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Introduction to the Course
Mathematics is the art of reducing any problem
to linear algebra.

WILLIAM STEIN

What is linear algebra?
Most mathematicians see mathematics as falling into two broad cate-
gories: applied math and pure math. Applied mathematics is the math
that is concerned with solving “real world” problems that occur in en-
gineering, economics, and the sciences, and is probably what most edu-
cated non-mathematicians think of when they think of math. Pure math-
ematics, however, is more akin to philosophy or art: it is the mathematics
that is studied because it is considered interesting or beautiful.

Linear algebra is one of the few mathematical disciplines that falls
squarely in both categories. It is a collection of ideas and techniques that
are intrinsically interesting, but also profoundly useful. It is extremely
difficult, and perhaps impossible, to name an area of modern mathemat-
ics, science, technology, or engineering that does not use linear algebra
in some way. Not only are the tools of linear algebra useful in prac-
tical applications, they are fundamental in other advanced areas. For
example, much of algebraic topology involves associating certain vec-
tor spaces (which are the principal objects of study in linear algebra) to
topological spaces, reducing topological problems into linear algebraic
problems.

What is the structure of this course?
Some of the topics that we will study in this course are things you may
have seen before in a high school algebra class; systems of linear equa-
tions and matrices are often (but not always) studied in high school.
Some ideas, such as sets, will be familiar to students that have already
taken courses in discrete mathematics or logic and proof, but will be new
to other students. And some topics will be completely alien to everyone
in the class.

vi



INTRODUCTION TO THE COURSE vii

This course will start at the beginning by reviewing systems of linear
equations. Because this is a topic that should be somewhat familiar to
most students in the course, we will go through this material relatively
quickly in lecture, but detailed lecture notes will be provided if you want
or need to see a deeper explanation than what is mentioned in class.

After we have covered the basics (solving systems of linear equations
and matrix algebra) we will begin to move into more advanced territory,
and we will consider topics which at first will seem very abstract and
esoteric. However, we will see that even these strange and exotic ideas
have real world applications. One of the reasons we will go through the
early material quickly is so that we will have more time to discuss the
more difficult material in the second half of the course.

There is no denying that this course will require a level of abstraction
and sophistication that you are likely not used to. This may seem very
jarring, especially if you are the type of student that has typically under-
stood material in previous mathematics courses without a great deal of
trouble. I mention this not to scare you away from the course, but just to
reassure you that feeling frustrated and confused is a normal part of the
learning process, especially when you are faced with ideas that are unlike
anything you have seen before. I have every confidence that each student
is capable of understanding the material in this course, but you have to
accept that this course will require you to work hard and sometimes you
will be frustrated.

How can students succeed?
I firmly believe that every student is capable of succeeding in this course,
but I also know that some students will struggle and so I want to mention
a few concrete things that you can do to succeed in the course.

Recognize that this class is difficult

In the first couple of weeks of the semester this class may seem relatively
straight-forward, but you should not let this lull you into thinking the en-
tire semester will be easy. One of the difficult things about this course is
that we will cover a lot of material, and each new topic will build off the
previous ones. If you start to fall behind, you will have a very small win-
dow of time to get back up to speed before being behind will negatively
affect your grade.
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Study every day

To do well in this course you will need to invest a significant amount of
time into studying outside of class. Sitting in lecture, even if you feel like
you understand what is going on during the lecture, will not be enough.
You should get into the habit of studying every day: not just the days the
class meets, not just on weekdays, but every day. Something as simple
as putting aside one hour for individual studying outside of class each
day can have a huge impact on your grade and keep you from falling
behind. Sometimes you will have other commitments that prevent you
from getting an hour each day, but when at all possible, you should really
try to study at least one hour each day. If you can’t manage an hour one
day, do what you can; even fifteen or twenty minutes of studying is much
better than no studying at all.

When you study you should first review your notes from class; notice
this implies that you need to be taking notes in class. If there is something
from your notes that you don’t understand, try to figure it out. It’s best
if you try to figure things out on your own first without having to look
in a book or online: sometimes you just need to spend a few minutes
thinking through the details of some calculation or the logic behind some
argument before it starts to make sense.

Read your book and the posted lecture notes. The book and the lec-
ture notes cover the same material, but sometimes presented in different
ways. By reading both you see the same ideas from two different points
of view. This can be helpful because one point of view may “click” when
the other does not.

Be incredulous

To do well in advanced math courses you should try to think like a math-
ematician. This means trying to understand the ins and outs of every
argument, why each step in a computation was performed, what ear-
lier results were used, etc. In general, you should be incredulous: you
should not simply take it on faith that what we have learned in class is
true (even though it is!), but you should instead always ask why it’s true
and try to figure out the reason. This one piece of advice, if taken to heart,
subsumes everything else.



INTRODUCTION TO THE COURSE ix

Practice, then practice some more

You know that you understand a concept well and are prepared for an
exam when you have practiced so much that solving problems becomes
mechanical. For example, think about solving for x in an equation such
as x3 = x2+2x. The first time you started learning algebra this may have
seemed very odd and difficult, but as you did more examples you started
to notice the patterns and the tricks, and now you (hopefully) are able to
solve for x in equations like the one above without any trouble.

Similarly, in this class you will probably find some computations and
some logical arguments very difficult and time-consuming at first. If you
do enough examples, however, then the things that at first seem difficult
and confusing will over time become second nature. The only way for
this to happen is to invest time in practicing. When you review your
notes and see an example that we did in class, try to reproduce the result
without looking at the notes and then look back at the notes if you get
stuck or make a mistake. Do the practice problems at the end of each set
of lecture notes; pick and choose extra problems at the end of the sec-
tions in the book; make up your own problems; look for extra problems
online. The more practice you do, the easier everything will be when you
actually sit down to take an exam.

Prepare for exams

The biggest mistake you can make when an exam is coming up is to
put off studying for it. The earlier you start preparing for an exam, the
better. When an exam is coming up, start adding more time to your usual
study sessions. Ideally you should add an extra hour each day for a week
leading up to an exam. It’s probably best to try to split this up into two
one-hour study sessions each day instead of doing two hours at once.

When you’re preparing for an exam, you should study as if the up-
coming exam is the hardest one you have ever taken in your life. (This
isn’t to say that it necessarily will be the hardest exam you ever take, but
it’s better to over-prepare than to under-prepare.) If there is a topic you
don’t feel comfortable with or are worried about, don’t ignore it! Study
as if the problems you dislike and find hard will be on the exam: chances
are at least a couple types of problems you dislike will make their way
onto an exam at some point.

To prepare for an exam you should review all of the relevant notes,
look over any returned homeworks or quizzes, and try to understand any
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mistakes that you made. It is very likely that problems from homework
or quizzes will reappear on an exam.

Come to class

For some strange reason there always seem to be people who think it’s
okay to skip class. You should come to class each and every day which
you are physically able. In class you should be actively paying attention
to the lecture and trying to think through examples as they are done on
the board. If you have questions in class, then that’s good! Having ques-
tions means that you’re thinking, which is what you should be doing in
class.

You should not be daydreaming, working on assignments for other
classes, playing games on your phone, or checking Facebook / X (for-
merly known as Twitter) / Tumblr / Instagram / Snapchat / Tinder /
YikYak / etc.

Start assignments early and work on them often

You will usually have at least a week to do a homework assignment, and
that is for a reason. Some of the questions on these assignments will be
difficult and you will have to spend some time thinking in order to do the
assignment. You should really try to start on assignments early, meaning
the day they are assigned, and try to do a few problems each day. You
should also anticipate that some questions are going to require a lot of
time – maybe an hour or more for the hardest questions. If you wait until
the last minute to do an assignment, you won’t have time to get it done.

Get help when you need help

Sometimes this class will be hard, but if you’re willing to ask questions
and get help when you really need help, you will find the material much
easier. I encourage you to work with other students and look up re-
sources online like Khan Academy and MIT’s Open Course Ware when
you’re having difficulty with a problem or concept. You can also email
me (cjohnson@wcu.edu) or drop in during my office hours.

In general when you have a specific concern about an assignment or
a topic from class, you should try to address your concern by taking ad-
vantage of resources in the following order:

cjohnson@wcu.edu
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1. Try to figure things out yourself. There will be plenty of times when
you just need to spend a little bit of time thinking on your own and
you can figure things out.

2. Check in the book or lecture notes. Many questions you have will
be answered in the book or notes, you just have to take the time to
look through the book/notes and find it.

3. Ask a classmate. Sometimes you may have a misconception or mis-
heard something in lecture, and asking a friend might be all it takes
for you to realize your mistake.

4. Ask other students in the Math Tutoring Center.

5. Email me or come to office hours. I put this at the end of the list not
because I’m trying to avoid seeing you or talking to you, but just
as a matter of practicality. If everyone in the class came to me the
instant they had a question I would spend my entire day answering
their questions. I am fine with answering your questions or talking
to you when you have concerns, but I also have other classes and
other responsibilities that I have to attend to.

If you have more serious concerns about your standing in the class –
not simply a homework problem you can’t figure out – then by all means
contact me first.

Don’t stress out (too much)

There will be times when this class frustrates you: maybe there is a topic
you can’t seem to wrap your head around, or a problem that you feel like
you’re staring at and have no idea how to get started. This is completely
normal and you shouldn’t get too stressed out about it. This class is going
to be hard and you are going to get confused and feel stuck sometimes,
but that is just a normal part of learning difficult material. The important
thing to remember is that you should persevere. If you’re getting frus-
trated, take a break: go get something to eat, play a game, read a book,
take a nap; do something you enjoy for a little while and then get back to
work when you’re ready.

The lecture notes

The notes you are reading are in their third incarnation, having evolved
from the handwritten examples I used when I first taught a version of
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this course at Wake Forest University, and then updated when I taught
the course at Indiana University. There may be places where the notes are
“rough around the edges” and may contain typos and mistakes (though
hopefully those are all minor). If you see something in the notes you
think is a mistake, it may very well be, and it would be greatly appreci-
ated if you would email me (cjohnson@wcu.edu) to let me know about
any mistakes. While these notes are my primary resource for the exam-
ples I use in the lectures, they should not be a substitute for the textbook.
Besides the fact that your textbook has fewer mistakes than these notes
(probably not mistake-free, but relatively few and minor mistakes) since
it was professionally edited, the textbook also has lots of exercises and
practice problems, which these notes do not. I hope these notes are help-
ful to you, but you should not use them as your only source of study
material.

Chris Johnson
Fall 2024

cjohnson@wcu.edu


Part I

Linear Systems and Matrices

1



1Systems of Linear Equations
“Begin at the beginning,” the King said, very
gravely, “and go on till you come to the end:
then stop.”

LEWIS CARROLL
Alice in Wonderland

Linear algebra is one of the most fundamental tools in mathematics,
engineering, and the sciences. Many objects in both mathematics and
physics are defined in terms of linear algebra, and the tools of linear
algebra are then used to study those objects. From differential geome-
try and Einstein’s theory of general relativity to the practical, real-world
optimization problems that occur in industry, linear algebra is every-
where. One reason for this is because linear algebra is extremely well-
understood, but also because linear algebra can be done very efficiently
on a computer. This means that describing a problem of interest in terms
of linear algebra is often the first step to understanding and ultimately
solving that problem.

In this class we will describe the fundamentals of linear algebra, in-
cluding linear transformations, matrix algebra, determinants, eigenvec-
tors & eigenvalues, and inner products & orthogonality (if time allows).
The starting point for all of this, however, is solving systems of linear
equations. Systems of linear equations appear throughout mathematics,
and over the years people have developed a set of algorithms (mathe-
matical recipes) for how to solve such systems, or determine that they
can not be solved. Everything else in linear algebra is built upon the
ideas involved in solving a system of linear equations, so understanding
these systems is necessarily the proper place to begin a study of linear
algebra.

1.1 Linear Equations
A real linear function is a map from Rn to R which has the form

(x1, ..., xn) 7→ a1x1 + a2x2 + · · ·+ anxn

where the x1, x2, ..., xn are independent variables (i.e., values that are al-
lowed to change), and the a1, ..., an are constants that have been chosen

2



CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS 3

and will not change. These a1, ..., an values are called the coefficients.
Here we are assuming the coefficients and the variables are all real num-
bers.

We could define a complex linear function similarly: this is a map
from Cn to C of the form

(z1, ..., zn) 7→ α1z1 + α2z2 + · · ·+ αnzn

where the αi and zi are complex numbers.
The majority of the material in this class will apply equally well to

both real and complex numbers, and other more exotic number systems.
Whenver we say a function is linear without specifying whether we meal
real linear or complex linear, we mean that either a real linear function or
a complex linear function can be used.

The number n tells us how many variables and coefficients there are.
In this class n will be allowed to be any positive integer or infinity. Usu-
ally if there are only two variables (i.e., we have a function from R2 to R),
then we will call the variables x and y instead of x1 and x2; similarly, if
there are only three variables (the linear function is from R3 to R), then
we will use x, y, and z as the variables.

Example 1.1.
Each of the following are linear functions:

(a) T (x, y, z) = 3x− 2y + πz

(b) f(x, y) = −6x+ 17
3
y

(c) 6x1 − 7x2 + 4x4 − e2x5

(d) (z1, z2) 7→ iz1 + 2z2

(e) (x1, x2, ..., xn) 7→ 0

Example 1.2.
The following are not linear functions:

(a) g(x, y, z) = x2 + 2y − 3z
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(b) h(x, y) = xy

(c) T (x, y, z) = 3x− 2y + πz − 4

(d) (z1, z2) 7→ z1 + ez2

(e) (x1, x2, ..., xn) 7→ 1

Exercise 1.1.
Why is Example 1.1(e) linear, but Example 1.2(e) not?

A linear equation is an equation where each side of the equation is a
linear function or a constant.

Example 1.3.
Each of the following is a linear equation:

(a) 6x+ 2y = 3

(b) x1 − x2 + 3x3 +
22
7
x4 = 2

(c) x− y + z = 0

Example 1.4.
The following are not linear equations:

(a) xy = 1

(b) x1+x2

x3
= x4 − x5
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(c) x2 = x+ y

Let’s go ahead and notice at this point that the set of all solutions
to a linear equation in two variables gives us a line. For example, the
collection of all (x, y) pairs that satisfy the linear equation

6x+ 2y = 3

is a line. This might be easiest to see if we take our linear equation and
rewrite in the more familiar slope-intercept form of a line by solving for
y:

6x+ 2y = 3

=⇒ 2y = −6x+ 3

=⇒ y = −3x+
3

2

This is a line of slope −3 which passes through the point (0, 3/2) as in
Figure 1.1.

x

y

Figure 1.1: The set of points satisfying the linear equation 6x + 2y = 3 is
a line in the plane.

It is because of this graphical interpretation that equations of the form
ax+ by = c in two dimensions give lines that we call the functions above
linear functions and equations with linear functions are linear equations.
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Notice that in three dimensions the set of solutions to a linear equation
give a plane and not a line, as in Figure 1.2, but we still use the term
“linear.”

y

x

z

Figure 1.2: The set of points satisfying the linear equation x − y + z = 0
is a plane in 3-space.

A system of linear equations is a collection of linear equations, all in
the same number of variables.

Example 1.5.
Each of the following are systems of linear equations:

(a)

3x+ 2y =4

6x− y =9

(b)

4x+ 3y =3

4x+ 3y =2
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(c)

x+ y + z =3

2x− y + 3z =0

A solution to a system of a linear equations is a collection of num-
bers, one for each variable, which makes all of the equations true simul-
taneously. In the case of Example 1.5(a) it’s easy to check that (x, y) =
(22/15,−1/5) is a solution to the system by simply plugging x = 22/15 and
y = −1/5 into each equation in the system and verifying that both equa-
tions are true:

3 · 22
15

+ 2 · −1

5
=
22

5
− 2

5

=
20

5

=4

6 · 22
15

− −1

5
=
44

5
+

1

5

=
45

5

=9

In Example 1.5(b) it’s also easy to see that there are no solutions to the
system: there is no choice of x and y that can make 4x + 3y = 3 and
4x+ 3y = 2 at the same time, since 3 ̸= 2.

It’s a little bit harder to see, but there are actually infinitely-many dif-
ferent solutions to Example 1.5(c). Let’s try to explain why this is. If we
solve the first equation for y we have

y = 3− x− z.

So triple (x, y, z) solving the system has to also satisfy this equation (since
this is just the first equation rewritten). Now if (x, y, z) is a solution to the
system, then it must also solve the second equation as well as y = 3−x−z.
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This means we can rewrite the second equation as

2x− (3− x− z) + 3z = 0.

If we now solve this equation for z we have

2x− (3− x− z) + 3z = 0

=⇒ 3x+ 4z − 3 = 0

=⇒ z =
3− 3x

4
.

If we now plug this back into y = 3− x− z we have

y =3− x− 3− 3x

4

=
12− 4x

4
− 3− 3x

4

=
9− x

4
.

So, what does this mean? It means if (x, y, z) is a solution to the system,
then y and z are both determined by x:

y =
9− x

4
and z =

3− 3x

4
.

Here x can be whatever value you’d like (in a situation like this we some-
times call x a free variable) and once you’ve chosen x, you know what y
and z must be. Since there are infinitely-many different choices for x (x
can be any real number you’d like), there are infinitely-many solutions.

Right now the above algebra probably seems tedious – easy, but a
little bit of boring work to figure out. We will quickly see that there are
some algorithms that make finding solutions to systems like this much
easier. Before doing that, however, let’s talk about the geometry of the
set of solutions to a system of linear equations.

1.2 Solution Sets
Given a system of linear equations our goal will typically be to find all
possible solutions to the system. The collection of all possible solutions
is called the solution set of the system. In principle, the solution set of an
arbitrary system of equations could be very complicated, but for systems
of linear equations, the solution sets are actually very nice.
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In fact, the solution set of a system of linear equation comes in one of
three flavors: it could be empty (no solutions), it could contain exactly
one point (a unique solution), or it could contain infinitely-many points.
Let’s think about why this is in two variables.

Let’s suppose that you had a system of linear equations in two vari-
ables: say there are n equations, and the i-th equation has the form aix+
biy = ci, so the system looks something like the following:

a1x+ b1y =c1

a2x+ b2y =c2
...

anx+ bny =cn.

Each one of the equations determines a line in the plane. The solution set
of the system is the collection of points that are simultaneously on all of
the lines. It could be that all of the lines intersect at a single point giving
a unique solution; it could be that no point is on all of the lines at the
same time (no solution); or it could be that all the lines are actually the
same and there are infinitely-many solutions (every point on the line is a
solution).

Let’s consider one example of each situation just by considering the
graphs of the lines.

Example 1.6.
The following system has one unique solution:

x− y =−1

2x+ y =7

−3x+ 9y =21
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Here there is a unique solution because there is exactly one point
that is on all three lines.

Example 1.7.
The following system has no solutions:

x+ y =5

−2x+ 8y =10

2x− 3y =7
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There are no solutions because there is not a point that is on all three
lines simultaneously.

Example 1.8.
The following system has infinitely-many solutions:

−x+ y =1

2x− 2y =−2

−3x+ 3y =3

In this case all three lines are actually the same line on top of one
another, so any solution to one equation is instantly a solution to
both of the other equations.

The same situation can happen in any number of variables: regardless
of whether your system of equation is in 2 variables, 3 variables, or 457
variables, a system of linear equations has either no solutions, one unique
solution, or infinitely-many solutions.1

Exercise 1.2.

1This is true if we’re talking about real or complex linear systems. We will see later
in the semester that there are some applications where we’d like to use another type of
number system, and in that case it could be possible to have only finitely-many distinct
solutions to a system.
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(a) Plot each of the lines in the system below, and determine if the
system has no solutions, one solution, or infinitely-many solu-
tions. If there is one unique solution, determine what that solu-
tion is.

x+ y =1

x− 2y =3

(b) Repeat part (a), but add 4x + 7y = 9 as a third equation to the
system.

Whenever a system of equations has a solution (regardless of whether
it has one solution or infinitely-many) we say the system is consistent. If
the system does not have any solutions, however, we say the system is
inconsistent. So the systems in Example 1.6 and Example 1.8 are consis-
tent, while the system in Example 1.7 is inconsistent.

1.3 Solving a System of Linear Equations
Now that we what a linear system is and the different “flavors” the solu-
tion can come in, how do we go about determining the solutions?

Let’s consider “manually” solving a couple of different systems be-
fore we try to come up with an algorithm.

Example 1.9.
Solve the following system:

x− y =7

y =3

This is a system everyone can solve without any knowledge of lin-
ear algebra: the second equation tells us explicitly what y has to be,
so all of the (x, y) solutions to the system have to take y to be three.
Plugging this back into the first equation we then have x − 3 = 7
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and we can easily solve x = 10. Thus (x, y) = (10, 3) is a solution,
the unique solution, to this system.

Example 1.10.
Solve the following system:

x− y =7

2x− y =17

To solve this system we might first try to isolate a variable in one of
the equations. For example, if we subtract twice the first equation
from the second equaton we would have

2x− y − 2(x− y) = 17− 2 · 7
=⇒ 2x− y − 2x+ 2y = 17− 4

=⇒ y = 3

We are then back to exactly the same situation as the previous ex-
ample and so the solution is again (10, 3).

When two different systems of equations have the same set of solu-
tions, such as the examples above, we say the systems are equivalent.

Notice that certain types of systems of equations are very easy to
solve, and others can seem more complicated. Here is another easy ex-
ample:

Example 1.11.
Solve the following system

2x+ 3y − z = 4

y + 2z = 2

z = −1
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This system is very easy to solve because one of the equations in-
stantly tells us what one of the variables has to be: we know that
z must be −1. If we plug this into the second equation we have
y − 2 = 2, so y = 4. Now that we know y and z, we can plug back
into the first equation to determine 2x+12+1 = 4, and thus x = −9

2
.

We really like the types of systems as in the last example because they
are almost trivial to solve: we just plug back into our equations and get
one variable at a time. We would like it, then, if when given a more
complicated system we were somehow able to determine an equivalent,
but easy-to-solve, system. Since the systems are equivalent, solving the
easy system tells us the solution to the complicated system.

The main question, then, is how do we determine if two systems are
equivalent?

To do this, let’s come up with a list of some simple operations that
we can perform on a system of equations to come up with an equivalent
system. What we are about to describe will work for any number of
systems in any number of variables, so we’ll state things very generally
but then do some simpler examples.

Theorem 1.1.
If two rows in a linear system are exchanged, the newly obtained system is
equivalent to the original one.

Proof.
The equations defining the system haven’t been changed, just re-
ordered.

Example 1.12.
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The following two systems are equivalent:

2x+ 3y − z = 4 −x+ 6y + 4z = −2

x− y + 3z = 9 x− y + 3z = 9

−x+ 6y + 4z = −2 2x+ 3y − z = 4

Theorem 1.2.
If one equation in a linear system is modified by adding a multiple of an-

other equation to it, the newly obtained system is equivalent to the original
one.

Before proving this theorem in general, let’s consider a very simple
case: two variables and two equations. Say our system looks like

a1x+ a2y = b

α1x+ α2y = β

Suppose the system is consistent and so there’s some point (s1, s2) that
satisfies the system: if we plug in x = s1 and y = s2, then both equations
are solved simultaneously.

Now say that we modify the system by adding a multiple of the sec-
ond equation to the first. That is, we will replace the first equation by
adding c times the second equation to it, for some constant c. We then
have the following system:

(a1 + cα1)x+ (a2 + cα2)y = b+ cβ

α1x+ α2y = β

We claim that (s1, s2) is still a solution to this system. Since (s1, s2) satis-
fied the second equation before, and that second equation hasn’t changed,
all we need to do is verify that (s1, s2) satisfies the modified first equation,
but this is easy:

(a1 + cα1)s1 + (a2 + cα2)s2

= a1s1 + cα1s1 + a2s2 + cα2s2

= (a1s1 + a2s2) + c(α1s1 + α2s2)

= b+ cβ
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A solution to the original system is thus a solution to this modified sys-
tem as well. This shows that the solution set of the first system is a subset
of the solution set of the second system. We still need to show that a so-
lution to the modified system is also a solution to the original system,
but the idea is basically the same as the above, so we will leave that as an
exercise.

Exercise 1.3.
Show that if (t1, t2) is a solution to the system

(a1 + cα1)x+ (a2 + cα2)y = b+ cβ

α1x+ α2y = β,

then it is also a solution to the system

a1x+ a2y = b

α1x+ α2y = β.

Proving the general theorem is basically repeating the same argument
above, just with more equations and variables.

Proof of Theorem 1.2.
Consider a linear system of m equations in n variables. Say two of
the equations in this system are

a1x1 + · · ·+ anxn = b and α1x1 + · · ·+ αnxn = β.

We want to leave the second equation alone, but replace the first
equation with

(a1 + cα1)x1 + · · ·+ (an + cαn)xn = b+ cβ

for some constant c. The claim is that doing so doesn’t change the
set of solutions.

Let’s call the set of solutions to the original system S, and the set
of solutions to the modified system T . We want to show these two
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sets are the same: we want to show that S = T , which means we
need to show that S ⊆ T and T ⊆ S.

Let (s1, ..., sn) ∈ S be a solution to the original system. We need
to show this is also a solution to the modified system. Of the equa-
tions defining the systems, however, m − 1 of the equations are the
same. So the only thing we need to check is that (s1, ..., sn) is also a
solution to

(a1 + cα1)x1 + · · ·+ (an + cαn)xn = b+ cβ

We simply plug in (x1, ..., xn) = (s1, ..., sn) and verify that the equa-
tion holds:

(a1 + cα1)s1 + · · ·+ (an + cαn)sn

=a1s1 + cα1s1 + · · ·+ ansn + cαnsn

=(a1s1 + · · ·+ ansn) + c(α1s1 + · · ·+ αnsn)

=b+ cβ

This shows that S ⊆ T .
We leave the second part of the proof, that T ⊆ S, as an exercise.

Exercise 1.4.
Finish the proof of Theorem 1.2.

Finally, there’s one last operation that we will introduce that can be
used to replace one system of equations with an equivalent one.

Theorem 1.3.
If each term (both the left- and right-hand sides) of one equation is multi-

pled by a nonzero constant c, then the newly obtained system is equivalent
to the original system.
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Again, let’s consider what’s happening with two variables and two
equations. If our original system was

a1x+ a2y = b

α1x+ α2y = β

then we claim that the following system is equivalent

ca1x+ ca2y = cb

α1x+ α2y = β

when c is any nonzero constant.
To prove this, again suppose that (s1, s2) is a system to the original

system. We can easily verify that (s1, s2) solves the modified system. Of
course, the second equation has remained the same, so (s1, s2) still satis-
fies it. For the first equation we have

ca1s1 + ca2s2

=c(a1s1 + a2s2)

=cb

To prove that a solution (t1, t2) to the modified system is also a solu-
tion to the original system we can perform the exact same procedure: just
multiply through by 1

c
to get the c’s to cancel! In more variables and/or

equations, the argument is exactly the same, so we will leave that as an
exercise.

Exercise 1.5.
Prove Theorem 1.3.

1.4 A Procedure for Solving Linear Systems
We now want to use the three theorems above to develop a scheme for
solving systems of linear equations, or determining that there is no solu-
tion. As we saw in an earlier example, it would be nice if the system we
wanted to solve had the following sort of form:

ax+ by = α ax+ by + cz = α

cy = β dy + ez = β

fz = γ
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In this situation it is super-easy to “work backwards,” solving for one
variable at a time, and then determining the others. Let’s give systems
of this form a special name so it’s easier to refer to them: we will call a
system like this is in echelon form.

To solve a system that is not in echelon, let’s try to replace the sys-
tem with an equivalent system that is in echelon form. We’ll do this by
repeatedly applying our three theorems above, modifying the system a
little bit at a time until it is in the form we’d like.

Example 1.13.
Solve the following system of equations.

x+ 4y = 3

2x− y = 1

All we need to do to put the system in echelon form is get rid of
the 2x in the second equation. We can do this by subtracting twice
the first equation from the second. We will then replace the second
equation with

2x− y − 2(x+ 4y) = 1− 2 · 3
=⇒ −9y = −5

thus y = 5
9
, and pluggin this back into the first equation,

x+ 4 · 5
9
= 3

=⇒ x = 3− 20

9
=

7

9

and so the system has a unique solution, (x, y) = (5/9, 7/9).

Example 1.14.



CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS 20

Solve the following system of equations.

2x− 5y = 7

−6x+ 15y = 10

We again try to put the system into echelon form by getting rid of
the −6x in the second equation. To do this, we add three times the
first equation to the second:

− 6x+ 15 + 3(2x− 5y) = 7 + 3 · 10
=⇒ 0 = 37

Now we have a problem: zero is not equal to thirty-seven! What
this means is that there is no solution to the system.

Geometrically, the lines determined by each of the equations
above are parallel. A solution to the system would be where the two
lines intersect, but two parallel lines never intersect, hence there is
no solution.

1

1

Example 1.15.
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Solve the following system:

3x+ 2y − z = 3

12x− 4y + 2z = 1

15x− 2y + z = 4

To put this system into echelon form we need to first get rid of the x
terms in the second and third equations. We will replace the second
equation by subtracting four times the first equation, and we’ll re-
place the third equation by subtracting five times the first equation.

The second equation then becomes,

12x− 4y + 2z − 4(3x+ 2y − z) = 1− 4 · 3
=⇒ − 12y + 6z = −11

While the thid equation becomes

15x− 2y + z − 5(3x+ 2y − z) = 4− 5 · 3
=⇒ − 12y + 6z = −11

Our system thus far is

3x+ 2y − z = 3

−12y + 6z = −11

−12y + 6z = −11

To put the system in echelon form we need to get rid of the y term in
the third equation, but doing this will of course get rid of all of the
terms in the third equation. Thus the echelon form of the system is

3x+ 2y − z = 3

−12y + 6z = −11

(If you want, there’s an equation 0x + 0y + 0z = 0 at the bottom of
this.)

Let’s notice that if we try to kill of y in the second equation by
adding six times the first equation, we would also kill of z and our
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system would become

3x+ 2y − z = 3

18x = 7

So x = 7/18: no matter what y and z happen to be, x must be 7/18.
Geometrically, this means all (x, y, z) solutions to our system must
live in the plane x = 7/18.

We could rewrite the first equation as

7

6
+ 2y − z = 3

and solving for y we would have

y =
z

2
+

11

12
.

This means that each solution to our system has the form(
7

18
,
z

2
+

11

12
, z

)
and z can take on any value: our set of solutions is a line in the plane
x = 7

18
: {(

7

18
,
z

2
+

11

12
, z

) ∣∣∣∣ z ∈ R
}
.

In the previous example, z is called a free variable because it can take
on any value we wish. When we express the solution set in terms of free
variables, such as above, we have a parametrization of the solution set.

Example 1.16.
Solve the following system of equations.

x+ y − 3z = 4

x− 2y + z = 3

−3x+ y + 4z = 0
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Let’s first try to kill off the x in the second equation by subtracting
the first equation from it (i.e., we we are applying Theorem 1.2 by
adding −1 times the first equation to the second equation). The
second equation is then replaced with

x− 2y + z − (x+ y − 3z) = 3− 4

=⇒ −3y + 4z = −1

Now our system looks like

x+ y − 3z = 4

−3y + 4z = −1

−3x+ y + 4z = 0

We still need to kill of the −3x in the third equation, so let’s add
three times the first equation to it. The third equation then becomes

−3x+ y + 4z + 3(x+ y − 3z) = 0 + 3 · 4
=⇒ 4y − 5z = 12

So far we have replaced our original system with the following
equivalent one:

x+ y − 3z = 4

−3y + 4z = −1

4y − 5z = 12

We need to perform one last step to put the system in echelon form.
Let’s get rid of the 4y in the third equation by adding 4

3
the second

equation:

4y − 5z +
4

3
(−3y + 4z) = 12 +

4

3
(−1)

=⇒ −5z + 16/3z = 12− 4

3

=⇒ 1

3
z =

32

3
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We now have a system in echelon form that’s equivalent to our orig-
inal system:

x+ y − 3z = 4

−3y + 4z = −1

1

3
z =

32

3

The system is already in echelon form, but let’s kill off that 1
3

in the
third equation by using Theorem 1.3 to multiply the third equation
by three:

x+ y − 3z = 4

−3y + 4z = −1

z = 32

This is a system we can easily solve by back-substitution. Plugging
in z = 32 into the second equation gives us

−3y + 128 = −1

which tells us y = 43. Plugging z = 32 and y = 43 into the first
equation gives us

x+ 43− 96 = 4

and so x = 57.
Since this system is equivalent to our original system, the solu-

tion to our original system is

x = 57

y = 43

z = 32
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1.5 Practice Problems
Solve each of the following systems by applying the three theorems above
to replace the system with an equivalent system using the three theorems
described above.

Problem 1.1.

6x+ 2y = 1

3x− 4y = 0

Problem 1.2.

x− y = 3

−2x+ 4y = 2

Problem 1.3.

4x+ y = 5

8x+ 2y = 10

12x+ 3y = 15

Problem 1.4.

x− y + z = 3

2x+ 3y − z = 4

Problem 1.5.

x− y + z = 3

2x+ 3y − z = 4

−x− 5y + 2z = −7

Problem 1.6.

2x+ 3y = 4

y − 4z = 3

2x+ 4y − 4z = 0



2Matrices
No one can be told what The Matrix is: you
have to see it for yourself.

MORPHEUS
The Matrix

Matrices are one efficient way of organizing the information in a sys-
tem of linear equations, and as we will see later also have a variety of
other uses.

2.1 Definitions and Examples

Matrices

A matrix is a rectangular table of numbers, usually written inbetween
parentheses or square brackets. The size of a matrix is a pair of numbers
telling us how many rows and columns the matrix has: if the matrix has
m rows and n columns, we say the size of the matrix ism×n, pronounced
m by n.

Example 2.1.
The following matrices have respective sizes 2× 4 and 5× 3.

(
4 −7 0 π
1.5 2 1 1

) 
0 1 0
−1 2 14
3 7 7
−2 −2 −2
5 4 2



Matrices associated to a linear system

One use of matrices is in encoding a system of linear equations. If we
have a system of linear equations, all we really need to know about the
system is what the coefficients are, and what the values on the right-hand

26
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side of the equations are: what we call the variables (x and y versus x1
and x2, for instance) doesn’t really matter. If we record all of the coeffi-
cients of a system with m equations and n variables as an m × n matrix,
we have the coefficient matrix of the system.

Example 2.2.
Consider the following system of three equations in four unknowns:

6v + 3x− 2y + z = 4

4v − x+ y − 2z = 3

2x+ 4y + 4z = 9

v + z = −1

The corresponding coefficient matrix of this system is
6 3 −2 1
4 −1 1 −2
0 2 4 4
1 0 0 1



Notice that we pick up zeroes in the coefficient matrix when a variable
is missing. The reason for this is that if a variable is missing, such as the
missing v in the third equation of the system in Example 2.2, we can write
it as 0 times that variable. The system in Example 2.2, for instance, may
be written as

6v + 3x− 2y + z = 4

4v − x+ y − 2z = 3

0v + 2x+ 4y + 4z = 9

v + 0x+ 0y + z = −1

Our goal will be to solve systems of linear equations by manipulating
matrices. In doing so we of course also want to keep track of the values
on the right-hand side of the equations. We will do this by just adding an
extra column onto our coefficient matrix containing the right-hand sides.
This gives us the augmented coefficient matrix of the system.
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Example 2.3.
The augmented coefficient matrix of Example 2.2 is

6 3 −2 1 4
4 −1 1 −2 3
0 2 4 4 9
1 0 0 1 −1



Remark.
Some people like to write a vertical bar in the augmented coefficient
matrix to separate the coefficients of the left-hand sides of the equa-
tions from the values on the right-hand sides of the equations, such
as 

6 3 −2 1 4
4 −1 1 −2 3
0 2 4 4 9
1 0 0 1 −1


The addition of this vertical line is purely cosmetic. Our textbook
does not use the bar, but it is fairly common. You are free to use the
vertical bar if you’d like.

Elementary row operations

Recall from the last lecture that we had three different procedures that
we could perform to a system of linear equations to obtain an equivalent
system:

1. Swap two rows.

2. Replace one row with the sum of the original row and a multiple of
another row.

3. Multiply every term in a row by the same non-zero constant.
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We can perform these same three operations on the augmented coeffi-
cient matrix of a linear system and we obtain the augmented coefficient
matrix of the equivalent linear system. Usually when we’re performing
these three operations to a matrix, we refer to them as the elementary
row operations. The process of using elementary row operations to turn
one matrix into another is called row reduction.

By repeatedly applying the elementary row operations to the aug-
mented coefficient of a matrix, we can replace the turn our system of
linear equations into an equivalent one which we can easily solve. In
particular, we have a system that is easy to solve when we have put our
matrix into echelon form. Before define the echelon form of a matrix, let’s
introduce one preliminary definition that will make the language a little
easier.

The leading entry of a row in a matrix is the left-most non-zero ele-
ment in that row.

We say that a matrix is in echelon form if the following three condi-
tions are satisfied:

1. If the matrix has any rows consisting of only zeros, they occur at
the bottom of the matrix.

2. The leading entry on each row in the matrix is to the right of the
leading entry of the above rows.

3. All entries in the same column and below the leading entry in a row
are zero.

Let’s first see some examples of some things that are, and some things
that are not, in echelon form.

Example 2.4.
The following matrices are all in echelon form:3 −1 2 0

0 7 9 −1
0 0 2 1


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
6 2 1 4
0 1 1 3
0 0 −1 0
0 0 0 0



0 4 2 −1 3 2
0 0 0 3 2 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0


(
6 7 −4 3 2
0 0 0 0 1

)

Example 2.5.
None of the following matrices are in echelon form:0 2 4 −1

1 1 3 2
0 0 2 4



7 2 −1 2
5 6 3 3
0 0 4 0
0 0 0 0



2 3 7 1 2
0 0 0 4 5
0 0 0 0 0
0 0 0 0 2


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We can always put a matrix into echelon form by applying elementary
row operations. One way to solve a system of linear equations, then, is
to write out the augmented coefficient matrix, put it into echelon form,
and then use back substitution (solving for the variables one at a time).

Example 2.6.
Put the following matrix into echelon form:1 2 4 5

2 4 5 4
4 5 4 2


The first thing we need to do is zero-out the entries below 1 in

the first column. Let’s subtract twice the first row from the second
to obtain: 1 2 4 5

0 0 −3 −6
4 5 4 2


Now subtract four times the first row from the third:1 2 4 5

0 0 −3 −6
0 −3 −12 −18


Now let’s swap the second and third rows,1 2 4 5

0 −3 −12 −18
0 0 −3 −6



Writing out what we’re doing in words is always okay to do, but it can
get tedious sometimes, so let’s introduce some notation to save ourselves
some writing. When we perform a row operation on a matrix A to obtain
a matrix A′, let’s draw an arrow from A to A′ and label the arrow to
describe which operation we are performing.

