions have the form

T _31'2 — 2$5 -3 0 -9
) ) 1 0 0
T = I3 = —31'4 — Iy = T2 0 + T4 3|+ I —1
Ty Ty 0 1 0
Ts X5 0 0 1

The relationship between the columns of our matrix and the solution
set is elucidated by the following;:
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Proposition 5.1.
The number of free variables in the solution set of Ax = 0 is precisely the
number of columns of the matrix that do not contain pivot.

This proposition is actually a corollary of a very important result called
the rank-nullity theorem so we will wait and prove this proposition after
we prove the rank-nullity theorem.

5.2 Non-Homogeneous Equations

All of the examples of parametrizations we have seen thus far have been
for homogeneous systems, but parametrizing solutions to non-homogeneous
systems is almost identical.

Theorem 5.2. . .
Suppose that AX = b has a solution y. Then the solutions to Ax = b all

have the form i + h where h is a solution to the homogeneous equation
AZ = (.

Proof.
It’s clear that i/ + h is a solution to Ax = b:

A(g+ﬁ> — AG+ AR =b+0=50.
Now suppose that 3 is any other solution to A7 = b and let i/ =
y' — . Notice that
Al = A(y —§) = Ay — Af=b—b=0.

We again have that y' = 7+ I/ where I/ solves the homogeneous
equation. O
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This theorem tells us that if we can parametrize A7 = ( then we can
just as easily parametrize A7 = b by taking any one solution i of A7 = b,
called a particular solution and adding to it the solutions to the homo-
geneous equation A7 = 0.

Example 5.7.
Parametrize all of the solutions to

(o ) )= ()

Once we have one solution to this system, such as

then all of the other solutions to the equation have the form

9 2
(&) ()
where ¢ can be any real number because we know from Example 5.1
that solutions to the homogeneous equation with the same matrix
have the form ¢ G) :

Choosing a different particular solution doesn’t really change
anything. For example, if we had instead used

L (13
T4
then we still have that all of the solutions to our equation have the

() (2)

We could have also used a different parametrization for the ho-
mogeneous part of the solutions and write all the solutions as

() ++ (),
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For example, can be obtained from the first equation by

—
taking t = —4, from the second by taking 7 = —6, and from the third

0
R
()

98

Exercise 5.2.

Parametrize the solutions to A7 = b where A and b are as described
below:

(a)
3 1 -5 -1 2
01 1 -1 - —1
A= 9 1 -3 1 and b= 1
12 0 -2 ~1
(b)
4 2 9 3 2
3 2 7 2 - 0
A= 2 1 7 1 and b= 9
2 4 5 3 2
(c)
5 2 =2 15 10 30
4 1 0 5 10 27
A=1]13 1 1 5 =25 and b= | —6
6 2 —3 15 45 63
1 0 -1 0 35 33
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(d)

4 12 2 6 10 . 12
A=1(1 3 1 3 3 and b= | 6
3 9 2 6 8 12

When we already know how to parametrize the solutions set of the
homogeneous equation A% = 0 and we have some particular solution to
AZ = b, then it becomes easy to parametrize all of the solutions to AZ = b.
Usually we won'’t have a particular solution to start with, but the above
discussion tells us how to parametrize solution sets.
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5.3 Practice Problems

Problem 5.1.
Parametrize the set of solutions to the following system of linear equa-
tions:

211 + 229 + 43 =0
—4$1 — 45132 — 8$3 =0
—3[)32 — 31‘3 =0

Problem 5.2.
Parametrize the set of solutions to the following system of linear equa-
tions:

xrq + 2.972 — 31’3 =0
2I1 + Ty — 31‘2 =0
—X1 + X9 =0
Problem 5.3.

Parametrize the set of solutions to the equation A7 = 0 where A is the
matrix below:

1 =23 65 0
0 0 0 1 4 —6
A=10 0 0 0 0 1
0 0 00 0 0

Problem 5.4.
Suppose the solution set to a certain system of linear equations can be
described as

T :51'4
) =3 — 2%4
I3 =2+ 5.1'4

and z, is a free variable. Use vectors to describe this set as a line in R*.



Matrix Algebra

Algebra is the metaphysics of arithmetic.