If we obtain A′ from A by swapping row i and row j, we will write

A
Ri↔Rj−−−−→ A′



CHAPTER 2. MATRICES 32

For example,1 2 4 5
0 0 −3 −2
0 −3 −4 −18

 R2↔R3−−−−→

1 2 4 5
0 −3 −4 −18
0 0 −3 −2


If we add c times row j to row i, we will write

A
Ri+cRj→Ri−−−−−−−→ A′

E.g., 1 2 4 5
2 4 5 4
4 5 4 2

 R2−2R1−−−−→

1 2 4 5
0 0 −3 −2
4 5 4 2


If we multiply each element in row i by c, we will write

A
cRi→Ri−−−−→ A′.

For example, 
4 7 2
0 4 3
−1 2 2
5 −2 1

 −2R3→R3−−−−−−→


4 7 2
0 4 3
2 −4 −4
5 −2 1


Notice that the echelon form of a matrix is not unique: if you give

the same matrix to two people and ask them to put the matrix in echelon
form, each person may give you back a different (but correct!) matrix in
echelon form. The matrix in Example 2.6, for instance, could be put into
echelon form in the following way:

Example 2.7.
Put the following matrix into echelon form:1 2 4 5

2 4 5 4
4 5 4 2


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1 2 4 5
2 4 5 4
4 5 4 2

 R3−2R2→R3−−−−−−−→

1 2 4 5
2 4 5 4
0 −3 −6 −6


R2−2R1→R2−−−−−−−→

1 2 4 5
0 0 −3 −6
0 −3 −6 −6


R2↔R3−−−−→

1 2 4 5
0 −3 −6 −6
0 0 −3 −6



In Example 2.6 and Example 2.7 we started with the same matrix, but
produced two different matrices in echelon form because we performed
two different sequences of elementary row operations.

Remark.
The above is something to consider if you compare answers to home-
work problems with another student. If you were both trying to put
a matrix into echelon form, you may both come up with different,
correct answers!

It would be nice if there was a way to modify echelon form so that we
would always calculate the same matrix. This can be done if we modify
the conditions of echelon form slightly to get row-reduced echelon form.

We say a matrixA is in row-reduced echelon form (abbreviated RREF)
if the following four conditions are satsified:

1. If the matrix has any rows consisting of only zeros, they occur at
the bottom of the matrix.

2. The leading entry on each row in the matrix is to the right of the
leading entry of the above rows.

3. All entries in the same column above and below the leading entry
in a row are zero.
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4. Every leading entry is a one.

So RREF is very similar to echelon form, but we’ll make sure that
leading entries are always equal to one, and that everything directly above
and below a leading entry is zero.

Remark.
Some people simply say reduced echelon form where we have said
row-reduced echelon form, but this is the same thing.

Let’s take our two matrices in echelon form from Example 2.6 and
Example 2.7 and convert them to RREF.

Example 2.8.
Convert the following matrix to RREF:1 2 4 5

0 −3 −12 −18
0 0 −3 −6


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1 2 4 5
0 −3 −12 −18
0 0 −3 −6

 −1
3
R2→R2−−−−−−→

1 2 4 5
0 1 4 6
0 0 −3 −6


R1−2R2→R1−−−−−−−→

1 0 −4 −7
0 1 4 6
0 0 −3 −6


− 1

3
R3→R3−−−−−−→

1 0 −4 −7
0 1 4 6
0 0 1 2


R2−4R3→R2−−−−−−−→

1 0 −4 −7
0 1 0 −2
0 0 1 2


R1+4R3→R1−−−−−−−→

1 0 0 1
0 1 0 −2
0 0 1 2



Example 2.9.
Convert the following matrix to RREF:1 2 4 5

0 −3 −6 −6
0 0 −3 −6


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1 2 4 5
0 −3 −6 −6
0 0 −3 −6

 − 1
3
R2→R2−−−−−−→

1 2 4 5
0 1 2 2
0 0 −3 −6


− 1

3
R3→R3−−−−−−→

1 2 4 5
0 1 2 2
0 0 1 2


R1−2R2→R1−−−−−−−→

1 0 0 1
0 1 2 2
0 0 1 2


R2−2R3→R2−−−−−−−→

1 0 0 1
0 1 0 −2
0 0 1 2



The main thing about main reason we prefer RREF over echelon form
is that every matrix is equivalent to exactly one matrix in RREF.

Theorem 2.1.
Performing elementary row operations to put a matrix in row-reduced ech-
elon form produces exactly one matrix.

The proof of this fact will be easier to explain after we talk about linear
independence, so we will postpone the proof of this theorem for now.

Example 2.10.
Solve the following system of linear equations by putting the aug-
mented coefficient matrix in RREF.

x+ 2y + 4z = 5

2x+ 4y + 5z = 4

4x+ 5y + 4z = 2

We have seen that the augmented coefficient matrix of this system
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can be put into the following matrix in RREF:1 0 0 1
0 1 0 −2
0 0 1 2


which is the augmented coefficient matrix of the equivalent system

x = 1

y = −2

z = 2

and so the only solution to our system of equations is (x, y, z) =
(1,−2, 2).

We are now in a position to describe an algorithm for putting a matrix
in RREF, but before presenting the algorithm we introduce one piece of
terminology.

If a matrix is in RREF, then the location of the leading entries are called
the pivot positions; the columns containing pivot positions are called
pivot columns. More generally, if A can be reduced to a matrix A′ in
RREF, then the pivot positions and columns of A are defined to be the
pivot positions and columns of A′.

By performing elementary row operations, we can always put a non-
zero value in a pivot position. When we do this, the non-zero value we
place in the pivot position is called a pivot.

The algorithm for putting a matrix into RREF is as follows:

1. Starting from the top row of the matrix, the left-most position which
is not in a column of all zeros will be a pivot position.

2. Swap rows if necessary so that the entry in the pivot position is
non-zero.

3. Divide the row containing this pivot position by the new non-zero
pivot value.

4. Add multiples of the row to the other rows so that we have only
zeros above and below the pivot in the pivot column.

5. Repeat the process, but use the submatrix obtained by deleting ev-
erything to the left of and above the pivot position (including the
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row and column containing the pivot position) to determine the
next pivot position.

Example 2.11.
Put the following matrix in RREF:

0 0 0 0 3 7
0 0 2 0 1 4
0 0 4 0 2 1
0 5 3 0 4 2


We need to work with our pivots one at a time, from the top left-
most pivot down to the bottom right-most pivot. We will color code
which pivot we are considering as follows: The pivot we are cur-
rently considering will be yellow, and the pivots we have finished
working with will be pink.

We start with the top row. First finding the left-most entry which
is not in an all-zero column.

0 0 0 0 3 7
0 0 2 0 1 4
0 0 4 0 2 1
0 5 3 0 4 2


Now swap the top and bottom columns to put a 5 in the pivot

position: 
0 5 3 0 4 2
0 0 2 0 1 4
0 0 4 0 2 1
0 0 0 0 3 7


Divide the first row by 5 to put a 1 into the pivot position:

0 1 3
5

0 4
5

2
5

0 0 2 0 1 4
0 0 4 0 2 1
0 0 0 0 3 7


The matrix already has zeros below the pivot, so we move onto the
pivot.
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First find the left-most entry in the second row which is to the
right of the previous pivot and not in a column of all zeros.

0 1 3
5

0 4
5

2
5

0 0 2 0 1 4
0 0 4 0 2 1
0 0 0 0 3 7


Now divide the second row by 2 to put a 1 into the next pivot posi-
tion: 

0 1 3
5

0 4
5

2
5

0 0 1 0 1
2

2
0 0 4 0 2 1
0 0 0 0 3 7


We need to zero out the non-zero entries in the pivot column

above and below our pivot position. First we subtract 3/5 the second
row from the first: 

0 1 0 0 1
2

−4
5

0 0 1 0 1
2

2
0 0 4 0 2 1
0 0 0 0 3 7


Now subtract four times the second row from the third row:

0 1 0 0 1
2

−4
5

0 0 1 0 1
2

2
0 0 0 0 0 −7
0 0 0 0 3 7


We move on to the third pivot. Since we have a zero in the pivot

position, we need to swap the third and fourth rows to put the 3
into the pivot position:

0 1 0 0 1
2

−4
5

0 0 1 0 1
2

2

0 0 0 0 3 7
0 0 0 0 0 −7


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Divide the third row by 3 to put a 1 into the pivot position:
0 1 0 0 1

2
−4

5

0 0 1 0 1
2

2

0 0 0 0 1 7
3

0 0 0 0 0 −7


Now zero out the entries above the third pivot. First subtract one-
half the third row from the first:

0 1 0 0 0 −59
30

0 0 1 0 1
2

2

0 0 0 0 1 7
3

0 0 0 0 0 −7


Finally subtract one-half the third row from the second:

0 1 0 0 0 −59
30

0 0 1 0 0 5
6

0 0 0 0 1 7
3

0 0 0 0 0 −7


For the very last pivot we will simply divide by −7 to make the
pivot a 1, and then zero out the entries above the pivot. Finally
subtract one-half the third row from the second:

0 1 0 0 0 −59
30

0 0 1 0 0 5
6

0 0 0 0 1 7
3

0 0 0 0 0 1


We now have the RREF of our original matrix:

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


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Exercise 2.1.
Determine the number of pivot columns of the following matrix:

3 4 0 2
4 0 0 1
−1 0 0 2
6 0 0 7



Once we put an augmented coefficient matrix into RREF, it is then
very easy to solve the corresponding system of linear equations.

Example 2.12.
Determine all solutions to the following system of equations:

3x5 = 7

2x3 + x5 = 4

4x3 + 2x5 = 1

5x2 + 3x3 + 4x5 = 2

The augmented coefficient matrix of this system is precisely our ma-
trix from before, so the RREF of that matrix tells us the following
system is equivalent:

x2 = 0

x3 = 0

x5 = 0

0 = 1

Because of this last equation, the system has no solutions!

Example 2.13.
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Solve the following system of linear equations.

3x+ 7y + 17z = 21

2y + 4z = 6

4x+ 10y + 24z = 30

To solve the system, let’s put the augmented coefficient matrix, which
is 3 7 17 21

0 2 4 6
4 10 24 30

 ,

into RREF: 3 7 17 21
0 2 4 6
4 10 24 30

 1
3
R1→R1−−−−−→

1 7
3

17
3

7
0 2 4 6
4 10 24 30


R3−4R1→R3−−−−−−−→

1 7
3

17
3

7
0 2 4 6
0 2

3
4
3

2


1
2
R2→R2−−−−−→

1 7
3

17
3

7
0 1 2 3
0 2

3
4
3

2


R1− 7

3
R2→R1−−−−−−−−→

1 0 1 0
0 1 2 3
0 2

3
4
3

2


R3− 2

3
R2→R3−−−−−−−−→

1 0 1 0
0 1 2 3
0 0 0 0



The last matrix above is in RREF. This tells us that our original sys-
tem of equations is equivalent to

x+ z = 0

y + 2z = 3
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Notice that we could solve both of these equations to express x and
y in terms of z:

x = −z
y = 3− 2z

That is, if we know what z is, then we instantly know what x and y
must be. However, z could be anything! There are infinitely-many
different choices for z, and each one gives us a different solution to
our system. Thus there are infinitely-many solutions to the system,
all of which have the form

(−z, 3− 2z, z)

where z can be any real number.

Notice that in Example 2.13, not only did we determine that there
were infinitely-many solutions to the system, but we said explicitly what
the solutions had to look like. In such a situation, where we describe all
of the solutions in terms of some variable, we say that we have given a
parametrization of the solution set and call the variable that is allowed
to change a free variable.

Example 2.14.
Solve the following system of linear equations:

5x1 + 3x2 − 8x3 − 2x4 = 5

2x1 + 4x2 − 6x3 + 2x4 = 2

2x1 + 1x2 − 3x3 − x4 = 2

4x1 + 3x2 − 7x3 − x4 = 4

We again put the augmented coefficient matrix into RREF to get an



CHAPTER 2. MATRICES 44

equivalent, easier-to-solve system:
5 3 −8 −2 5
2 4 −6 2 2
2 1 −3 −1 2
4 3 −7 −1 4

 1
5
R1→R1−−−−−→


1 3/5 −8/5 −2/5 1
2 4 −6 2 2
2 1 −3 −1 2
4 3 −7 −1 4


R2−2R1→R2−−−−−−−→


1 3/5 −8/5 −2/5 1
0 14/5 −14/5 14/5 0
2 1 −3 −1 2
4 3 −7 −1 4


R3−2R1→R3−−−−−−−→


1 3/5 −8/5 −2/5 1
0 14/5 −14/5 14/5 0
0 −1/5 1/5 −1/5 0
4 3 −7 −1 4


R4−4R1→R4−−−−−−−→


1 3/5 −8/5 −2/5 1
0 14/5 −14/5 14/5 0
0 −1/5 1/5 −1/5 0
0 3/5 −3/5 3/5 0


5
14

R2→R2−−−−−−→


1 3/5 −8/5 −2/5 1
0 1 −1 1 0
0 −1/5 1/5 −1/5 0
0 3/5 −3/5 3/5 0


R1− 3

5
R2→R1−−−−−−−−→


1 0 −1 −1 1
0 1 −1 1 0
0 −1/5 1/5 −1/5 0
0 3/5 −3/5 3/5 0


R3+

1
5
R2→R3−−−−−−−−→


1 0 −1 −1 1
0 1 −1 1 0
0 0 0 0 0
0 3/5 −3/5 3/5 0


R4− 3

5
R2→R4−−−−−−−−→


1 0 −1 −1 1
0 1 −1 1 0
0 0 0 0 0
0 0 0 0 0


We now know that our original system of equations is equivalent to
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the following system:

x1 − x3 − x4 = 1

x2 − x3 + x4 = 0

Solving the first two equations for x1 and x2, respectively, tells us
that

x1 = 1 + x3 + x4

x2 = x3 − x4

Here there are no restrictions on either x3 or x4, each of these can be
any real number, and so we have two free variables. A parametriza-
tion of the solution set is

(1 + x3 + x4, x3 − x4, x3, x4).

2.2 Consistency and Inconsistency in Terms of
RREF

After we put the augmented coefficient matrix of a system into RREF, we
can quickly determine whether the system is consistent or not, and if it is
consistent whether it has a unique solution or infinitely-many solutions.
If the matrix in RREF has a row of the form(

0 0 0 · · · 0 0 b
)

where b ̸= 0, then the system is inconsistent. The existence of such a row
tells us that the system is equivalent to a system that has an equation of
the form

0x1 + 0x2 + 0x3 + · · ·+ 0xn−1 + 0xn = b

It doesn’t matter what the other equations (or rows in the matrix) look
like: there is no way to solve this one, so the system has no solutions.
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If the matrix in RREF has the form

1 0 0 0 · · · 0 0 0 b1
0 1 0 0 · · · 0 0 0 b2
0 0 1 0 · · · 0 0 0 b3

. . .
0 0 0 0 · · · 0 1 0 bn−1

0 0 0 0 · · · 0 0 1 bn


then the system has a single unique solution, (b1, b2, ..., bn).

Notice that if we took the previous matrix in RREF and added rows
of zeros to the bottom, then this doesn’t change the solutions. When this
happens some of the equations in the original system were “redundant.”

Example 2.15.
Consider the following system:

x+ y = 1

x− y = 2

3x+ y = 4

The augmented coefficient matrix of the system is1 1 1
1 −1 2
3 1 4


The RREF of this matrix is1 0 3/2

0 1 −1/2
0 0 0


The system thus has a unique solution of (3/2,−1/2). The third equa-
tion of the original system doesn’t give us any additional informa-
tion about the system because it is twice the first equation plus the
second: once you know what the solution to the two equations are,
you instantly know what the solution to the third equation is as
well, so there’s no real need to have the third equation.
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If the matrix in RREF has rows of zeros, but there is not a unique so-
lution to the system, then the system has infinitely-many solutions. The
number of free variables is determined by the number of rows of zeros.
Each non-zero row gives us an equation relating the variables, and each
zero row (up to the number of variables) gives us a free variable. No-
tice that the number of variables is one less than the number of columns
in the augmented coefficient matrix: each variable gives us one column,
plus we have one more column for the right-hand sides. This means that
the number of free variables in our solution to a system is determined
by the number of non-pivot columns (ignoring the right-most column
corresponding to the right-hand sides of equations in our system).

In Example 2.13 we had one non-pivot column (ignoring the column
corresponding to the RHS) and so one free variable; in Example 2.14 we
had two non-pivot columns, so two free variables.

Exercise 2.2.
Determine the set of solutions to the following system by putting the
augmented coefficient matrix into RREF. How many free variables
are there?

5x1 + 3x2 − 8x3 − 2x4 = 5

2x1 + 4x2 − 6x3 + 2x4 = 2

2x1 + 1x2 − 3x3 − x4 = 2

4x1 + 3x2 − 7x3 − x4 = 4

−6x1 − 3x2 + 9x3 + 3x4 = −6
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2.3 Practice Problems
Problem 2.1.
Put the following matrices into echelon form, but not RREF.

(a) 2 1 3
4 2 −1
3 0 2


(b) 

0 2 −1 7 2
3 4 2 0 1
0 0 0 1 −3
1 1 1 1 1


Problem 2.2.
Put the following matrices in RREF:

(a) −4 −4 −8 −12
2 3 6 7
3 4 9 10


(b) (

2 3 7 11
1 1 3 4

)
(c) 

6 0 4 14 24
1 0 4 9 14
4 0 6 16 26
1 0 2 5 8


Problem 2.3.
Solve the following system of equations by writing the augmented co-
efficient matrix in RREF. If there are infinitely-many solutions, give a
parametrization of the solution set.

(a)

3y + 6z = 12

x+ 2y + 3z =
19

2
2x+ 2y + 6z = 13
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(b)

6x+ 7y + 19z = 18

3x+ 2y + 8z = 9

x+ 2y + 4z = 3

5x+ 6y + 16z = 15

(c)

3x+ 5y + 11z = 1

2x+ 4y + 8z = 1

4x+ 7y + 15z = 2



3Vectors
Algebra is the offer made by the devil to the
mathematician.

SIR MICHAEL ATIYAH

Vectors appear in many different areas of mathematics and sciences,
and you have seen vectors before if you’ve taken a course in physics of
multivariable calculus. In these classes vectors are usually described as
quantities that have both a magnitude and a direction. We will see later
in the course that many different types of quantities can be thought of as
vectors, even things that don’t obviously have a magnitude or direction
(for exmaple, polynomials can be thought of as vectors). In this lecture
we start with the basics though, first defining vectors as “arrows” in R2

and R3, and then generalizing vectors to Rn for any dimension n. We also
see that some of the questions we are naturally lead to about vectors are
really questions about systems of linear equations in disguise.

3.1 Vectors in R2 and R3

We will see that vectors can be defined in any number of dimensions,
but to get started we will consider vectors in two and three dimensions
which will be familiar to anyone that has taken an introductory course in
physics or multivariable calculus.

A vector is often described as a quantity which has both a direction
and a magnitude. One physical example is force: every force has a direc-
tion (where the force is pushing from or pulling towards) and a magni-
tude (how strong the force is). Consider the gravitational force between
the Earth and an object near the surface of the Earth. The object is being
pulled “down” towards the Earth (this is the direction) and that object
has some weight (this is the magnitude). If the object has more mass,
then it will have a greater weight and gravity is pulling more strongly on
the object. (Consider trying to hold a one kilogram object over your head
versus a fifteen kilogram object. Gravity is pulling harder on the 15 kg
object which is why that object feels heavier and harder to hold up.)

In two or three dimensions we represent these “direction together
with a magnitude” quantities as arrows where the direction of the ar-
row is the direction of the vector, and the length of the vector represents

50
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the magnitude. We will focus on the two-dimensional case at first simply
because it’s slightly easier to draw pictures representing these quantities.

Two-dimensional vectors

A vector in R2 is simply an arrow in the plane: a line segment from some
point (x0, y0) to another point (x1, y1) with an arrowhead at (x1, y1), as in
Figure 3.1

x

y

Figure 3.1: Vectors in R2.

One thing about vectors that may seem a little strange is that we only
care about the direction the vector points in and its magnitude, and we
do not care about where that vector is drawn in space. That is, given
any vector we can move it around the plane or 3-space as much as we’d
like and provided we don’t stretch the vector (which would change its
magnitude) or rotate it (which would change its direction) we still have
the same vector. See Figure 3.2.

We usually give vectors a name, just like any other mathematical
quantity, to make it easier to describe. Instead of just calling a vector
v, however, it is common to write the letter in bold, v, or to write an
arrow over the letter, v⃗, to denote that this quantity is a vector. Almost
everyone writes the arrow when they are writing vectors by hand on pa-
per or a blackboard, and only some books (including our textbook) use
the bold letters to denote vectors.
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x

y

Figure 3.2: Each arrow in this picture represents the same vector since
the direction and magnitude (length) is the same for each arrow.

We will sometimes call the beginning point of the arrow represent a
vector (the part without an arrowhead) the tail of the vector, and the
other point (the part with an arrowhead) the tip of the vector.

Given two vectors, v⃗1 and v⃗2, we can add the two vectors together to
get a new vector, v⃗1 + v⃗2. There are a few ways we can describe this new
vector. One way to describe v⃗1+ v⃗2 is to slide v⃗1 and v⃗2 around so that the
tip of v⃗1 is at the tail of v⃗2. We then draw in an arrow from the tail of v⃗1
to the tip of v⃗2, and this new vector we’ve drawn is v⃗1 + v⃗2. This is called
the triangle law for vector addition and is illustrated in Figure 3.3.

Another, equivalent way to describe vector addition is with the par-
allelogram law. Here we make copies of v⃗1 and v⃗2 and slide them around
to make a parallelogram, and then draw in the diagonal of this parallel-
ogram connecting the corner that has two tails to the corner that has two
tips. This diagonal vector is the sum v⃗1 + v⃗2. See Figure 3.4

Remark.
It is important that the diagonal vector drawn in the parallelogram
law starts at the corner where two tails meet and goes to the corner
where two tips meet. If you connect the corners in the wrong way,
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v⃗1

v⃗2
v⃗1 + v⃗2

Figure 3.3: We can add two vectors by sliding them tip-to-tail and then
completing the triangle.

v⃗1

v⃗2
v⃗1 + v⃗2

v⃗1

v⃗2

Figure 3.4: Vector addition can also be described by drawing in the diag-
onal of a parallelogram.

you will have the wrong vector.

If you’ve never seen vector addition before, it may seem a little bit like
an odd thing to do, but let’s consider one physical application. Suppose
that two different forces act on an object: e.g., you and a friend are re-
arranging furniture in your dorm with one of you pushing a bed in one
direction, and the other pushing the bed in another direction. Say you
push the bed to the East and your friend pushes the bed to the North.
Though you’re applying two different forces, the net effect is the same as
if you were to push the bed to the North-East. This is exactly what’s hap-
pening when you add the two forces: the sum of two individual forces
acting on an object is the net force that acts on that object.

There’s another operation we can perform on vectors. Given a real
number λ and a vector v⃗, we can define a new vector λv⃗ by stretching the
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vector out by a factor of λ. For example, 2v⃗ points in the same direction
as v⃗ but is twice as long; 1

3
v⃗ points in the same direction as v⃗ but is one

third as long.

1
2
v⃗

v⃗
2v⃗

3v⃗

Figure 3.5: Multiplying a vector by a positive number stretches the vec-
tor.

If we multiply a vector v⃗ by a negative λ, then we stretch the vector
out by a factor of |λ|, but make the vector point in the opposite direction.

−v⃗ v⃗
−2v⃗

Figure 3.6: Multiplying a vector by a negative number stretches the vec-
tor and flips the vector’s direction.

To distinguish “regular” numbers from vectors we sometimes call the
numbers scalars because they scale vectors. The operation of multiply-
ing a scalar and a vector is called scalar multiplication.

Notice that we could describe a vector in the plane by saying how
much the x and y coordinates change when you walk from the tail of
the vector to the tip. That is, if we’ve positioned the vector so that its
tail is at the point (x0, y0) and its tip is at the point (x1, y1), then all we
really need to know is the change in the x-coordinates, x1 − x0, and the
change in the y-coordinates, y1 − y0. Regardless of where we’ve drawn
the vector, if we don’t stretch it or rotate it, we have the same change in
x- and y-coordinates.

Example 3.1.
Suppose v⃗ is a vector which we’ve drawn in the plane so that its tail
is at the point (3, 1) and its tip is at the point (5, 2). The change in
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the x-coordinates is 5− 3 = 2 and the change in the y-coordinates is
2− 1 = 1.

If we were to have moved the vector around so that its tail was
instead at (−2, 2), then its tip would be at (0, 3). Again we have
the change in the x-coordinates is 0 − (−2) = 2 and the change in
y-coordinates is 3− 2 = 1.

If we placed the tail of the vector at (−1, 1), then the tip would
be at (1, 2), and once again the change in x- and y-coordinates is 2
and 1, respectively.

x

y

(−2, 2)

(0, 3)

(3, 1)

(5, 2)

(−1, 1)

(1, 2)

So we could describe the vector simply by recording this change in
x- and y-coordinates. There are several different ways we could record
this, but two common ways would be to make a 2 × 1 matrix listing the
change in x- and y-, or a 1× 2 matrix:(

x
y

)
or

(
x y

)
In the first situation, with the 2 × 1 matrix we say we have a column
vector, and the 1 × 2 matrix is called a row vector. We will usually, but
not always, use column vectors in this class. There’s nothing magical
about why we choose column vectors instead of row vectors, it’s just a
choice.

Notice that vector addition and scalar multiplication are very easy to
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express once we have coordinates like this:(
x1
y1

)
+

(
x2
y2

)
=

(
x1 + x2
y1 + y2

)

λ

(
x
y

)
=

(
λx
λy

)

Three-dimensional vectors

Vectors in R3 are completely analogous to vectors in R2: we they are ar-
rows connecting a point at the tail of the vector to the tip, the direction
of the vector is the direction of this arrow, and the length of the arrows is
the magnitude. Adding three-dimensional vectors or doing scalar multi-
plication is exactly the same as adding two-dimensional vectors or doing
scalar multiplication: we can use the parallelogram or triangle laws and
stretch a vector out by a given amount. It’s slightly harder to draw the
pictures on a two-dimensional screen or piece of paper, but everything is
defined exactly the same.

Just as we can represent a two-dimensional vector using two pieces
of information, telling us the displacement in the x- and y-coordinates
between the vector’s tail and tip, we can do precisely the same thing in
three dimensions and we simply have one more piece of information to
deal with: the change in the z-coordinates.

Just as in the two-dimensional vectors can be represented as column
or row vectors, so can three-dimensional vectors: A 3 × 1 matrix is a
column vector in three dimensions, and a 1× 3 matrix is a row vector in
three dimensions. xy

z

 or
(
x y z

)
and again, vector addition and scalar multiplication are easily expressed:x1y1

z1

+

x2y2
z2

 =

x1 + x2
y1 + y2
z1 + z2



λ

xy
z

 =

λxλy
λz


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3.2 Vectors in Rn

We can define vectors in Rn completely analogously to how we defined
row vectors (or column) vectors in R2 and R3. If we’re in Rn for n ≥ 4
we can’t really visualize the vectors as arrows anymore, but we can still
define them algebraically.

A column vector in Rn is a n × 1 matrix, and a row vector is a 1 × n
matrix. We will typically use column vectors and just say vector to mean
column vectors – but this is just a convenient choice.

Given two vectors in Rn, say

x⃗ =


x1
x2
...
xn

 and y⃗ =


y1
y2
...
yn


then we define their sum, x⃗+ y⃗ by adding the components of the vectors
together,

x⃗+ y⃗ =


x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn

 .

We define scalar multiplication by multiplying each component of the
vector by the same scalar,

λx⃗ = λ


x1
x2
...
xn

 =


λx1
λx2

...
λxn


We will usually denote the vector −1 · v⃗ as just −v⃗, and define “vector

subtraction” to be vector addition, but with −1 times one of the vectors:

v⃗ − u⃗ = v⃗ + (−u⃗).

By 0⃗ we always mean the vector of all zeros:
0
0
...
0


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Two vectors, v⃗ and u⃗, are equal precisely when their components are
equal:

v⃗ =


v1
v2
...
vn

 =


u1
u2
...
un

 = u⃗

really means

v1 = u1

v2 = u2
...

vn = un

3.3 Complex Vectors
Just as a real vector is an element of Rn – an n-tuple of real numbers –
a complex vector is an element of Cn, an n-tuple of complex numbers.
Algebraically, vector addition and scalar multiplication are exactly like
for vectors in Rn, except we do allow complex numbers to be scalars.

If (z1, ..., zn) and (ζ1, ..., ζn) are elements of Cn, we define the vector
addition of these two vectors to be

(z1, ..., zn) + (ζ1, ..., ζn) = (z1 + ζ1, ..., zn + ζn).

Given any complex number λ ∈ C, we define scalar multiplication be-
tween λ and a vector (z1, ..., zn) ∈ Cn to be

λ · (z1, ..., zn) = (λz1, ..., λzn).

For example, in C3 we have

(2 + 3i, i, 4) + (1− 3i, 2, 1 + i) = (3, 2 + i, 5 + i)

and
i · (2 + 3i, i, 4) = (−3 + 2i,−1, 4i).

We can’t draw arrows for complex vectors except in the case of C1,
but this is completely identical to the case of R2, with one important ex-
ception. If λ is a real number and z = x + iy ∈ C = C1 is a complex
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number (thought of as an arrow from 0 to x + iy), then λz stretches the
arrow out in exactly the same way as λ(x, y) gets stretched out in R2. If
λ is a complex number though, then multiplying by λ not only stretches
the vector, but it can rotate it as well!.

Every complex number λ can be written in the form reiθ where r and
θ are real numbers, and we may assume r > 0. In real and imaginary
components we may write this number as

reiθ = r cos(θ) + ir sin(θ).

It’s also easy to write a number a + ib in this form: r =
√
a2 + b2 and

θ = tan−1 (y/x).
When we multiply z ∈ C by λ = reiθ, the corresponding arrow gets

stretched out by a factor of r, but rotated counter-clockwise by θ.

3.4 Properties of Vectors
Vector addition and scalar multiplication satisfy some of the basic alge-
braic properties that you would expect:

Proposition 3.1.
Let u⃗, v⃗, and w⃗ all be vectors in Rn (resp., Cn) and let λ, µ be scalars in
R (resp. C). Then vector addition and scalar multiplication satisfy the
following properties:

1. (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗)

2. u⃗+ v⃗ = v⃗ + u⃗

3. λ (µv⃗) = (λµ)v⃗

4. v⃗ + 0⃗ = v⃗

5. v⃗ + (−v⃗) = 0⃗

6. (λ+ µ)v⃗ = λv⃗ + µv⃗

7. λ(u⃗+ v⃗) = λu⃗+ λv⃗

8. λ(µv⃗) = (λµ)v⃗



CHAPTER 3. VECTORS 60

9. 1 · v⃗ = v⃗

Exercise 3.1.
Verify each of the properties in the previous proposition.

3.5 Vector Equations
Just we have equations involving numbers, we can have equations in-
volving scalars. For example, consider the vectors

v⃗1 =

(
1
1

)
v⃗2 =

(
1
2

)
Now consider the equation

xv⃗1 + yv⃗2 =

(
4
3

)
.

A solution to this vector equation would be a choice of scalars x and y
making the equation hold.

Let’s think about what would happen if we write out all of the details
in the above vector equation

xv⃗1 + yv⃗2 =

(
4
3

)
=⇒ x

(
1
1

)
+ y

(
1
2

)
=

(
4
3

)
=⇒

(
x
x

)
+

(
y
2y

)
=

(
4
3

)
=⇒

(
x+ y
x+ 2y

)
=

(
4
3

)
Since two vectors are equal only when their components are equal, this
means we really want to find x and y solving the system

x+ y = 4

x+ 2y = 3.
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So vector equations are really systems of equations in disguise! Further-
more, notice that the columns of the coefficient matrix for this system are
exactly the original vectors in our vector equation!

3.6 Linear Combinations
We have two algebraic operations we can perform to vectors: scalar mul-
tiplication and vector addition. If we’re given some vectors v⃗1, v⃗2, ..., v⃗m
and we multiply each one by a some scalar – say we multiply v⃗i by λi –
and then sum these vectors, we say that the resulting vector is a linear
combination of the vectors v⃗1, v⃗2, ..., v⃗m.

That is, a linear combination of v⃗1, v⃗2, ..., v⃗m is a vector that may be
written as

λ1v⃗1 + λ2v⃗2 + · · ·+ λmv⃗m

for any choice of scalars λ1, λ2, ..., λm.

Example 3.2.
Consider the following two vectors in three-space:

v⃗1 =

 1
−1
2

 v⃗2 =

3
3
0


One possible linear combination of these vectors is

7v⃗1 − 4v⃗2 =

 7
−7
14

+

−12
−12
0

 =

 −5
−19
14



Given v⃗1, ..., v⃗m – all vectors of the same dimension, say n – the collec-
tion of all possible linear combinations of the vectors is called the span of
the vectors and is denoted

span{v⃗1, v⃗2, ..., v⃗m}.

In set-builder notation,

span{v⃗1, v⃗2, ..., v⃗m} =
{
λ1v⃗1 + · · ·+ λmv⃗m

∣∣λ1, λ2, ..., λm ∈ R
}
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Notice that in both R2 and R3, the span of a single, non-zero vector is
a line through the origin. The span of two vectors could be plane (in R2

this would give us all possible vectors – the only plane sitting inside of
R2 is the entire xy-plane), or it could be line. This second situation occurs
when one vector is a multiple of another. That is, if our two vectors v⃗1
and v⃗2 have the property that v⃗2 = µv⃗1, then any linear combination of v⃗1
and v⃗2 is really just a multiple of v⃗1:

λ1v⃗1 + λ2v⃗2 = λ1v⃗1 + λ2µv⃗1 = (λ1 + λ2µ)v⃗1.

In a situation like we say the vectors v⃗1 and v⃗2 are linearly dependent:
meaning that one vector is a linear combination of another.

More generally, we say that a set of vectors {v⃗1, ..., v⃗m} is linearly de-
pendent if it’s possible to write one vector as a linear combination of the
others. If this can’t be done – no vector is a linear combination of the
others – then we say the set is linearly independent.

Proposition 3.2.
A set of vectors {v⃗1, v⃗2, ..., v⃗m} is linearly independent if and only if the

only scalars λ1, λ2, ..., λm making the following equation hold,

λ1v⃗1 + λ2v⃗2 + · · ·+ λmv⃗m = 0

are λ1 = λ2 = · · · = λm = 0.

Proof of Proposition 3.2.
If we could write

λ1v⃗1 + λ2v⃗2 + · · ·+ λmv⃗m = 0

for some non-zero choice of the λi, then we could pick one of the
vectors v⃗i where λi ̸= 0 and move it to the other side of the equation
and divide by −λi to write

λ1
−λi

v⃗1 + · · ·+ λi−1

−λi−1

v⃗i−1 +
λi+1

−λi+1

v⃗i+1 + · · ·+ λm
−λi

v⃗m = v⃗i.
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Thus if it is impossible to write one of the v⃗i as a linear combination
of the other vectors (i.e., the vectors are linearly independent), then
the only way to write λ1v⃗1 + λ2v⃗2 + · · ·+ λmv⃗m = 0 is if every λj was
zero.

Conversely, if one of the vectors was a linear combination of the
others,

µiv⃗1 + · · ·+ µi−1v⃗i−1 + µi+1v⃗i+1 + · · ·+ µmv⃗m = v⃗i.

Then we can write

µiv⃗1 + · · ·+ µi−1v⃗i−1 − v⃗iµi+1v⃗i+1 + · · ·+ µmv⃗m = 0.

Thus if we can not write λ1v⃗1+ · · ·+λmv⃗m = 0, then the vectors must
be linearly independent.
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3.7 Practice Problems
Problem 3.1.
We saw that there was a graphical “triangle law” for vector addition.
Come up with a similar law for vector subtraction.

Problem 3.2.
Find the values of x and y which solve the vector equation xv⃗ + yu⃗ = w⃗
where

v⃗ =

 3
−2
8

 u⃗ =

5
0
9

 w⃗ =

 2
−3
8


Problem 3.3.
Show that every vector in R2 can be written as a linear combination of
the vectors (

1
0

)
and

(
0
1

)
Problem 3.4.
Show that every vector in R2 can be written as a linear combination of
the vectors (

−1
3

)
and

(
4
−2

)
Problem 3.5.
Determine each of the following sets of vectors in R3 is linearly depen-
dent or linearly independent:

(a)


 1
−2
0

 ,

0
1
2

 ,

 5
−6
8


(b)


 1
−2
0

 ,

0
1
2

 ,

 2
−1
6


(c)


 1
−2
0

 ,

0
1
2

 ,

 5
−6
8

 ,

 2
−1
6


Problem 3.6.
Suppose you are given m+ 1 vectors in Rn, v⃗1, v⃗2, ..., v⃗m, and u⃗. How can
you determine if u⃗ is in the span of v⃗1, v⃗2, ..., v⃗m?
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Problem 3.7.
Is the vector

u⃗ =


4
7
2
−3


in the span of 


1
0
−2
1

 ,


0
1
1
4

 ,


3
2
1
−2

 ,


If so, how can u⃗ be written as a linear combination of these vectors? If
not, explain why u⃗ can not be written as a linear combination of these
vectors.



4The equation Ax = b

The further a mathematical theory is developed,
the more harmoniously and uniformly does its
construction proceed, and unsuspected
relations are disclosed between hitherto
separated branches of the science.

DAVID HILBERT

In the last lecture we introduced vectors and saw that there were two
algebraic operations that could be performed on vectors: vector addition
and scalar multiplication. In general we can not multiply two vectors,
but we can actually define the product of a matrix and a vector – at least
if the sizes of the matrix and vector agree in a particular way. We will
also see that this gives us a very concise way of expressing a system of a
linear equations which will pave the way to later showing that properties
of a linear system’s coefficient matrix are directly related to the solutions
of the system.

4.1 Products of Matrices and Vectors
Suppose that a⃗1, a⃗2, ..., a⃗n are vectors in Rm. In the last lecture we con-
sidered linear combinations of vectors which were scalar multiples of the
vectors added together:

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n.

Notice that these scalars, x1, x2, ..., xn, that we multiply each vector
by could be regarded as the components of some n-dimensional vector
which we might call x⃗:

x⃗ =


x1
x2
...
xn

 .

We could also think of each vector a⃗1, ..., a⃗n, as forming the columns of
some matrix A:

A =

a⃗1 a⃗2 · · · a⃗n


66
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Example 4.1.
Suppose we have four three-dimensional vectors,

a⃗1 =

2
1
0

 a⃗2 =

−1
0
3

 a⃗3 =

1
1
1

 a⃗4 =

 4
2
−7


and we considered the linear combination

5a⃗1 − 3a⃗2 + 2a⃗3 + 2a⃗4.

Then our vector x⃗ would be

x⃗ =


5
−3
2
2


and our matrix A would be

A =

2 −1 1 4
1 0 1 2
0 3 1 −7

 .

In general, we will define the product of an m × n matrix A with an
n-dimensional vectors x⃗ as the linear combination of the columns of A
with scalars given by the components of x⃗.

Example 4.2.
If A is the matrix

A =

 3 4 0
2 1 −1
−5 7 2


and x⃗ is the vector

x⃗ =

−1
2
3


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then the product Ax⃗ is the the linear combination

−

 3
2
−5

+ 2

4
1
7

+ 3

 0
−1
2

 =

−3 + 8 + 0
−2 + 2− 3
5 + 14 + 6

 =

 5
−3
25



Example 4.3.
If A is the matrix

A =

(
4 6 −5 3
0 2 1 4

)
and x⃗ is the matrix

x⃗ =


8
−3
5
2


then the product Ax⃗ is the linear combination

8

(
4
0

)
− 3

(
6
2

)
+ 5

(
−5
1

)
+ 2

(
3
4

)
=

(
32− 18− 25 + 6
0− 6 + 5 + 8

)
=

(
−5
7

)

Remark.
In order for this definition of the product of a matrix and a vector to
make sense, it is absolutely essential that the number of columns of
the matrix equals the number of rows in the vector (the dimension
of the vector).
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Example 4.4.


3 2 4
1 −2 3
0 4 4
1 1 −1


2
0
3

 =


6 + 0 + 12
2 + 0 + 9
0 + 0 + 12
2 + 0− 3



=


18
11
12
−1



4.2 The Matrix Equation Ax⃗ = b⃗

If b⃗ is some particular vector n-dimensional vector, we may want to know
if there is a solution to the vector equation

x1a⃗1 + x2a⃗2 + · · ·+ xna⃗n = b⃗

which can be more easily concisely written as

Ax⃗ = b⃗

where A is the matrix whose columns are given by a⃗1, ..., a⃗n, and x⃗ is the
vector containing the variables x1, ..., xn.

Example 4.5.
Asking for x1, x2, and x3 solving the vector equation

x1

 1
−1
2

+ x2

2
3
0

+ x3

4
7
7

 =

3
1
2


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is the same as asking if there is a vector

x⃗ =

x1x2
x3


such that  1 2 4

−1 3 7
2 0 7

x1x2
x3

 =

3
1
2



Notice that this is really just a system of linear equations with vari-
ables x1, x2, x3 with coefficient matrix A and augmented coefficient ma-
trix  A b⃗


Thus solving systems of linear equations and solving the matrix equation
Ax⃗ = b⃗ are two sides of the same coin.

Example 4.6.
If A and b⃗ are

A =

 1 2 4
−1 3 7
2 0 7

 b⃗ =

3
1
2


Then finding a vector x⃗ solving Ax⃗ = b is the same as finding a
solution (x1, x2, x3) to the system

x1 + 2x2 + 4x3 = 3

−x1 + 3x2 + 7x3 = 1

2x1 + x3 = 2

That solving systems of linear equations and solving matrix equations
Ax⃗ = b are really the same thing leads to the following theorem.
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Proposition 4.1.
Let A be an m × n matrix. Then the system of linear equations with

augmented coefficient matrix
(
A b⃗

)
has a solution if and only if b⃗ is in

the span of the columns of A: a⃗1, a⃗2, ..., a⃗n.

Notice that nothing deep is going on in this proposition: we’re just
translating the language of systems of linear equations to the language
of matrix equations.

Exercise 4.1.
Prove Proposition 4.1.

Remark.
Sometimes the hardest part of solving a mathematical problem is
determining the right way to express it: some problems seem eas-
ier or more difficult depending on the language you use to describe
them. We are in the process of taking the ideas we described at the
start of the semester (systems of linear equations) and converting
them into another language (matrices and vectors) because, as we
will see, it is actually a lot easier to think about many problems in
terms of matrices and vectors. This may sound strange at first, espe-
cially if you’re learning about matrices and vectors for the first time,
but using the language matrices will actually make many problems
much easier to think about and ultimately solve.

Example 4.7.
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Is there a solution to the following matrix equation?2 3 4
6 18 24
2 3 9

x1x2
x3

 =

 2
−12
−13


By the definition of the product of a matrix and a vector, this really
means we want to find x1, x2, and x3 such that

x1

2
6
2

+ x2

 3
18
3

+ x3

 4
24
9

 =

 2
−12
−13


But if we do the scalar multiplication and vector addition we can
rewrite the left-hand side of this equation to obtain 2x1 + 3x2 + 4x3

6x1 + 18x2 + 24x3
2x1 + 3x2 + 9x3

 =

 2
−12
−13


Equating components of the vectors, this is really a system of equa-
tions,

2x1 + 3x2 + 4x3 = 2

6x1 + 18x2 + 24x3 = −12

2x1 + 3x2 + 9x3 = −13

We know how to solve a system like this, though: we write down
the augmented coefficient matrix (which we could have easily read
off from the original matrix equation),2 3 4 2

6 18 24 −12
2 3 9 −13


then proceed to put the matrix in RREF, which gives us1 0 0 4

0 1 0 2
0 0 1 −3


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This tells us the system of equations is equivalent to

x1 = 4

x2 = 2

x3 = −3

and so we have a unique solution to the system.
In terms of the vector equation, we have

4

2
6
2

+ 2

 3
18
3

− 3

 4
24
9

 =

 2
−12
−13


And so the vector solving our original matrix equation is

x⃗ =

 4
2
−3

 .

That is, 2 3 4
6 18 24
2 3 9

 4
2
−3

 =

 2
−12
−13



4.3 Existence of Solutions
We have seen that systems of linear equations sometimes have a unique
solution, sometimes have no solution, and sometimes have infinitely-
many solutions. Whether a solution exists or not depends less on the
right-hand side of the equations of the system, and more about the coef-
ficients of the system. In the language of matrices and vectors, solving
Ax⃗ = b⃗ depends more on what A is than on what b⃗ is. In particular, we
have the following theorem:

Theorem 4.2.
Suppose thatA is anm×nmatrix and x⃗ and b⃗ arem-dimensional vectors.
Then the following are equivalent:
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(a) The equation Ax⃗ = b⃗ has a solution for every choice of b⃗.

(b) Every m-dimensional vector b⃗ is a linear combination of the columns
of A.

(c) The columns of A span Rm.

(d) A has a pivot position in every row.

Remark.
The theorem above uses the phrase the following are equivalent. This
means that if one of the statements is true, then all of the statements
are true; if one of the statements is false, then all of the statements
are false. This is really a shorthand for several if and only if state-
ments. When we say “the following are equivalent: (a) ... (b) ... (c)
... (d) ...” what we really means is that statement (a) happens if and
only if statement (b) happens if and only if statement (c) happens if
and only if statement (d) happens.

We’ve seen before that “if and only if” statements are really two
statements: there’s actually two things to prove. If you want to
prove “(a) if and only if (b)” then you need to show that statement
(a) implies statement (b) and also that statement (b) implies state-
ment (a). Thus it might seem like for the above we need to show
twelve different things: (a) implies (b), (b) implies (a), (a) implies
(c), (c) implies (a), (a) implies (d), (d) implies (a), (b) implies (c), (c)
implies (b), and so on.

It would be completely correct to show all of these implications,
but luckily there’s an easier way. We can instead show that (a) im-
plies (b), (b) implies (c), (c) implies (d), and finally (d) implies (a). If
we show this then everything else can be deduced. For example, if
we show the four implications above, then the fact that (c) implies
(a), for instance comes for free: we know (c) implies (d) and also
that (d) implies (a), hence (c) implies (a) as well.

In hand-written notes, the following are equivalent is often abbre-
viated TFAE.
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Proof of Theorem 4.2.

(a) =⇒ (b)
Because of the way we have defined the product of a matrix
and a vector, saying Ax⃗ = b⃗ means exactly that b⃗ is a linear
combination of the columns of A. Hence if Ax⃗ = b⃗ has a so-
lution for every b⃗, then it must be the case that every b⃗ can be
written as a linear combination of the columns of A.

(b) =⇒ (c)
The span of a set of vectors is exactly the set of all possible
linear combinations of those vectors. So if every vector in Rm

can be written as a linear combination of the columns of A,
then the span of the columns of A is all of Rm.

(c) =⇒ (d)
We will prove the contrapositive: if (d) does not occur, then (c)
can’t occur either.

So suppose that there was some row that did not have a pivot.
This means precisely that the row-reduced echelon form of A
has a row of all zeros (otherwise we would have a leading en-
try of 1 which would be our pivot). We could then find choices
of b⃗ so that the row-reduced echelon form of

(
A b⃗

)
has a row

of all zeros followed by a 1. Thus the system has no solution
which means b⃗ can’t be written as a linear combination of the
columns of A.

We’ve proven the contrapositive “if not (d), then not (c)” which
is logically equivalent to the original statement “if (c), then
(d).”

(d) =⇒ (a)
Finally, suppose thatA has a pivot position in every row. Then
the row-reduced echelon form of A has no rows of all zeros,
and we can solve any system Ax⃗ = b⃗.
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4.4 Properties of Ax

Algebraic properties

We have defined a new algebraic operation: multiplying an m×n matrix
A with an m-dimensional vector x⃗. Anytime we introduce a new opera-
tion, it’s natural to ask what kind of algebraic properties that operation
satisfies. The following two properties are absolutely fundamental and
will form the basis for what’s to come when we define linear transforma-
tions.

Theorem 4.3.
If A is an m×n matrix, then for every pair of n-dimensional vectors x⃗ and
y⃗, and every scalar λ ∈ R, we have the following properties:

(a) A(x⃗+ y⃗) = Ax⃗+ Ay⃗

(b) A(λ · x⃗) = λ · Ax⃗

Proof.
We do a direct proof, and simply verify these properties hold for any
arbitrary m × n matrix A, arbitrary m-dimensional vectors x⃗ and y⃗,
and arbitrary scalar λ.

We may suppose that A has the form

A =

a⃗1 a⃗2 · · · a⃗n


and that

x⃗ =


x1
x2
...
xm

 y⃗ =


y1
y2
...
ym

 .
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(a)

A(x⃗+ y⃗) = A



x1
x2
...
xm

+


y1
y2
...
ym




= A


x1 + y1
x2 + y2

...
xm + ym


= (x1 + y1)⃗a1 + (x2 + y2)⃗a2 + · · ·+ (xm + ym)⃗am

= x1a⃗1 + y1a⃗1 + x2a⃗2 + y2a⃗2 + · · ·+ xma⃗m + yma⃗m

= x1a⃗1 + x2a⃗2 + · · ·+ xma⃗m + y1a⃗1 + y2a⃗2 + · · ·+ yma⃗m

= A


x1
x2
...
xm

+ A


y1
y2
...
ym


= Ax⃗+ Ay⃗

(b)

A(λ · x⃗) = A


λx1
λx2

...
λxm


= λx1a⃗1 + λx2a⃗2 + · · ·+ λxma⃗m

= λ · (x1a⃗1 + x2a⃗2 + · · ·+ xma⃗m)

= λ · Ax⃗

Computational properties

There is an alternative way to think about the product Ax⃗ that is some-
times handy. Notice that ifA is anm×nmatrix and x⃗ is anm-dimensional
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vector, then the product Ax⃗ is also an n-dimensional vector: it’s a linear
combination of n-dimensional vectors (the columns of A). This vector
can be generated one element at a time by walking across each row of
the matrix A, while simultaneously going down the column vector x⃗ ele-
ment by element, multiplying the elements and adding them up.

Example 4.8.
Consider the product

2 0 −1 1
3 1 0 2
2 −2 1 1




1
4
−2
1


To get the first element in the product we look at the first row of the
matrix, multiplying the entry in the j-th column by the j-th entry in
the vector.

For the first entry we have

1 · 2 + 4 · 0 + (−2) · (−2) + 1 · 1 = 7.

We get the second entry,

1 · 3 + 4 · 1 + (−2) · 0 + 1 · 2 = 9.

For the third entry,

1 · 2 + 4 · (−2) + (−2) · 1 + 1 · 1 = −7.

And thus the product is  7
9
−7

 .
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4.5 Practice Problems
Problem 4.1.
Find the values of x⃗ solving the system Ax⃗ = b⃗ where A and b⃗ are given
in each problem below.

(a)

A =

 1 3 −4
1 5 2
−3 −7 6

 b⃗ =

−2
4
12


(b)

A =

 1 3 −4
1 5 2
−3 −7 6

 b⃗ =

−1
2
6


(c)

A =

 1 2 −1
−3 −4 2
5 2 3

 b⃗ =

 1
2
−3


(d)

A =

 3 −5
−2 6
1 1

 b⃗ =

0
4
4


(e)

A =

2 5 −1
0 1 −1
1 2 0

 b⃗ =

 4
−1
4


Problem 4.2.
Do the columns of the following matrix span R4?

1 4 1 2
0 1 3 −4
0 2 6 7
2 9 5 −7


Problem 4.3.
Do the columns of the following matrix span R4?

1 3 0 3
−1 −1 −1 1
0 −4 2 −8
2 0 3 −1


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Problem 4.4.
Do the vectors below span R3?

u⃗ =

 0
0
−3

 v⃗ =

 0
−3
9

 w⃗ =

 4
−2
−6





5Solution Sets
I have not failed. I’ve just found 10,000 ways
that won’t work.

THOMAS EDISON

Recall that a system of equations may have zero solutions, a single
unique solution, or infinitely-many solutions. Regardless of how many
solutions we have, we say that the collection of all possible solutions
to a system of n-variables (the collection of all points (x1, x2, ..., xn) in
Rn whose coordinates simultaneously satisfy all of the equations in the
system) the solution set of the system.

Remark.
If a system has no solutions, then the solution set is the empty set
∅.

5.1 Homogeneous Systems
A system of linear equations where the right-hand sides are all zeroes,

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = 0

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = 0

...
am,1x1 + am,2x2 + · · ·+ am,nxn = 0

is called a homogeneous system. As a matrix equation, we have the coef-
ficient matrix A whose columns are given by

a⃗j =


a1,j
a2,j

...
am,j


81
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and we are interested in finding the vector

x⃗ =


x1
x2
...
xn


so that Ax⃗ = 0⃗.

Notice that homogeneous systems always have a solution: at the very
least we can take x1 = x2 = · · · = xn = 0 – in terms of vectors, x⃗ = 0⃗.
This is called the trivial solution to the homogeneous system. If there
are other solutions, we call them non-trivial solutions.

Notice that there are only two options for a homogeneous system:
there is either only the trivial solution, or there are infinitely-many solu-
tions.

Exercise 5.1.
Suppose that there is an x⃗ ̸= 0⃗ solving Ax⃗ = 0. Show that there

must in be infinitely-many other, non-trivial solutions.

Recall that when a linear system has infinitely-many solutions there is
some way to parametrize the solution set: there is some way to explicitly
describe all of the solutions as a function of the free variables.

In particular, suppose the solution set is spanned by vectors v⃗1, v⃗2, ...,
v⃗d. Then the solution set to the system Ax⃗ = 0⃗ is parametrized by the
linear combinations of the v⃗i.

Example 5.1.
Parametrize all of the solutions to(

1 −2
−3 6

)(
x1
x2

)
=

(
0
0

)
Solving this matrix equation is the same as solving the system of
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linear equations

x1 − 2x2 = 0

−3x2 + 6x2 = 0

If we put the augmented coefficient matrix of this system in RREF
we have (

1 −2 0
0 0 0

)
which means that our system is equivalent to

x1 − 2x2 = 0

so our solutions satisfy
x1 = 2x2.

That is, our vectors satisfying the matrix equation have the form(
x1
x2

)
=

(
2x2
x2

)
= x2

(
2
1

)
So our solutions live in the span of this one vector; the solutions are
parametrized by

x⃗ = t

(
2
1

)
where t can be any real number.

Notice that we could have instead rewritten the equation

x1 − 2x2 = 0

as
x2 =

1

2
x1.

and said that our solutions have the form(
x1
x2

)
=

(
x1

1/2x2

)
= x1

(
1
1/2

)
and our solutions are also parametrized by

x⃗ = s

(
1
1/2

)
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There is no contradicition here: we simply have parametrized
the set of all possible solutions in two different ways:

x⃗ = t

(
2
1

)
= s

(
1
1/2

)
.

we could parametrize this in many other different ways:

x⃗ =t

(
2
1

)
= s

(
1
1/2

)
=τ

(
−14
−7

)
=σ

(
528
264

)
.

The important thing here is the collection of all possible things we
can get as scalar multiples of these vectors, and they all describe the
same set:

span

({(
2
1

)})
=span

({(
1
1/2

)})
=span

({(
−14
−7

)})
=span

({(
528
264

)})
.

For example, the vector
(
8
4

)
is a solution to the system; it’s each of
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the spans above, (
8
4

)
= 4

(
2
1

)
= 8

(
1
1/2

)
= −4

7

(
−14
−7

)
=

1

66

(
528
264

)

Example 5.2.
Parametrize all of the solutions to Ax⃗ = 0⃗ where

A =


3 1 −5 −1
0 1 1 −1
2 1 −3 −1
1 2 0 −2


We are trying to describe all of the values of x⃗ that make the follow-
ing equaiton hold:

3 1 −5 −1
0 1 1 −1
2 1 −3 −1
1 2 0 −2



x1
x2
x3
x4

 =


0
0
0
0


If we put the augmented coefficient matrix of this system into RREF
we have 

1 0 0 −2 0
0 1 1 −1 0
0 0 0 0 0
0 0 0 0 0


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This means our system is equivalent to

x1 − 2x4 = 0

x2 + x3 − x4 = 0

Thus

x1 = 2x4

x2 = −x3 + x4

and x3 and x4 are free variables. So, our vectors x⃗ solving the equa-
tion look like

x⃗ =


x1
x2
x3
x4

 =


2x4

−x3 + x4
x3
x4


which we can write as

x⃗ = x3


0
−1
1
0

+ x4


2
1
0
1

 .

So the solutions to our equation are precisely the vectors in

span





0
−1
1
0

 ,


2
1
0
1



 .

That is, our solutions are parametrized by

x⃗ = s


0
−1
1
0

+ t


2
1
0
1


where s and t can be any real numbers.
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Now, this particular parametrization comes from the fact that
we took x3 and x4 to be free variables above. We could have instead
taken x1 and x2 to be free variables. If we rewrite the equations

x1 = 2x4

x2 = −x3 + x4

so that x3 and x4 are functions of x1 and x2, then we have

x4 =
1

2
x1

x3 = x4 − x2 =
1

2
x1 − x2

which tells us that the solutions look like

x⃗ =


x1
x2
x3
x4



=


x1
x2

1
2
x1 − x2
1
2
x1



= x1


1
0
1/2
1/2

+ x2


0
1
−1
0


So the set of solutions to Ax⃗ = 0⃗ is

span




1
0
1
2
1
2

 ,


0
1
−1
0




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That is, every vector x⃗ has the form

x⃗ = σ


1
0
1/2
1/2

+ τ


0
1
−1
0


Thus we have said that the set of solutions to Ax⃗ = 0⃗ can be

described in two different ways:

x⃗ = s


0
−1
1
0

+ t


2
1
0
1



= σ


1
0
1/2
1/2

+ τ


0
1
−1
0


Again there’s no contradiction here: if you write any one vector in
the solution set as

x⃗ = s


0
−1
1
0

+ t


2
1
0
1


you can write the same vector as

x⃗ = σ


1
0
1/2
1/2

+ τ


0
1
−1
0


by taking σ = 2t and τ = −s.

For example, the vector 
4
−1
3
2


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is a solution to the system. In terms of one parametrization we get
this vector by taking s = 3 and t = 2:

4
−1
3
2

 = 3


0
−1
1
0

+ 2


2
1
0
1

 .

In terms of the other parametrization we take σ = 4 and τ = −3:
4
−1
3
2

 = 4


1
0
1/2
1/2

− 3


0
1
−1
0

 .

Example 5.3.
Parametrize the set of vectors solving the equation Ax⃗ = 0⃗ where A
is the matrix

A =


4 2 9 3
3 2 7 2
3 1 7 1
2 4 5 3


Notice that the RREF of A is

1 0 0 7
0 1 0 1
0 0 1 −3
0 0 0 0


When we solve the system Ax⃗ = 0⃗, the RREF of the augmented
coefficient matrix is thus

1 0 0 7 0
0 1 0 1 0
0 0 1 −3 0
0 0 0 0 0


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which means that

x1 + 7x4 = 0

x2 + x4 = 0

x3 − 3x4 = 0

Thus

x1 = −7x4

x2 = −x4
x3 = 3x4

and x4 can be whatever we want.
That is, the solutions to the system Ax⃗ = 0⃗ have the form

−7x4
−x4
3x4
x4


which we could write as

x4


−7
−1
3
1.


So all the solutions to Ax⃗ = 0⃗ are scalar multiples of one vector.

Another way to think about this is to notice that our original
equation, 

4 2 9 3
3 2 7 2
3 1 7 1
2 4 5 3



x1
x2
x3
x4

 =


0
0
0
0


is equivalent to 

1 0 0 7
0 1 0 1
0 0 1 −3
0 0 0 0



x1
x2
x3
x4

 =


0
0
0
0

 .
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But notice that when we multiply the matrix and vector on the left-
hand side we get 

x1 + 7x4
x2 + x4
x3 − 3x4

0

 =


0
0
0
0

 .

We could rewrite this as
x1
x2
x3
x4

+


7x4
x4

−3x4
−x4

 =


0
0
0
0


which we could further write as

x1
x2
x3
x4

+ x4


7
1
−3
−1

 =


0
0
0
0


but this implies 

x1
x2
x3
x4

 = x4


−7
−1
3
1

 .

Example 5.4.
Parametrize the solutions of

5 2 −2 15 10
4 1 0 5 10
3 1 1 5 −25
6 2 −3 15 45
1 0 −1 0 35



x1
x2
x3
x4
x5

 =


0
0
0
0
0


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Notice that the RREF of
(
A 0⃗

)
is

1 0 0 −1 16 0
0 1 0 9 −54 0
0 0 1 −1 −19 0
0 0 0 0 0 0
0 0 0 0 0 0


This means that our original system is equivalent to

1 0 0 −1 16
0 1 0 9 −54
0 0 1 −1 −19
0 0 0 0 0
0 0 0 0 0



x1
x2
x3
x4
x5

 =


0
0
0
0
0


Multiplying the matrix and vector on the left gives

x1 − x4 + 16x5
x2 + 9x4 − 54x5
x3 − x4 − 19x5

0
0

 =


0
0
0
0
0

 .

We can rewrite this as
x1
x2
x3
0
0

+ x4


−1
9
−1
0
0

+ x5


16
−54
−19
0
0

 =


0
0
0
0
0


Let’s go one step furth and write this as

x1
x2
x3
x4
x4

+ x4


−1
9
−1
−1
0

+ x5


16
−54
−19
0
−1

 =


0
0
0
0
0





CHAPTER 5. SOLUTION SETS 93

which then implies
x1
x2
x3
x4
x5

 = x4


1
−9
1
1
0

+ x5


−16
54
19
0
1


So we may parametrize the set of all solutions as

x⃗ =


x1
x2
x3
x4
x5

 = s


1
−9
1
1
0

+ t


−16
54
19
0
1



At this point you’ve probably noticed that there’s some sort of rela-
tionship between the solutions of a homogeneous system and the columns
of our matrix in RREF.

Example 5.5.
In Example 5.1 we saw that our matrix in RREF was(

1 −2
0 0

)
Notice that one possible parametrization of the solution set of Ex-

ample 5.1 was the collection of all scalar mutliples of
(
2
1

)
.

In Example 5.2 our matrix in RREF was
1 0 0 −2
0 1 1 −1
0 0 0 0
0 0 0 0


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and we could parametrize the solution set as linear combinations of
0
−1
1
0

 and


2
1
0
1

 .

In Example 5.3 the matrix in RREF was
1 0 0 7
0 1 0 1
0 0 1 −3
0 0 0 0


and the solution set could be parametrized as scalar multiples of

−7
−1
3
1

 .

In Example 5.4 our matrix in RREF was
1 0 0 −1 16 0
0 1 0 9 −54 0
0 0 1 −1 −19 0
0 0 0 0 0 0
0 0 0 0 0 0


and the solution set could be parametrized as linear combinations
of 

1
−9
1
1
0

 and


−16
54
19
0
1

 .

Notice that in each example after we put the matrix into RREF some
of the columns of the matrix wind up telling us how to parametrize the
solution set.

Let’s look at one more example before we make the relationship be-
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tween the columns in RREF and the solution set precise.

Example 5.6.
Parametrize solutions to Ax⃗ = 0⃗ where

A =

4 12 2 6 10
1 3 1 3 3
3 9 2 6 8


In RREF this matrix becomes1 3 0 0 2

0 0 1 3 1
0 0 0 0 0


So solving Ax⃗ = 0⃗ is the same as solving

x1 + 3x2 + 2x5 =0

x3 + 3x4 + x5 =0

We could write this as

x1 = −3x2 − 2x5

x3 = −3x4 − x5

So the solutions have the form

x⃗ =


x1
x2
x3
x4
x5

 =


−3x2 − 2x5

x2
−3x4 − x5

x4
x5

 = x2


−3
1
0
0
0

+ x4


0
0
−3
1
0

+ x5


−2
0
−1
0
1



The relationship between the columns of our matrix and the solution
set is elucidated by the following:
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Proposition 5.1.
The number of free variables in the solution set of Ax⃗ = 0⃗ is precisely the
number of columns of the matrix that do not contain pivot.

This proposition is actually a corollary of a very important result called
the rank-nullity theorem so we will wait and prove this proposition after
we prove the rank-nullity theorem.

5.2 Non-Homogeneous Equations
All of the examples of parametrizations we have seen thus far have been
for homogeneous systems, but parametrizing solutions to non-homogeneous
systems is almost identical.

Theorem 5.2.
Suppose that Ax⃗ = b⃗ has a solution y⃗. Then the solutions to Ax⃗ = b⃗ all
have the form y⃗ + h⃗ where h⃗ is a solution to the homogeneous equation
Ax⃗ = 0⃗.

Proof.
It’s clear that y⃗ + h⃗ is a solution to Ax⃗ = b⃗:

A
(
y⃗ + h⃗

)
= Ay⃗ + Ah⃗ = b⃗+ 0⃗ = b⃗.

Now suppose that y⃗′ is any other solution to Ax⃗ = b⃗ and let h⃗′ =
y⃗′ − y⃗. Notice that

Ah⃗′ = A(y⃗′ − y⃗) = Ay⃗′ − Ay⃗ = b⃗− b⃗ = 0⃗.

We again have that y⃗′ = y⃗ + h⃗′ where h⃗′ solves the homogeneous
equation.
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This theorem tells us that if we can parametrize Ax⃗ = 0⃗ then we can
just as easily parametrize Ax⃗ = b⃗ by taking any one solution y⃗ of Ax⃗ = b⃗,
called a particular solution and adding to it the solutions to the homo-
geneous equation Ax⃗ = 0⃗.

Example 5.7.
Parametrize all of the solutions to(

1 −2
−3 6

)(
x1
x2

)
=

(
5

−15

)
Once we have one solution to this system, such as

x⃗ =

(
9
2

)
,

then all of the other solutions to the equation have the form(
9
2

)
+ t

(
2
1

)
where t can be any real number because we know from Example 5.1
that solutions to the homogeneous equation with the same matrix

have the form t

(
2
1

)
.

Choosing a different particular solution doesn’t really change
anything. For example, if we had instead used

x⃗ =

(
13
4

)
then we still have that all of the solutions to our equation have the
form (

13
4

)
+ τ

(
2
1

)
.

We could have also used a different parametrization for the ho-
mogeneous part of the solutions and write all the solutions as(

13
4

)
+ s

(
1
1/2

)
.
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For example,
(

1
−2

)
can be obtained from the first equation by

taking t = −4, from the second by taking τ = −6, and from the third
by taking s = −12: (

1
−2

)
=

(
9
2

)
− 4

(
2
1

)
=

(
13
4

)
− 6

(
2
1

)
=

(
13
4

)
− 12

(
1
1/2

)
.

Exercise 5.2.
Parametrize the solutions to Ax⃗ = b⃗ where A and b⃗ are as described
below:

(a)

A =


3 1 −5 −1
0 1 1 −1
2 1 −3 −1
1 2 0 −2

 and b⃗ =


2
−1
1
−1


(b)

A =


4 2 9 3
3 2 7 2
3 1 7 1
2 4 5 3

 and b⃗ =


2
0
−2
2


(c)

A =


5 2 −2 15 10
4 1 0 5 10
3 1 1 5 −25
6 2 −3 15 45
1 0 −1 0 35

 and b⃗ =


30
27
−6
63
33


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(d)

A =

4 12 2 6 10
1 3 1 3 3
3 9 2 6 8

 and b⃗ =

12
6
12



When we already know how to parametrize the solutions set of the
homogeneous equation Ax⃗ = 0⃗ and we have some particular solution to
Ax⃗ = b⃗, then it becomes easy to parametrize all of the solutions toAx⃗ = b⃗.
Usually we won’t have a particular solution to start with, but the above
discussion tells us how to parametrize solution sets.
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5.3 Practice Problems
Problem 5.1.
Parametrize the set of solutions to the following system of linear equa-
tions:

2x1 + 2x2 + 4x3 =0

−4x1 − 4x2 − 8x3 =0

−3x2 − 3x3 =0

Problem 5.2.
Parametrize the set of solutions to the following system of linear equa-
tions:

x1 + 2x2 − 3x3 =0

2x1 + x2 − 3x2 =0

−x1 + x2 =0

Problem 5.3.
Parametrize the set of solutions to the equation Ax⃗ = 0 where A is the
matrix below:

A =


1 −2 3 −6 5 0
0 0 0 1 4 −6
0 0 0 0 0 1
0 0 0 0 0 0


Problem 5.4.
Suppose the solution set to a certain system of linear equations can be
described as

x1 =5x4

x2 =3− 2x4

x3 =2 + 5x4

and x4 is a free variable. Use vectors to describe this set as a line in R4.



6
Matrix Algebra

Algebra is the metaphysics of arithmetic.

JOHN RAY

In this lecture we discuss the various types of operations that can be
performed on matrices, and the algebra of these operations.

6.1 Linear Transformations
Many of the operations we perform on matrices have an interpretation in
terms of functions, and understanding that interpretation helps to mo-
tivate why some of the constructions below are things we should care
about.

We will say that a map T : Rn → Rm (that is, a map that takes n-
dimensional vectors and converts them into m-dimensional vectors) is a
linear transformation if it satisfies the following two axioms:

(i) For every pair of n-dimensional vectors u⃗, v⃗ ∈ Rn, T satisfies the
following equation:

T (u⃗+ v⃗) = T (u⃗) + T (v⃗).

(ii) For every n-dimensional vector v⃗ and every scalar λ ∈ R, we have

T (λv⃗) = λT (v⃗).

Recall that there are two basic operations we can perform on vectors: vec-
tor addition and scalar multiplication. Linear transformations are pre-
cisely the maps that “respect” these two operations.

Example 6.1.
Consider the following which takes two-dimensional vectors and

101
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transforms them into three-dimensional vectors:

T : R2 → R3

T

(
x
y

)
=

 y
−x
x+ y


This map takes

(
1
3

)
and turns it into the vector

T

(
1
3

)
=

 3
−1
4


and it takes the vector

(
−2
−6

)
and turns it into

T

(
−2
−6

)
=

−6
2
−8



Example 6.2.
The following map takes four-dimensional vectors and turns them

into two-dimensional vectors:

T : R4 → R2

T


x1
x2
x3
x4

 =

(
x1 − 2x4
4x3 + x2

)
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Here are some examples of what this function does:

T


1
2
3
4

 =

(
−7
14

)

T


7
2
0
−1

 =

(
9
2

)

T


8
4
3
3

 =

(
2
16

)

Notice that these two different maps are actually given by matrices:

Example 6.3.
The map T : R2 → R3 from Example 6.1 is given by multiplying a

vector
(
x
y

)
with the matrix

A =

 0 1
−1 0
1 1


For example, 0 1

−1 0
1 1

(1
3

)
= 1

 0
−1
1

+ 3

1
0
1

 =

 3
−1
4

 .

Example 6.4.
The map T : R4 → R2 from Example 6.2 is given by multiplying a
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four-dimensional vector with the matrix

A =

(
1 0 0 −2
0 1 4 0

)
For example, (

1 0 0 −2
0 1 4 0

)
1
2
3
4

 =

(
−7
14

)

In fact, every matrix determines such a map: Every m × n matrix de-
fines a map from Rn to Rm by matrix multiplication:

x⃗ 7→ Ax⃗.

By the properties of multiplication between matrices and vectors, we see
that such a map is always a linear transformation. In fact, it turns out
that every linear transformation is determined by a matrix in this way.

6.2 The Matrix of a Linear Transformation
We said above that every matrix determines a linear transformation. It
turns out, however, that every linear transformation is determined by a
matrix. That is, for every linear transformation T : Rm → Rn, there is
some m× n matrix A such that T (v⃗) = Av⃗.

To see this, let’s notice that every n-dimensional vector can be written
as a linear combination of the vectors

e⃗1 =



1
0
0
0
...
0
0


e⃗2 =



0
1
0
0
...
0
0


e⃗3 =



0
0
1
0
...
0
0


· · · e⃗n =



0
0
0
0
...
0
1


.

That is, e⃗i is the vector that has all zeros except for a 1 in the i-th row.



CHAPTER 6. MATRIX ALGEBRA 105

Exercise 6.1.

(a) Show that the set of n-dimensional vectors {e⃗1, e⃗2, · · · , e⃗n} is lin-
early independent.

(b) Show that every n-dimensional vector can be written as a linear
combination of the e⃗i.

Now suppose T : Rn → Rm is a linear transformation, and so T (e⃗i) is
some m-dimensional vector – let’s call it a⃗i. Now consider the matrix A
whose columns are given by these vectors,

A =

a⃗1 a⃗2 · · · a⃗n

 .

This matrix represents our linear transformation: if

x⃗ =


x1
x2
...
xn


is any vector, then we have

T (x⃗)

=T (x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n)

=x1T (e⃗1) + x2T (e⃗2) + · · ·+ xnT (e⃗n)

=x1a⃗1 + x2a⃗2 + · · ·+ xna⃗n

But notice that

x1a⃗1 + x2a⃗2 + · · ·+ xna⃗n

=
(
a⃗1 a⃗2 · · · a⃗n

)

x1
x2
...
xn


=Ax⃗
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Thus every linear transformation is determined by some matrix!

Exercise 6.2.
Consider the map Sm : R2 → R2 which shears the plane horizontally

by a factor of m. That is, a given vector
(
x
y

)
gets sent to

(
x+my

y

)
.

x

y

S1

x

y

(a) Show that each Sm is a linear transformation.

(b) Determine the matrix representing Sm.

Exercise 6.3.
Consider the map R : R2 → R2 which reflects across the x-axis:

R

(
x
y

)
=

(
x
−y

)
(a) Show that R is a linear transformation.

(b) Determine the matrix representing R.

6.3 Matrix Addition and Scalar Multiplication
Let T : Rn → Rm and S : Rn → Rm be the corresponding linear transfor-
mations. We can produce a new linear transformation T + S : Rn → Rm

by adding vectors. That is, given a vector v⃗ ∈ Rn we consider the map

v⃗ 7→ T (v⃗) + S(v⃗).
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This gives us a new map which we denote T +S. It’s easy to see that if T
and S are linear transformations, then so is T + S:

(T + S)(v⃗ + w⃗) =T (v⃗ + w⃗) + S(v⃗ + w⃗)

=T (v⃗) + T (w⃗) + S(v⃗) + S(w⃗)

=T (v⃗) + S(v⃗) + T (w⃗) + S(w⃗)

=(T + S)(v⃗) + (T + S)(w⃗)

(T + S)(λv⃗) =T (λv⃗) + S(λv⃗)

=λT (v⃗) + λS(v⃗)

=λ(T + S)(v⃗)

Since T +S is a linear transformation, there must be some matrix rep-
resenting it. Before we determine what this matrix must be, let’s suppose
that T is given by the matrix A with columns a⃗1, a⃗2, ..., a⃗n, and S is deter-
mined by the matrix B with columns b⃗1, b⃗2, ..., b⃗n.

We know that the columns of the matrix representing T +S are given
by the vectors (T + S)(e⃗i), where e⃗i is the n-dimensional vector that con-
sists entirely of zero except for a 1 in the i-th component.

Notice

(T + S)(e⃗i) =T (e⃗i) + S(e⃗i)

=ai + bi

That is, the columns of the matrix representing T + S are determined by
adding the columns of the matrices representing T and S.

Example 6.5.
Suppose T and S are the linear transformations corresponding to
the matrices

A =


1 0 2
3 −1 4
5 2 2
1 −1 −1

 B =


−1 3 3
2 2 −2
1 1 −3
4 1 2


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Then the matrix corresponding to T + S is
0 3 5
5 1 2
6 3 −1
5 0 1



The matrix we get by adding the columns of a matrix A with the
columns of a matrix B like this is denoted A + B. Notice that since we
add vectors (the columns of the matrices) component-by-component, we
add matrices component-by-component as well – this also means that
addition of matrices only makes sense if the matrices are the same size.

Example 6.6.2 3 4 2
1 0 2 −1
3 4 0 1

+

1 −1 1 0
2 2 7 13
4 2 9 1

 =

3 2 5 2
3 2 9 12
7 6 9 2



Given a linear transformation T : Rn → Rm and a scalar µ we can
define a new map by multiplying the outputs of T with µ: v⃗ 7→ µT (v⃗).
This map is denoted µT and is also a linear transformation:

µT (v⃗ + w⃗) =µ(T (v⃗) + T (w⃗))

=µT (v⃗) + µT (w⃗)

µT (λv⃗) =µλT (v⃗)

Since µT is a linear transformation it is represented by some matrix
whose columns are µT (e⃗i). If T is represented by matrix A with columns
a⃗i = T (e⃗i), then µT is represented by the matrix with columns µa⃗i. That
is, the matrix representing µT is simply the matrix representing T , but
with every entry multiplied by µ.
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Example 6.7.
If T : R2 → R4 is given by the matrix

4 2
6 −3
7 8
2 0

 ,

then the matrix representing −5T is given by
−20 −10
−30 15
−35 −40
−10 0

 .

The matrix obtained by multiplying each entry of a matrix A by µ is
denoted µA.

Example 6.8.

3

2 7 1 0
4 2 −2 3
1 1 4 2

 =

 6 21 3 0
12 6 −6 9
3 3 12 6



So we have two operations we can perform on matrices: matrix addi-
tion and scalar multiplication, corresponding to performing vector addi-
tion and scalar multiplication with the corresponding linear transforma-
tions.

Anytime we introduce an algebraic operation such as this, we’d like
to know what properties the operation may satisfy; and if we have mul-
tiple operations, we want to know how the different operations interact
with one another.