JOHN RAY

In this lecture we discuss the various types of operations that can be
performed on matrices, and the algebra of these operations.

6.1 Linear Transformations

Many of the operations we perform on matrices have an interpretation in
terms of functions, and understanding that interpretation helps to mo-
tivate why some of the constructions below are things we should care
about.

We will say that a map 7" : R" — R™ (that is, a map that takes n-
dimensional vectors and converts them into m-dimensional vectors) is a
linear transformation if it satisfies the following two axioms:

(i) For every pair of n-dimensional vectors «,v € R", T satisfies the
following equation:

T(u+ V) =T(u) + T (7).
(ii) For every n-dimensional vector v’ and every scalar A € R, we have

T(\G) = AT(7).

Recall that there are two basic operations we can perform on vectors: vec-
tor addition and scalar multiplication. Linear transformations are pre-
cisely the maps that “respect” these two operations.

Example 6.1.
Consider the following which takes two-dimensional vectors and

101
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transforms them into three-dimensional vectors:

T:R? 5 R?
Y
- (5
Y r+y

. 1 s
This map takes ( ) and turns it into the vector

3

) —2 ..
and it takes the vector (_ 6) and turns it into

Example 6.2.
The following map takes four-dimensional vectors and turns them
into two-dimensional vectors:
T:R* - R?
1
T ) _ 1 — 2134
I3 4%3 + 22

Xyq
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Here are some examples of what this function does:

1

2 =
(3] =)

4

Notice that these two different maps are actually given by matrices:

Example 6.3.
The map T : R? — R? from Example 6.1 is given by multiplying a

vector (;) with the matrix

For example,

Example 6.4.
The map T : R* — R? from Example 6.2 is given by multiplying a
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four-dimensional vector with the matrix
1 0 0 —2
a=(p 187

For example,

=~ W N =
I
N\
— |
N |
~_

In fact, every matrix determines such a map: Every m x n matrix de-
tines a map from R” to R™ by matrix multiplication:

T — AZ.

By the properties of multiplication between matrices and vectors, we see
that such a map is always a linear transformation. In fact, it turns out
that every linear transformation is determined by a matrix in this way.

6.2 The Matrix of a Linear Transformation

We said above that every matrix determines a linear transformation. It
turns out, however, that every linear transformation is determined by a
matrix. That is, for every linear transformation 7' : R™ — R", there is
some m x n matrix A such that 7'(v) = Av.

To see this, let’s notice that every n-dimensional vector can be written
as a linear combination of the vectors

1 0 0 0

0 1 0 0

0 0 1 0
g =10 gy=10 =10 e, =10

0 0 0

0 0 0

That is, ¢; is the vector that has all zeros except for a 1 in the i-th row.
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Exercise 6.1.

(a) Show that the set of n-dimensional vectors {€}, €5, - - - , €,} is lin-
early independent.

(b) Show that every n-dimensional vector can be written as a linear
combination of the €;.

Now suppose T : R* — R™ is a linear transformation, and so 7'(¢;) is
some m-dimensional vector — let’s call it @;. Now consider the matrix A
whose columns are given by these vectors,

This matrix represents our linear transformation: if
L1
Tr =
Ty
is any vector, then we have
T(7)
=T (161 + 2265 + -+ + L€y

:1'1671 + l’gdg + -+ $n6n

But notice that

[L’lc_ﬁ + $252 + -+ $n6n
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Thus every linear transformation is determined by some matrix!

Exercise 6.2.
Consider the map S, : R? — R? which shears the plane horizontally

by a factor of m. That is, a given vector (i) gets sent to (z +ymy) .

Y Y
51[

| 5 | 5

(a) Show that each S, is a linear transformation.

(b) Determine the matrix representing S,,.

Exercise 6.3.
Consider the map R : R? — R? which reflects across the z-axis:

R@):Qz)

(a) Show that R is a linear transformation.

(b) Determine the matrix representing .