In what’s to follow we will use 0 to mean the zero matrix: the matrix
of all zeros. It will usually be clear from context when we write 0 whether
we’re referring to the scalar number zero, or the zero matrix.
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Theorem 6.1.
LetA,B, and C bem×nmatrices and let λ and µ be scalars. Then matrix
addition and scalar multiplication satisfy the following properties:

(i) A+B = B + A

(ii) (A+B) + C = A+ (B + C)

(iii) A+ 0 = A

(iv) A− A = A+ (−A) = 0

(v) λ(A+B) = λA+ λB

(vi) (λ+ µ)A = λA+ µA

(vii) (λµ)A = λ(µA)

Exercise 6.4.
Prove Theorem 6.1

6.4 Matrix Multiplication
If f : A → B and g : B → C is a map, then their composition is a map
from A to C given by

a 7→ g(f(a))

and denoted g ◦ f : A→ C.
Consider linear transformations T : Rn → Rm and S : Rm → Rp.

Their composition, S ◦ T , is a map from Rn to Rp which takes vectors in
Rn and maps them into Rp according to the rule

v⃗ 7→ S(T (v⃗)).
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Notice that this is a linear transformation:

(S ◦ T )(v⃗ + w⃗) =S(T (v⃗ + w⃗))

=S(T (v⃗) + T (w⃗))

=S(T (v⃗)) + S(T (w⃗))

=(S ◦ T )(v⃗) + (S ◦ T )(w⃗)

(S ◦ T )(λv⃗) =S(T (λv⃗))
=S(λT (v⃗))

=λS(T (v⃗))

=λ(S ◦ T )(v⃗).

Since S ◦ T : Rn → Rp is a linear transformation it must be represented
by some p × n matrix, the columns of which are given by S(T (e⃗i)). To
determine what these columns look like, suppose that T is represented
by them×nmatrixA and S is represented by the p×mmatrixB. Suppose
the columns of A are a⃗1, a⃗2, ..., a⃗n and the columns of B are b⃗1, b⃗2, ..., b⃗m.
Then S(T (e⃗i)) = S (⃗ai). Applying S corresponds to multiplying by the
matrix B, however, so S (⃗ai) = Ba⃗i. That is, the matrix representing S ◦ T
has the form Ba⃗1 Ba⃗2 · · · Ba⃗n


If we suppose that a⃗i has the form

a⃗i =


a1,i
a2,i

...
ami


then the i-th column of the matrix above is

Ba⃗i = a1,i⃗b1 + a2,i⃗b2 + · · ·+ am,i⃗bi

Supposing that the column b⃗j has the form

b⃗j =


b1,j
b2,j

...
bp,j


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We have

Ba⃗i =a1,i


b1,1
b2,1

...
bp,1

+ a2,i


b1,2
b2,2

...
bp,2

+ · · ·+ am,i


b1,m
b2,m

...
bp,m


=

a1,ib1,1 + a2,ib1,2 + · · ·+ am,ib1,m
a1,ib2,1 + a2,ib2,2 + · · ·+ am,ib2,m
...a1,ibp,1 + a2,ibp,2 + · · ·+ am,ibp,m



=


b1,1a1,i + b1,2a2,i + · · ·+ b1,mam,i

b2,1a1,i + b2,2a2,i + · · ·+ b2,mam,i
...

bp,1a1,i + bp,2a2,i + · · ·+ bp,mam,i



Putting this all together, the entry in the i-th row and j-th column of our
p× n matrix is

m∑
k=1

bi,kak,j.

This matrix is called the product of the matrices B and A and is denoted
BA.

Just to reiterate: given two matrices A and B where A has size m× n
and B has size n × p, we can define the product AB which is a m × p
matrix whose entry in the i-th row and j-th column is

n∑
k=1

ai,kbk,j

This matrix corresponds to the composition of the linear transformations
determined by A and B; applying B first and then A.

Notice that if A is 1× n and B is n× 1, then this multiplication is easy
to do:

(
a1 a2 a3 · · · an

)

b1
b2
b3
...
bn

 =
(
a1b1 + a2b2 + a3b3 + · · ·+ anbn

)
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Example 6.9.

(
3 7 2 1

)
2
−1
4
0

 =
(
3 · 2 + 7 · (−1) + 2 · 4 + 1 · 0

)
=
(
7
)

Since the product of a row vector and a column vector like this is
always a 1 × 1 matrix it’s just a single number, and so we usually think
of this as being a scalar instead of a vector.

Remark.
If you’ve taken multivariable calculus, you might notice that mul-
tiplying a row vector and a column vector like this is the same as
taking the dot product of two vectors.

The entry in the i-th row, j-th column of the product AB is obtained
by multiplying the i-th row of A with the j-th column of B. This obser-
vation greatly simplifies the calculation of the product of two matrices.

Example 6.10.
Let A and B be the matrices below, and compute the product AB.

A =

4 6 3
0 1 −1
3 2 2

 B =

3 1
1 2
0 2


The first row, first column of AB will be the product of the first

row of A with the first column of B:

(
4 6 3

)3
1
0

 = 4 · 3 + 6 · 1 + 3 · 0 = 18
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The first row, second column of AB will be the product of the first
row of A and the second column of B:

(
4 6 3

)1
2
2

 = 4 · 1 + 6 · 2 + 3 · 2 = 22

The second row, first column ofAB is the product of the second row
of A and the first column of B:

(
0 1 −1

)3
1
0

 = 0 · 3 + 1 · 1 + (−1) · 0 = 1

Continuing like this we can compute each entry of AB:

AB =

18 22
1 0
11 11



Example 6.11.
Suppose T : R3 → R2 and S : R2 → R4 are given by

T

xy
z

 =

(
x+ z
y − z

)

S

(
x
y

)
=


2y

x+ y
x− y
3x

 .

What does the composition S ◦ T do? What is the corresponding
matrix?

Our map S ◦ T will take convert three-dimensional vectors into
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four-dimensional vectors in the following way:

S ◦ T

xy
z

 =S

T
xy
z


=S

(
x+ z
y − z

)

=


2(y − z)

x+ z + y − z
x+ z − (y − z)

3(x+ z)



=


2y − 2z
x+ y

x− y + 2z
3x+ 3z


We could compute the matrix of S ◦ T in two different ways: by

multiplying the matrices of S and T , or by computing S◦T (e⃗i). We’ll
compute the matrix both ways.

First notice that the matrix of T is

B =

(
1 0 1
0 1 −1

)
.

The matrix of S is

A =


0 2
1 1
1 −1
3 0

 .
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The matrix of S ◦ T is thus

AB =


0 2
1 1
1 −1
3 0

(1 0 1
0 1 −1

)

=


0 · 1 + 2 · 0 0 · 0 + 2 · 1 0 · 1 + 2 · (−1)
1 · 1 + 1 · 0 1 · 0 + 1 · 1 1 · 1 + 1 · (−1)

1 · 1 + (−1) · 0 1 · 0 + (−1) · 1 1 · 1 + (−1) · −1
3 · 1 + 0 · 0 3 · 0 + 0 · 1 3 · 1 + 0 · (−1)



=


0 2 −2
1 1 0
1 −1 2
3 0 3


Just to confirm this is correct, notice

S ◦ T (e⃗1) =


0
1
1
3



S ◦ T (e⃗2) =


2
1
−1
0



S ◦ T (e⃗3) =


−2
0
2
3



6.5 Properties of Matrix Multiplication
Before mentioning some of the algebraic properties that matrix multi-
plication satisfies, we mention some things about matrix multiplication
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which are very different when compared to the usual multiplication of
real numbers that you’re used to.

Notice that unlike multiplication of real numbers, multiplication of
matrices is not commutative. That is, AB ̸= BA in general;

Example 6.12.
Suppose A and B are the matrices below:

A =

1 2 3
0 0 −1
4 2 1

 B =

2 −1 1
1 1 2
3 −1 −2


Then

AB =

13 −2 −1
−3 1 2
13 −3 6



BA =

 6 6 8
9 6 4
−5 2 8



Also unlike normal multiplication of numbers, we can have two non-
zero matrices that multiply to the zero matrix.

Example 6.13.

(
1 2 3
0 −1 −1

) 1 2
1 2
−1 −2

 =

(
0 0
0 0

)

1 2 0 −2 4
0 1 0 −1 1
2 1 1 1 7
0 2 0 −2 2
3 2 3 4 14




2 2
1 −1
2 6
0 −2
−1 −1

 =


0 0
0 0
0 0
0 0
0 0


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In general we can’t “divide” matrices either. For example, if x, y and
z are real numbers and xy = xz, then as long as x ̸= 0 we can divide out
the x’s to conclude y = z. This is not the case for matrices.

Example 6.14.
Let A, B, and C be the matrices below.

A =

1 3 5
0 2 2
2 1 5

 B =

1 2 2
3 1 −1
1 0 1

 C =

−1 0 −2
2 0 −3
2 1 3


Notice that

AB = AC =

15 5 4
8 2 0
10 5 8


even though B ̸= C.

Now that we’ve seen some of the properties that matrix multiplica-
tion doesn’t satisfy, let’s mention some of the properties that are satisfied.

Theorem 6.2.
Let A, B, and C be matrices of the appropriate sizes so that products and

sums below are defined, and let λ be a scalar.

(i) A(BC) = (AB)C

(ii) A(B + C) = AB + AC

(iii) (A+B)C = AC +BC

(iv) λ(AB) = (λA)B = A(λB)

The proofs of each property above are straight-forward, but slightly
tedious, so we leave them as an exercise.
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Exercise 6.5.
Prove Theorem 6.2.

6.6 The Transpose
Given any m × n matrix A, we can define an n × m matrix called the
transpose of A and denoted AT by swapping the rows and columns of A.

Example 6.15.

A =

1 2 7 −3 2 4
4 −2 1 1 0 2
3 1 2 2 2 2



AT =


1 4 3
2 −2 1
7 1 2
−3 1 2
2 0 2
4 2 2



Notice that this operation turns row vectors into column vectors and
vice versa:

Example 6.16.
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(
1 2 3 4

)T
=


1
2
3
4



5
6
7
8


T

=
(
5 6 7 8

)
.

Remark.
If v⃗ is a column vector (an n × 1 matrix), then the transpose v⃗T is a
row vector (a 1× n matrix). The dot product of two vectors u⃗ and v⃗
can then be written as u⃗T v⃗ where we perform matrix multiplication
on the 1× n and n× 1 vector to get a single number.

As the transpose is defined by exchanging the roles of columns and
rows, if a⃗i is the i-th column of A, then a⃗Ti is the i-th row of AT . Similarly,
if α⃗j is the j-th row of A (here α⃗j is a row vector), then α⃗T

j (now a column
vector) is the j-th column of A.

Theorem 6.3.
If A is any matrix, then (AT )T = A.

Proof.
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Suppose the columns of A are a⃗1, a⃗2, ..., a⃗n:

A =

a⃗1 a⃗2 · · · a⃗n


Then the transposes of those columns give the rows of AT :

AT =


a⃗T1
a⃗T2
...
a⃗Tn

 .

If we take the transpose yet again, then we turn these rows back into
the original columns of A:

(AT )T =

a⃗1 a⃗2 · · · a⃗n

 = A

Remark.
Notice that if T : Rn → Rm is any linear transformation, say with
corresponding matrix A, then the transpose of A determines a lin-
ear transformation Rm → Rn (in the reverse order of the original
transformation T ).

We now have four different operations we can perform on matrices:
matrix addition, scalar multiplication, matrix multiplication, and now
the transpose. It’s reasonable to ask how our new operation, transpose,
gets along with the previous operations.

Theorem 6.4.
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Let A and B be matrices of the appropriate sizes so that the operations
below are defined, and let λ be a scalar. We then have the following:

(i) (A+B)T = AT +BT

(ii) (λA)T = λ(AT )

(iii) (AB)T = BTAT .

Proof of Theorem 8.3 (i).
We will only prove part (i) and leave the proofs of the other proper-
ties as exercises.

Suppose thatA andB are bothm×nmatrices so that their sum is
defined. Suppose that aij is the entry in the i-th row, j-th column of
A and bij is the entry in the i-th row, j-th column ofB. For simplicity
let’s refer to A+B as C and say cij = aij + bij is the entry in the i-th
row, j-th column of C = A+B.

Notice that since the transpose reverses the roles of rows and
columns, the entry in the i-th row, j-th column of AT is aji (note i
and j are in the reverse order), and similarly for BT and CT . Thus
the i-th row, j-th column of C has entry cji which by definition is
aji+bji, but this is the sum of what’s in the i-th row and j-th column
of AT and BT . Thus CT = AT +BT .

Exercise 6.6.
Prove parts (ii) and (iii) of Theorem 8.3.
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6.7 Inverses
If f : A→ B is a map, any map g : B → A which satisfies

g(f(a)) = a for every a ∈ A (6.1)
f(g(b)) = b for every b ∈ B (6.2)

is called an inverse of f . Two important properties of inverses are given
by the following theorems:

Theorem 6.5.
A map f : A→ B has an inverse if and only if f is a bijection.

Proof.
Suppose that f has an inverse: we suppose there is some map g :
B → A satisfying the two equations above, and we need to show
that f must be both surjective and injective. For surjectivity, let b ∈
B and notice that there exists some element a ∈ A that f sends to b:
namely, take a = g(b). By the second equation in the definition of an
inverse we then have

f(a) = f(g(b)) = b

and so f is surjective.
For injectivity, suppose that there are elements a, a′ ∈ A such

that f(a) = f(a′). If we then apply g to f(a) and f(a′), however, we
have

a = g(f(a)) = g(f(a′)) = a′,

and so f is injective.
Now we show the converse: suppose that f is bijective, and we

want to show that f has an inverse. We define a map g : B → A by
declaring that for each b ∈ B, g(b) = a where a ∈ A is the element
that f sends to b. Such an a must exist since f is surjective, and a is
unique because f is injective. So g is a well-defined map. Now we
just need to verify that f◦g and g◦f satisfy the defining properties of
an inverse, but this is almost obvious because of the way we defined
g. By definition, g(f(a)) is the element in A which f sends to f(a),
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but that is simply a and so g(f(a)) = a. For the second equation,
notice that g(b) is the element of A that f sends to b, so f(g(b)) = b.

Theorem 6.6.
If f has an inverse (i.e., if f is bijective), then its inverse is unique. That
is, there is only one map g : B → A satisfying Equations (6.1) and (6.2).

Proof.
To see this, suppose there were two different maps, say g1 and g2,
satisfying the equations. We will show that g1 and g2 must in fact be
the same map. Notice that

f(g1(b)) = b = f(g2(b)),

but f is injective so g1(b) = g2(b).

Since inverses are unique, we are justified in saying the inverse of a
map instead of an inverse of a map. We adopt the notation f−1 to denote
the inverse of f . Notice that this is not f raised to the negative first power;
this is not one over f . (In fact, since we’re just talking about sets that
don’t necessarily have a notation of any sort of “arithmetic” with their
elements, this is a non-issue.)

Notice that Equations (6.1) and (6.2) imply the following:

f(a) = b =⇒ f−1(b) = a

f−1(b) = a =⇒ f(a) = b.

To see this, simply apply f−1 to both sides of f(a) = b and then use
Equation (6.1); and similarly apply f to both sides of f−1(b) = a and use
Equation (6.2). This can be stated more simply as f(a) = b if and only if
f−1(b) = a, which we can write symbolically as f(a) = b ⇐⇒ f−1(b) =
a.
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We can simplify Equations (6.1) and (6.2) by introducing the identity
map. For every setA, the identity map is a function fromA to itself which
fixes every element: that is, a 7→ a for every a ∈ A. The identity map is
denoted idA or id if the set A is clear from context.

Lemma 6.7.
Given any map f : A → B, composing f with the identity map does not
change f :

f ◦ idA = f = idB ◦ f.

Proof.
For every a ∈ A,

f(idA(a)) = f(a), and
idB(f(a)) = f(a)

Equations (6.1) and (6.2) can then be expressed more tersely as

f ◦ f−1 = f−1 ◦ f = id.

6.8 Inverse of a Matrix
Now suppose that T : Rn → Rn is a bijective linear map (i.e., the columns
of the corresponding n×nmatrix are linearly independent and span Rn),
and so has some inverse T−1.

Lemma 6.8.
If T : Rn → Rn is a bijective linear transformation, then its inverse T−1

is also linear.
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Proof.
By definition, T−1(v⃗1) = u⃗1 if T (u⃗1) = v⃗1. Also consider vectors v⃗2
and u⃗2 with T−1(v⃗2) = u⃗2 ⇐⇒ T (u⃗2) = v⃗2. We need to show that
T−1(v⃗1 + v⃗2) = u⃗1 + u⃗2, but notice

T (u⃗1 + u⃗2) = T (u⃗1) + T (u⃗2) = v⃗1 + v⃗2.

Since T−1 is the inverse of T , T−1(v⃗1+ v⃗2) is the element of Rn which
T takes to v⃗1+v⃗2, but we have just shown that u⃗1+u⃗2 is that element,
and so

T−1(v⃗1 + v⃗2) = T−1(v⃗1) + T−1(v⃗2).

Similarly, suppose T−1(v⃗) = u⃗. We need to show that T−1(λv⃗) =
λu⃗, but this must be the case as

T (λu⃗) = λT (u⃗) = λv⃗.

Thus T−1 is linear.

So if T is a linear bijection, then so is its inverse T−1. Thus there is
some matrix that corresponds to T−1. To figure out what this matrix is,
let’s consider some properties of this matrix. First we need to know about
the identity transformation and identity transformation.

The identity transformation is a map id : Rn → Rn which leaves
vectors alone. That is, id(v⃗) = v⃗. Notice that if T : Rn → Rn is a linear
bijection, then Equations (6.1) and (6.2) can be rewritten as

T ◦ T−1 = id = T−1 ◦ T.

Since id is a composition of linear maps, id is linear. (It’s also very easy
to check that id is a linear transformation directly.)

The matrix of the identity transformation is called the identity matrix
and is denoted by I :

I =



1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0

. . .
0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1


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That is, the identity matrix for Rn is a square, n×n matrix that has 1’s on
the diagonal, and zeros everywhere else.

Sometimes we will write In to mean the n × n identity matrix, and
sometimes we will just write I if the dimension is clear from context.

I2 =

(
1 0
0 1

)
I3 =

1 0 0
0 1 0
0 0 1



I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Just as composing a map with the identity map doesn’t change the

map, multiplying a matrix with the identity matrix doesn’t change the
matrix:

AI = A = IA.

Say T : Rn → Rn is a bijective linear transformation with correspond-
ing matrixA, and letA−1 denote the matrix of T . Since T ◦T−1 = T−1◦T =
id and since matrix multiplication corresponds to composition of linear
transformations, we know

AA−1 = A−1A = I.

Our goal is to determine whatA−1 is givenA. To do this we introduce
elementary matrices.

6.9 Elementary Matrices
An elementary matrix is a matrix produced by performing an elemen-
tary row operation to the identity matrix. That is, an elementary matrix
is a square matrix which is given by taking the identity matrix I and per-
forming one of the following operations to it:

(i) Swap two rows.

(ii) Add a multiple of one row to another.

(iii) Multiply everything in one row by a constant.
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Example 6.17.
The following are some 3× 3 elementary matrices.0 0 1

0 1 0
1 0 0

 1 0 0
3 1 0
0 0 1

 −4 0 0
0 1 0
0 0 1



Theorem 6.9.
If E is an elementary matrix, then the product EA is the same as perform-
ing the corresponding elementary row operation on A.

Before proving Theorem 8.6, let’s recall a fact that was left as a prac-
tice problem in the previous lecture’s notes. Suppose that A is any m× n
matrix and B is any n× p matrix. Then the rows of AB are linear combi-
nations of the rows of B where the scalars each row is multiplied by are
determined by the entries in each row of A. For example, if the rows of
B are the row vectors r⃗1, r⃗2, ..., r⃗n and the k-th row of A has the form(

λ1 λ2 · · · λn
)
,

then the k-th row of AB will be

λ1r⃗1 + λ2r⃗2 + · · ·+ λnr⃗n.

With this fact in hand, we can easily prove Theorem 8.6.

Proof of Theorem 8.6.
Let A be any m× n matrix whose rows we will suppose are the row
vectors r⃗1, r⃗2, ..., r⃗m. Let E be an elementary m×m matrix.

There are three cases to consider corresponding to the three ele-
mentary row operations.

• Suppose E is obtained from Im by swapping two rows, say
rows i and j:

I
Ri↔Rj−−−−−−−−→ E.
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This means that the i-th row of E is e⃗Tj , the j-th row of E is e⃗Ti ,
and for any k that is not i or j, the k-th row of E is e⃗Tk .

If k is not i or j, then the k-th row of EA is

0 · r⃗1 + 0 · r⃗2 + · · ·+ 0 · r⃗k−1 + 1 · r⃗k + 0 · r⃗k+1 + · · ·+ 0 · r⃗m
=r⃗k

So the k-th row of A remains the same. The i-th row of EA,
however is

0 · r⃗1 + 0 · r⃗2 + · · ·+ 0 · r⃗j−1 + 1 · r⃗j + 0 · r⃗j+1 + · · ·+ 0 · r⃗m = r⃗j

and the k-th row of EA is

0 · r⃗1 + 0 · r⃗2 + · · ·+ 0 · r⃗i−1 + 1 · r⃗i + 0 · r⃗i+1 + · · ·+ 0 · r⃗m = r⃗i.

That is, every row of A is unchanged except for the i-th and
j-th rows which are swapped.

• Suppose E is obtained from Im by adding c times the i-th row
to the j-th row. Then all rows of E, except for the j-th row,
are all zeros except for a 1 in the k-th position of the k-th row.
Thus every row of EA, except the j-th row, is the same as the
corresponding row of A. The j-th row of E is all zeros except
for a 1 in the j-th position and a c in the i-th position. Hence
the j-th row of EA is the j-th row of A plus c times the i-th
row of A.

• Left as an exercise.

Exercise 6.7.
Suppose that E is obtained from I by multiplying the i-th row of I
by c. Show that EA is obtained from A by multiplying the i-th row
of A by c.
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The above theorem about elementary row operations will be com-
bined with the following observation to obtain a method for determining
inverse matrices.

Lemma 6.10.
If T : Rn → Rn is a linear bijection, then the corresponding matrix A
becomes the identity matrix when put into RREF.

Proof.
Since T is surjective, its matrix has a pivot in every row. However,
since T is injective, it also has a pivot in every column. The only
matrix in RREF with pivots in every row and column is the identity
matrix.

This lemma tells us that there is some sequence of elementary row
operations that we can perform to A to get the identity matrix I . Each of
these elementary row operations corresponds to multiplication by some
elementary matrix. So there is some collection of elementary matrices,
E1, E2, E3, ..., Eq such that

EqEq−1 · · ·E2E1A = I

The product EqEq−1 · · ·E2E1 is thus A−1:

A−1 = EqEq−1 · · ·E2E1.

Example 6.18.
Let A be the following 2× 2 matrix(

2 4
1 6

)
We can put this matrix into RREF with the following sequence of
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elementary row operations:(
2 4
1 6

)
1
2
R1→R1−−−−−→

(
1 2
1 6

)
R2−R1→R2−−−−−−−→

(
1 2
0 4

)
1
4
R2→R2−−−−−→

(
1 2
0 1

)
R1−2R2→R1−−−−−−−→

(
1 0
0 1

)
This corresponds to multiplying A by the following elementary ma-
trices:

E1 =

(
1/2 0
0 1

)
E2 =

(
1 0
−1 1

)
E3 =

(
1 0
0 1/4

)
E4 =

(
1 −2
0 1

)
Now we multiply E4E3E2E1 to get A−1:

A−1 = E4E3E2E1 =

(
3/4 −1/2
−1/8 1/4

)
.

We can easily check that this really is the inverse of A: i.e., that
A−1A = I :

A−1A =

(
3/4 −1/2
−1/8 1/4

) (
2 4
1 6

)
=

(
3/4 · 2 + (−1/2) · 1 3/4 · 4 + (−1/2) · 6
−1/8 · 2 + 1/4 · 1 −1/8 · 4 + 1/4 · 6

)
=

(
3/2 − 1/2 3− 3
−1/4 + 1/4 −1/2 + 3/2

)
=

(
1 0
0 1

)
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There is a little trick we can use to make obtaining A−1 slightly eas-
ier. Suppose that A is n × n and consider the n × 2n matrix obtained by
augmenting A with the n× n identity matrix:(

A I
)
.

We then start performing the elementary row operations that put A into
RREF (this is the same as multiplying by E1, then E2, then E3 and so
on). Eventually, through some sequence of elementary row operations
the above matrix becomes (

I A−1
)

Example 6.19.
We compute the inverse of the matrix

A =

(
2 4
1 6

)
from the previous example using this trick.(

A I
)

=

(
2 4 1 0
1 6 0 1

)
1
2
R1→R1−−−−−→

(
1 2 1/2 0
1 6 0 1

)
R2−R1→R2−−−−−−−→

(
1 2 1/2 0
0 4 −1/2 1

)
1
4
R2→R2−−−−−→

(
1 2 1/2 0
0 1 −1/8 1/4

)
R1−2R2→R1−−−−−−−→

(
1 0 3/4 −1/2
0 1 −1/8 1/4

)

The inverse matrixA−1 is now the right-hand side of this augmented
matrix,

A−1 =

(
3/4 −1/2
−1/8 1/4

)
,
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which agrees with our previous calculation.

This trick for computing the inverse works for any square matrix
which is invertible, regardless of the size, though the work certainly gets
more tedious as we consider larger and larger matrices.

Example 6.20.
Compute the inverse of the following matrix:

A =

−2/3 1 0
1 −1 0
4 −6 1



(
A I

) R1↔R2−−−−→

 1 −1 0 0 1 0
−2/3 1 0 1 0 0
4 −6 1 0 0 1


R2+

2
3
R1→R2−−−−−−−−→

1 −1 0 0 1 0
0 1/3 0 1 2/3 0
4 −6 1 0 0 1


R3−4R1→R3−−−−−−−→

1 −1 0 0 1 0
0 1/3 0 1 2/3 0
0 −2 1 0 −4 1


3R2→R2−−−−−→

1 −1 0 0 1 0
0 1 0 3 2 0
0 −2 1 0 −4 1


R1+R2→R1−−−−−−−→

1 0 0 3 3 0
0 1 0 3 2 0
0 −2 1 0 −4 1


R3+2R2→R3−−−−−−−→

1 0 0 3 3 0
0 1 0 3 2 0
0 0 1 6 0 1


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Hence

A−1 =

3 3 0
3 2 0
6 0 1



Notice that this only tells us A−1 if the RREF of A is the identity ma-
trix. If the RREF of A is not the identity matrix, then A does not have an
inverse.

In the special case of 2× 2 matrices there is a quick and easy formula
for the derivative.

Theorem 6.11.
If A is a 2× 2 matrix of the form

A =

(
a b
c d

)
,

then A is invertible if and only if ad− bc ̸= 0, and the inverse of A is

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Proof.
First suppose that A is invertible, so the RREF of A is the identity
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matrix. We then proceed to calculate A−1 as above:(
a b 1 0
c d 0 1

)
1
a
R1→R1−−−−−→

(
1 b/a 1/a 0
c d 0 1

)
R2−cR1→R2−−−−−−−→

(
1 b/a 1/a 0
0 (ad− bc)/a −c/a 1

)
a

ad−bc
R2→R2

−−−−−−−−→
(
1 b/a 1/a 0
0 1 −c/(ad− bc) a/(ad− bc)

)
R1− b

a
R2→R1−−−−−−−−→

(
1 0 1/a + bc/a(ad− bc) −b/(ad− bc)

0 1 −c/(ad− bc) a/(ad− bc)

)
=

(
1 0 (ad− bc+ bc)/a(ad− bc) −b/a
0 1 −c/(ad− c) a/(ad− bc)

)
=

(
1 0 d/(ad− bc) −b/a
0 1 −c/(ad− bc) a/(ad− bc)

)

Thus

A−1 =

(
d/(ad− bc) −b/a
−c/(ad− bc) a/(ad− bc)

)
=

1

ad− bc

(
d −b
−c a

)
This of course implies that ad − bc ̸= 0 since if it were the above
expression for A−1 would be undefined.

Now suppose that ad − bc ̸= 0. The calculation above shows us
that the RREF of A is the identity, and further tells us what A−1 is,
so A must be invertible.

6.10 Properties of Inverses
Now that we know how to compute the inverse of a matrix, we turn our
attention to some properties that inverses satisfy.

Lemma 6.12.
If A is an invertible matrix and if B and C are matrices satisfying that
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AB = AC, then B = C.

Proof.

AB = AC

=⇒ A−1AB = A−1AC

=⇒ IB = IC

=⇒ B = C

As we saw in the last lecture, the above lemma is false if A is not
invertible.

Lemma 6.13.
If A and B are invertible n × n matrices and if AB = BA = I , then
A−1 = B and B−1 = A.

Exercise 6.8.
Prove Lemma 6.13.

Theorem 6.14.

(i) If A is an invertible matrix, then so is A−1 and (A−1)
−1

= A.

(ii) If A and B are both invertible matrices of the same size, then their
product AB is invertible and (AB)−1 = B−1A−1.
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(iii) If A is an invertible matrix, then so is AT and
(
AT
)−1

= (A−1)
T .

Proof.

(i) For the moment let C denote the matrix (A−1)
−1. ThenA−1C =

CA−1 = I . But we know that A−1A = AA−1 = I and so by
Lemma 6.13, C = A.

(ii) Simply notice that

B−1A−1AB = B−1(A−1A)B

= B−1IB

= B−1B

= I

(iii) Recall that (AB)T = BTAT and notice that IT = I

AA−1 = I

=⇒
(
AA−1

)T
= IT = I

=⇒
(
A−1

)T
AT = I

but this implies that the inverse of AT is (A−1)
T .

The following theorem tells us there are several different ways to
think about invertible matrices. Some of the items in the theorem we
have already seen, but we list them in this theorem so that we will have
a single theorem to refer to that characterizes invertible matrices.

Theorem 6.15.
Let A be an n× n square matrix. The following are equivalent:
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(a) A is an invertible matrix.

(b) The RREF of A is the identity matrix.

(c) A has n pivots.

(d) A has a pivot in every row.

(e) A has a pivot in every column.

(f) The only solution to the homogeneous equation Ax⃗ = 0⃗ is the trivial
solution.

(g) The columns of A are linearly independent.

(h) The columns of A span Rn.

(i) The equation Ax⃗ = b⃗ has one solution for every b ∈ Rn.

(j) The linear transformation x⃗ 7→ Ax⃗ is injective.

(k) The linear transformation x⃗ 7→ Ax⃗ is surjective.

(l) There is an n× n matrix B so that AB = I .

(m) There is an n× n matrix B so that BA = I .

(n) AT is invertible.

Proof.
We have actually already shown everything in this theorem, but
sometimes using the language of systems of linear equations or lin-
ear transformations instead of matrices. See pg. 112 of Lay for de-
tails.
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6.11 Practice Problems
Problem 6.1.
Let A, B, C, D, E, and F be the matrices given below.

A =

1 2 0
2 1 −1
1 1 −3

 B =

 0 1 1 2
2 3 3 −1
−4 0 0 1



C =


1 1 −1
2 2 −3
3 4 5
1 2 3

 D =

−1 2
4 1
0 1



E =

5 2
1 4
3 −3

 F =

4 0 0 1
2 1 3 1
1 −1 −1 2


For each of the problems below, first determine if the operations are de-
fined. If so, compute the described matrix.

(a) AB + F

(b) 2D − 3E

(c) AC

(d) 4AD + E

(e) FBC

(f) BCF

(g) AF −DE

Problem 6.2.
Compute the transposes of the matrices A through F mentioned in Prob-
lem 1.

Problem 6.3.
Suppose that A is the following matrix

A =

(
1 −3
−3 5

)
,

and B is some 2× 2 matrix such that

AB =

(
−3 −1
1 17

)
.
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Determine B.

Problem 6.4.
Let r⃗ be an m-dimensional row vector,

r⃗ =
(
r1 r2 · · · rm

)
,

and let A be an m × n matrix. Describe the product r⃗A (this will be an
n-dimensional row vector) as a linear combination of the rows of A.

Problem 6.5.
Let A be an m× n matrix and B an n× p matrix.

(a) Show that each column of AB is a linear combination of the columns
of A. (Hint: Suppose the columns of B are b⃗1, b⃗2, ..., b⃗p. Show that the
i-th column of the product AB is given by A⃗bi.)

(b) Show that each row of AB is a linear combination of the rows of B.
(Hint: Suppose the rows of A are row vectors a⃗1, a⃗2, ..., a⃗m. Show that
the i-th row of AB is given by a⃗iB.)

Problem 6.6.
Suppose A is the matrix 1 2 3

4 5 9
6 7 13


Find a 3 × 3 matrix B which is not all zeros so that AB is the zero matrix.
(Hint: Use 5a to help you determine the matrix.)

Problem 6.7.
For each matrix below, determine if the matrix is invertible. If so, calcu-
late the inverse.

(a)
(
5 2
3 1

)

(b)
(

1 3
−3 4

)

(c)
(
6 8
3 4

)
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(d)

 1 −3 −6
0 4 3
−3 6 0



(e)


3 4 7 4
0 1 4 6
0 0 2 8
0 0 0 1


Problem 6.8.
Can a square matrix with two identical columns be invertible? Explain
why not, or give an example of an invertible matrix with two identical
columns.

Problem 6.9.
Can a matrix with a column of all zeros be invertible? Explain why not,
or give an example of an invertible matrix with a column of all zeros.

Problem 6.10.
Show that if A is an n×n matrix that is not invertible, then it must have a
column that can be written as a linear combination of the other columns.

Problem 6.11.
Suppose T : R2 → R2 is the following linear transformation:

T

(
x
y

)
=

(
2x− y
x+ 3y

)
.

Show that T is an isomorphism and find its inverse.



7
Special Matrices and Factorizations

Mathematics, rightly viewed, possesss not only
truth, but supreme beauty.

BERTRAND RUSSELL

In this lecture we introduce some terminology and mention some spe-
cial types of matrices, as well as discuss a useful method of factoring
some matrices.

7.1 Square, Diagonal, and Symmetric Matrices
We say a matrix A is a square matrix if it has just as many rows as
columns. Some properties we are interested in, such as invertibility, re-
quire we have a square matrix.

A square matrix A is called a diagonal matrix if its only non-zero
entries are on the diagonal of the matrix.

Example 7.1.
The following matrices are diagonal.

(
2 0
0 −3

) 
4 0 0 0 0
0 1 0 0 0
0 0 −2 0 0
0 0 0 0 0
0 0 0 0 −1



A square matrix is called symmetric if it equals its transpose: AT = A.
That is, we can reflect all of the entries in the matrix about the diagonal
and get back the same matrix.

Example 7.2.

142
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The following matrix is symmetric:
1 2 7 −4
2 0 3 1
7 3 5 −1
−4 1 −1 2



7.2 Partitioned Matrices
For some types of computational problems it is necessary or convenient
to take a large matrix and split it up into smaller submatrices. When we
fill a matrix with small submatrices, we say the original, large matrix is
a partitioned matrix. Equivalently, we tkae our large matrix and draw a
series of vertical and horizontal lines to separate the matrix into regions.
We then imagine the larger matrix as being a matrix of matrices.

Example 7.3.
Suppose A, B, C, and D are the matrices below.

A =

 4 2 1
3 0 1
−1 2 2

 B =

 0
2
−1


C =

(
2 1 1
0 −2 −1

)
D =

(
3
−7

)
Then we can put these matrices together to get a larger, partitioned
matrix:

P =

(
A B
C D

)
.

This simply means the matrix
4 2 1 0
3 0 1 2
−1 2 2 −1
2 1 1 3
0 −2 −1 −7


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Our original matrices A, B, C, and D are submatrices of P obtained
by diving P as indicated below.

4 2 1 0
3 0 1 2
−1 2 2 −1
2 1 1 3
0 −2 −1 −7



One practical reason why you might want to partition a matrix is to
make it easier to do computations. In particular, if you were a computer
programmer writing some program that had to add, subtract, and multi-
ply very large matrices it may be computationally advantage (i.e., speed
up how quickly your program runs) if you can chop your matrices up
into smaller pieces and do computations on those. If the matrices you
were interested in were very large, you might not even be able to store
the entire matrix in memory at one time, and but could still be able to
store smaller submatrices by partitioning.

Scalar multiplication of partitioned matrices is as simple as you could
hope it would be: If A is a matrix partitioned as indicated below,

A =


A11 A12 · · · A1p

A21 A22 · · · A2p

. . .
Aq1 Aq2 · · · Aqp


then λA is

λA =


λA11 λA12 · · · λA1p

λA21 λA22 · · · λA2p

. . .
λAq1 λAq2 · · · λAqp


For matrix addition we have to be slightly more careful. If A and B

are partitioned matrices of the same size which are partitioned in the same
way, meaning they are broken into submatrices of the same size in the
same way, then we can add A and B by adding their submatrices: If

A =


A11 A12 · · · A1p

A21 A22 · · · A2p

. . .
Aq1 Aq2 · · · Aqp

 B =


B11 B12 · · · B1p

B21 B22 · · · B2p

. . .
Bq1 Bq2 · · · Bqp


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then

A+B =


A11 +B11 A12 +B12 · · · A1p +B1p

A21 +B21 A22 +B22 · · · A2p +B2p

. . .
Aq1 +Bq1 Aq2 +Bq2 · · · Aqp +Bqp

 .

For multiplication we have to be very careful. We can multiply two
partitioned matrices by multiplying their submatrices, but the matrices
have to partitioned in such a way that the products of submatrices are
defined. That is, if

A =


A11 A12 · · · A1p

A21 A22 · · · A2p

. . .
Aq1 Aq2 · · · Aqp

 B =


B11 B12 · · · B1t

B21 B22 · · · B2t

. . .
Bp1 Bp2 · · · Bpt


then the product AB is given by

AB

=


A11B11 +A12B21 + · · ·+A1pBp1 A11B12 +A12B22 + · · ·+A1pBp2 · · · A11B1t +A12B2t + · · ·+A1pBpt

A21B11 +A22B21 + · · ·+A2pBp1 A21B12 +A22B22 + · · ·+A2pBp2 · · · A21B1t +A22B2t + · · ·+A2pBpt

. . .
Aq1B11 +Aq2B21 + · · ·+AqpBp1 Aq1B12 +Aq2B22 + · · ·+AqpBp2 · · · Aq1B1t +Aq2B2t + · · ·+AqpBpt


provided that all products AijBkℓ are defined. If all of these products are
defined, then we say partitioned matrices A and B are conformable to
multiplication.

Example 7.4.
Suppose A and B are the matrices partitioned by

A =

1 3 2
0 1 −1
4 2 1

 B =

−2 2
1 2
4 1


Here

A11 =

(
1 3
0 1

)
A12 =

(
2
−1

)
A21 =

(
4 2

)
A22 =

(
1
)
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7.3 Factorization
Recall that factoring is the process of breaking an object up into pieces
which multiply together to give the original object. For example, ev-
ery natural number has a prime factorization: we can write any natural
number as a product of prime numbers. We can also factor polynomials,
writing a larger, complicated polynomial as a product of simpler ones.
Similarly, we can factor matrices and write a given matrix as a product of
simpler ones. Having such a factorization has important computational
applications as certain operations, such as solving large systems of equa-
tions, become computationally easier if we have a factorization.

7.4 Triangular Matrices
We will try to factor a matrix into special types of matrices called trian-
gular matrices. A lower triangular matrix is a square matrix whose only
non-zero entries occur on or below the diagonal.

Example 7.5.
The following are lower triangular matrices.


3 0 0 0
1 0 0 0
−1 2 4 0
0 1 1 1




1 0 0 0 0
2 1 0 0 0
−1 3 2 0 0
4 1 7 3 0
2 3 4 1 3



An upper triangular matrix is a square matrix whose only non-zero
entries occur on or above the diagonal.

Example 7.6.
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Each of the following matrices are upper triangular.

1 2 3
0 4 1
0 0 6



1 3 4 7
0 2 2 1
0 0 1 1
0 0 0 4



Triangular matrices have two nice properties that we can take advan-
tage of. Because about “half” the entries in a triangular matrix are zeros,
multiplying triangular matrices can be done a lot quicker than multiply-
ing non-triangular matrices.

In particular, if you multiply two n × n matrices together, each en-
try of the matrix requires that you perform n multiplications and n − 1
additions, so each entry requires you do 2n − 1 arithmetic operations.
But there are n2 entries in the matrix, so you have to perform 2n3 − n2

operations. If you multiplied triangular matrices, however, you can cut
your work down considerably because you know many of those multi-
plications will yield zeros, so you don’t need to bother doing all of the
work.

Say you wanted to multiply a lower triangular matrix L with an up-
per triangular matrix U , both of which are n × n. The entry in the i-th
row and j-th column of the product is

n∑
k=1

ℓikukj,

but ℓik = 0 if k > i, and ukj = 0 if k > j. So instead of looking at all of the
entries in each row and each column, we can stop once we reach a point
where we’re just adding up zeros. That is, the entry in the i-th row and
j-th column of the product LU is

min(i,j)∑
k=1

ℓikukj.

Adding up the total number of operations we have to perform, we
have to do 2

3
n3 − n2 − 2

3
n operations, so we do about one third of the

work to multiply a lower and upper triangular matrix than we have to
do to multiply two general n× n matrices.

The other nice thing about triangular matrices is that, if they represent
the coefficient matrix of a system of equations we’re interested in, then
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we can perform back substitution to quickly solve the system. That is, if
U is an upper triangular matrix, then we can solve the equation Ux⃗ = b⃗
by solving for each component of x⃗ one at a time from the bottom to the
top. (For a lower triangular matrix L, we solve Lx⃗ = b⃗ one component
at a time from the top to the bottom.) This is reminiscent of how we had
solved systems of equations earlier in the semester by putting a matrix
into echelon form.

Proposition 7.1.
If L1 and L2 are lower triangular n× n matrices, then their product L1L2

is also lower triangular.

Proof.
Let the entry in the i-th row and j-th column of L1 be denoted ℓij ,
and the corresponding entry in L2 will be denoted λij . The entries
of L1L2 are thus

n∑
k=1

ℓikλkj

Notice ℓik = 0 if k > i, and λkj = 0 if j > k. If j > i (that is, we’re
above the diagonal), then each λ1j , λ2j , ..., λj−1,j equals zero, and
each ℓi,j , ℓi,j+1, ..., ℓi,n equals zero as well. So every term above the
diagonal is zero, and we have a lower triangular matrix.

Exercise 7.1.
Let U1 and U2 be two upper diagonal matrices, both of which are
n × n. Show that their product U1U2 is also an upper triangular
matrix.
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Proposition 7.2.
A lower triangular matrix is invertible if and only if it does not contain

any zeros on the diagonal.

Proof.
Suppose L is invertible, so there is a matrix L−1 with LL−1 = I . This
means the j-th column of I equals L times the j-th column of L−1.
In particular, we can write the j-th column of I , which is all zeroes
except for a 1 in the j-th row, as a linear combination of the columns
of L. Notice that if the first entry in the j-th column of L−1 is not a
zero, then we will have whatever occurs in the first row of the first
column of L (which is non-zero by the exercise below). Similarly for
the second, third, and fourth entries, and so on. Hence the first j−1
entries of the j-th column of L−1 must be zero.

Exercise 7.2.
Prove the second half of Proposition 7.2: show that if L is a lower
triangular matrix and does not have zeros on its diagonal, then L is
invertible.

Proposition 7.3.
If L is a lower triangular matrix and is invertible, then so is L−1.

Proof.
Since L is invertible, its RREF is the identity matrix. To get the iden-
tity we do row operations, and the product of the corresponding
elementary matrices is the inverse. But since L is lower triangular,
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we only need to perform row operations which divide the diagonal
entries to make them 1 (each such elementary row matrix is diago-
nal) and then zero out the entries below the diagonal (each of these
elementary matrices is lower triangular). Hence L−1 is a product of
lower triangular matrices, and must be lower triangular.

7.5 The LU Factorization
We will now describe a procedure for taking a matrix A and factoring
it as A = LU where L is lower triangular and U is upper triangular.
For simplicity, first suppose that A can be put into echelon form without
swapping two rows. That is, we perform some sequence of elementary
row operations to turn A into an upper triangular matrix. Each of these
elementary row operations corresponds to multiplying A on the left by
an elementary matrix, and so we have

EpEp−1 · · ·E2E1A = U.

Since we’re only putting A into echelon form, not row-reduced echelon
form, and since we are assuming no rows are swapped, each elementary
Ei is a lower triangular matrix, so the product EpEp−1 · · ·E2E1 is lower
triangular. Call this matrix M for the moment. We then have MA = U
where M is lower triangular and A is upper triangular. Multiplying both
sides by M−1 we have A = M−1U ; notice that M−1 is lower triangular
since M is lower triangular. Letting L = M−1, we have the LU factor-
ization, A = LU where L is a lower triangular matrix and U is an upper
triangular matrix.

Example 7.7.
Find the LU factorization of the following matrix:

A =


3 2 1 4
6 5 3 10
3 12 4 5
0 3 3 15


First we perform elementary row operations to put A into echelon
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form, keeping track of the operations:
3 2 1 4
6 5 3 10
3 12 4 5
0 3 3 15

 R2−2R1→R2−−−−−−−→


3 2 1 4
0 1 1 2
3 12 4 5
0 3 3 15


R3−R1→R3−−−−−−−→


3 2 1 4
0 1 1 2
0 10 3 1
0 3 3 15


R3−10R2→R3−−−−−−−−→


3 2 1 4
0 1 1 2
0 0 −7 −19
0 3 3 15


R4−3R2→R4−−−−−−−→


3 2 1 4
0 1 1 2
0 0 −7 −19
0 0 0 9



The matrix we have left over is our U . To get L we need to multiply
the elementary matrices corresponding to the above row operations,
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and then take the inverse of the product.

E1 =


1 0 0 0
−2 1 0 0
0 0 1 0
0 0 0 1



E2 =


1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1



E3 =


1 0 0 0
0 1 0 0
0 −10 1 0
0 0 0 1



E4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −3 0 1


Now we multiply all of these matrices together,

E4E3E2E1 =


1 0 0 0
−2 1 0 0
19 −10 1 0
6 −3 0 1


And our L will be the inverse of this matrix:

L =


1 0 0 0
−2 1 0 0
19 −10 1 0
6 −3 0 1


−1

=


1 0 0 0
2 1 0 0
1 10 1 0
0 3 0 1


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And this is our LU-factorization of the original matrix:

A =


3 2 1 4
6 5 3 10
3 12 4 5
0 3 3 15

 =


1 0 0 0
2 1 0 0
1 10 1 0
0 3 0 1



3 2 1 4
0 1 1 2
0 0 −7 −19
0 0 0 9

 = LU

The above discussion was heavily contingent on our being able to
put A into echelon form without exchanging any two rows. In general,
however, we will need to exchange rows to put a given matrix in echelon
form. Thus our LU factorization requires a slight change. What we can
do is first perform a series of row operations, basically doing all of the
necessary exchanges, to turn A into a matrix which can then be put into
echelon form without any additional row exchanges. Let’s suppose we
have to perform row exchanges corresponding to elementary matrices
E1, E2, ..., Ek, and then let P be their product, P = Ek · · ·E1. So PA
is a matrix where we can perform the LU factorization above. This is
sometimes called the LUP factorization of A, but it means we have

PA = LU.

or
A = P−1LU.

It can be shown that for every matrix P formed by multiplying elemen-
tary matrices which correspond to exchanging rows, such as the P above,
P−1 = P , so we can rewrite the above as

A = PLU.

7.6 LU Factorization for non-square matrices
We can define an LU factorization for matrices A which are not square
similarly to how we defined the LU factorization for square matrices.
Instead of taking U to be a square matrix, however, we simply take U to
be an echelon form ofA. The matrix L is still square, however. Otherwise
everything is exactly the same.
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7.7 Practice Problems
Problem 7.1.
Suppose that the following partitioned matrix is given: I 0 0

A I 0
B D I


and the inverse of this matrix is the block matrix I 0 0

P I 0
Q R I

 .

Write P , Q, and R in terms of A, B, and D.

Problem 7.2.
A block upper triangular matrix is a partitioned matrix where all the
squares below the diagonal are zero matrices. For example,

4 3 2 1 4
2 1 1 3 1
1 0 0 2 1
0 0 0 1 3
0 0 0 2 4

 .

Notice that the “larger” matrix may not be triangular, but when we think
of this matrix as being divided into submatrices,(

A11 A12

0 A22

)
.

this partitioned matrix is triangular.
Show that an upper block triangular matrix whose diagonal subma-

trices are all squares will be invertible if and only if each square matrix
on the diagonal is invertible.

Problem 7.3.
Compute the inverse of the following matrix by first rewriting the matrix
as a block upper triangular matrix.

2 4 0 0 0 0
1 3 0 0 0 0
0 0 3 0 0 0
0 0 0 1 2 3
0 0 0 0 1 2
0 0 0 0 2 5


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Problem 7.4.
Compute the LU factorization of the following matrices.

(a) (
2 6
4 7

)
(b)  2 −4 2

−4 5 2
6 −9 1


(c) 

1 −2 −2 −3
3 −9 0 −9
−1 2 4 7
−3 −6 26 2


Problem 7.5.
When a matrix A has an LU factorization, it is often computationally
easier to solve the system Ax⃗ = b⃗ by using the LU factorization. That is,
instead of solving Ax⃗ = b⃗ we solve LUx⃗ = b⃗. If we let Ux⃗ = y⃗, then this
becomes Ly⃗ = b⃗.

That is, if A = LU and we want to solve Ax⃗ = b⃗, we first solve Ly⃗ = b⃗,
and then solve Ux⃗ = y⃗. Notice that as L and U are triangular, each of
these equations is easily solved for one variable at a time.

Use your LU factorization of the matrix in problem (10.4c) to solve
the following system

1 −2 −2 −3
3 −9 0 −9
−1 2 4 7
−3 −6 26 2



x1
x2
x3
x4

 =


1
6
0
3


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8
Determinants
8.1 Introduction
We had seen earlier that a 2× 2 matrix

A =

(
a b
c d

)
was invertible if and only if ad − bc ̸= 0. In this lecture we extend this
idea to general n × n matrices. That is, we will see that there is a way
to associate a number to an n × n matrix in such a way that the matrix
will be invertible if and only if the associated number is non-zero. The
formula for calculating this value, which is called the determinant of the
matrix, is given recursively. That is, we define the determinant of an n×n
matrix in terms of determinants of (n− 1)× (n− 1) matrices.

We will see that determinants actually tell us a lot more information
than simply whether a linear transformation is invertible or not, but this
is one easy-to-appreciate reason for studying determinants.

Instead of giving the formula for computing a determinant directly,
we will first describe some properties we want this determinant to have
and then show there is only one possible way to associate a number to a
matrix such that these properties are satisfied.

8.2 Properties of Determinants
Given an n × n matrix A, we will associate to A a number called the
determinant of A and denoted det(A). We will first give some geometric
properties of determinants, and then give some algebraic properties.

Geometric properties

One way to interpret the determinant is as a way of describing the “size”
of subsets of Rn, and how a linear transformation T : Rn → Rn changes
the size of a subsets.

Example 8.1.
In R1, a linear transformation T : R1 → R1 is the same thing as mul-
tiplication by some fixed number which we’ll call A. For example,

157
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T (x) = 3x is a linear transformation of R1. Given any interval, say
I = [2, 4] in R1, the image of I under T is another interval. In this
case, T (I) = [6, 12]. Notice that the length of T (I) is 6 while the
length of I is 2; so applying T stretched out the interval by a factor
of 3.

Example 8.2.
Consider the linear transformation T : R2 → R2 given by the matrix(

3 2
1 2

)
This map takes the unit square and converts it into some parallelo-
gram of area 4.

T

Notice that the determinant of this matrix (which we had previ-

ously defined for 2× 2 matrices
(
a b
c d

)
as ad− bc) is 4.

In general, if we have a set S ⊆ R2 and we apply a linear transforma-
tion T : R2 → R2 to each point of S to get a new set T (S). The absolute
value of det(T ) is the ratio of the areas of S and T (S):

area(T (S)) = |det(T )| · area(S).

If it happened to be that our linear transformation was not invertible,
then intuitively we should expect the linear transformation to “collapse”
along certain directions. (If T (v) = T (w), then T (v − w) = 0⃗ and every-
thing parallel to v − w gets sent to the zero vector.) In terms of sizes of
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regions, this means we can take a set of positive size and send it to some-
thing with zero size, and so the determinant of a non-invertible transfor-
mation should be zero. In general, if v ∈ ker(T ), then all multiples of v
are in the kernel of T as well, so T collapses all vectors parallel to v.

Example 8.3.
Consider the linear transformation in R2 given by the matrix(

2 1
1 1/2

)
Notice that

(
1 −2

)T is in the kernel of this map, and so everything
parallel to this vector collapses to zero.

T

Since the area of the image on the right is zero, the determinant of
the linear transformation should be zero.

The same thing holds in higher dimensions: if S ⊆ R3 and T : R3 →
R3 is a linear transformation, then

volume(T (S)) = |det(T )| · volume(S).

It is possible for the determinant of a matrix to be negative, so it’s impor-
tant that we use absolute values when we discuss areas or volumes since
we don’t want to talk about negative area or negative volume.

This idea extends to higher-dimensional spaces as well.

Remark.
Here the “size” of a set depends on what dimension we’re talking
about. In one dimension, “size” means the arclength of a subset of
the real line. In two dimensions, “size” means the area of a subset
of the plane. In three dimensions, “size” means volume. To define
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size in higher dimensions it’s helpful if you know some calculus. In
particular, we can define the “size” of an set S in Rn as the integral

x
· · ·

x

S

1 dx1 dx2 · · · dxn−1 dxn

This notion of size is sometimes called n-dimensional hypervolume.

Besides telling us how the size of a set changes, we want the deter-
minant to also tell us if a linear transformation “reverses” a set. This is
simplest to describe in R1 and R2, but the idea extends to higher dimen-
sions.

Example 8.4.
If T : R1 → R1 is the linear transformation given by T (x) = −2x,
then T not only stretches subsets by a factor of two, but it also re-
verses them. That is, given an interval I = [a, b], its image T (I) =
[−2b,−2a] has the “opposite” left- and right-hand sides compared
to I : the left-hand side of I became the right-hand side of T (I), and
the right-hand side of I became the left-hand side of T (I). In a sit-
uation such as this we say that T is orientation reversing. We want
the determinant of T to tell us if the map is orientation reversing,
det(T ) < 0, or orientation preserving, det(T ) > 0.

Example 8.5.
Consider a map T : R2 → R2 given by the matrix(

−1 2
0 1

)
This map shears sets to the right, which doesn’t change the area of
the set, but then flips the set over.
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T

Since this map “reverses” a set we again expect its determinant to
be negative, which it is: here the map has determinant −1.

Algebraic properties

In order to give some properties that this determinant will satisfy, it will
be helpful to think of det as a function which takes n vectors, all of which
are n-dimensional, and converts them into a single real number. That is,
we think of det as a function

det : Rn × Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R

When we write det(A) what we will really mean is

det(a1, a2, ..., an)

where a1, ..., an are the columns of the n× n matrix A.
By “algebraic properties” of the determinant we mean the rules the

determinant should obey when we modify the arguments of the function.
There are only three algebraic properties we need to uniquely determine
the determinant:

1. Linearity
Our function det should be linear in each component. That is, for
the i-th argument of det we should have

det(—, v + w,—) = det(—, v,—) + det(—, w,—)

and
det(—, λv,—) = λ det(—, v,—)

where the dashes simply mean that the other entries of det don’t
matter. (If you want, pretend you’ve fixed all of the other entries
and are only letting the i-th entry change.)
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Geometrically we should expect this property because it’s telling
us that if we extend a region along some axis, the areas should add.
For example, consider three linear transformations T1, T2, T3 : R2 →
R2 with Ti given by the matrix Ai below.

A1 =

(
2 1
1 1

)
A2 =

(
2 2
1 2

)
A3 =

(
2 3
1 3

)
Consider how these linear transformation map the unit square to
parallelograms:

T1

T2

T3

Notice that the area of the purple parallelogram is the sum of the
areas of the red and blue parallelograms.

2. Alternating
The determinant is alternating in each argument. This means that
if we swap two arguments, the determinant negates.

det(—, v,—, w,—) = − det(—, w,—, v,—)

This is how the determinant is “aware” of whether a linear trans-
formation is orientation preserving or reversing.
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3. Identity
The identity map id, whose matrix is the identity matrix I , doesn’t
do anything to sets, and so doesn’t change the size of a set or reverse
the set, and so we should expect that det(id) = 1. Interpreting the
determinant as a map from Rn × · · · × Rn︸ ︷︷ ︸

n times

to R, this means we want

det(e1, e2, · · · , en) = 1.

These three algebraic properties, that the determinant must be linear
in each argument, is alternating, and assigns 1 to the identity, are enough
to completely specify the determinant. That is, if you were to come up
with another map

φ : Rn × Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R

which was linear, alternating, and assigned 1 to the identity, then you
would actually have come up with the same map we are about to define.
For the sake of completeness we will prove this fact later in these notes,
but you can safely ignore this proof if you want.

Exercise 8.1.
Assuming the determinant is linear in each column as described
above, show that for every n× n matrix A and every scalar λ ∈ R,

det(λA) = λn det(A).

8.3 Computing the Determinant
So far we have described some properties we want our notion of determi-
nant to have, but haven’t said how to actually compute the determinant.
We will start off by first saying what the determinant of a 1 × 1 matrix
(i.e., a linear transformation R1 → R1) A =

(
a
)

is simply

det(A) = a.

To compute the determinant of an n × n matrix we will combine deter-
minants of some (n− 1)× (n− 1) submatrices. We will use the following
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(non-standard) notation. Suppose our matrix A is n×n with aij denoting
the entry in the i-th row and j-th column,

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n

...
an1 an2 an3 · · · ann

 .

We will let Aij denote the submatrix of A obtained by deleting the i-
th row and j-th column of A (that is, we remove the row and column
containing aij). For example,

A32 =


a11 a13 · · · a1n
a21 a23 · · · a2n
a41 a43 · · · a4n

...
an1 an3 · · · ann


The determinant ofAij is called the (i, j) minor of the matrix and is some-
times denoted

Mij = det(Aij).

If we multiply the (i, j) minor by (−1)i+j we have the (i, j) cofactor of
the matrix, sometimes denoted

Cij = (−1)i+jMij = (−1)i+j det(Aij).

The determinant of A is then given by calculating the cofactor expansion
ofA along any row or column. The cofactor expansion ofA along the i-th
row is

ai1Ci1 + ai2Ci2 + · · ·+ ainCin,

and the cofactor expansion of A along the j-th row is

a1jC1j + a2jC2j + · · ·+ anjCnj.

(The cofactor expansion is sometimes also referred to as the Laplace ex-
pansion.)

Somewhat surprisingly, the cofactor expansion along any row or any
column always gives you the same value, and this value is the determi-
nant of the matrix.
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It is important to realize that the cofactors, regardless of what row or
column you expand along, alternate between positive and negative. To
keep this straight we can rewrite the determinant as

det(A) =
n∑

j=1

(−1)i+jaij det(Aij)︸ ︷︷ ︸
cofactor expansion using the i-th row

=
n∑

i=1

(−1)i+jaij det(Aij)︸ ︷︷ ︸
cofactor expansion using the j-th column

We claim that the function det defined by cofactor expansion like this
satisfies the three algebraic properties above. Before verifying this, let’s
use the cofactor expansion to evaluate some determinants.

Example 8.6.
Consider a 2× 2 matrix

A =

(
a b
c d

)
.

If we do cofactor expansion along the first row we have

det(A) =(−1)1+1a · det(d) + (−1)1+2b · det(c)
=ad− bc

Example 8.7.
Consider the 3× 3 matrix

A =

1 2 0
2 3 2
1 1 0


If we perform the cofactor expansion along the third column we
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have

det(A)

=(−1)1+3 · 0 · det
(
2 3
1 1

)
+ (−1)2+3 · 2 · det

(
1 2
1 1

)
+ (−1)3+3 · 0 · det

(
1 2
2 3

)
=0− 2(1− 2) + 0

=2

Notice that in the previous example we chose to expand along a col-
umn that had some zeros in it, and this in turn makes our calculation a
little bit simpler: we don’t need to bother calculating the determinants
that get multiplied by zero!

Exercise 8.2.
Show that the determinant of a general 3× 3 matrix

A =

a b c
d e f
g h i


is given by the following formula:

det(A) = aei+ bfg + cdh− ceg − bdi− afh.

Remark.
In general computing determinants using the cofactor expansion is
extremely slow. To compute the determinant of an n×n matrix you
need to perform on the order of n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1
operations. This grows extremely quickly, and so becomes excruci-



CHAPTER 8. DETERMINANTS 167

atingly slow – even if you want were to perform the calculations
on a computer – as we work with larger and larger matrices. After
proving some theorems below, however, we will see that there is a
quicker way to compute determinants.

Example 8.8.
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det


1 2 4 1
2 1 1 −1
3 1 2 4
1 −1 2 2


=1det

 1 1 −1
1 2 4
−1 2 2

− 2 det

2 1 −1
3 2 4
1 2 2


+ 4det

2 1 −1
3 1 4
1 −1 2

− 1 det

2 1 1
3 1 2
1 −1 2


=1 ·

(
1 · det

(
2 4
2 2

)
− 1 · det

(
1 4
−1 2

)
+ (−1) · det

(
1 2
−1 2

))
− 2 ·

(
2 · det

(
2 4
2 2

)
− 1 · det

(
3 2
1 2

)
+ 1 · det

(
3 1
1 −1

))
+ 4 ·

(
2 · det

(
1 4
−1 2

)
− 1 · det

(
3 4
1 2

)
+ (−1) · det

(
3 1
1 −1

))
− 1 ·

(
2 · det

(
1 2
−1 2

)
− 1 · det

(
3 2
1 2

)
+ 1 · det

(
3 1
1 −1

))
=1 · (1 · (2 · 2− 4 · 2)− 1 · (1 · 2− 4 · (−1)) + (−1) · (1 · 2− 2 · (−1)))

− 2 · (2 · (2 · 2− 4 · 2)− 1 · (1 · 2− 4 · 1) + (−1) · (3 · 2− 2 · 1))
+ 4 · (2 · (1 · 2− 4 · (−1))− 1 · (3 · 2− 4 · 1) + (−1)(3 · (−1)− 1 · 1))
− 1 · (2 · (1 · 2− 2 · (−1))− 1 · (3 · 2− 2 · 1) + 1 · (3 · (−1)− 1 · 1))

=1 · (1 · (−4)− 1 · 6− 1 · 4)
− 2 · (2 · (−4)− 1 · (−2)− 1 · 4)
+ 4 · (2 · 6− 1 · 2− 1 · (−4))

− 1 · (2 · 4− 1 · 4 + 1 · (−4))

=1 · (−14)− 2 · (−14) + 4 · (14)− 1 · 0
=− 14 + 28 + 56− 0

=70
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8.4 Existence and Uniqueness
This section is considerably more technical than the other sections and
should be ignored on a first reading. The proof below is included only
for the sake of completeness and to justify our claim that if we know the
determinant is supposed to be linear in each column, alternating, and
det(I) = 1, then there is only one possible choice for what the determi-
nant could be. The important thing for right now is to learn the basic
properties of the determinant and how to calculate determinants, and so
you can safely skip the theorem and proof below.

Theorem 8.1.
If φ and ψ are functions from Rn × · · · × Rn︸ ︷︷ ︸

n times

to R, which are linear in each

argument, alternating, and assigning 1 to (e1, e2, ..., en), then φ = ψ.

Proof.
Notice that if φ is linear and φ(e1, ..., en) = 1, then for any v = λ1e1+
· · ·+ λnen, we have

φ(e1, ..., ei−1, v, ei+1, ..., en) = λi.

That is, if we place v in the i-th argument of φ and otherwise put ej
in the j-th position, then we just pull of the scalar λi appearing the
linear combination of v with respect to the standard basis.

If we were to place ei in one of the positions above instead of ej ,
then since φ is alternating we have

φ(e1, ..., ei−1, v, ei+1, ..., ei, ..., en) = −λj

by swapping v and ei (which is in the j-th position), which forces
us to change signs, but now v is in the j-th position and so by the
above we pick up the scalar λj .

Now we claim that φ is uniquely determined, in fact we can use
the properties above to get a (somewhat complicated) formula for φ
in terms of all possible permutationsa of the entries to v. We claim
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in particular that

φ(v1, v2, ..., vn) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

λσ(i),i.

Here Sn denotes the set of all possible permutations of {1, 2, ..., n},
and the sign of a permutation σ, denoted sgn(σ) is either 1 or −1
depending on whether the permutation σ can be written as a prod-
uct of an even or odd number of transpositionsb. We are supposing
above that

vj = λ1,je1 + λ2,je2 + · · ·+ λn,jen =
n∑

i=1

λi,jei

Since φ is linear in each argument we have

φ(v1, v2, ..., vn)

=φ

(
n∑

i=1

λi,1ei, ...,

n∑
i=1

λi,nei

)

=
n∑

i1=1

n∑
i2=1

· · ·
n∑

in=1

n∏
j=1

λik,jφ(ei1 , ..., ein)

=
∑
σ∈Sn

n∏
i=1

λσ(i),iφ(eσ(1), eσ(2), ..., eσ(n))

=
∑
σ∈Sn

n∏
i=1

λσ(i),i sgn(σ)φ(e1, ..., en)

=
∑
σ∈Sn

sgn(σ)
n∏

i=1

λσ(i),i

Notice that this formula for φ uses only the fact that φ is linear in
each argument, alternating, and φ(e1, ..., en) = 1. Hence any other
function ψ which is linear in each argument, alternating, and has
ψ(e1, ..., en) = 1 can also be put into the same formula. Thus φ = ψ.

The formula above is called the Leibniz formula and is another
way of computing determinants. Since we are summing over all
permutations of n to obtain the Leibniz formula, this is provides us
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with another easy way of seeing that computing determinants in
general takes about n! arithmetic operations.

aA permutation of a set is just a bijection from the set to itself. A set with n
elements will have n! possible permutations.

bA transposition is a permutation which simply swaps two elements. It is a
basic fact about permutations that every permutation can be written as a product
of transpositions.

We have now established that if the we want the determinant to be
linear in each column, alternating, and assigns 1 to the identity matrix
I , then there is only one possible function the determinant could be. In
fact, by Leibniz’s formula above we even know what the function is. This
means we have established the existence and the uniqueness of the de-
terminant.

8.5 More Properties of Determinants
We had stated above that determinants should satisfy certain geometric
and algebraic properties. By the definition of the determinant the al-
gebraic properties are already satisfied, so there’s nothing to prove, but
we’ll recall the algebraic properties in terms of matrices.

Theorem 8.2.
If A is an n× n matrix, then

1. If A, A′, and A′′ are three n× n matrices which are the same except
for the i-th column, and if the i-th column of A is the sum of the i-th
columns of A′ and A′′, then det(A) = det(A′) + det(A′′).

2. If one column of A is multiplied by a scalar λ to produce a new
matrix A′, then det(A′) = λ det(A).

3. If two columns of A are exchanged producing a new matrix A′, then
det(A′) = − det(A).

4. det(I) = 1.
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The following theorem will let us convert the algebraic properties for
columns of the matrix into algebraic properties for rows.

Theorem 8.3.
If A is an n× n matrix, then det(AT ) = det(A).

Proof.
To simplify notation, let B = AT . Notice bij = aji and likewise Bij =
Aji. Now compute the determinant of B using cofactor expansion
along the first column:

det(AT ) =det(B)

=
n∑

i=1

(−1)1+ibi1 det(Bi1)

=
n∑

i=1

(−1)1+ia1i det(A1i)

Notice that this is precisely the formula for the determinant of A
using the cofactor expansion along the first row: thus det(A) =
det(AT ).

Combining Theorem 8.2 and Theorem 8.3 we obtain the following.

Corollary 8.4.
If A is an n× n matrix, then

1. If A, A′, and A′′ are three n× n matrices which are the same except
for the i-th row, and if the i-th row of A is the sum of the i-th rows of
A′ and A′′, then det(A) = det(A′) + det(A′′).

2. If one row of A is multiplied by a scalar λ to produce a new matrix
A′, then det(A′) = λ det(A).



CHAPTER 8. DETERMINANTS 173

3. If two rows of A are exchanged producing a new matrix A′, then
det(A′) = − det(A).

It will also be helpful if we notice that if A is a triangular matrix, then
it is very easy to compute the determinant of A.

Theorem 8.5.
If A is a triangular n×n matrix, then the determinant of A is equal to the
product of the diagonal entries of A. That is,

det


a11 a12 a13 a14 · · · a1,n−1 a1n
0 a22 a23 a24 · · · a2,n−1 a2n
0 0 a33 a34 · · · a3,n−1 a3n

. . .
0 0 0 0 · · · 0 ann


=a11 · a22 · . . . · ann

Proof.
We will do a proof by induction. First note that the theorem is obvi-
ously true if n = 1. For n > 1, suppose the theorem has been proven
for (n − 1) × (n − 1) matrices. If we perform cofactor expansion
along the first column, then the only non-zero entry in the cofactor
expansion is

det(A) = a11 det(A11).

But A11 is a (n− 1)× (n− 1) triangular matrix obtained by deleting
the first row and first column of A. Thus

det(A11) = a22 · a33 · . . . · ann.

Hence
det(A) = a11 · a22 · . . . · ann.

We have proven the theorem for upper triangular matrices, but
since the transpose of a lower triangular matrix is an upper trian-
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gular matrix, Theorem 8.3 provides the result for lower triangular
matrices.

Example 8.9.

det


2 3 4 1 2
0 1 9 0 −1
0 0 3 4 7
0 0 0 −3 3
0 0 0 0 4

 = 2 · 1 · 3 · (−3) · 4 = −72

Combining Theorem 8.5 and the properties of determinants already
discussed we can easily compute the determinant of any elementary ma-
trix.

Theorem 8.6.
If E is an n× n elementary matrix, then

1. det(E) = λ if E multiplies a row by λ.

2. det(E) = −1 if E swaps two rows.

3. det(E) = 1 if E adds a multiple of one row to another.

Notice the first two properties tell us that if E is an elementary ma-
trix obtained by swapping two rows or multiplying one row by λ, then
det(EA) = det(A). We can extend this result to all elementary matrices,
but first we need one little observation.

Lemma 8.7.
If A is an n×n matrix and two rows of A are identical, then det(A) = 0.
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Proof.
Suppose rows i and j of A are identical. Then if we swap rows i
and j, we still have the same matrix. However, swapping two rows
results in our negating the determinant, which means

det(A) = − det(A),

and so the only option is det(A) = 0.

Theorem 8.8.
If A is any n× n matrix and B is obtained from A by adding λ times the
i-th row of A to the j-th row of A,

A
λRi+Rj→Rj−−−−−−−→ B

then det(A) = det(B).

Proof.
This follows from the fact that the determinant is linear in the rows
of the matrix. If we let B′ be the matrix which is the same as A
except row j is replaced by row i, then linearity in the rows tells us

det(B) = det(A) + det(B′) = det(A) + 0

We now have the following.

Corollary 8.9.
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If A is any n× n matrix and E is an n× n elementary matrix, then

det(EA) = det(E) det(A)

Exercise 8.3.
Prove Corollary 8.9 by combining Corollary 8.4, Theorem 8.6, and
Theorem 8.8.

Now we are able to prove the following useful property of determi-
nants described earlier.

Theorem 8.10.
An n× n matrix A is invertible if and only if det(A) ̸= 0.

Proof.
Suppose that A is invertible. Then A−1A = I and so

det(A−1) det(A) = 1,

which implies det(A) ̸= 0.
Now suppose det(A) ̸= 0. Let E1, E2, ..., Em be the elementary

matrices such that
EmEm−1 · · ·E2E1A

is in row reduced echelon form. Notice that the determinant of an
elementary matrix is never zero, and so

det(EmEm−1 · · ·E2E1A)

=det(Em) det(Em−1) · · · det(E2) det(E1) det(A)

̸=0.
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ButEmEm−1 · · ·E2E1A, being in RREF, is upper triangular. Since the
determinant of an upper triangular matrix is the product of the di-
agonal entries, this must mean that EmEm−1 · · ·E2E1A has no zeros
on the diagonal. But, being in RREF, that means EmEm−1 · · ·E2E1A
is the identity. This meansA is invertible with inverseA−1 = Em · · ·E1.

We saw above that ifE is an elementary matrix, det(EA) = det(E) det(A).
We can actually extend this property to all products of matrices if we are
able to show one useful property of matrix inverses.

Exercise 8.4.
Suppose that A and B are two n×n matrices and A is not invertible.
Show that AB can not be invertible either.

Theorem 8.11.
If A and B are two n× n matrices, then det(AB) = det(A) det(B).

Proof.
Suppose that one of A or B is not invertible – say A is not invertible.
ThenAB is not invertible either, by Exercise 8.4, and so det(AB) = 0,
but det(A) det(B) = 0 as well since det(A) = 0.

Now suppose that both A and B are invertible. Then as A is the
inverse of A−1, we can write A as a product of elementary matrices:
say

A = EmEm−1 · · ·E2E1.

and
det(A) = det(Em) det(Em−1) · · · det(E2) det(E1)
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thus

det(AB) =det(EmEm−1 · · ·E2E1B)

=det(Em) det(Em−1) · · · det(E2) det(E1) det(B)

=det(A) det(B).

8.6 Faster Algorithms
We have seen that the determinant is uniquely characterized by three al-
gebraic properties, and we saw that the Laplace expansion gave an algo-
rithm for computing the determinant that satisfies these three properties.
The problem with the Laplace expansion is that it is extraordinarily slow
to compute: not just by hand, but even on a computer.

Luckily there are faster ways to compute the determinant. In partic-
ular, we can very easily compute the determinant of triangular matrices
and we can also compute the determinant of a product of matrices as the
product of the determinants. Thus if we have a factorization of a matrix
into triangular matrices, such as the LU factorization, then it becomes
much easier to compute the determinant.

Example 8.10.
Computing the determinant of a 7× 7 matrix using the Laplace ex-
pansion would take about 7! = 5, 040 operations. If we have an LU
factorization, however, then our work becomes much simpler.

For example, suppose

A =



3 2 7 9 1 1 1
9 8 27 31 7 13 5
3 2 5 8 9 −1 −2
6 3 17 21 −20 11 18
3 8 39 30 −38 56 37
12 8 34 38 −20 16 15
21 21 88 89 −42 91 67


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This matrix has the LU factorization

U =



3 2 7 9 1 1 1
0 1 3 2 2 5 1
0 0 2 1 −8 2 3
0 0 0 1 2 4 4
0 0 0 0 1 3 1
0 0 0 0 0 2 2
0 0 0 0 0 0 1



L =



1 0 0 0 0 0 0
3 2 0 0 0 0 0
1 0 −1 0 0 0 0
2 −1 3 2 0 0 0
1 6 7 2 1 0 0
4 0 3 −1 2 2 0
7 7 9 3 3 5 1


So instead of doing the 5, 040 operations to compute the determi-
nant using the cofactor expansion, we can instead just do 14: multi-
plying together the diagonal entries of L and U to obtain

det(A) = det(LU) = det(L) · det(U) = −8 · 12 = −96

Computing a determinant this way is of course only helpful if we can
compute the LU factorization of a matrix in a reasonable amount of time.
There are algorithms to compute LU factorizations (or LUP factorizations
if we require row swaps) in O(n3) time (this means that for an n × n
matrix we have to do on the order of n3 computations), and so this is a
reasonable, effective way to actually compute the determinant.

8.7 Cramer’s Rule
Cramer’s rule is a method for describing the solution to a system Ax =
b, provided A is invertible, in terms of determinants. In order to state
Cramer’s rule we need one bit of notation. Given an n × n matrix A
and an n-dimensional vector b, let Ai(b) denote the matrix obtained by
replacing the i-th column of A with b.
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Example 8.11.
Let A and b be the following:

A =


6 2 1 1
3 7 8 2
4 1 3 3
2 2 0 1

 b =


4
2
3
1


Then

A3(b) =


6 2 4 1
3 7 2 2
4 1 3 3
2 2 1 1



Theorem 8.12 (Cramer’s Rule).
If A is an invertible n× n matrix, and b is an n-dimensional vector, then

the unique solution to Ax = b has components

xi =
det(Ai(b))

det(A)

Proof.
Notice that if we consider the matrix obtained by replacing the i-th
column of the identity matrix I with x, Ii(x), then the determinant
of this matrix is simply xi. To see this, perform cofactor expansion
along the i-th row of Ii(x): all entries in the i-th row are zero for the
entry coming from the column which was replaced by x which has
xi in this location: the i-th row and i-th column. The corresponding
(i, i)-minor is simply the (n − 1) × (n − 1) identity matrix which
has determinant 1, and so we have that the cofactor (and hence the
entire determinant) is

(−1)i+ixi det(I) = xi.
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Note too that

A · Ii(x) =

Ae1 Ae2 · · · Ax · · · Aen


So if x solves the equation Ax = b (since A is invertible there is
exactly one vector solving the equation) this becomes

A · Ii(x) =

Ae1 Ae2 · · · b · · · Aen


But notice that Aej is the j-th column of A, which we’ll denote aj ,
and so

A · Ii(x) =

a1 a2 · · · b · · · an

 = Ai(b)

If we take the determinant of both sides of the equation we have

det(A · Ii(x)) = det(Ai(b)

=⇒ det(A) · det(Ii(x)) = det(Ai(b))

=⇒ det(A) · xi = det(Ai(b))

=⇒ xi =
det(Ai(b))

det(A)

Cramer’s rule is generally not a very efficient way to solve large sys-
tems of equations, but can sometimes be helpful for theoretical situations
(e.g., in proving some theorem it might be helpful to have a way to ex-
press the components of a solution, and Cramer’s rule allows us to do
precisely that).