6.3 Matrix Addition and Scalar Multiplication

Let T : R" = R™and S : R* — R™ be the corresponding linear transfor-
mations. We can produce a new linear transformation 7" 4 S : R" — R™
by adding vectors. That is, given a vector v € R" we consider the map

e T(¥) + S(3).
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This gives us a new map which we denote 7'+ S. It’s easy to see that if T
and S are linear transformations, then sois 7" + S:

(T + S) (v + W) =T(V + W) + S0+ &)

=T'(V) + T'(W) + S(¥) + S(w)
=T(v) + S(V) + T (W) + S(w)
=(T'+ S)(V) + (IT'+ S)(w)

(T + S)(AT) =T (M) + S(\D)
\T'(%) + AS(7)
(T + S)(¥)

Since T'+ S is a linear transformation, there must be some matrix rep-
resenting it. Before we determine what this matrix must be, let’s suppose
that 7" is given by the matrix A with columns @ ay, as, ..., Gp, and S is deter-
mined by the matrix B with columns bl, bg, .y bn.

We know that the columns of the matrix representing 7"+ S are given
by the vectors (1" + S)(€;), where €] is the n-dimensional vector that con-
sists entirely of zero except for a 1 in the i-th component.

Notice

(T'+ 5)(&) =T(&) + S(&)
—=Q; + bz

That is, the columns of the matrix representing 7" + S are determined by
adding the columns of the matrices representing 7" and S.

Example 6.5.
Suppose 1" and S are the linear transformations corresponding to
the matrices

1 0 2 -1 3 3

3 -1 4 2 A =2
A= 5 2 2 B = 1 1 -3

1 -1 -1 4 1 2
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Then the matrix corresponding to 7' + S is

03 5
5 1 2
6 3 —1
5 0 1

The matrix we get by adding the columns of a matrix A with the
columns of a matrix B like this is denoted A + B. Notice that since we
add vectors (the columns of the matrices) component-by-component, we
add matrices component-by-component as well — this also means that
addition of matrices only makes sense if the matrices are the same size.

Example 6.6.
2 3 4 2 1 -1 1 0 3 25 2
102 —-1|+1(2 2 7 13]=13 2 9 12
340 1 4 2 9 1 76 9 2

Given a linear transformation 7' : R” — R™ and a scalar ;1 we can
define a new map by multiplying the outputs of 7" with p: ¢ — pT'(9).
This map is denoted ;7" and is also a linear transformation:

WT (¥ 4+ 5) =u(T(5) + T(w))
—uT(5) + T ()

WT(ND) =pAT ()

Since T is a linear transformation it is represented by some matrix
whose columns are p7°(¢;). If T is represented by matrix A with columns
a; = T(e;), then pT is represented by the matrix with columns p@;. That
is, the matrix representing ;7" is simply the matrix representing 7', but
with every entry multiplied by .
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Example 6.7.
If T : R* — R* is given by the matrix
4 2
6 —3
7T 8 |’
2 0

then the matrix representing —57" is given by

—20 —-10
—-30 15
—35 —40
—-10 0

The matrix obtained by multiplying each entry of a matrix A by 1 is
denoted pA.

Example 6.8.
27 1 0 6 21 3 0
314 2 -2 3] =112 6 -6 9
11 4 2 3 3 12 6

So we have two operations we can perform on matrices: matrix addi-
tion and scalar multiplication, corresponding to performing vector addi-
tion and scalar multiplication with the corresponding linear transforma-
tions.

Anytime we introduce an algebraic operation such as this, we’d like
to know what properties the operation may satisfy; and if we have mul-
tiple operations, we want to know how the different operations interact
with one another.

In what'’s to follow we will use 0 to mean the zero matrix: the matrix
of all zeros. It will usually be clear from context when we write 0 whether
we're referring to the scalar number zero, or the zero matrix.
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Theorem 6.1.
Let A, B, and C be m x n matrices and let X and p be scalars. Then matrix
addition and scalar multiplication satisfy the following properties:

(i) A+ B=B+ A

(ii) (A+ B)+C=A+ (B+C)
(iii)) A+0=A

(iv) A—A=A+(—A) =0

(v) M(A+ B)=\XA+ B

(i) A+ p)A=IA+ puA
(vii) (M)A = MpA)

Exercise 6.4.
Prove Theorem 6.1

6.4 Matrix Multiplication

If f:A— Bandg: B — C is a map, then their composition is a map
from A to C given by

a v g(f(a))

and denoted go f : A — C.