Example 8.12.
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Use Cramer’s rule to solve the following system1 3 2
0 1 4
2 0 1

xy
z

 =

0
0
2


First note that the determinant of our matrix is

det

1 3 2
0 1 4
2 0 1

 = 21

By Cramer’s rule,

x =
1

21
det

0 3 2
0 1 4
2 0 1

 =
20

21

y =
1

21
det

1 0 2
0 0 4
2 2 1

 =
−8

21

z =
1

21
det

1 3 0
0 1 0
2 0 2

 =
2

21

Thus our system is solved byxy
z

 =

 20/21
− 8/21
2/21



We can use Cramer’s rule to get a formula for the inverse of a matrix,
assuming of course the matrix is in fact invertible. Note that for an in-
vertible n × n matrix A, the determinant of Ai(ej) – the matrix obtained
by replacing the i-th row of A with the standard basis vector ej – easily
seen via cofactor expansion as

det(Ai(ej)) = (−1)i+j det(Aji).

Recall that this is the (j, i) cofactor of A,

det(Ai(ej)) = Cji.



CHAPTER 8. DETERMINANTS 183

Now, as AA−1 = I , the j-th column of A−1 – let’s call this α⃗j – satisfies the
equation Aα⃗j = ej . So by Cramer’s rule the i-th component of this vector
(and hence the entry in the i-th row, j-th column of A−1) is

det(Ai(ej))

det(A)
=

Cji

det(A)
.

Factoring out the denominator of det(A) from each entry we then have

A−1 =
1

det(A)


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

C1n C2n · · · Cnn


Notice that the matrix on the right is the transpose of the matrix obtained
by putting the (i, j)-cofactor of A into the i-th row and j-th column. This
matrix is sometimes called the adjugate1 ofA and denoted adj(A). Hence
we have

A−1 =
1

det(A)
adj(A).

Example 8.13.
For a 2× 2 matrix

A =

(
a b
c d

)
the adjugate is

adj(A) =

(
d −c
−b a

)
and thus the inverse of A is

A−1 =
1

ad− bc

(
d −c
−b a

)
.

1In older texts this matrix is called the adjoint of A, but in modern mathematics
“adjoint” usually means something different and so the term “adjugate” is preferred.
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8.8 Practice Problems
Problem 8.1.
Compute the determinant of each of the matrices below.

(a)
(

3 2
−1 4

)

(b)

2 1 1
1 1 3
1 0 3



(c)


1 2 0 4
0 1 −1 3
0 0 −2 7
0 0 0 3


Problem 8.2.
Each matrix below is given together with its LU, or LUP, factorization.
Use this to compute the determinant.

(a)

A =


3 8 18 23
2 4 6 8
2 4 8 9
1 2 3 5

 L =


1 0 0 0
2/3 1 0 0
2/3 1 1 0
1/3 1/2 0 1



U =


3 8 18 23
0 −4/3 −6 −22/3
0 0 2 1
0 0 0 1


(b)

A =


3 4 1 7
2 2 3 8
0 1 0 1
1 2 2 5

 L =


1 0 0 0
0 1 0 0
2/3 −2/3 1 0
1/3 2/3 5/7 1



U =


3 4 1 7
0 1 0 1
0 0 7/3 4
0 0 0 −6/7

 P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


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Problem 8.3.
Use Cramer’s rule to solve the following system of equations:

2x+ 3y − 4z =1

6x− y + 3z =2

2x+ y + z =3

Problem 8.4.
For each of the matrices given below, first compute the determinant to
determine whether the matrix is invertible or not. If the matrix is invert-
ible, then use the formula A−1 = 1

det(A)
adj(A) to compute the inverse of

A.

(a)

 2 4 8
1 5 7
−1 3 1



(b)

7 2 3
1 4 1
8 5 2



(c)


1 3 6 4
2 3 5 1
3 3 11 5
0 1 0 2





9
Subspaces, Dimension, and Rank
9.1 Subspaces
Suppose that V is a subset of vectors Rn, V ⊆ Rn. We will say that V is a
a subspace of Rn if the following two properties are satisfied:

1. V is not empty: V ̸= ∅.

2. Given any pair of vectors v⃗1, v⃗2 ∈ V inside of V , their sum v⃗1 + v⃗2 is
also in V .

3. Given any vector v⃗ ∈ V in V , every scalar multiple λv⃗ is also in V .

We sometimes say that the set V is closed under vector addition and
scalar multiplication in a case such as this. This means simply what
we’ve stated above: elements of V can be added together and we ob-
tain a new element of V ; and scalar multiples of elements of V are also
elements of V .

Lemma 9.1.
If V is a subspace of Rn, then 0⃗ ∈ V .

Proof.
Since V is a subspace, by definition V is non-empty. Say v⃗ ∈ V .
Then 0⃗ = 0 · v⃗ is in V since V is closed under scalar multiplication.

Example 9.1.
The xy-plane in R3,

V =


xy
0

∣∣∣∣x, y ∈ R


186
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is a subspace of R3.
To see this, notice that the sum of two elements of the xy-plane

is also in the xy-plane,x1y1
0

+

x2y2
0

 =

x1 + x2
y1 + y2

0

 ,

and any scalar multiple of someting in the xy-plane is in the xy-
plane,

λ

xy
0

 =

λxλy
0

 .

Example 9.2.
More generally, given any collection of vectors {v⃗1, v⃗2, v⃗3, ..., v⃗m} ∈
Rn, the span of those vectors is a subspace.

Let V be the span of the vectors,

V = span{v⃗1, v⃗2, ..., v⃗m}
=
{
λ1v⃗1 + λ2v⃗2 + · · ·+ λmv⃗m

∣∣λ1, λ2, ..., λm ∈ R
}
.

Notice again that V is closed under vector addition and scalar mul-
tiplication:

(λ1v⃗1 + λ2v⃗2 + · · ·+ λmv⃗m) + (µ1v⃗1 + µ2v⃗2 + · · ·+ µmv⃗m)

= (λ1 + µ1) v⃗1 + (λ2 + µ2) v⃗2 + · · ·+ (λm + µm) v⃗m

µ (λ1v⃗1 + λ2v⃗2 + · · ·+ λmv⃗m) = µλ1v⃗1 + µλ2v⃗2 + · · ·+ µλmv⃗m.

When V is the span of vectors v⃗1, ..., v⃗m, we say that V is spanned by
those vectors, or is generated by the vectors.
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Exercise 9.1.

(a) Show that the set containing only the zero vector, {⃗0}, is a sub-
space of Rn.

(b) Show that every Rn is a subspace of itself.

If V is spanned by v⃗1, ..., v⃗m and if these vectors are linearly indepen-
dent, we say that v⃗1, ..., v⃗m form a basis for the vector space.

Example 9.3.
A basis for the xy-plane in R3 is given by1

0
0

 0
1
0



Example 9.4.
The n-dimensional e⃗1, e⃗2, ..., e⃗n vectors form a basis for Rn. These
are called the standard basis vectors for Rn.

Theorem 9.2.
Every subspace of Rn has a basis. That is, given any subspace V ⊆ Rn,
there is some collection of vectors v⃗1, v⃗2, ..., v⃗m such that these vectors are
linearly independent and V = span{v⃗1, ..., v⃗m}.
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We will skip the proof of the above theorem since this theorem will
follow from a more general theorem about abstract vector spaces that we
will discuss later.

Notice that the basis of a subspace is not unique! With the exception
of the zero subspace, every subspace has infinitely-many bases.

Example 9.5.
Another basis for the xy-plane in R3 is2

3
0

 4
1
0



Example 9.6.
Another basis for Rn is

{e⃗1, 2e⃗2, 3e⃗3, ...,me⃗m} .

When we choose to write a vector as a list of numbers, what we’re
really doing is saying how that vector is written as a linear combination
of the vectors in some basis. For Rn we usually implicitly assume this
basis is the standard basis vector. That is, when we write

v⃗ =

 2
4
−1


what we really mean is

v⃗ = 2e⃗1 + 4e⃗2 − e⃗3.

But if we picked another basis, we would write our vector as some other
linear combination. For example, say in R3 we used the basis

B =

b⃗1 =
1
1
0

 , b⃗2 =

2
0
2

 , b⃗3 =

1
1
1

 .
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Then our vector v⃗ from before can be written as

v⃗ = 3⃗b1 − b⃗2 + b⃗3

It would then be reasonable for us to write

v⃗ =

 3
−1
1


B

.

We will adopt the convention that a subscript B means we are writing
the vector with respect to some basis B. If we don’t say what basis we’re
using, then we will always assume it is the standard basis, {e⃗1, e⃗2, ..., e⃗n}.

Remark.
Writing a vector with respect to different bases is comparable to
writing a real number with respect to a different base. For exam-
ple, when you see 271.5 this really means the number

2 · 102 + 7 · 101 + 1 · 100 + 5 · 10−1

but we could also write this number in binary as 100001111.1 which
means

1 ·28+0 ·27+0 ·26+0 ·25+0 ·24+1 ·23+1 ·22+1 ·21+1 ·20+1 ·2−1.

We’re writing the same number, just in two different ways: once
with base 10, and once with base 2. Writing a vector with respect
to two different bases is the same idea: we’re expressing the same
vector in different ways.

Exercise 9.2.
Write the vector

v⃗ =

 2
4
−1


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above, but with respect to each of the following bases:

B1 =


4
1
3

 ,

2
2
2

 ,

 2
−1
0



B2 =


0
4
0

 ,

0
1
1

 ,

1
2
3



9.2 Dimension
We are now ready to properly define the notion of “dimension.” Intu-
itively, you should think that the dimension of a space tells you how
many pieces of information you need to specify a point in the space.

Theorem 9.3.
Suppose {v⃗1, ..., v⃗m} and {w⃗1, ..., w⃗p} are two bases for a subspace V ⊆
Rn. (That is, V = span{v⃗1, ..., v⃗m} = span{w⃗1, ..., w⃗p} and each set of
vectors is linearly independent.) Then p = m. I.e., any two bases for a
vector space have to have the same number of elements.

Proof.
If p ̸= m, then one of p or m is larger. Suppose first that p > m.

Notice that each w⃗i may be written as a linear combination of the
v⃗j since the v⃗j’s form a basis:

w⃗i =
m∑
j=1

αij v⃗j.

Now consider the equation

λ1w⃗1 + λ2w⃗2 + · · ·+ λpw⃗p = 0⃗.
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Rewriting each w⃗i in terms of the v⃗j we have

λ1 (α11v⃗1 + · · ·+ α1mv⃗m) + · · ·+ λp (αp1v⃗1 + · · ·+ αpmv⃗m) = 0⃗

Grouping the v⃗j’s together this becomes

(λ1α11 + λ2α21 + · · ·+ λpαp1) v⃗1

+(λ1α12 + λ2α22 + · · ·+ λpαp2) v⃗2

+ · · ·
+(λ1α1m + λ2α2m + · · ·+ λpαpm) v⃗m

=0⃗

Since the v⃗j are linearly independent, we must have that each of
these scalars is zero. This gives us a system of linear equations,

α11λ1 + α21λ2 + · · ·+ αp1λp = 0

α12λ1 + α22λ2 + · · ·+ αp2λp = 0

...
α1mλ2 + α2mλ2 + · · ·+ αpmλp = 0.

Notice the coefficient matrix of this system has more columns than
rows, hence there must be a non-trivial solution. That is, some of
the λ1, λ2, ..., λp are non-zero. But this implies we have a non-trivial
solution to the equation

λ1w⃗1 + · · ·+ λpw⃗p = 0⃗

which means the w⃗i are not linearly independent. This contradicts
the assumption that the w⃗i form a basis, however. Hence p ≯ m –
that is, p ≤ m.

Suppose now that p < m. Repeating the argument above, but
with the roles of v⃗j and w⃗i exchanged, shows that p ≮ m, so p ≥ m.

As p ≥ m and p ≤ m, the only option is that p = m.

So given any subspace, any two bases have to have the same number
of elements. This common number of elements to all bases is called the
dimension of the subpsace. The dimension of V is often denoted dim(V )
or dimR(V ).
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Example 9.7.
Rn is n-dimensional since {e⃗1, ..., e⃗n} forms a basis.

Example 9.8.
The xy-plane in R3 is two-dimensional since

1
0
0

 ,

0
1
0


forms a basis.

9.3 Change of Basis
As we have seen above, when a vector in Rn is written as

v =


λ1
λ2
...
λn


this really means that the scalars v1 through vn tell us how to write v as a
linear combination of the standard basis vectors:

v = λ1e1 + λ2e2 + · · ·+ λnen.

If we chose another basis for Rn, however, like

B = {b1, b2, ..., bn},

then we would represent v as a linear combination with different scalars:

v = µ1b1 + µ2b2 + · · ·+ µnbn.
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It would be reasonable for us to then write the vector v as

v =


µ1

µ2
...
µn


B

where we use the subscript B to tell us that these coordinates are with
respect to the B basis.

Example 9.9.
Consider the following basis for R3:

B =


1
1
2

 ,

1
1
1

 ,

0
1
3


The vector

v =

2
1
4


in this basis can be written as

v =

 5
−3
−1


B

as

v = 5

1
1
2

− 3

1
1
1

−

0
1
3

 .

We can go back and forth between two different bases by using matrix
multiplication. For example, suppose we know that the coordinates of a
vector v with respect to the standard basis are v =

(
λ1 · · · λn

)T . How
can we find the coordinates for the basis B? We need to set this up as a
system of equations: the coordinates with respect to B, call them µ1, µ2,
..., µn should have the property that v = µ1b1 + · · ·+µnbn. If we use the bi
vectors as the columns of a matrix A, and use the µi’s as components of a
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vector µ, then we have the equation v = Aµ. We want to solve this for µ,
however, so we’ll multiply both sides byA−1 to obtain µ = A−1v where v.
(Notice that A will always be invertible: since the bi vectors form a basis,
the columns of A are linearly independent.)

Example 9.10.
Consider the following basis for R2:

B =

{(
3
2

)
,

(
−1
1

)}
.

We can convert any vector v from standard coordinates (the coordi-
nates given using the standard basis vectors),

v =

(
x
y

)
to coordinates with respect to the B basis by multiplying by

A−1 =

(
3 −1
2 1

)−1

=

(
1/5 1/5
− 2/5 3/5

)
.

Hence in B-coordinates,

v =

(
x/5 + y/5

−2x/5 + 3y/5

)
B

The matrix A−1 above is called the change of basis matrix from the
standard basis to the B basis. There isn’t a single standard notation for
this matrix. In the Lay textbook this matrix is denoted P−1

B (so PB is the
matrix obtained by using the vectors of B as the columns of the matrix);
another common notation which we will use in class is BIS . Here we will
use S to mean the standard basis {e1, e2, ..., en}. Thus

BIS =

b1 b2 · · · bn

−1

If v =
(
λ1 λ2 · · · λn

)T with respect to the standard basis, then with
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respect to B the coordinates of v are

[v]B = BIS


λ1
λ2
...
λn


where [v]B means the coordinates of v with respect to the basis B.

We can find the coordinates of v with respect to the standard basis by
multiplying by the inverse of BIS which we denote SIB = BI

−1
S .

[v] = SIB[v]B

where [v] denotes the vector of coordinates for v with respect to the stan-
dard basis, S.

More generally, if we have two different bases B1 and B2 we can go
back and forth between B1-coordinates and B2 coordinates by multiply-
ing by by a matrix B2IB1 where

B2IB1 = B2IS SIB1 .

That is, we switch from B1-coordinates to standard coordinates, then
from standard coordinates to B2-coordinates.

[v]B2 = B2IB1 [v]B1 .

Example 9.11.
Consider the following two bases of R3:

B1 =


4
2
1

 ,

3
1
1

 ,

0
1
1



B2 =


2
2
2

 ,

3
2
3

 ,

 1
1
−1


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The change of basis matrices between the Bi and S bases are

B1IS =

 0 1 −1
1/3 − 4/3 4/3
− 1/3 1/3 2/3

 SIB1 =

4 3 0
2 1 1
1 1 1


B2IS =

− 5/4 3/2 1/4
1 −1 0
1/2 0 − 1/2

 SIB2 =

2 3 1
2 2 1
2 3 −1


Hence the B1-to-B2 change of basis matrix is

B2IB1 = B2IS SIB1 =

− 7/4 −2 7/4
2 2 −1
3/2 1 − 1/2


We can now convert from B1 to B2 coordinates using this matrix.

For example, if v is a vector which in B1 coordinates is given by

v =

3
2
4


B1

then

[v]B2 = B2IB1 =

− 7/4 −2 7/4
2 2 −1
3/2 1 − 1/2

3
2
4

 =

− 9/4
6
9/2


B2

9.4 Matrices of Linear Transformations
When we write a linear transformation as a matrix, the matrix we use
depends on the choice of basis. Recall that if T : Rn → Rm is a linear
transformation, then T is represented by an m × n matrix A with the
property that T (v) = Av. The columns of this matrix are exactly the
coordinates (with respect to the standard basis vectors) of T (e1), T (e2),
..., T (en). If we were using a different basis, though, what should this
matrix look like?
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There is a very easy way to determine what the matrix should be:
we can switch from some basis B to the standard basis where we know
what the matrix is, then switch back to B. That is, if A represents the
linear transformation with respect to the basis B, then AB, the matrix
with respect to B, should be

AB = BISA SIB.

So, when we multiply [v]B by AB we have

AB[v]B = BISA SIB[v]B

= BISA[v]S

= BIS [T (v)]S

=[T (v)]B.

Remark.
Notice that BIS = SI

−1
B . Let’s momentarily denote this matrix J .

Then the matrix AB has the form

J−1AJ.

This operation of taking A and multiplying it on one side by some
J and on the other side by J−1 is sometimes called conjugation and
appears in many different areas of mathematics. Conjugation basi-
cally means “do something (e.g., apply A) somewhere else (e.g., in
a different coordinate system).”

Example 9.12.
Suppose T : R2 → R2 is the linear transformation which in standard
coordinates is represented by the matrix

A =

(
3 2
1 0

)
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Now suppose that B is the basis of R2 given by

B =

{(
4
2

)
,

(
3
2

)}
.

Then

BIS =

(
1 − 3/2
−1 2

)
SIB =

(
4 3
2 2

)
Then with respect to the basis B, the linear transformation T is given
by

AB = BISA SIB =

(
10 17/2
−8 −7

)

Example 9.13.
Suppose T : R3 → R3 is the linear transformation which in standard
coordinates is given by the matrix

A =

1 1 0
2 −1 1
0 1 1


and consider the basis of B of R3 given by

B =


2
2
0

 ,

1
3
0

 ,

0
0
1


The change of basis matrices are

BIS =

 3/4 − 1/4 0
− 1/2 1/2 0
0 0 1

 SIB =

2 1 0
2 3 0
0 0 1


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Then with respect to the B basis, T is given by the matrix

AB =

 5/2 13/4 − 1/4
−1 − 5/2 1/2
2 3 1



We can extend the idea above to linear transformations between spaces
of different dimensions. That is, suppose we choose a basis B for Rn

and a basis C for Rm and we want to express the linear transformation
T : Rn → Rm with respect to these bases. If T is represented by the
m × n matrix A in the standard bases of Rn and Rm, which we’ll denote
Sn and Sm respectively, then with respect to the B and C bases we have
the matrix

CAB = CISm A SnIB.

That is, we again convert from the B basis of Rn to the standard basis,
apply the matrix A, then convert from the standard basis of Rm to the C
basis.

Example 9.14.
Suppose T : R3 → R2 is given with respect to the standard bases by

A =

(
1 3 1
2 0 1

)
.

What matrix represents this linear transformation with respect to
the following B and C bases for R3 and R2 given by

B =


2
2
0

 ,

1
3
0

 ,

0
0
1


C =

{(
4
2

)
,

(
3
2

)}
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The change of basis matrices are

S3IB =

2 1 0
2 3 0
0 0 1

 CIS2 =

(
1 − 3/2
−1 2

)

The matrix CAB is then

CAB = CIS2 A S3IB =

(
2 7 − 1/2
0 −6 1

)

9.5 Column Space, Null Space, and Rank
If T : Rn → Rm is a linear transformation, then image or T (also called the
range of T ) is the collection of all the vectors in w⃗ ∈ Rm such that there
exists a v⃗ ∈ Rn with T (v⃗) = w⃗.

Example 9.15.
Suppose T : R2 → R3 is given by

(
x
y

)
7→

x+ y
x− y
2x


Then the vector  3

−1
2


is in the image of T since

T

(
1
2

)
=

 3
−1
2

 .
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However, the vector  2
−1
2


is not in the image: there is no vector v⃗ ∈ R2 such that T (v⃗) equals
the vector above.

Exercise 9.3.
Convince yourself that  2

−1
2


is not in the image of

(
x
y

)
7→

x+ y
x− y
2x

 .

To really justify this you need to show there is no solution to some
system of linear equations. Figure out what that system of equations
is, and then show there is no solution.

The image (aka range) of a linear transformation doesn’t have a very
standard notation, but some relatively common notations are T (Rn), range(T )
and im(T ).

Theorem 9.4.
Given any linear transformation T : Rn → Rm, the image im(T ) is a
subspace of Rm.
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Proof.
We need to show that im(T ) is closed under vector addition and
scalar multiplication. Suppose v⃗1, v⃗2 ∈ im(T ). Then, by definition of
the image, there must exist vectors w⃗1, w⃗2 ∈ Rn such that T (w⃗1) = v⃗1
and T (w⃗2) = v⃗2. Notice

v⃗1 + v⃗2 = T (w⃗1) + T (w⃗2)

= T (w⃗1 + w⃗2)

so im(T ) is closed under vector addition.
Similarly,

λv⃗1 = λT (w⃗1)

= T (λw⃗1)

and so im(T ) is closed under scalar multiplication.

Example 9.16.
Consider the linear transformation T : R2 → R3 given by

(
x
y

)
7→

x+ y
x− y
2x

 .

Since T is given by the matrix1 1
1 −1
2 0


every vector T (v⃗) is a linear combination of the columns of this ma-
trix. That is,

im(T ) = span


1
1
2

 ,

 1
−1
0

 .
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More generally, given any linear transformation T : Rn → Rm, the
image of T consists of all linear combinations of the columns of the matrix
representing T , and so im(T ) is the span of the columns of the matrix
representing T . For this reason the image of a linear transformation is
sometimes also called the column space of the corresponding matrix.

The columns of the matrix do not in general form a basis for the col-
umn space (aka image of T , aka range of T ) because they may not be
linearly independent. However some subset of these columns will form
a basis: namely the largest linearly independent subset of columns of the
matrix forms a basis for the column space.

Theorem 9.5.
The column space of a matrix A (which is synonymous with the image, or
range, of the corresponding linear transformation) has a basis given by the
pivot columns of A.

Proof.
We simply need to show that the pivot columns of A are a maxi-
mal linearly independent set. That is, we need to show the pivot
columns are linearly independent, and every column of A can be
written as a linear combination of the pivot columns.

Suppose that A is an m × n matrix and for simplicity suppose
the first k columns, a⃗1, a⃗2, ..., a⃗k, are the pivot columns of A. Per-
forming row operations turns a⃗1, a⃗2, ..., a⃗k into the first k standard
basis vectors of Rm, e⃗1, e⃗2, ..., e⃗k. If the columns a⃗1, ..., a⃗k were not
linearly independent, then there is some non-zero solution to the
homogeneous system

a⃗1 a⃗2 · · · a⃗k



λ1
λ2
...
λk

 = 0⃗.

Multiplying on the left by the product of the elementary matrices
which take a⃗1, ..., a⃗k to e⃗1, ..., e⃗k, we would then have a non-trivial
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solution to

e⃗1 e⃗2 · · · e⃗k



λ1
λ2
...
λk

 = E

a⃗1 a⃗2 · · · a⃗k



λ1
λ2
...
λk

 = 0⃗.

But this is clearly impossible since the e⃗i are linearly independent.
Hence the pivot columns of the matrix must be linearly independent
as well.

We now need to show that adding a non-pivot column would
give us a linearly dependent set. Suppose a⃗ is any column of A
which is not a pivot column. Then the homogeneous system

a⃗1 a⃗2 · · · a⃗k a⃗



λ1
λ2
...
λk
λ

 = 0⃗

has a non-trivial solution since not all of the columns are pivot columns.
That is,

λ1a⃗1 + λ2a⃗2 + · · ·+ λka⃗k + λa⃗ = 0⃗

Has some solution where not all λ1, ..., λk, λ are zero. Notice that in
fact λmust not be zero: if λ = 0 then the above reduces to λ1a⃗1+· · ·+
λka⃗k = 0⃗ which we know only has the trivial solution. Since λ ̸= 0,
we can solve the above for a⃗, writing a⃗ as a linear combination of
the other vectors:

a⃗ = −λ1
λ
a⃗1 −

λ2
λ
a⃗2 − · · · − λk

λ
a⃗k.

Hence this collection of columns is not linearly independent.
To summarize: we have shown that the pivot columns of A are

linearly independent, but every non-pivot column can be written as
a linear combination of the pivot columns. Hence the span of all
of the columns is equal to the span of the pivot columns, and since
these are linearly independent they form a basis for this span.
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Example 9.17.
What is a basis for the column span of the following matrix?

A =


3 2 6 6 2 13
2 3 9 4 1 8
−1 1 3 −2 −1 −5
0 6 18 0 −1 −2


A basis for the column span is given by the pivot columns. To de-
termine the pivot columns we put A into RREF to obtain

1 0 0 2 0 3
0 1 3 0 0 0
0 0 0 0 1 2
0 0 0 0 0 0


Notice that the first, second, and fifth columns are the pivot columns.
Hence the column span of our matrix has basis given by the first,
second, and fifth columns of the original matrix:


3
2
−1
0

 ,


2
3
1
6

 ,


2
1
−1
−1




The dimension of the column space (or range or image) is called the
rank of the matrix (or linear transformation) and is denoted rank(T ) or
rank(A) for a linear transformation T or matrix A.

Related to the column space of a matrix is the null space, also called
the kernel. Given a linear transformation T : Rn → Rm, the kernel of
T , denoted ker(T ), is the collection of all the vectors v⃗ ∈ Rn such that
T (v⃗) = 0⃗.

ker(T ) =
{
v⃗ ∈ Rn

∣∣T (v⃗) = 0⃗
}
.

Theorem 9.6.
ker(T ) is a subspace of Rn.
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Proof.
Suppose v⃗, w⃗ ∈ ker(T ). That is, T (v⃗) = T (w⃗) = 0⃗. Then

T (v⃗ + w⃗) = T (v⃗) + T (w⃗) = 0⃗ + 0⃗ = 0⃗.

Similarly, for any λ ∈ R,

T (λv⃗) = λT (v⃗) = λ0⃗ = 0⃗.

Notice that if T is represented by the matrix A, the kernel of T is pre-
cisely the set of solutions to the homogeneous equation Ax⃗ = 0⃗.

Notice that finding a basis for the kernel of T is essentially the same
as parametrizing the solutions to Ax⃗ = 0⃗.

Example 9.18.
Find a basis for the kernel of the linear transformation T : R4 → R3

given by the following matrix:

A =

3 1 −5 −1
0 1 1 −1
2 1 −3 −1


If we put the matrix into RREF we have1 0 0 −2

0 1 1 −1
0 0 0 0


This Ax⃗ = 0⃗ is equivalent to the system

x1 − 2x4 = 0

x2 + x3 − x4 = 0
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Thus

x1 = 2x4

x2 = −x3 + x4

and x3 and x4 are free variables. So, our vectors x⃗ solving the equa-
tion look like

x⃗ =


x1
x2
x3
x4

 =


2x4

−x3 + x4
x3
x4


which we can write as

x⃗ = x3


0
−1
1
0

+ x4


2
1
0
1

 .

So the solutions to our equation are precisely the vectors in

span





0
−1
1
0

 ,


2
1
0
1



 .

That is, a basis for the kernel is


0
−1
1
0

 ,


2
1
0
1




Just as the dimension of the image im(T ) has a special name (the rank
of T ), the dimension of the kernel ker(T ) has a special name: it is called
the nullity of T and we will denote it null(T ):

null(T ) = dim(ker(T )).
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9.6 The Rank-Nullity Theorem
One of, if not the, most fundamental result in linear algebra is the rank-
nullity theorem which tells us how the rank and nullity of a linear trans-
formation are related. It is hard to overstate how important the following
result is, not just in linear algebra but in many other areas that use linear
algebraic ideas.

Theorem 9.7 (The Rank-Nullity Theorem).
If T : Rn → Rm is any linear transformation, then

rank(T ) + null(T ) = n.

Proof.
For simplicity let’s write N = null(T ), so we want to show that

rank(T ) +N = n

Suppose that {v⃗1, v⃗2, ..., v⃗N} is a basis for the kernel of T . We can get
a basis for all of Rn by adding more vectors. Let’s say we add M
new vectors, w⃗1, w⃗2, ..., w⃗M . That is, we have a basis

{v⃗1, v⃗2, ..., v⃗N , w⃗1, w⃗2, ..., w⃗M}

is a basis for Rn. Since Rn is n-dimensional, this must mean that

N +M = n.

It’s clear that

{T (v⃗1), T (v⃗2), ..., T (v⃗N), T (w⃗1), T (w⃗2), ..., T (w⃗M)}

spans im(T ). But notice that

T (v⃗1) = T (v⃗2) = · · · = T (v⃗N) = 0⃗.

Thus
im(T ) = span ({T (w⃗1), T (w⃗2), ..., T (w⃗M)}) .



CHAPTER 9. SUBSPACES, DIMENSION, AND RANK 210

Hence M ≥ rank(T ). If we can show that the T (w⃗i) vectors are
linearly independent, that will imply that in fact M = rank(T ) since
{T (w⃗1), ..., T (w⃗M)} would form a basis for im(T ) which we know
has dimension rank(T ).

Suppose that we have λ1, ..., λM satisfying the following equa-
tion:

λ1T (w⃗1) + λ2T (w⃗2) + · · ·+ λMT (w⃗M) = 0⃗

Since T is linear we can rewrite this as

T (λ1w⃗1 + λ2w⃗2 + · · ·+ λM w⃗M) = 0⃗.

But this means

λ1w⃗1 + λ2w⃗2 + · · ·+ λM w⃗M ∈ ker(T ).

However the vectors w⃗1, ..., w⃗M are linearly independent of the vec-
tors v⃗1, ..., v⃗ρ that formed a basis for ker(T ). The only possibility,
then, is that λ1 = · · · = λM = 0. That is, the vectors are linearly in-
dependent and form a basis for im(T ), which means M = rank(T ).

We already knowM+N = n, butM = rank(T ) andN = null(T ),
so rank(T ) + null(T ) = n.

With the rank-nullity theorem at our disposal, we are now able to go
back and prove some of the theorems and propositions from earlier in
the semester that we had to take on faith earlier, such as the following
(Proposition 1 from Lecture 5).

Proposition 9.8.
The number of free variables in the solution set of Ax⃗ = 0⃗ is precisely the
number of columns of th ematrix that do not contain a pivot.

Proof.
Parametrizing the solution set of Ax⃗ = 0 is the same as finding a
basis for the nullspace of A, with each basis vector for the nullspace
corresponding to a free variable in the parametrization. That is, the
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dimension of the nullspace is the number of free variables in the
parametrization. By the rank nullity theorem, however, the dimen-
sion of the nullspace is exactly n (the number of columns of A) mi-
nus rank(A) (the number of pivot columns of A), which is simply
the number of columns without a pivot.
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9.7 Practice Problems
Problem 9.1.
Suppose that V ⊆ R3 consists of all vectors

(
x y z

)T whose compo-
nents satisfy the equation 3x− 2y + z = 0. Is V a subspace of R3?

Problem 9.2.
Suppose that V ⊆ R3 consists of all vectors

(
x y z

)T whose compo-
nents satisfy the equation 3x− 2y + z = 1. Is V a subspace of R3?

Problem 9.3.
Suppose that V ⊆ R2 consists of all vectors

(
x y

)T whose components
satisfy the equation x2 − y = 0. Is V a subspace of R2?

Problem 9.4.
Suppose that U and V are two subspaces of Rn. Is the intersection U ∩ V
necessarily also a subspace of Rn?

Problem 9.5.
Suppose that U and V are two subspaces of Rn. Is the union U ∪ V nec-
essarily also a subspace of Rn?

Problem 9.6.
Consider the linear transformation T : R4 → R5 given by

T


w
x
y
z

 =


w − x+ 3y
y + z
x− w
2w − 4z

−w + x+ y + z


Find a basis for the image and kernel of this linear transformation.

Problem 9.7.
In each of the problems below, find the coordinates of the given vector v
(given with respect to the standard basis) using the basis B of Rn.

(a)

v =

(
−2
3

)
B =

{(
2
0

)
,

(
0
5

)}
(b)

v =

(
−2
3

)
B =

{(
2
1

)
,

(
3
5

)}
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(c)

v =

3
7
0

 B =


1
1
1

 ,

 2
0
−2

 ,

3
4
2


Problem 9.8.
In each of the problems below you are given a matrix A which represents
some linear transformation T : Rn → Rm with respect to the standard
basis, as well as bases B of Rn and C of Rm. Find the matrix representing
T with respect to B and C.

(a)

A =

(
3 1 1
2 0 4

)

B =


2
0
2

 ,

3
3
3

 ,

1
1
7

 C =

{(
1
1

)
,

(
2
3

)}

(b)

A =

(
1 6 0
3 2 1

)

B =


1
2
3

 ,

1
0
0

 ,

2
3
2

 C =

{(
1
0

)
,

(
0
3

)}

(c)

A =

(
1 4 3
1 7 2

)

B =


0
0
1

 ,

1
0
0

 ,

0
1
0

 C =

{(
1
0

)
,

(
0
1

)}

(d)

A =

(
1 4 3
1 7 2

)

B =


0
0
1

 ,

1
0
0

 ,

0
1
0

 C =

{(
0
1

)
,

(
1
0

)}



10Eigenvectors & Eigenvalues
10.1 Introduction
Given a linear transformation T : Rn → Rn, we should typically expect
that T will move the vectors around in Rn in a somewhat complicated
way. However, it may happen that some vectors only get stretched out
(multiplied by a scalar). For example, consider the map T : R3 → R3

given by the matrix

A =

3 1 1
2 1 2
0 1 0

 .

It’s not immediately obvious, but it’s easy to check that this matrix leaves
the vector

u =

−1
1
1


alone; that is, Au = u:

Au =

3 1 1
2 1 2
0 1 0

−1
1
1

 = −

3
2
0

+

1
1
1

+

1
2
0

 =

−1
1
1

 = u.

Similarly, the vector

v =

 0
−1
1


is simply negated; that is, Av = −v:

Av =

3 1 1
2 1 2
0 1 0

 0
−1
1

 = 0 ·

3
2
0

−

1
1
1

+

1
2
0

 =

 0
1
−1

 = −v

And finally, the vector

w =

5
4
1



214
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gets multiplied by a factor of 4:

Aw =

3 1 1
2 1 2
0 1 0

5
4
1


=5

3
2
0

+ 4

1
1
1

+

1
2
0


=

20
16
4


=4

5
4
1


=4w.

At first glance this may not seem like the most useful observation, but
notice that these vectors u, v, and w form a basis for R3. Thus every
vector can be written as some linear combination of these vectors,

αu+ βv + γw.

It is now extremely easy to describe how our linear transformation acts
on these vectors:

A(αu+ βv + γw) = αu− βv + 4γw.

That is, if we write our vector as αβ
γ


B

then

T

αβ
γ


B

=

 α
−β
4γ


B

.

Thus having vectors which are simply stretched out by the linear trans-
formation can make it extremely easy to describe the linear transforma-
tion, and this can make studying linear transformations we may have
interest in considerably easier.
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10.2 Eigenvectors and Eigenvalues
Given a linear transformation T : Rn → Rn, we say that a vector v ̸= 0
is an eigenvector of T with eigenvalue λ if v and λ satisfy the following
equation:

T (v) = λv.

That is, eigenvectors are precisely the vectors that simply get stretched
out by T and the eigenvalue tells us how much the vector gets stretched
out.

Exercise 10.1.
Notice that eigenvectors are by definition never zero, but eigenval-
ues are allowed to be zero. Show that a linear transformation will
have zero as an eigenvalue if and only if the linear transformation is
not injective.

Remark.
The word eigen is an adjective in German that means something like
“owned by.” So the eigenvectors and eigenvalues are the vectors
and scalars “owned” by the linear transformation.

The vectors u, v, and w from the example in the introduction are thus
eigenvectors of the linear transformation with matrix3 1 1

2 1 2
0 1 0


while 1, −1, and 4 are the respective eigenvalues.

Perhaps that first thing to notice about eigenvectors and eigenvalues
is that they are somewhat special: not every linear transformation will
have eigenvector and eigenvalues.
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Example 10.1.
The linear transformation in R2 with matrix(

0 1
−1 0

)
does not have any eigenvectors/eigenvalues. The easiest way to see
this is to think geometrically: this matrix acts on the plane R2 by 90◦

rotations, and no non-zero vector in the plane is simply stretched
out by a 90◦ rotation.

The other thing to notice about eigenvectors is that they come in fam-
ilies. For example, the vector

w =

5
4
1


from before is an eigenvector with eigenvalue 4 of the matrix3 1 1

2 1 2
0 1 0

 .

Notice that any scalar multiple λw is also an eigenvector with eigenvalue
4: As Aw = 4w we have Aλw = λAw = λ4w = 4λw. The collection of
all eigenvectors of a given eigenvalue forms a subspace of Rn called the
eigenspace of T with the given eigenvalue.

Lemma 10.1.
Let T : Rn → Rn be a linear transformation and suppose λ is an eigen-
value of T . The set of all eigenvectors of T with eigenvalue λ is a subspace
of Rn, provided this collection of eigenvectors is not empty (i.e., that λ
really is an eigenvalue).
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Proof.
The set of all eigenvectors with eigenvalue λ is precisely the set of
all vectors v ∈ Rn satisfying T (v) = λv. Let’s momentarily denote
this set U :

U =
{
v ∈ Rn

∣∣T (v) = λv
}
.

Since we’re already assuming U is non-empty, we need to show that
U closed under vector addition, and closed under scalar multiplica-
tion. Suppose u, u′ ∈ U and µ is any scalar.

Checking that U is closed under vector addition is easy:

T (u+ u′) = T (u) + T (u′) = λu+ λu′ = λ(u+ u′),

as is checking that U is closed under scalar multiplication:

T (µu) = µT (u) = µλu = λ · (µu).

Thus U , the eigenspace of vectors in Rn which are eigenvectors of T
with eigenvalue λ, is a subspace of Rn.

10.3 Computing Eigenvectors and Eigenvalues
The question now is how do we go about finding the eigenvectors and
eigenvalues of a matrix. This is a two-step process: first we have to find
the eigenvalues λ, and then for each eigenvalue we need to find the as-
sociated eigenvectors.

If we want to find eigenvalues of T , then we need to find the scalars λ
for which there is a solution v to the equation T (v) = λv. For simplicity,
let’s suppose our linear transformation has domain Rn and codomain Rn

so that we can represent T by an n × n matrix A. We then want to find
the scalars λ for which there is a solution to

Av = λv.

Equivalently, we want to find the λ’s for which there is a solution to

Av − λv = 0.

We can rewrite Av − λv as (A − λI)v: just distribute the v and notice
that λI is the matrix with all zeros except for λ’s on the diagonal, thus
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(λI)v = λv. So we want to find the λ’s for which there is a non-zero v
solving

(A− λI)v = 0.

Since A − λI is an n × n matrix, this equation has a non-zero solution
precisely when A − λI is not invertible: i.e., there is a non-zero solution
exactly when det(A− λI) = 0. Long story short, we have the following:

Proposition 10.2.
A scalar λ is an eigenvalue of A if and only if det(A− λI) = 0.

Example 10.2.
Find the eigenvalues of the matrix

A =

(
2 3
2 1

)
We want to find the values of λ for which

det(A− λI) = det

((
2 3
2 1

)
−
(
λ 0
0 λ

))
= det

((
2− λ 3
2 1− λ

))
is zero.

det

((
2− λ 3
2 1− λ

))
=0

=⇒ (2− λ)(1− λ)− 6 =0

=⇒ 2− 3λ+ λ2 − 6 =0

=⇒ λ2 − 3λ− 4 =0

=⇒ (λ− 4)(λ+ 1) =0

Thus our eigenvalues are λ = 4 and λ = −1.
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Once the eigenvalues of A are known, we can then search for the
eigenvectors.

Example 10.3.
Find the eigenvectors associated with eigenvalue λ = 4 for the ma-
trix

A =

(
2 3
2 1

)
.

We are trying to find the solutions to Av = 4v, or equivalently
(A− 4I)v = 0. That is, we want to find the solutions to the homoge-
neous system(

2− 4 3
2 1− 4

)(
x
y

)
=

(
−2 3
2 −3

)(
x
y

)
=

(
0
0

)
.

Putting the coefficient matrix into RREF we have(
1 −3/2
0 0

)(
x
y

)
=

(
0
0

)
Thus the eigenspace of this matrix, associated with the eigenvec-

tor 4, is {(
x
y

) ∣∣∣∣x− 3

2
y = 0

}

Exercise 10.2.
Find the eigenvectors associated with eigenvalue λ = −1 for the
matrix

A =

(
2 3
2 1

)
.

Perhaps unsurprisingly (since eigenvalues are related to determinants),
eigenvalues for triangular matrices are very easy to compute.
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Theorem 10.3.
If A is a triangular matrix, then the eigenvalues of A are the entries on the
diagonal.

Proof.
Suppose that A is a triangular matrix with diagonal entries a11, a22,
..., ann. Then A − λI is also a triangular matrix, but with diagonal
entries a11 − λ, a22 − λ, ..., ann − λ. Thus

det(A− λI) = (a11 − λ)(a22 − λ) · · · (ann − λ).

This will only be zero when one of the factors is zero, that is when
λ equals aii for some diagonal entry aii.

Example 10.4.
The eigenvalues of 

3 2 1 1 0
0 −1 0 0 0
0 0 0 2 2
0 0 0 5 0
0 0 0 0 3


are 3, −1, 0, 5, and 3.

Example 10.5.
Find the eigenvalues and associated eigenvectors of the following
matrix:

A =

2 1 3
0 2 1
0 0 1

 .
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Thanks to the previous theorem we can easily determine that the
eigenvalues are 2 and 1. Now we simply need to find the associated
eigenvectors.

For the eigenvalue λ = 2 we need to solve the equation (A −
2I)v = 0, 0 1 3

0 0 1
0 0 −1

xy
z

 =

0
0
0


Putting the matrix into RREF, this system is equivalent to0 1 0

0 0 1
0 0 0

xy
z

 =

0
0
0


Thus the eigenspace associated to 2 is

x0
0

∣∣∣∣x ∈ R


For the eigenvalue λ = 1 we need to solve the equation (A −

I)v = 0, 1 1 3
0 1 1
0 0 0

xy
z

 =

0
0
0


This is equivalent to solving the system1 0 2

0 1 1
0 0 0

xy
z

 =

0
0
0


and so the eigenspace associated to 1 is

xy
z

∣∣∣∣x = −2z, y = −z, z ∈ R



In our motivating example at the start of the lecture, notice that the
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eigenvectors for

A =

3 1 1
2 1 2
0 1 0


formed a basis for R3. Even though this doesn’t happen in Example 10.4,
notice that the eigenvectors associated to different eigenvalues are lin-
early independent. This is true in general.

Theorem 10.4.
If v1, v2, ..., vm are eigenvectors associated with distinct eigenvalues λ1,
λ2, ..., λm of A, then {v1, v2, ..., vm} is a linearly independent set.

Proof.
Suppose instead that {v1, v2, ..., vm} is linearly dependent. Rearrang-
ing the order of eigenvectors and eigenvalues if necessary, we may
assume that {v1, v2, ..., vr} is linearly independent (it could be that
r = 1) and {v1, v2, ..., vr, vr+1} is linearly dependent. That is, there
exist scalars µ1 through µr such that

vr+1 = µ1v1 + · · ·+ µrvr.

If we apply A to both sides of the equation we have

Avr+1 = A(µ1v1 + · · ·+ µrvr)

=⇒ λr+1vr+1 = µ1λ1v1 + · · ·+ µrλrvr

But notice that if we multiply both sides of

vr+1 = µ1v1 + · · ·+ µrvr

by λr+1 we have

λr+1vr+1 = µ1λr+1v1 + · · ·+ µrλr+1vr.

Thus

µ1λ1v1 + · · ·+ µrλrvr = µ1λr+1v1 + · · ·+ µrλr+1vr.
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Subtracting the right-hand side from the left-hand side gives

µ1(λ1 − λr+1)v1 + · · ·+ µr(λr − λr+1)vr = 0.

But this is a contradiction since {v1, ..., vr} is a linearly independent
set.

10.4 Application: The PageRank Algorithm
Our initial motivation for finding eigenvectors and eigenvalues was to
try to find a basis with respect to which a linear transformation becomes
diagonal. The first time you learn linear algebra, however, it’s proba-
bly difficult to appreciate why this is something special that you might
care about. In this section we will outline another interesting application
of eigenvectors and eigenvalues. The PageRank algorithm is used by
Google to determine the “importance” of a webpage, which determines
where the page lands on the list Google presents you after searching.

To each webpage containing a certain phrase we will associate a num-
ber; the higher the number is, the more important the page is. In order to
determine these numbers we will have to solve an equation of the form
Ax = x. That is, we need to find an eigenvector with eigenvalue 1 for a
particular matrix.

The problem is that ifAwas allowed to be any arbitrary matrix, there’s
no guarantee that 1 is an eigenvalue. However we can get around this
issue if we make sure our matrixA satisfies the hypotheses of the Perron-
Frobenius theorem.

The Perron-Frobenius Theorem

The Perron-Frobenius theorem says that if we have a square matrix A
with the property that each entry aij is positive, then we know a good bit
of information about the eigenvalues of A.

Theorem 10.5 (The Perron-Frobenius Theorem).
Suppose that A is a matrix with real, positive entries. Then the following
properties hold:
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(a) A has a real eigenvalue ρ with the property that for every other eigen-
value λ, whether λ is real or complex, |λ| < ρ. (The absolute value of
a complex number is |x + iy| =

√
x2 + y2.) We call ρ the dominant

eigenvalue of A.

(b) There exists an eigenvector v0 associated to eigenvalue ρ that contains
only positive entries.

(c) The eigenspace of ρ has dimension 1, so all other eigenvectors with
eigenvalue ρ are scalar multiples of the v0 from part (b).

(d) The eigenvectors of every other eigenvalue of A do not have all posi-
tive entries: the only eigenvectors of A with positive entries are scalar
multiples of the v0 from part (b).

The proof of the Perron-Frobenius theorem involves some more ad-
vanced mathematics, so we won’t give it here, but we will make use of
the theorem. One very important consequence of the Perron-Frobenius
theorem is the existence of a solution to the equation Ax = x if A has
the property that in addition to having only positive entries, the entries
in each column of A sum up to 1. Matrices with this property are called
stochastic matrices or sometimes Markov matrices.

Example 10.6.
The following matrices are stochastic:1/2 1/8 1/2

1/4 3/8 3/16
1/4 1/2 5/16

 (
0.2 0.13
0.8 0.87

)

Remark.
The word stochastic is basically a synonym for the word random. Ma-
trices with positive (or more generally non-negative) entries that
add up to 1 come up in probability theory and statistics when study-
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ing certain random phenomena, such as a coin toss or a roll of dice,
which is why these matrices are called stochastic.

Theorem 10.6.
If A is a positive, stochastic matrix (i.e., a square matrix with positive

entries where the entries in each column sum up to 1), then ρ = 1 is
the dominant eigenvalue of A guaranteed to exist by the Perron-Frobenius
theorem.

Just to reiterate, the Perron-Frobenius theorem and Theorem 10.6 promise
us the following: If A is a square matrix where every entry of A is posi-
tive and the sums of the entries in each column add up to 1, then 1 is the
dominant eigenvalue of the matrix. Thus, by the Perron-Frobenius theo-
rem, the only eigenvectors with all positive entries are scalar multiples of
an eigenvector with eigenvalue 1. The existence of such an eigenvector
is essential for the PageRank algorithm used by Google to determine the
“importance” of webpages.

PageRank

When you search Google for a particular phrase, such as algebra, Google
returns a list of web pages containing that phrase. As you know from
experience, this list of web pages is typically very long. For example,
searching for algebra brought back 81,900,000 results. You also know from
experience that, usually, the most helpful pages show up near the top of
the list, and things on later pages are typically not what you’re looking
for. How is it that Google is able to determine out of all of the web pages
on the Internet, which ones are about algebra? And of those concerning
algebra, how does Google determine which ones are most important and
should go to the top of the list?

To determine which webpages contain algebra, or any other phrase,
Google uses a program called a web crawler (or spider) which basically
starts from one web page (or collection of webpages) and makes note of
the words that appear on that page, and also the links that page has to
other pages. The web crawler then follows each link on the web page,
and starts the process over again: noting what text is on the webpage,
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and what other pages the page links to, then follows those links and re-
peat the process.

In this way Google is able to build a large database of web pages and
what content is on them. This is relatively easy to do. (If you like to write
code, writing a simple web crawler is a fun afternoon project.)

The more interesting thing is how Google ranks the web pages to
present you a list with the most relevant pages at the top. Google does
this using an algorithm called PageRank, which is technically intellectual
property of Stanford University, where Google founders Larry Page and
Sergey Brin were graduate students before they started Google.

PageRank basically works by solving an eigenvector/eigenvalue prob-
lem to determine which web pages are important. The idea is that all of
the webpages that contain a given phrase, like algebra, will correspond
to entries in one enormous vector. The entries in the vector will be real
numbers that describe how important the corresponding page is.

For example, just for the sake of simplicity let’s suppose there were
only six webpages that mentioned algebra. Let’s call these page 1, page 2,
..., page 6. We will build a vector with entries (x1, x2, ..., x6) where xi tells
us how important page i is.

Now we will build a matrixA according to the following rules: if page
j does not have a link to page i, then aij = 0. If page j links to k different
pages, then aij = 1/k for each page i that page i links to. Multiple links to
the same page are ignored; links from a page to itself are also ignored.

The idea is that each webpage has one “vote” that it can distribute to
the other pages it links to. So if page 2 only links to page 6, then a62 = 1.
If page 3 links to pages 1, 2, 5, and 6, then a13 = a23 = a53 = a63 = 1/4.

We can represent this information describing how pages link to one
another with a graph, which is a collection of nodes (also called vertices)
representing our web pages, and edges, arrows from one node to another
if there’s a link between the corresponding pages. Let’s say that our six
pages are related to one another as indicated below:

1 2 3

4 5 6
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We would then associate the following matrix:

A =


0 0 1/4 0 0 0
1/3 0 1/4 1/2 0 0
0 0 0 0 1 0
1/3 0 0 0 0 0
1/3 0 1/4 1/2 0 1
0 1 1/4 0 0 0


Now, we want to consider the vector

x =


x1
x2
x3
x4
x5
x6


where xi tells us how important page i is. This notion of “importance”
should follow the following two rules: the more pages that link to you,
the more important you are; the more important the pages linking to you
are, the more important you are. Figuring out what the xi’s should be
then seems a bit tricky because we have to know how important all the
other pages are before we can figure out how important a particular page
is. So how can we get started figuring out which pages are important?

Let’s first make an observation about what we get when we multiply
A and x:

Ax =


0 0 1/4 0 0 0
1/3 0 1/4 1/2 0 0
0 0 0 0 1 0
1/3 0 0 0 0 0
1/3 0 1/4 1/2 0 1
0 1 1/4 0 0 0




x1
x2
x3
x4
x5
x6

 =



x3/4
x1/3 + x3/4 + x4/2

x5
x1/3

x1/3 + x3/4 + x4/2 + x6
x2 + x3/4


Notice that the entries of Ax are what we want the xi to be. That is, we
want to find the xi’s that solve the equation Ax = x, so we have an eigen-
vector/eigenvalue problem.

A few obvious issues crop up at this point.

1. It may be that Ax = x doesn’t have a solution, so how can be sure 1
is an eigenvalue of A?



CHAPTER 10. EIGENVECTORS & EIGENVALUES 229

2. Even if 1 is an eigenvalue of A, what happens if some of the en-
tries of xi are negative and some are positive? What would it mean
if one webpage can have a positive importance and another has a
negative importance?

3. Assuming that we can find eigenvectors with only positive entries,
what happens if there are multiple, linearly independent such eigen-
vectors? Each one would correspond to a different notion of which
webpages are important. Which one is the “right” one to use?

We can sidestep exactly these issues if we can apply the Perron-Frobenius
theorem. The Perron-Frobenius theorem requires that the entries in our
matrix are all positive, however, and our matrix is generally going to
have lots of zeros in it. If we want to use the Perron-Frobenius theorem,
then, we will have to modify our matrix a little bit to get rid of those
zeros.

We will modify A in three steps:

1. If there is a column of A that consists entirely of zeros, then replace
each entry in that column with 1/n, if A is an n× n matrix.

Having a column of all zeros means that we have a page that doesn’t
link to any other page. Intuitively we can think of this as meaning
that page doesn’t think any other pages are important, so it evenly
distributes its vote to every page because no page is considered
more important than another.

2. We need to get rid of any zeros in a column that isn’t all zeros.
We will do this by adding a matrix of all positive numbers to our
matrix. We’ll let this matrix be denoted B, and B will be the n × n
matrix where every entry is 1/n.

3. At this point if we just replaced A with A + B (after replacing
columns of zeros in A as described in the first step), we would have
a matrix with all positive entries, but the entries in each column
might not add up to 1 any more. To fix this we will actually replace
A with (1 − t)A + tB where 0 < t < 1. This will give us a matrix
where we can apply the Perron-Frobenius theorem.

The value of t is slightly arbitrary in the sense that we will get a matrix
satisfying the hypotheses of the Perron-Frobenius theorem regardless of
what t is (provided 0 < t < 1). We might get different rankings for our
pages if we choose different values of t, however, so we could try lots of
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different values of t to try to figure out which value of t gave us rankings
we liked. Supposedly Google uses the value t = 0.15, so that’s what we’ll
use in these notes as well.

Continuing with our example above, our original matrix A will be re-
placed by the matrix 0.85A+0.15B, whereB is the 6×6 matrix consisting
entirely of entries 1/6. This gives us the matrix

1/40 1/40 19/80 1/40 1/40 1/40
37/120 1/40 19/80 9/20 1/40 1/40
1/40 1/40 1/40 1/40 7/8 1/40

37/120 1/40 1/40 1/40 1/40 1/40
37/120 1/40 19/80 9/20 1/40 7/8
1/40 7/8 19/80 1/40 1/40 1/40


Now that we have a stochastic matrix, we can calculate the eigenvec-

tor associated to the dominant eigenvalue 1. In our particular example
this is (approximately) the following:

x1
x2
x3
x4
x5
x6

 =


0.0820507243340146
0.125803704283873
0.268473996865951
0.0482477052279708
0.286439996312884
0.188983872975307


The numbers here are ugly, but we don’t actually care about what the
particular numbers are: we only care about the ordering they tell us. The
larger xi is, the more important page i is. Here we see that pages, ranked
from most important to least important according to the vector above, is

1. Page 5

2. Page 3

3. Page 6

4. Page 2

5. Page 1

6. Page 4

So if these six pages were the webpages mentioning the word algebra,
then this ranking would be used by Google to determine that Page 5 was
the most imporant, while Page 4 was the least important.
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10.5 Practice Problems
Problem 10.1.
Compute the eigenvalues and eigenspaces of the following matrices.

(a)

A =

(
3 2
1 4

)
(b)

B =

(
0 1
1 1

)
(c)

C =

0 1 1
1 2 3
1 1 2


(d)

D =

1 2 3
0 2 2
0 0 2


Problem 10.2.
Consider the linear transformation T : R3 → R3 given by byxy

z

 7→

 2x− y
3x+ 2y + 7z
6x+ y + 8z


Find a basis B of R3 for which T is represented by a diagonal matrix, and
write down the matrix AB.



11The Characteristic Polynomial
In this lecture we describe the characteristic polynomial which is a poly-
nomial we can associate to a matrix whose roots are precisely the eigen-
values of the matrix.

11.1 Algebraic Background
Given any polynomial, a root of the polynomial is a value which makes
the polynomial equal to zero. For example, the roots of x3 + 2x2 − x − 2
are x = −2, x = 1 and x = −1. When a polynomial has a root, we can
always factor the polynomial into smaller pieces:

Theorem 11.1.
The polynomial f(x) has a root of x = a (i.e., f(a) = 0) if and only if f(x)
factors as f(x) = (x− a) · g(x) for some polynomial g(x).

Proof.
First suppose that a is a root of f . By polynomial long division, we
can always divide x− a into f(x) to write f(x) = (x− a)g(x) + r(x)
where f(x) is a polynomial of lesser degree than x − a. Since x − a
has degree 1 and the degree of r(x) has to have degree less than
1, it must be that r(x) is in fact a constant: say r(x) = r. Thus
f(x) = (x − a)g(x) + r. By assumption, however, f(a) = 0, but
plugging a into the above we have f(a) = (a − a)g(a) + r = r, thus
r = 0.

If x − a is a factor of f(x), then clearly x = a is a root: f(a) =
(a− a)g(a) = 0.

So each root of a polynomial contributes a linear factor. We say that a
polynomial factors completely if it can be written as a product of linear
factors.

232
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Given a polynomial with real coefficients, you know that sometimes
the polynomial will factor completely and sometimes it won’t: some-
times there are irreducible factors. For example, the polynomial

x3 + 2x2 − x− 2

factors as (x+2)(x−1)(x+1), but if we change the signs slightly to obtain

x3 + 2x2 + x+ 2

then the best we can do is to factor this as (x + 2)(x2 + 1). Here x2 + 1 is
an irreducible factor: we can’t break the polynomial down any further.

It turns out that we can always factor polynomials completely if we
are okay with having complex roots. For example, x2 + 1 can factor as
(x−i)(x+i), and so x3+2x2+x+2 factors completely as (x+2)(x−i)(x+i).

The fact that this always happens is a significant result called the fun-
damental theorem of algebra. The proof of the fundamental theorem
of algebra requires more advanced mathematical techniques than what
we’ve seen in class, so we won’t give a proof.

Theorem 11.2 (The Fundamental Theorem of Algebra).
Every polynomial with complex coefficients factors completely if complex
roots are allowed.

Notice that since each root gives us a linear factor of the polynomial,
each root contributes to the degree of the polynomial. Thus a polynomial
of degree n can not have any more than n distinct roots.

It may happen that when we factor a polynomial completely some of
the roots are “repeated.” For example, x2 − 6x + 9 factors as (x − 3)2. If
we group all of the repeated factors together so that the polynomial is
written as

(x− a1)
m1 · (x− a2)

m2 · · · (x− an)
mn

where each aj is distinct, then we call mj the multiplicity of the root aj .
Each root contributes its multiplicity to the degree of the polynomial,

so in fact every polynomial of degree n has exactly n roots if we count by
a root’s multiplicity.
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11.2 The Characteristic Polynomial
In the last lecture we saw that the eigenvalues of a matrix A were pre-
cisely the values of λ for which det(A−λI) = 0. This expression, det(A−
λI), is a polynomial of degree n in λ.

Theorem 11.3.
If A is an n× n matrix, then det(A− λI) is a polynomial of degree n.

(Sketch of proof).
We can perform an LUP factorization of A so that the diagonal en-
tries of A − λI have the form ajj − λ + cj (the cj’s appear when we
try to zero out below the diagonal), and L and P are matrices just of
numbers (no λ’s). Hence the determinant of U will be

(a11 − λ+ c1) · (a22 − λ+ c2) · · · (ann − λ+ cn)

which is clearly a polynomial in λ of degree n. The determinants
of L and P are just numbers, so they don’t change the fact that our
determinant of A− λI is a polynomial.

The polynomial det(A−λI) is called the characteristic polynomial of
A. We will denote the characteristic polynomial by pA(λ), or sometimes
pA(x) if we want to use x as the variable instead of λ – this is equivalent
to det(A− xI).

Notice that the eigenvalues of a matrix A are precisely the roots of the
characteristic polynomial pA(x). The multiplicity of a root is called the
algebraic multiplicity of the eigenvalue. The geometric multiplicity of
an eigenvalue is the dimension of the corresponding eigenspace.

Since det(A− λI) is a polynomial of degree n, we see that every n× n
square matrix has at most n distinct eigenvalues, and has exactly n eigen-
values (not necessarily distinct) if we count by (algebraic) multiplicity.
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Example 11.1.
Find the characteristic polynomial, and the algebraic and geometric
multiplicities of each eigenvalue of the matrix 1 −2 −2

2 6 3
−2 −3 0

 .

The characteristic polynomial is

pA(x) =det(A− xI)

=det

1− x −2 −2
2 6− x 3
−2 −3 −x


=(1− x) · det

(
6− x 3
−3 −x

)
− (−2) · det

(
2 3
−2 −x

)
+ (−2) · det

(
2 6− x
−2 −3

)
=(1− x) · ((6− x)(−x) + 9) + 2 · (−2x+ 6)− 2 · (−6 + 2(6− x))

=(1− x) · (x2 − 6x+ 9) + 2 · (6− x)− 2 · (6− x)

=(1− x) · (x− 3)2

Thus the eigenvalues are 1 and 3, where 1 has algebraic multiplicity
1, and 3 has algebraic multiplicity 2.

To get the geometric multiplicities we need to find the dimen-
sions of the corresponding eigenspaces.

For 1, the eigenspace is the set of solutions to (A− I)v = 0: 0 −2 −2
2 5 3
−2 −3 −1

xy
z

 =

0
0
0


The coefficient matrix in RREF is1 0 −1

0 1 1
0 0 0


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so the eigenspace is 
 z
−z
z

∣∣∣∣ z ∈ R

 .

This is a one-dimensional subspace of R3, so the geometric multi-
plicity of the eigenvalue 1 is 1.

For the eigenvalue 3, to find the eigenspace we need to find the
set of solutions to (A− 3I)v = 0:−2 −2 −2

2 3 3
−2 −3 −3

xy
z

 =

0
0
0


The RREF of the matrix is 1 0 0

0 1 1
0 0 0


so the eigenspace is 

 0
−z
z

∣∣∣∣ z ∈ R

 ,

and the geometric multiplicity of 3 is 1.

Notice in the previous example that the eigenvalue 3 had a larger al-
gebraic multiplicity than its geometric multiplicity. This is true in gen-
eral:

Theorem 11.4.
The geometric multiplicity of an eigenvalue is less than or equal to the
eigenvalue’s algebraic multiplicity.

Proof.
Suppose A is an n × n matrix and λ is an eigenvalue of A with ge-
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ometric multiplicity m. Suppose that {v1, v2, ..., vm} form a basis for
the eigenspace of λ. Now consider the basis B for Rn formed by tak-
ing the v1, ..., vm vectors, plus some other vectors wm+1, wm+2, ..., wn.
With respect to this basis we can represent A as

AB =



λ 0 0 0 · · · 0 0 α1,m+1 · · · α1,n

0 λ 0 0 · · · 0 0 α2,m+1 · · · α2,n

0 0 λ 0 · · · 0 0 α3,m+1 · · · α3,n

. . .
0 0 0 0 · · · λ 0 αm−1,m+1 · · · αm−1,n

0 0 0 0 · · · 0 λ αm,m+1 · · · αm,n

0 0 0 0 · · · 0 0 αm+1,m+1 · · · αm+1,n
...

0 0 0 0 · · · 0 0 αn−1,m+1 · · · αn−1,n

0 0 0 0 · · · 0 0 αn,m+1 · · · αn,n


We can think of this as a upper block triangular matrix,

AB =

(
λI C1

0 C2

)
The characteristic polynomial of this matrix is then

det(AB − xI) =det(λI − xI) · det(C2 − xI)

=(λ− x)k · pC2(x).

The algebraic multiplicity of λ is thus at least k, but it may be bigger
if pC2(x) has λ as a root.

Remark.
You may be wondering how we know that AB and A in the proof
above have the same characteristic polynomial. This will be ex-
plained in the next lecture.
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Example 11.2.

(a) Find the characteristic polynomial of

A =

 4 10 8
−2 −4 −3
0 0 3

 .

The characteristic polynomial pA(x) is the determinant det(A −
xI), so we need to take the determinant of the matrix

A− xI =

4− x 10 8
−2 −4− x −3
0 0 3− x


We can then take the determinant using cofactor expansion. Since
the bottom row is mostly zeros, we will do the expansion along
this row.

pA(x) =det(A− xI)

=(3− x) · det
(
4− x 10
−2 −4− x

)
=(3− x) · ((4− x)(−4− x) + 20)

=(3− x) ·
(
−16− 4x+ 4x+ x2 + 20

)
=(3− x) ·

(
x2 + 4

)
=− x3 + 3x2 − 4x+ 12

(b) Find the algebraic multiplicity of each eigenvalue of A.

The eigenvalues of A are the roots of the characteristic polyno-
mial, pA(x). From the above we see that our characteristic poly-
nomial,

pA(x) = −x3 + 3x2 − 4x+ 12,

factors as
pA(x) = (x2 + 4)(3− x).
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Notice that x2 + 4 factors as (x− 2i)(x+ 2i), thus

pA(x) = (x− 2i)(x+ 2i)(3− x)

so the roots of pA(x) – aka the eigenvalues of A – are 2i, −2i, and
3. Each of these has algebraic multiplicity 1.

To find the geometric multiplicities we need to find the dimen-
sion of each eigenspace.

(c) Find the geometric multiplicity of the eigenvalue 2i.

For the eigenvector 2i, the eigenspace is the set of solutions to

(A− 2iI)v = 0.

Thus we need to solve the system4− 2i 10 8
−2 −4− 2i −3
0 0 3− 2i

xy
z

 =

0
0
0

 .

Even though the entries of this matrix are complex numbers,
we still solve this system like we would if the matrix had real
entries: we put the matrix into RREF.

Let’s first swap the first and second rows: −2 −4− 2i −3
4− 2i 10 8

0 0 3− 2i


Now multiply the first row by −1/2: 1 2 + i −3/2

4− 2i 10 8
0 0 3− 2i


Now subtract 4− 2i times the first row from the second. Notice
that (4− 2i) · (2 + i) = 8 + 4i− 4i− 2i2 = 10.1 2 + i −3/2

0 0 14− 3i
0 0 3− 2i


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Now divide the second row by 14− 3i:1 2 + i −3/2
0 0 1
0 0 3− 2i


And we can then zero out the entries in the third column of the
first and third rows: 1 2 + i 0

0 0 1
0 0 0


This is our matrix in RREF. So our original system is equivalent
to the system 1 2 + i 0

0 0 1
0 0 0

xy
z

 =

0
0
0


which means

x =− (2 + i)y

z =0

so the eigenspace associated with the eigenvalue 2i is
−(2 + i)y

y
0

∣∣∣∣ y ∈ C

 .

Notice the free variable y above we allowed to be in C instead
of just R. Here our eigenvectors necessarily have complex val-
ues, so we consider our vectors as living inside of C3 instead
of R3. This means our eigenspace is one-dimensional complex
subspace; the geometric multiplicity is 1.
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Exercise 11.1.
Find the geometric multiplicities of the eigenvalues −2i and 3 of the
matrix in the example above.

Complex conjugates

We say that two complex numbers are conjugates if they have the same
real part, but their imaginary parts are the negatives of one another. For
example, 3 + 2i and 3 − 2i are complex conjugates. Given any complex
number z = x + iy, its complex conjugate is denoted by writing a bar
over the number: z = x+ iy = x− iy.

Notice that the conjugate of a real number is the same number: if
z = x+ 0i, then

z = x = x+ 0i = x− 0i = x = z.

Lemma 11.5.
The map T : C → C given by T (z) = z is a real linear map (but it is not
complex linear).

Proof.
Let z = x + iy and z′ = x′ + iy′ be any complex numbers, and let λ
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be any real number. Then

T (λ z) =T (λ(x+ iy))

=T (λx+ iλy)

=λx+ iλy

=λx− iλy

=λ(x− iy)

=λx+ iy

=λT (z)

T (z + z′) =T (x+ iy + x′ + iy′)

=T ((x+ x′) + i(y + y′))

=((x+ x′) + i(y + y′))

=(x+ x′)− i(y + y′)

=x− iy + x′ − iy′

=x+ iy + x′ + iy′

=T (z) + T (z′)

Exercise 11.2.
Convince yourself that complex conjugation is not complex linear
by considering any example of λz where λ and z are both complex
numbers with non-zero imaginary part.

Exercise 11.3.
Show that if z and z′ are complex numbers, then z · z′ = z · z′.
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Theorem 11.6.
If p(x) is a polynomial with real coefficients and z is a complex root of p(x),
then its conjugate z is also a complex root of p(x).

Proof.
Write

p(x) =
n∑

k=0

aix
k.

Now suppose that p(z) = 0. We need to show that p(z) = 0 as well,
but this is simple to check:

p(z) =
n∑

k=0

aiz
k

=
n∑

k=0

aizk (by the exercise above)

=
n∑

k=0

aizk (by linearity)

=
n∑

k=0

akzk (by linearity)

=p(z)

=0

=0

So the complex roots of a real polynomial come in pairs of complex
conjugates. Applying this to characteristic polynomials we have the fol-
lowing:
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Corollary 11.7.
The complex eigenvalues of a matrix with real entries come in complex
conjugate pairs.

This is not true for matrices with complex entries, however. For ex-
ample, 1 0 0

0 i 0
0 0 −2 + 3i


has eigenvalues 1, i, and −2+3i, but does not have the complex conjugates
−i and −2− 3i as eigenvalues.

11.3 Eigenvalues Without Determinants
We end this lecture by mentioning an alternative technique for comput-
ing eigenvectors and eigenvalues without using determinants. There is
some practical computational reason for wanting to do this: determi-
nants are difficult to calculate. By hand it’s practically impossible to
calculate the determinant of a relatively small matrix, like say 10 × 10:
in principle we can do it, but in practice it’s going to be an unrealistic
amount of work. If we can instead turn this question of finding eigen-
vectors and eigenvalues into a question of solving a system of equations
without first calculating any determinants, then the problem becomes a
bit more tractable.

In order to do this, however, we need to make a quick detour to talk
about polynomials of matrices.

Polynomials of Matrices

Recall that matrices can be mulitiplied by scalars, added together, and
can be multiplied – at least if the sizes of the matrices match up. In par-
ticular, two n × n matrices can always be multiplied together. We can
thus define what it means to take powers of matrices:

Ak = A · A · A · · ·A︸ ︷︷ ︸
k copies of A
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Notice that these three operations: multiplying by a number, raising to a
power, and adding, are exactly the operations performed by polynomi-
als. Thus it almost makes sense to evaluate a polynomial at a matrix. For
example, if A is a square matrix then an expression like

A3 − 3A2 + A

makes sense: this is something we can compute. This is like evaluating
the polynomial p(x) = x3 − 3x2 + x at the matrix A. The one thing that
might be a cause for concern is what should happen if we add a constant
at the end of the polynomial: e.g., q(x) = x3−3x2+x+2. How should we
add 2 to our matrix? The way around this is to think about the constant
factor as being multiplied by x0,

q(x) = x3 − 3x2 + x1 + 2x0.

So we should figure out how to interpret A0. If we want the rule Aj ·
Ak = Aj+k to hold, then this only leaves one option for what A0 could
be: A0 is the identity matrix I . So when we see a constant added in our
polynomial, we should interpret this as the constant times the identity
matrix.

Example 11.3.
Let p(x) be the polynomial

p(x) = 3x2 + 6x− 4

and let A be the matrix

A =

1 −1 3
0 2 1
2 2 0


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Then p(A) is the matrix

p(A)

=3A2 + 6A− 4I

=3

1 −1 3
0 2 1
2 2 0

2

+ 6

1 −1 3
0 2 1
2 2 0

− 4

1 0 0
0 1 0
0 0 1


=

21 9 6
6 18 6
6 6 24

+

 6 −6 18
0 12 6
12 12 0

−

4 0 0
0 4 0
0 0 4


=

23 3 24
6 26 12
18 18 20



Eigenvalues without determinants

Now suppose that A is an n × n matrix and let v be any non-zero vector
in Rn. Notice that

{v, Av,A2v,A3v, ..., Anv}
is a set of n+1 vectors. Since we are in n-dimensional space, this set must
be linearly dependent. That is, there is some choice of scalars cn, cn−1, ...,
c1, c0, not all of which are zero, so that

cnA
nv + cn−1A

n−1v + · · ·+ c1Av + c0v = 0.

Factoring out the v’s this becomes(
cnA

n + cn−1A
n−1 + · · ·+ c1A+ c0I

)
v = 0.

The expression

cnA
n + cn−1A

n−1 + · · ·+ c1A+ c0I

is just some n× n matrix: it’s the polynomial

p(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0

evaluated at the matrix A. Now factor this polynomial completely – this
might require using complex factors – to get something like

p(x) = (x− λ1)
m1 · (x− λ2)

m2 · · · (x− λk)
mk .
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So our system above,(
cnA

n + cn−1A
n−1 + · · ·+ c1A+ c0I

)
v = 0,

can be rewritten as

(A− λ1I)
m1 · (A− λ2I)

m2 · · · (A− λkI)
mkv = 0

Now, since v ̸= 0 but is getting mapped to zero, some factor (A − λjI)
above must not be injective.

Remark.
The last statement above might be easier to see if we think ofA−λjI
as a linear transformation: say Tj : Rn → Rn is given by Tj(v) =
(A− λjI)v. Then the above says

Tm1
1 ◦ Tm2

2 ◦ · · · ◦ Tmk
k (v) = 0.

Since v ̸= 0, at least one of the Tj’s must not be injective. It’s not
hard to show that the composition of injective maps is injective, so
if all of the maps above are injective it would have to be the case
that v = 0, but this is a contradiction.

If A − λjI is not injective, then λj is an eigenvalue of A. (If you look
back at our definition of eigenvectors and eigenvalues, this is basically
the definition in disguise.)

Notice we’re not saying that the v we started with is an eigenvector:
v is any arbitrarily chosen, non-zero vector so we could very well have
picked one that wasn’t an eigenvector! But now we do have the eigen-
values, so we can proceed to find the eigenvectors as before.

Example 11.4.
Find the eigenvalues of the following matrix without calculating
any determinants:

A =

 1 −2 −1
−1/4 3/2 −1/4
1/2 1 5/2

 .



CHAPTER 11. THE CHARACTERISTIC POLYNOMIAL 248

We can choose v to be any non-zero vector, so let’s just choose

v =

1
1
1

 .

Now we consider the vectors {v, Av,A2v,A3v}:

v =

1
1
1


Av =

−2
1
4


A2v =

−8
1
10


A3v =

−20
1
22



Since we have four 3-dimensional vectors, they can’t form a linearly
independent set, so there must be some non-zero solution to the
equation

c3

−20
1
22

+ c2

−8
1
10

+ c1

−2
1
4

+ c0

1
1
1


This means we want to solve the system

−20 −8 −2 1
1 1 1 1
22 10 4 1



c3
c2
c1
c0

 =


0
0
0
0

 .
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Putting the 3× 4 matrix above into RREF gives1 0 −1/2 −3/4
0 1 3/2 7/4
0 0 0 0

 .

This means

c3 =1/2c1 + 3/4c0

c2 =− 3/2c1 − 7/4c0

If we take c1 = c0 = 4, then one non-zero solution of the system is
c3
c2
c1
c0

 =


5

−13
4
4

 .

So our equation above can be written as

5

−20
1
22

− 13

−8
1
10

+ 4

−2
1
4

+ 4

1
1
1

 = 0

Keeping in mind these vectors are A3v, A2v, Av and v we have

5A3v − 13A2v + 4Av + 4v = 0

Factoring out the v this is

(5A3 − 13A2 + 4A+ 4I)v = 0.

Thus we are considering the polynomial

5x3 − 13x2 + 4x+ 4

evaluated at A. This polynomial factors as

(5x+ 2)(x− 1)(x− 2)
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So we can rewrite (5A3 − 13A2 + 4A+ 4I)v = 0 as

(5A+ 2I) · (A− I) · (A− 2I)v = 0

If we multiply everything by 1/5, we can rewrite this equation as(
A+

2

5
I

)
· (A− I) · (A− 2I)v = 0

just to make the first factor look like the other two.
Now we have three candidates for eigenvalues: −2/5, 1, and 2. We

aren’t guaranteed that all of these are in fact eigenvalues. We will
only have an eigenvalue if (A − λI)v has a non-zero solution. But
now this is something we can check by solving the systems

(A+ 2/5I)v = 0 (A− I)v = 0 (A− 2I)v = 0.

Putting each of the matrices into RREF we have1 0 0
0 1 0
0 0 1

 1 2 1
0 0 0
0 0 0

 1 0 2
0 1 1/2
0 0 0


for A+ 2/5I , A− I , and A− 2I , respectively. From these RREF’s we
see that (A+ 2/5I)v = 0 has no non-zero solutions, while (A− I)v =
0 and (A − 2I)v = 0 both do have non-zero solutions. Hence the
eigenvalues of our matrix are 1 and 2.

The above example seems like a lot of work, but the point is that for
large matrices this procedure is actually less work than calculating deter-
minants.
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11.4 Practice Problems
Problem 11.1.
Compute the characteristic polynomial, as well as the algebraic and geo-
metric multiplicities of each eigenvalue for the matrices below:

(a)

A =

 4 1 1
−8 −2 −4
2 1 3


(b)

B =

 5 1 0
−11 −2 −1
3 1 2


(c)

C =

 5 0 −1
−3 4 3
1 0 3


(d)

D =

 9 2 1
−13 −1 −2
3 1 4





12
Similarity and Diagonalization
12.1 Introduction
We had seen before that a linear transformation T : Rn → Rm can be
represented as a matrix, but we can only do this after choosing bases for
V and W and making a different choice of basis will give us a different
matrix.

In this lecture we describe a relationship between different matrices
that actually represent the same linear transformation, just with respect
to different bases.

We had seen before in Lecture 15 that every change-of-basis matrix is
invertible. We can in fact interpret every invertible matrix as some change
of basis matrix: given any invertible n× n matrix A with columns a1, a2,
..., an, A is the change of basis matrix from the standard basis e1, ..., en to
the basis given by a1, ..., an.