Consider linear transformations 7" : R* — R™ and S : R™ — RP.
Their composition, S o T, is a map from R" to R? which takes vectors in
R™ and maps them into R? according to the rule

7 S(T(D)).
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Notice that this is a linear transformation:

(SoT)(V+ W) =S(T(V+ w))

S(T (V) + T (w))
S(T(W)) + S(T'(w))
(SoT)(V)+ (SoT)(w)

(S o TY(\?) =S(T(\7)
—S(\T(7)
—\S(T(%)
—\(S o T)(7).

)
)
)

Since S o T : R" — RP is a linear transformation it must be represented
by some p x n matrix, the columns of which are given by S(7'(¢;)). To
determine what these columns look like, suppose that 7" is represented
by the m xn matrix A and S is represented by the pxm matrix B. Suppose
the columns of A are d;, ds, ..., d, and the columns of B are bl, b2, bm.
Then S(T'(€;)) = S(a,). Applymg S corresponds to multiplying by the
matrix B, however, so S(d;) = Ba;. That is, the matrix representing S o T

has the form
(BELI Bdy - B@n)

If we suppose that d; has the form

ai;

L e
a; =
Qm;

(3

then the i-th column of the matrix above is

—

Ba; = al,igl + a2,ig2 + ot ambi

Supposing that the column I;j has the form

j =

bp,j
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We have
bl,l b172 bl,m
. ba.1 ba.2 bam
Ba; =ay; + ag; . + oty
bp,l bp,2 bp,m

ay b1+ agibio+ -+ iy
— | a1iba1 +agibeo + -+ A ibo

:a1,ibp1 + ag,ibpo + -+ Ay ibp

biiai; 4+ bi2ag; + -+ b1 G
baiai; + bagas; + -+ + bl

bpia1; +bpoas; + -+ byl

Putting this all together, the entry in the i-th row and j-th column of our

p X n matrix is
m
E b@kak’j.
k=1

This matrix is called the product of the matrices B and A and is denoted
BA.

Just to reiterate: given two matrices A and B where A has size m x n
and B has size n x p, we can define the product AB which is a m x p
matrix whose entry in the i-th row and j-th column is

n

g ; 1:by.

k=1

This matrix corresponds to the composition of the linear transformations
determined by A and B; applying B first and then A.
Notice that if Ais 1 x n and B isn x 1, then this multiplication is easy
to do:
by
by
(0,1 as Qas - CLn) by | = (albl + &ng + Clgbg + -+ anbn)

bn
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Example 6.9.
2
3721 |=62+7(1D+2-4+1.0)=(7)
0

Since the product of a row vector and a column vector like this is
always a 1 x 1 matrix it’s just a single number, and so we usually think
of this as being a scalar instead of a vector.

Remark.

If you've taken multivariable calculus, you might notice that mul-
tiplying a row vector and a column vector like this is the same as
taking the dot product of two vectors.

The entry in the i-th row, j-th column of the product AB is obtained
by multiplying the i-th row of A with the j-th column of B. This obser-
vation greatly simplifies the calculation of the product of two matrices.

Example 6.10.
Let A and B be the matrices below, and compute the product AB.
4 6 3 3 1
A=1(0 1 -1 B=11 2
3 2 2 0 2

The first row, first column of AB will be the product of the first
row of A with the first column of B:

3
(4 6 3)[1]=4-3+6-1+3-0=18
0
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The first row, second column of AB will be the product of the first
row of A and the second column of B:

1
(4 6 3)|2]|=4-146-2+3-2=22
2

The second row, first column of AB is the product of the second row
of A and the first column of B:

3
01 -1)[1]=0-3+1-1+(-1)-0=1
0

Continuing like this we can compute each entry of AB:

18 22
AB=|(1 0
11 11

Example 6.11.
Suppose T : R* — R? and S : R? — R* are given by

v x+z
o) =(23)
5 Y

2y
()=
Yy r—=y
3z

What does the composition S o 7" do? What is the corresponding
matrix?
Our map S o T' will take convert three-dimensional vectors into
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four-dimensional vectors in the following way:

(i) ()
- B Z
N (%Z)

2(y — 2)

AR S A S ) —
z+z—(y—2)
3(x + 2)
2y — 2z
r+y

T—y+2z
3z + 32

We could compute the matrix of S o 7" in two different ways: by
multiplying the matrices of S and 7', or by computing SoT'(¢;). We'll
compute the matrix both ways.

First notice that the matrix of 7" is

10 1
B‘(o 1 —1)‘

The matrix of S is

W= = O
|
—
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The matrix of S o T is thus

0 2
1 1]|/10 1
AB=11 (0 1 —1)
30
0-142-0  0-042-1 0-1+2-(=1)
| 11410 1-041-1  1-1+41-(=1)
“|114(=1)-0 1-04+(=1)-1 1-1+(=1)-—1
3.1+40-0  3-040-1 3-1+0-(=1)
0 2 -2
I R
11 -1 2
3 0 3

Just to confirm this is correct, notice

0
R 1
S o T(el) = 1
3
2
. 1
S o T(eg) = 1
0
-
SoT(e;) = g
3

6.5 Properties of Matrix Multiplication

Before mentioning some of the algebraic properties that matrix multi-
plication satisfies, we mention some things about matrix multiplication
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which are very different when compared to the usual multiplication of
real numbers that you're used to.

Notice that unlike multiplication of real numbers, multiplication of
matrices is not commutative. That is, AB # BA in general;

Example 6.12.
Suppose A and B are the matrices below:
12 3 2 -1 1
A=10 0 -1 B=|[1 1 2
4 2 1 3 —1 =2
Then
s =2 =1
AB=|-3 1 2
13 -3 6
6 6 8
BA=|9 6 4
-5 2 8

Also unlike normal multiplication of numbers, we can have two non-
zero matrices that multiply to the zero matrix.

Example 6.13.
(1 2 3 ) } ; B (0 0)
0 -1 -1 1 _o 0 0
1 2 0 —2 4 2 2 0 0
01 0 -1 1 1 -1 0 0
2 1 1 1 7 2 6 =10 0
02 0 —2 2 0 -2 00
3 2 3 4 14 -1 -1 0 0
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In general we can’t “divide” matrices either. For example, if =, y and
z are real numbers and zy = xz, then as long as x # 0 we can divide out
the z’s to conclude y = z. This is not the case for matrices.

Example 6.14.
Let A, B, and C' be the matrices below.

1 3 5 1 2 2 -1 0 -2
A=10 2 2 B=[3 1 -1 C=1|2 0 -3
2 1 5 1 0 1 2 1 3
Notice that
15 5 4
AB=AC=|8 2 0
10 5 8§

even though B # C.

Now that we’ve seen some of the properties that matrix multiplica-
tion doesn’t satisfy, let’s mention some of the properties that are satisfied.

Theorem 6.2.
Let A, B, and C be matrices of the appropriate sizes so that products and

sums below are defined, and let \ be a scalar.
(i) A(BC) = (AB)C
(i) A(B+C)=AB+ AC
(iii) (A+ B)C = AC + BC
(iv) N(AB) = (AM)B = A(A\B)

The proofs of each property above are straight-forward, but slightly
tedious, so we leave them as an exercise.
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Exercise 6.5.
Prove Theorem 6.2.

6.6 The Transpose

Given any m x n matrix A, we can define an n x m matrix called the
transpose of A and denoted A” by swapping the rows and columns of A.

Example 6.15.
1 2 7 -3 2 4
A=14 -2 1 1 0 2
3 1 2 2 2 2
1 4 3
2 =
7T 1 2
T
AT = -3 1 2
2 0 2
4 2 2

Notice that this operation turns row vectors into column vectors and
vice versa:

Example 6.16.
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1234 =

=W N

—(5 6 7 8).

oo 3 O Ot

Remark.

If 7 is a column vector (an n x 1 matrix), then the transpose v7 is a
row vector (a 1 x n matrix). The dot product of two vectors « and ¥
can then be written as @’ v where we perform matrix multiplication
on the 1 x n and n x 1 vector to get a single number.

As the transpose is defined by exchanging the roles of columns and
rows, if @, is the i-th column of A, then a! is the i-th row of A”. Similarly,
if @; is the j-th row of A (here & is a row vector), then o?f (now a column
vector) is the j-th column of A.

Theorem 6.3.
If A is any matrix, then (AT)T = A.

Proof.
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Suppose the columns of A are ay, dy, ..., dy:

AT =

TR

If we take the transpose yet again, then we turn these rows back into
the original columns of A:

(AT)T: 61 52 CL_;l = A

Remark.
Notice that if 7 : R® — R™ is any linear transformation, say with

corresponding matrix A, then the transpose of A determines a lin-
ear transformation R™ — R" (in the reverse order of the original
transformation 7).

We now have four different operations we can perform on matrices:
matrix addition, scalar multiplication, matrix multiplication, and now
the transpose. It's reasonable to ask how our new operation, transpose,
gets along with the previous operations.

Theorem 6.4.
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Let A and B be matrices of the appropriate sizes so that the operations
below are defined, and let \ be a scalar. We then have the following:
(i) (A+ B)T = AT + BT
(i) (NA)T = A(AT)
(iii) (AB)T = BTAT.

Proof of Theorem 8.3 (i).
We will only prove part (i) and leave the proofs of the other proper-
ties as exercises.

Suppose that A and B are both m x n matrices so that their sum is
defined. Suppose that a;; is the entry in the i-th row, j-th column of
A and b;; is the entry in the i-th row, j-th column of B. For simplicity
let’s refer to A + B as C and say ¢;; = a;; + b;; is the entry in the i-th
row, j-th column of C' = A + B.

Notice that since the transpose reverses the roles of rows and
columns, the entry in the i-th row, j-th column of A” is aj; (note i
and j are in the reverse order), and similarly for B” and C”. Thus
the i-th row, j-th column of C' has entry c;; which by definition is
aj; +bj;, but this is the sum of what’s in the i-th row and j-th column
of AT and B”. Thus C7 = AT + BT. O

Exercise 6.6.
Prove parts (ii) and (iii) of Theorem 8.3.
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6.7 Inverses

If f: A— Bisamap,any map g : B — A which satisfies
g9(f(a)) =aforeverya € A (6.1)
f(g(b)) =bforeveryb e B (6.2)

is called an inverse of f. Two important properties of inverses are given
by the following theorems:

Theorem 6.5.
Amap f: A — B has an inverse if and only if f is a bijection.

Proof.

Suppose that f has an inverse: we suppose there is some map g :
B — A satisfying the two equations above, and we need to show
that f must be both surjective and injective. For surjectivity, let b €
B and notice that there exists some element ¢ € A that f sends to b:
namely, take a = g(b). By the second equation in the definition of an
inverse we then have

and so f is surjective.

For injectivity, suppose that there are elements a,a’ € A such
that f(a) = f(a'). If we then apply g to f(a) and f(a’), however, we
have

and so f is injective.

Now we show the converse: suppose that f is bijective, and we
want to show that f has an inverse. We defineamap g : B — Aby
declaring that for each b € B, g(b) = a where a € A is the element
that f sends to b. Such an ¢ must exist since f is surjective, and a is
unique because f is injective. So g is a well-defined map. Now we
just need to verify that fog and go f satisfy the defining properties of
an inverse, but this is almost obvious because of the way we defined
g. By definition, ¢g(f(a)) is the element in A which f sends to f(a),
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but that is simply @ and so g(f(a)) = a. For the second equation,
notice that ¢(b) is the element of A that f sends to b, so f(g(b)) = b.
]

Theorem 6.6.
If f has an inverse (i.e., if f is bijective), then its inverse is unique. That
is, there is only one map g : B — A satisfying Equations (6.1) and (6.2).

Proof.

To see this, suppose there were two different maps, say ¢, and g»,
satisfying the equations. We will show that ¢g; and g, must in fact be
the same map. Notice that

f(g1(0)) = b= f(g2(D)),

but f is injective so g1(b) = g2(b). O

Since inverses are unique, we are justified in saying the inverse of a
map instead of an inverse of a map. We adopt the notation f~* to denote
the inverse of f. Notice that this is not f raised to the negative first power;
this is not one over f. (In fact, since we’re just talking about sets that
don’t necessarily have a notation of any sort of “arithmetic” with their
elements, this is a non-issue.)

Notice that Equations (6.1) and (6.2) imply the following;:

fla)=b = [ (b)=a
f)=a = f(a) =0

To see this, simply apply f~! to both sides of f(a) = b and then use
Equation (6.1); and similarly apply f to both sides of f~'(b) = a and use
Equation (6.2). This can be stated more simply as f(a) = b if and only if
/~1(b) = a, which we can write symbolically as f(a) = b <= [71(b) =
a.



CHAPTER 6. MATRIX ALGEBRA 125

We can simplify Equations (6.1) and (6.2) by introducing the identity
map. For every set A, the identity map is a function from A to itself which
tixes every element: that is, a — a for every a € A. The identity map is
denoted id 4 or id if the set A is clear from context.

Lemma 6.7.
Given any map f : A — B, composing f with the identity map does not
change f:

foidys=f=idgo f.

Proof.
For everya € A,

Equations (6.1) and (6.2) can then be expressed more tersely as

fofl=f"lof=id.

6.8 Inverse of a Matrix

Now suppose that T : R — R" is a bijective linear map (i.e., the columns
of the corresponding n x n matrix are linearly independent and span R"),
and so has some inverse 7.

Lemma 6.8.
If T : R" — R™ is a bijective linear transformation, then its inverse T "
is also linear.
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Proof.

By definition, 77*(vi) = u} if T'(u3) = v;. Also consider vectors v5
and uy with 7~ (17) = uy <= T(u3) = v3. We need to show that
T~ (v1 + v5) = uj + us, but notice

T(u) + up) =T (u)) + T(uy) = v7 + 03.

Since T is the inverse of T, T~ !(v; + v3) is the element of R" which
T takes to v7 +v3, but we have just shown that u +15 is that element,
and so

T7Hw) +05) = TH (1) + T H(w).

Similarly, suppose T~ (¢) = 4. We need to show that 77! (A7) =
A, but this must be the case as

T(\@) = AT(@) = A5

Thus 7! is linear. O

So if T is a linear bijection, then so is its inverse 7-'. Thus there is
some matrix that corresponds to 7*. To figure out what this matrix is,
let’s consider some properties of this matrix. First we need to know about
the identity transformation and identity transformation.

The identity transformation is a map id : R" — R" which leaves
vectors alone. That is, id(v) = ¢. Notice that if 7' : R — R" is a linear
bijection, then Equations (6.1) and (6.2) can be rewritten as

ToT ' '=id=T""'oT.

Since id is a composition of linear maps, id is linear. (It’s also very easy
to check that id is a linear transformation directly.)

The matrix of the identity transformation is called the identity matrix
and is denoted by I:

1 00 0 0 0
1 0 0 0 O
0 1 0 0O
I =
0O 0 0 - 010
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That is, the identity matrix for R" is a square, n X n matrix that has 1’s on
the diagonal, and zeros everywhere else.

Sometimes we will write /,, to mean the n x n identity matrix, and
sometimes we will just write [ if the dimension is clear from context.

100
00 1
1000
0100
]4_0010
0001

Just as composing a map with the identity map doesn’t change the
map, multiplying a matrix with the identity matrix doesn’t change the
matrix:

Al = A=1TA

Say T': R™ — R" is a bijective linear transformation with correspond-
ing matrix 4, and let A~ denote the matrix of 7. Since ToT ! = T 'oT =
id and since matrix multiplication corresponds to composition of linear
transformations, we know

AAT ' =ATTA= 1T

Our goal is to determine what A~! is given A. To do this we introduce
elementary matrices.

6.9 Elementary Matrices

An elementary matrix is a matrix produced by performing an elemen-
tary row operation to the identity matrix. That is, an elementary matrix
is a square matrix which is given by taking the identity matrix / and per-
forming one of the following operations to it:

(i) Swap two rows.
(ii) Add a multiple of one row to another.

(iii) Multiply everything in one row by a constant.
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Example 6.17.

The following are some 3 x 3 elementary matrices.
0 0 1 1 00 -4 00
010 310 0 10
1 00 001 0 01

Theorem 6.9.
If E is an elementary matrix, then the product E A is the same as perform-
ing the corresponding elementary row operation on A.

Before proving Theorem 8.6, let’s recall a fact that was left as a prac-
tice problem in the previous lecture’s notes. Suppose that A is any m x n
matrix and B is any n x p matrix. Then the rows of AB are linear combi-
nations of the rows of B where the scalars each row is multiplied by are
determined by the entries in each row of A. For example, if the rows of
B are the row vectors 73, 75, ..., 7, and the k-th row of A has the form

(M A o A,
then the k-th row of AB will be
AT+ ATy 4+« + AT

With this fact in hand, we can easily prove Theorem 8.6.

Proof of Theorem 8.6.
Let A be any m x n matrix whose rows we will suppose are the row
vectors 7, 7, ..., Tn,. Let £ be an elementary m x m matrix.

There are three cases to consider corresponding to the three ele-
mentary row operations.

* Suppose E is obtained from I,, by swapping two rows, say

rows ¢ and j:
RiHR'
I—— > F.
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This means that the i-th row of F is gjf , the j-th row of Eis é7,
and for any k that is not ¢ or j, the k-th row of F is €} .

If k£ is not i or j, then the k-th row of F A is

O‘Fl“‘0‘7?2“‘““1‘0'7_‘}3—1+1'Fk+0‘Fk+1+"'+0‘Fm

=7,

So the k-th row of A remains the same. The i-th row of FA,
however is

Ue i A Wiy b =ee AR Wi A ey F 0 A= eo - Ue i, = i
and the k-th row of F'A is
0-m+0-7+--+0-7T14+1-7%4+0-F1+--+0-7, =7

That is, every row of A is unchanged except for the i-th and
j-th rows which are swapped.

e Suppose FE is obtained from I, by adding c times the i-th row
to the j-th row. Then all rows of E, except for the j-th row,
are all zeros except for a 1 in the k-th position of the k-th row.
Thus every row of EA, except the j-th row, is the same as the
corresponding row of A. The j-th row of £ is all zeros except
for a 1 in the j-th position and a c in the i-th position. Hence
the j-th row of EA is the j-th row of A plus c times the i-th
row of A.

e [eft as an exercise.

Exercise 6.7.

Suppose that E is obtained from / by multiplying the i-th row of /
by c. Show that F'A is obtained from A by multiplying the i-th row
of Aby c.
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The above theorem about elementary row operations will be com-
bined with the following observation to obtain a method for determining
inverse matrices.

Lemma 6.10.
If T : R" — R" is a linear bijection, then the corresponding matrix A
becomes the identity matrix when put into RREF.

Proof.

Since T' is surjective, its matrix has a pivot in every row. However,
since 7' is injective, it also has a pivot in every column. The only
matrix in RREF with pivots in every row and column is the identity
matrix. [

This lemma tells us that there is some sequence of elementary row
operations that we can perform to A to get the identity matrix /. Each of
these elementary row operations corresponds to multiplication by some
elementary matrix. So there is some collection of elementary matrices,
El, EQ, E3, ceey Eq such that

B B, 1 BBy A =1
The product E,E,_; - - - E5Ey is thus A

A'=EE, - EFE,.

Example 6.18.
Let A be the following 2 x 2 matrix

(i o)

We can put this matrix into RREF with the following sequence of
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elementary row operations:

[ S —
N O

—
= N

gu
1
S
A?A
o
N—— N

Rl 2R2~)R1 ( 0
01

This corresponds to multiplying A by the following elementary ma-

trices:
1/ 0
m=(4 1)
1 0
g= (1)
1 0
0 11
1 -2
= 7)
Now we multiply E4E3F>F; to get A1

_ 3/s  —1/
A ! = E4E3E2E1 = <—1/8 1/4 ) .

We can easily check that this really is the inverse of A: i.e., that
ATTA=1T:

() )
a2+ (<1f2) - 1 3/4-4+<—1/2>-6)
124141  —1fg-4+11-6

<
yxa;m>

)

Es
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There is a little trick we can use to make obtaining A~! slightly eas-
ier. Suppose that A is n x n and consider the n x 2n matrix obtained by
augmenting A with the n x n identity matrix:

(A1)

We then start performing the elementary row operations that put A into
RREEF (this is the same as multiplying by E;, then 