12.2 Similarity
We say that two matrices A and B are similar if there exists some invert-
ible matrix P such that

B = PAP−1.

Notice that this exactly means that A and B represent the same linear
transformation, but with respect to different bases. If we think of P as
the change of basis matrix from the standard basis to the basis given by
the columns of P , then the formula B = PAP−1 says that we get B by
first applying P−1 (switching from the basis given by the columns of P to
the standard basis), applying A, then switching back to the other basis.

One crucial property of similarity is that A and B = PAP−1 have the
same characteristic polynomial. This implies that A and B have the same
eigenvalues with the same algebraic multiplicities.

Theorem 12.1.
If A and B are similar matrices, then they have the same characteristic
polynomial.

252
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Proof.
Suppose B = PAP−1. Then the characteristic polynomial of B is

pB(x) =det(B − xI)

=det(PAP−1 − xI)

=det(PAP−1 − xPP−1)

=det((PA− xP )P−1)

=det((PA− P (xI))P−1)

=det(P (A− xI)P−1)

=det(P ) det(A− xI) det(P−1)

=det(P ) det(P−1) det(A− xI)

=det(P )
1

det(P )
det(A− xI)

=det(A− xI)

=pA(x)

Since the characteristic polynomial of a matrix is preserved by simi-
larity (i.e., changing basis), this means we can actually associate charac-
teristic polynomials to linear transformations: pick any basis you want,
determine the matrix representation of T : V → V , and calculate the
characteristic polynomial of that matrix. You will calculate the same
polynomial regardless of what basis you choose, since changing bases
just replaces your matrix with a similar matrix.

12.3 Diagonalization
We say that a matrix A is diagonalizable if it is similar to a diagonal
matrix. That is, if we can find a basis for which the linear transformation
T (v) = Av can be represented by a diagonal matrix D.

Example 12.1.
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The matrix

A =

−2 −5 4
2 5 −2
−1 −1 3


is diagonalizable. If we take

P =

1 1 −1
1 1 −1
1 2 −1

 P−1 =

 3 −1 −1
−1 0 1
1 −1 0


then it is easy to calculate that

PAP−1 =

1 0 0
0 2 0
0 0 3



Example 12.2.
The matrix

A =

2 1 0
0 2 0
0 0 2


is not diagonalizable. No matter what you take P to be, the matrix
PAP−1 will never be diagonal.

After seeing Example and Exam , the natural question to ask is if
we’re given a matrix A how can we determine if it is or is not diagonaliz-
able? If we figure out that the matrix is diagonalizable, how can we find
the matrix P so that PAP−1 is diagonal? These questions are answered
by the following theorem:

Theorem 12.2.
An n× n matrix A is diagonalizable if and only if A has n linearly inde-

pendent eigenvectors.
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Proof.
Suppose that A is diagonalizable. That is, there is some square ma-
trix P so that P−1AP is a diagonal matrix D. Notice that we can
write

D = P−1AP =⇒ PD = AP.

If we suppose the columns of P are the vectors v1, v2, ..., vn, then the
product AP may be written as

AP =

Av1 Av2 · · · Avn


While PD may be written as

PD =

λ1v1 λ2v2 · · · λnvn


where λ1, ..., λn are the diagonal entries of D. Since PD = AP this
means these two matrices are the same, hence each column is the
same, so

Av1 = λ1v1 Av2 = λ2v2 · · ·Avn = λnvn.

Now, since the vi are the columns of the invertible matrix P , the
vi are linearly independent (and hence are all non-zero), so these
equations say that the columns of the matrix P are n linearly inde-
pendent eigenvectors of A, and also that the entries of the diagonal
matrix D are exactly the eigenvalues of A.

For the converse, suppose now that A is a matrix with n linearly
independent eigenvectors, v1 through vn. Let P be the matrix whose
columns are these vectors. Notice that P must be invertible since is
a square matrix with linearly independent columns. Let D be the
diagonal matrix whose entries are the eigenvalues of A, given in the
order (from upper left-hand corner to lower right-hand corner) λ1,
λ2, ..., λn where λi is the eigenvalue of the eigenvector vi in the i-th
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column of A. Just as above,

PD =

λ1v1 λ2v2 · · · λnvn


and

AP =

Av1 Av2 · · · Avn

 .

Since Avi = λivi, these matrices are equal: PD = AP . Multiplying
both sides on the left by P−1 we have D = P−1AP , and so A is
diagonalizable.

The proof of Theorem 12.2 tells us that when a matrix is diagonaliz-
able, the corresponding diagonal matrix has the eigenvalues on the di-
agonal. (Although we could have figured this out already since similar
matrices have the same characteristic polynomial.)

Example 12.3.
Is the matrix

A =

0 −1 −2
0 1 0
1 1 3


diagonalizable? If so, find the diagonal matrix D and invertible ma-
trix P so that D = P−1AP .

We need to find the eigenvectors and eigenvalues of A, so we
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want to find the roots of the characteristic polynomial,

pA(x) =det(A− xI)

=det

−x −1 −2
0 1− x 0
1 1 3− x


=(−x) · det

(
1− x 0
1 3− x

)
+ 1 · det

(
−1 −2

1− x 0

)
=(−x) · (1− x)(3− x) + 2(1− x)

=(−x) · (3− 4x+ x2) + 2− 2x

=− x3 + 4x2 − 3x+ 2− 2x

=− x3 + 4x2 − 5x+ 2

This is our characteristic polynomial, but to find the roots (aka the
eigenvalues of A) we need to factor this polynomial. To do this, let’s
notice that if we factor a polynomial as

(x− λ1)(x− λ2) · · · (x− λk),

then when we expand this expression by multiplying everything
out, the constant term at the end will be the product of (−λ1)(−λ2) · · · (−λk).
So our candidates for what the λk might be can be determined by the
factors of the constant term.

Since our constant term here is 2, our candidates are 1 and 2.
Notice what happens when we plug in x = 1 into our polyno-

mial above: we get −1 + 4 − 5 + 2 = 0, so x − 1 is in fact a factor
of our polynomial. We could now use polynomial long division to
figure out what the other factor is, but let’s do something different.
Since x − 1 is a factor of −x3 + 4x2 − 5x + 2, let’s try to rewrite our
polynomial by breaking up the existing terms into pairs we can fac-
tor an x− 1 out of:

pA(x) =− x3 + 4x2 − 5x+ 2

=− x3 + x2 + 3x2 − 3x− 2x+ 2

=− x2(x− 1) + 3x(x− 1)− 2(x− 1)
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Now we can factor out these x− 1 factors

pA(x) =− x2(x− 1) + 3x(x− 1)− 2(x− 1)

=(−x2 + 3x− 2)(x− 1)

=− (x2 − 3x+ 2)(x− 1)

Now we can factor x2 − 3x + 2 a little more easily: x2 − 3x + 2 =
(x− 2)(x− 1). Putting this altogether our characteristic polynomial
factors as

pA(x) = −(x− 2)(x− 1)2.

Hence our eigenvalues are x = 2 (with algebraic multiplicity 1) and
x = 1 (with algebraic multiplicity 2).

Now we need to find eigenvectors for each of these eigenvalues.
For the eigenvalue 2 we need to solve the system (A− 2I)v = 0:−2 −1 −2

0 −1 0
1 1 1

xy
z

 =

0
0
0


The RREF of the coefficient matrix is1 0 1

0 1 0
0 0 0


so the eigenspace for 2 is

−z
0
z

∣∣∣∣ z ∈ R

 .

Notice this is one-dimensional, so the geometric multiplicity of 2 is
1.

For the eigenvalue 1 we solve the system (A− I)v = 0:−0 −1 −2
0 0 0
1 1 2

xy
z

 =

0
0
0


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The RREF of the coefficient matrix is1 1 2
0 0 0
0 0 0

 .

The solutions to this system are the triples
(
x y z

)T where x =
−y − 2z, so our eigenspace is

−y
y
0

+

−2z
0
z

∣∣∣∣ y, z ∈ R


So the geometric multiplicity of 1 is 2.

Now if we pick three linearly independent eigenvectors, one
from the eigenspace of 2 and two from the eigenspace of 1, we can
build our P matrix. Let’s consider the eigenvectors−1

0
1

 ,

−1
1
0

 , and

−2
0
1

 .

We use these as the columns of our P matrix:

P =

−1 −1 −2
0 1 0
1 0 1

 .

We can then row-reduce
(
P I

)
to
(
I P−1

)
to find the inverse,

P−1 =

 1 1 2
0 1 0
−1 −1 −1

 .
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Now we simply compute

P−1AP =

 1 1 2
0 1 0
−1 −1 −1

 0 −1 −2
0 1 0
1 1 3

 −1 −1 −2
0 1 0
1 0 1


=

2 0 0
0 1 0
0 0 1



Example 12.4.
Is the matrix

A =

 1 −1 1
−2 3 1
−4 −2 5


diagonalizable?

An n × n matrix is diagonalizable if and only if it has n linearly
independent eigenvectors, so we need to find the eigenspaces of A.

The characteristic polynomial of A is

pA(x) = det(A− xI) = x3 − 9x2 + 27x− 27.

We can factor this polynomial by grouping by noting that the factors
of 27 are 1, 3, and 9. Of these, only 3 will make the polynomial equal
to zero, and so the polynomial factors as pA(x) = (x− 3)3.

Now we find the eigenspace of 3 by solving the system (A −
3I)v = 0: −2 −1 1

−2 0 1
−4 −2 2

xy
z

 =

0
0
0


The RREF of the matrix is 0 1 0

0 0 1
0 0 0

 .
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Thus the eigenspace of 3 is
x0
0

∣∣∣∣x ∈ R

 .

Since this has dimension one, we can’t find three linearly indepen-
dent eigenvectors, and so the matrix is not diagonalizable.

Notice that Theorem 12.2 tells us that an n×nmatrix will be diagonal-
izable if and only if the sum of the geometric multiplicities of the matrix’s
eigenvalues add up to n. This is guaranteed to happen if, for example,
the matrix had n distinct eigenvalues.

Example 12.5.
The matrix 

1 7 3 2 1
0 −1 2 2 2
0 0 3 4 1
0 0 0 0 2
0 0 0 0 2


is diagonalizable. Since this is a triangular matrix, we know the
eigenvalues appear on the diagonal of the matrix. This 5× 5 matrix
has five distinct eigenvalues, −1, 0, 1, 2, 3, and so is diagonalizable.

12.4 Jordan Normal Form
Even if a matrix is not diagonalizable, it turns out that we can still find a
similar matrix which is almost diagonal. We won’t take the time to prove
that such a matrix exists, though the proof isn’t particularly difficult, but
we will note that such a matrix can always be found. In order to describe
this matrix, we will need to make one preliminary definition.
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We say that a square m×m matrix is a Jordan block with eigenvalue
λ if the matrix has the form

λ 1 0 0 0 · · · 0
0 λ 1 0 0 · · · 0
0 0 λ 1 0 · · · 0
0 0 0 λ 1 · · · 0

. . .
0 0 · · · 0 λ 1 0
0 0 · · · 0 0 λ 1
0 0 · · · 0 0 0 λ


That is, we have a matrix that has λ’s on the diagonal, 1’s immediately
above the diagonal, and 0’s everywhere else. Let’s denote this m × m
matrix Jm(λ). Notice that J1(λ) is just a single λ.

We say a matrix is in Jordan normal form if the matrix is block diago-
nal which each block on the diagonal being a Jordan block:

Jm1(λ1)
Jm2(λ2)

Jm3(λ3)
. . .

Jmd
(λd)


here we do not assume that the λj’s are distinct.

Example 12.6.
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The following matrices are in Jordan normal form:
2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 3

 =

J2(2) J1(2)
J1(3)



3 1 0 0 0
0 3 1 0 0
0 0 3 0 0
0 0 0 3 1
0 0 0 0 3

 =

(
J3(3)

J2(3)

)

A matrix in Jordan normal form is the next best thing to a diagonal
matrix because it is very easy to read off information about the eigenval-
ues of the matrix based on the Jordan blocks.

Theorem 12.3.
If A is a matrix in Jordan normal form, then the eigenvalues of A occur
on the diagonal of the matrix. Furthermore, the number of times an eigen-
value appears on the diagonal is precisely the algebraic multiplicity of the
eigenvalue, and the number of Jordan blocks with a given eigenvalue is the
geometric multiplicity of the eigenvalue.

Example 12.7.
Consider the following matrix in Jordan normal form:

−1 1 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 2 1 0 0
0 0 0 0 2 1 0
0 0 0 0 0 2 1
0 0 0 0 0 0 2


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This matrix has two eigenvalues: −1 and 2. The eigenvalue −1 has
algebraic multiplicity 3 but geometric multiplicity 2; the eigenvalue
2 had algebraic multiplicity 4, but geometric multiplicity 1. From
the eigenvalues and the algebraic multiplicities we know that the
characteristic polynomial of this matrix is

pA(x) = (x+ 1)3 (x− 2)4

Exercise 12.1.

(a) Show that every diagonal matrix is in Jordan normal form.

(b) Show that if A is a matrix which is in Jordan normal form but is
not diagonal, then A is not diagonalizable.

The main theorem about Jordan normal form is that every square ma-
trix has a Jordan normal form.

Theorem 12.4.
Every square matrix is similar to a matrix in Jordan normal form.

Example 12.8.
Find a Jordan normal form for the matrix1 2 3

0 2 2
0 0 2


Notice that the eigenvalues of this matrix are 1 and 2, and the alge-
braic multiplicities are 1 and 2, respectively. The eigenspace asso-
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ciated to eigenvalue 1 is one-dimensional since the algebraic multi-
plicity is 1. The eigenspace associated to eigenvector 2 is

2y
y
0

∣∣∣∣ y ∈ R

 .

This is one-dimensional, so the geometric multiplicity is 1. We now
have enough information to construct a Jordan normal form,1 0 0

0 2 1
0 0 2


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12.5 Practice Problems
Problem 12.1.
Determine if each of the matrices below is diagonalizable or not. If the
matrix is diagonalizable, write down the diagonalization. If the matrix is
not diagonalizable, write down a Jordan normal form for the matrix.

(a)

A =


3 2 4 1
0 −1 3 2
0 0 1 1
0 0 0 6


(b)

B =

−9 −7 −9
−6 −2 −5
18 12 17


(c)

C =

 2 −1 −1
1 4 1
−1 −1 2


(d)

D =

 1 −1 −1
−2 1 0
2 2 3


(e)

E =

 2 1 2
−1 2 0
1/2 0 2


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13The Inner Product in Rn
13.1 The Inner Product
At the start of the semester we initially defined vectors as quantities that
had both a magnitude and a direction, and we represented these quan-
tities in two and three dimensions as arrows. We then extended our
definition of vector so that we could talk about vectors in any dimen-
sion. When we did this, we lost a certain amount of geometric intuition.
In the plane and three-space we could visualize things, measure angles,
calculate lengths, etc. We will now say how to do these geometric opera-
tions in higher dimensions using a tool called an inner product. The inner
product will allow us to define and compute geometric quantities in any
(finite) dimension, even though we might not be able to visualize those
quantities.

The (standard, or Euclidean) inner product in Rn is a way of pairing
two vectors together to get a real number. We denote the number associ-
ated to the pair of vectors u and v as ⟨u, v⟩, and we calculate this number
by the following formula:

⟨u, v⟩ = uTv

where uT is the transpose of u (this really just means writing the compo-
nents of u as a row instead of a column), and then doing matrix multipli-
cation with v. For example, if our vectors were in the following elements
of R4,

u =


2
7
0
1

 v =


3
−2
−1
4


then we have

⟨u, v⟩ =
(
2 7 0 1

)
3
−2
−1
4

 = −4.

In terms of components, if our vectors in Rn are

u =


u1
u2
...
un

 v =


v1
v2
...
vn


268
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then this number ⟨u, v⟩ is also given by

⟨u, v⟩ =
n∑

i=1

uivi.

There are five crucial properties of the inner product we have defined:

Theorem 13.1.
For all u, v, w ∈ Rn and all λ ∈ R:

1. ⟨u, v⟩ = ⟨v, u⟩

2. ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩

3. ⟨λu, v⟩ = λ ⟨u, v⟩

4. ⟨u, u⟩ ≥ 0

5. ⟨u, u⟩ = 0 if and only if u = 0.

Proving these properties hold is really just a matter of computation:
compute the left- and right-hand sides of each of the properties claimed
above, and verify that they are the same. Since this is entirely computa-
tion, we will leave this as an exercise.

Exercise 13.1.
Prove Theorem 13.1.

There are other types of inner products besides the “standard” one
we have defined, and we will discuss these later, but for right now we
will stick to the standard inner product.
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Remark.
The standard inner product is usually called the dot product in a mul-
tivariable calculus course.

Exercise 13.2.
Show that for every vector v ∈ Rn,

⟨0, v⟩ = 0.

13.2 Orthogonality
In R2 and R3, we say two vectors u and v are orthogonal if they meet at a
90◦ angle. By the law of cosines, this means exactly that uTv = 0.

Remark.
Suppose u =

(
u1 u2

)T and v =
(
v1 v2

)T are two vectors in R2

and place the vectors together at their tails. To measure the angle
θ between the vectors we consider the triangle formed by u, v, and
u+ v, and then use the law of cosines.

u

v

u+ v

θ

Letting ∥u∥ denote the length of u, and likewise for v and u+ v, the



CHAPTER 13. THE INNER PRODUCT IN Rn 271

law of cosines then says that

∥u+ v∥2 = ∥u∥2 + ∥v∥2 − 2∥u∥∥v∥ cos θ.

Notice however that

∥u∥2 =
(√

u21 + u22

)2

= u21 + u22

which we can write as ⟨u, u⟩. The above expression can then be
rewritten as

⟨u+ v, u+ v⟩ = ⟨u, u⟩+ ⟨v, v⟩+ 2∥u∥∥v∥ cos θ.

As inner products are linear in each argument, the left-hand side of
this equation may be rewritten as

⟨u+ v, u+ v⟩ = ⟨u, u+ v⟩+ ⟨v, u+ v⟩
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩
= ⟨u, u⟩+ 2 ⟨u, v⟩+ ⟨v, v⟩

Hence

⟨u, v⟩ = ∥u∥∥v∥ cos θ

=⇒ cos θ =
⟨u, v⟩
∥u∥ ∥v∥

So when θ = 90◦ (i.e., the vectors are orthogonal), we have cos θ = 0,
so

⟨u, v⟩
∥u∥ ∥v∥

= 0

=⇒ ⟨u, v⟩ = 0.

Since the standard inner product is just a generalization of the dot
product in two and three dimensions, this tells us how we should define
orthogonality in general: we say two vectors u and v are orthogonal if
⟨u, v⟩ = 0.

Given a subspace U of an inner product space V , the set of vectors
orthogonal to every vector in U , denoted U⊥ and sometimes pronounced
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“U -perp”, is called the orthogonal complement of U :

U⊥ =

{
v ∈ Rn

∣∣∣∣ ⟨u, v⟩ = 0 for all u ∈ U

}

Theorem 13.2.
If U is a subspace of Rn, then the orthogonal complement, U⊥, is also a
subspace of Rn.

Proof.
We need to show that U⊥ is not empty, and is closed under both vec-
tor addition and scalar multiplication. Notice that U⊥ is not empty
as 0 ∈ U⊥ by Exercise 13.2 above.

Now suppose that v, w ∈ U⊥. Then for any u ∈ U ,

⟨v + w, u⟩ = ⟨v, u⟩+ ⟨w, u⟩ = 0 + 0 = 0,

so v + w ∈ U⊥.
Let λ be any scalar and let v ∈ U⊥. Then for any U ∈ U ,

⟨λv, w⟩ = λ ⟨v, w⟩ = λ · 0 = 0

so U⊥ is also closed under scalar multiplication.

Lemma 13.3.
dim(U⊥) = n− dim(U).

Proof.
Let {u1, u2, ..., um} be a basis for U and consider the map T : Rn → U
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given by

T (v) = ⟨v, u1⟩u1 + ⟨v, u2⟩u2 + · · ·+ ⟨v, um⟩um.

We can suppose that in fact elements of {u1, u2, ..., um} are pairwise
orthogonal. (This is proven later when we show every inner prod-
uct space has an orthogonal basis.)

First notice this is a linear transformation:

T (v + w) = ⟨v + w, u1⟩u1 + ⟨v + w, u2⟩u2 + · · ·+ ⟨v + w, um⟩um
= (⟨v, u1⟩+ ⟨w, u1⟩)u1 ++ · · · (⟨v, um⟩+ ⟨w, um⟩)um
= ⟨v, u1⟩u1 + ⟨w, u1⟩u1 + · · · ⟨v, um⟩um + ⟨w, um⟩um
= ⟨v, u1⟩u1 + · · ·+ ⟨v, um⟩um + ⟨w, u1⟩u1 + · · ·+ ⟨w, um⟩um
= T (v) + T (w)

T (λv) = ⟨λv, u1⟩u1 + ⟨λv, u2⟩u2 + · · ·+ ⟨λum, um⟩um
= λ ⟨v, u1⟩u1 + λ ⟨v, u2⟩u2 + · · ·+ λ ⟨v, um⟩
= λ(⟨v, u1⟩u1 + ⟨v, u2⟩u2 + · · ·+ ⟨v, um⟩um)
= λT (v).

Notice this linear transformation is surjective: in particular, T (ui) is
a scalar multiple of ui as

T (ui) = ⟨ui, u1⟩u1 + ⟨ui, u2⟩u2 + · · ·+ ⟨ui, um⟩um = ⟨ui, ui⟩ui

since ⟨ui, uj⟩ = 0 for i ̸= j. So, im(T ) = U .
Notice too the kernel of this map is exactly U⊥: if T (v) = 0 then

⟨v, u1⟩u1 + ⟨v, u2⟩u2 + · · ·+ ⟨v, um⟩um = 0.

Since {u1, ..., um} is linearly independent, however, the only solu-
tion to this equation is to have ⟨v, ui⟩ = 0, which means v is orthog-
onal to everything in U , so v ∈ U⊥.

By the rank-nullity theorem,

dim(ker(T )) + dim(im(T )) = n,
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but this becomes
dim(U⊥) + dim(U) = n,

and moving dim(U) to the other side gives the result.

Exercise 13.3.
Show that for any subspace U ,

(
U⊥)⊥ = U .

Given a collection of vectors {v1, v2, ..., vn} in Rm, we say that {v1, ..., vn}
is an orthogonal set if each pair of vectors vi and vj (with i ̸= j) are or-
thogonal.

Example 13.1.
In R3, the setv1 =

1
2
0

 , v2 =

 6
−3
2

 , v3 =

 4
−2
−15


is an orthogonal set. To see this we simply check that each vector is
orthogonal to each other vector:

⟨v1, v2⟩ = 1 · 6 + 2 · (−3) + 0 · 2 = 0

⟨v1, v3⟩ = 1 · 4 + 2 · (−2) + 0 · (−15) = 0

⟨v2, v3⟩ = 6 · 4 + (−2) · (−3) + 2 · (−15) = 0

Example 13.2.
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In R3, the setv1 =
 2
−1
3

 , v2 =

 1
11
3

 , v3 =

 3
0
−2


is not an orthogonal set. To see this, notice that even though ⟨v1, v2⟩ =
0 and ⟨v1, v3⟩ = 0, we have

⟨v2, v3⟩ = 1 · 3 + 11 · 0 + 3 · (−2) = −3 ̸= 0.

Exercise 13.4.
Show that no collection of three or more non-zero vectors in R2 can
form an orthogonal set.

Theorem 13.4.
If S is an orthogonal set of non-zero vectors in Rn, then S is a linearly
independent set.

Proof.
We must show that any finite collection of vectors v1, ..., vn in S is
linearly independent. So let v1, ..., vn ∈ S and consider the equation

λ1v1 + · · ·+ λnvn = 0.

Now consider taking the inner product of the zero vector with some
vi in this collection of vectors. Then, by Exercise 13.2, we know
⟨0, vi⟩ = 0. However, we can write the zero vector as λ1v1+· · ·+λnvn.
Thus,

⟨λ1v1 + · · ·+ λnvn, vi⟩ = 0.
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If we use the linearity of the inner product, we can rewrite this as

λ1 ⟨v1, vi⟩+ λ2 ⟨v2, vi⟩+ · · ·+ λn ⟨vn, vi⟩ = 0.

By assumption S is an orthogonal set, however, so each ⟨vj, vi⟩ = 0
except for the term containing ⟨vi, vi⟩. We thus have

λi ⟨vi, vi⟩ = 0.

But we’re assuming 0 /∈ S, thus vi ̸= 0, and so ⟨vi, vi⟩ = 0. Hence we
must have λi = 0. We can repeat this argument to determine that
each term of

λ1v1 + · · ·+ λnvn

is multiplied by zero. Thus these vectors are linearly independent,
and since these were arbitrarily chose from S, is a linearly indepen-
dent set.

As a corollary of the above theorem, notice that every orthogonal set
of non-zero vectors is a basis for some subspace of Rn: namely the sub-
space spanned by those vectors. Having a basis consisting of orthogonal
vectors is often very convenient because it makes it easy to determine
the scalars the basis vectors are multiplied by as we will see in the the-
orem below. We say a basis is an orthogonal basis if the basis forms an
orthogonal set.

Theorem 13.5.
Suppose that {b1, b2, ..., bn} is an orthogonal basis for Rn. Then for any
v ∈ V , v may be written as a linear combination of the basis vectors

v = λ1b1 + · · ·+ λnbn

where the scalars λi may be calculated as

λi =
⟨v, bi⟩
⟨bi, bi⟩

.
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Proof.
Consider the inner product ⟨v, bi⟩ which we may write as

⟨v, bi⟩ = ⟨λ1b1 + · · ·+ λnbn, bi⟩
= λ1 ⟨b1, bi⟩+ · · ·+ λn ⟨bn, bi⟩

Since {b1, b2, ..., bn} is an orthogonal basis, each ⟨bj, bi⟩ = 0 except for
⟨bi, bi⟩, and so

⟨v, bi⟩ = λi ⟨bi, bi⟩

thus we can solve for λi,

λi =
⟨v, bi⟩
⟨bi, bi⟩

.

Theorem 13.6.
Every subspace of Rn has an orthogonal basis B.

We will actually prove a stronger version of Theorem 13.6 later, so
right now we simply remark that such a basis always exists.

13.3 Orthogonal Projection
There are some applications where it is helpful to split vectors up as a
linear combination of orthogonal components. In physics, for example,
it might be necessary to compute the work done as a particle moves from
one position to another. If we recall that work is force times distance, it’s
tempting to use this formula to compute the work done. However, “work
is force times distance” is only true if the direction of the force is the same
as the direction of the displacement. Thus we might want to see “how
much” of the force points in the same direction as the displacement. If
F⃗ is the force and d⃗ the displacement, we thus want to write the force as
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F⃗ = F⃗d + F⃗o where F⃗ is in the direction of the displacement and F⃗o is
orthogonal. We can compute F⃗d using orthogonal projection.

In general, if u and v are vectors in an inner product space, then we
can always express v as a sum of two vectors: one parallel to u (in our
abstract setting this means a vector which is a scalar multiple of u) and
another vector orthogonal to u. The vector parallel to u is called the or-
thogonal projection of v onto u. The orthogonal projection of v onto u is
denoted proju(v) and is defined as

proju(v) =
⟨v, u⟩
⟨u, u⟩

u.

By definition, proju(v) is a scalar multiple of u. (The scalar, ⟨v,u⟩
⟨u,u⟩ , is some-

times called the scalar projection of v onto u.)

Example 13.3.
Suppose u =

(
3 2 1

)T and v =
(
0 1 5

)T . Then

proju(v) =
0 · 3 + 1 · 2 + 5 · 1

32 + 22 + 12

3
2
1

 =

3/2
1
1/2



Exercise 13.5.
Verify that proju(v) is orthogonal to v − proju(v). (Hint: First show

that it suffices to show that v − proju(v) is orthogonal to u.)

Exercise 13.5 shows that we can write v as a sum of two vectors, one of
which is parallel to u (proju(v)) and one is orthogonal to u (v − proju(v)).

More generally, if U is any subspace of Rn, then we can always write
any given vector v ∈ V as v = u + w where u ∈ U and w ∈ U⊥. Here
we will call the term u the orthogonal projection of v onto the subspace
U and denote it projU(v). To define projU(v) we first have to find an
orthogonal basis for U , say B = {b1, b2, ..., bn} is such a basis. Now we
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define our orthogonal projection as

projU(v) =
⟨v, b1⟩
⟨b1, b1⟩

b1 +
⟨v, b2⟩
⟨b2, b2⟩

b2 + · · ·+ ⟨v, bn⟩
⟨bn, bn⟩

bn

Exercise 13.6.
Verify that v − projU(v) ∈ U⊥.

For reasons we won’t describe just yet, the orthogonal projection projU(v)
can be interpreted as the element of U which is “closest” to v. (The thing
we haven’t really described is how to measure how “close” one vector is
to another in a general vector space, but we will do that soon.)
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13.4 Practice Problems
Problem 13.1.
Let U be the subspace of R4 spanned by


1
1
−1
0




2
1
−1
1



1
2
0
1




Compute the orthogonal complement, U⊥.

Problem 13.2.
Let U be the subspace of R4 from Problem (1), and find the orthogonal
projection of 

3
2
0
4


onto U .

Problem 13.3.
Show that for a subspace U of Rn, a vector v ∈ Rn satisfies projU(v) = v if
and only if v ∈ U .



14
Norms
14.1 Definition and Basic Properties
To each vector v ∈ Rn we can associate a non-negative number called the
norm of v and denoted ∥v∥,

∥v∥ =
√

⟨v, v⟩

Notice this is just generalizing how to measure the length of a vector in
R2 and R3: The length of a vector v =

(
x y z

)T in R3 is
√
x2 + y2 + z2 =√

⟨v, v⟩. So norms give us a way to measure the length of a vector.
There is an abstract inner product space version of the Pythagorean

theorem stated in terms of norms.

Theorem 14.1 (The Pythagorean theorem).
Two vectors u and v in Rn are orthogonal if and only if

∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Proof.
Notice that

∥u+ v∥2 = ⟨u+ v, u+ v⟩
= ⟨u, u+ v⟩+ ⟨v, u+ v⟩
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩
= ∥u∥2 + 2 ⟨u, v⟩+ ∥v∥2.

If u and v are orthogonal, then ⟨u, v⟩ = 0 and so ∥u + v∥2 = ∥u∥2 +
∥v∥2. If ∥u + v∥2 = ∥u∥2 + ∥v∥2, then the above calculation shows
we must have 2 ⟨u, v⟩ = 0 which implies ⟨u, v⟩ = 0, so u and v are
orthogonal.

281
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Exercise 14.1.
Convince yourself that in the familiar setting of R2, the theorem
above is the “usual” Pythagorean theorem applied to the triangle
with sides u, v, and u+ v.

The following theorem tells us how the inner product of two different
vectors relates to the length of the vectors.

Theorem 14.2 (The Cauchy-Schwartz Inequality).
For all u, v ∈ Rn we have the following inequality:

⟨u, v⟩ ≤ ∥u∥ ∥v∥.

Proof.
Notice that we may write v in terms of u by using orthogonal pro-
jection:

v = proju(v) + (v − proju(v)) .

Since proju(v) and v− proju(v) are orthogonal, the Pythagorean the-
orem tells us

∥v∥2 = ∥ proju(v) + (v − proju(v)) ∥2 = ∥ proju(v)∥2 + ∥v − proju(v)∥2
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Now notice

∥ proju(v)∥2 =
∥∥∥∥ ⟨v, u⟩⟨u, u⟩

u

∥∥∥∥2
=

〈
⟨v, u⟩
⟨u, u⟩

u,
⟨v, u⟩
⟨u, u⟩

u

〉
=

(
⟨v, u⟩
⟨u, u⟩

)2

⟨u, u⟩

=
⟨v, u⟩2

⟨u, u⟩

=
⟨v, u⟩2

∥u∥2

Combining this with the above we have

∥v∥2 = ⟨v, u⟩2

∥u∥2
+ ∥v − proju(v)∥2.

Since ∥v − proju(v)∥2 ≥ 0 we thus have

∥v∥2 ≥ ⟨v, u⟩2

∥u∥2

=⇒ ∥u∥2 ∥v∥2 ≥ ⟨u, v⟩2 .

Now taking square-roots of both sides gives

⟨u, v⟩ ≤ ∥u∥ ∥v∥.

The Cauchy-Schwartz inequality is a fundamental tool in linear alge-
bra (and other areas of mathematics which use linear algebra), although
it is often lurking in the background in the sense that while the Cauchy-
Schwartz theorem is necessary for the proofs of many other theorems,
we won’t typically deal with it on a day-to-day basis. (This is similar to
the mean value theorem in calculus. The mean value theorem is an es-
sential ingredient for many of the proofs of commonly used theorems in
calculus, even though you may not deal with the mean value theorem
yourself very often in solving problems.)
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One example of where we need the Cauchy-Schwartz theorem is in
the proof of property (4) in Theorem 14.3 below.

Theorem 14.3.
The norm ∥ · ∥ satisfies the following four properties for all vectors u, v ∈
Rn and lal scalars λ:

1. ∥v∥ ≥ 0.

2. ∥v∥ = 0 if and only if v = 0

3. ∥λv∥ = |λ|∥v∥

4. ∥u+ v∥ ≤ ∥u∥+ ∥v∥

Proof.

1. Recall that the properties the inner product promise us that
⟨v, v⟩ ≥ 0, so ∥v∥ =

√
⟨v, v⟩ ≥ 0 as well.

2. If v = 0, then ⟨v, v⟩ = ⟨0, 0⟩ = 0, so ∥v∥ =
√
0 = 0. If ∥v∥ = 0,

then
√

⟨v, v⟩ = 0 which means ⟨v, v⟩ = 0, and so v = 0 by the
axioms of an inner product space.

3.

∥λv∥ =
√
⟨λv, λv⟩

=
√
λ ⟨v, λv⟩

=
√
λ2 ⟨v, v⟩

=
√
λ2
√
⟨v, v⟩

= |λ| ∥v∥

4. Let’s notice for the fourth property that it suffices to show ∥u+
v∥2 ≤ (∥u∥ + ∥v∥)2, and then we can take the square root of
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both sides.

∥u+ v∥2 = ⟨u+ v, u+ v⟩
= ⟨u, u+ v⟩+ ⟨v, u+ v⟩
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩
= ∥u∥2 + 2 ⟨u, v⟩+ ∥v∥2

By the Cauchy-Schwartz theorem, however, we know that ⟨u, v⟩
is no larger than ∥u∥ ∥v∥, and so

∥u+ v∥2 ≤ ∥u∥2 + 2∥u∥ ∥v∥+ ∥v∥2

= (∥u∥+ ∥v∥)2

Taking square roots of both sides gives us

∥u+ v∥ ≤ ∥u∥+ ∥v∥.

Property (4) above, that ∥u+v∥ ≤ ∥u∥+∥v∥ is often called the triangle
inequality because, in R2, it tells us that in the triangle with sides u, v, and
u+ v, the length of the u+ v side is no longer than the sum of the lenghts
of the u and v side.

Example 14.1.
Compute the length of 

4
2
−2
1


in R4 using the inner product ⟨u, v⟩ = uTv.
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∥∥∥∥∥∥∥∥


4
2
−2
1


∥∥∥∥∥∥∥∥ =

√√√√√√√(4 2 −2 1
) 

4
2
−2
1


=
√
42 + 22 + (−2)2 + 12

=
√
16 + 4 + 4 + 1

=
√
25

= 5.

14.2 Distance Between Vectors
Not only does a norm give us a way to measure how long a vector is, it
gives us a way to measure distance between two vectors. We define the
distance between u and v, denoted dist(u, v), as the norm of the difference
of u and v:

dist(u, v) = ∥u− v∥.

Example 14.2.
Consider R2 with the usual inner product, ⟨u, v⟩ = uTv. If

u =

(
x1
y1

)
v =

(
x2
y2

)
then the distance between u and v is

dist(u, v) = ∥u− v∥
=
√

⟨u− v, u− v⟩
=
√

(u− v)T (u− v)

=

√(
x1 − x2 y1 − y2

) (x1 − x2
y1 − y2

)
=
√
(x1 − x2)2 + (y1 − y2)2.
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Notice this is the typical distance formula in R2.

Having a way of measuring how close two vectors are is extremely
useful in applications. One interesting application is facial recognition.
Some facial recognition algorithms work by converting a picture of a face
into a vector by using the colors of the pixel (converted into numbers) as
the components of the vector. Given two different pictures, we can com-
pare how close the corresponding vectors are and consider the two pic-
tures to be pictures of the same person if the vectors are “close enough”
together.

We can also use this notion of distance to justify the earlier remark
that projU(v) is the vector in U which is closest to v.

Theorem 14.4.
Let U be a subspace of Rn. Then for any u ∈ U , u ̸= projU(v), we have

∥v − projU(v)∥ < ∥v − u∥

and so projU(v) is the closer to v than any other vector in U .

Proof.
Notice that since projU(v) and u are elements of U , projU(v)− u is in
U as well. Since v−projU(v) is in U⊥, we thus have that v−projU(v)
and projU(v)− u are orthogonal. Thus by the Pythagorean theorem,

∥v − u∥2 = ∥(v − projU(v)) + (projU(v)− u)∥2

= ∥v − projU(v)∥2 + ∥ projU(v)− u∥2

If u ̸= projU(v), then ∥ projU(v)− u∥2 > 0 and so

∥v − u∥2 = ∥v − projU(v)∥2 + some positive number

and so ∥v − projU(v)∥2 < ∥v − u∥2, and taking square roots of each
side gives the desired inequality.



CHAPTER 14. NORMS 288

Corollary 14.5.
Of all the vectors in a subspace U , projU(v) is the one which is closest to
v.

14.3 Unit Vectors and Orthonormal Bases
When a vector v has unit length, i.e. when ∥v∥ = 1, we call v a unit vector.
Notice that v is a unit vector if and only if ⟨v, v⟩ = 0. Thus the factors
⟨bi, bi⟩ that appear above when writing a vector as a linear combination
of vectors in an orthogonal basis disappear if each vector is a unit vector.
In general, an orthogonal basis where each vector is a unit vector is called
an orthonormal basis.

Example 14.3.
The vector  6/7

− 2/7
3/7


is a unit vector in R3.∥∥∥∥∥∥

 6/7
− 2/7
3/7

∥∥∥∥∥∥ =
36

49
+

4

49
+

9

49

= 1

Theorem 14.6.
If B = {b1, b2, ..., bn} is an orthonormal basis for Rn, then each v ∈ Rn

can be written as

v = ⟨v, b1⟩ b1 + ⟨v, b2⟩ b2 + · · ·+ ⟨v, bn⟩ bn.
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Proof.
This is just Theorem 13.5 but where each ⟨bi, bi⟩ = 1.

Notice that every non-zero vector v can be scaled to a unit vector by
replacing v with

1

∥v∥
v.

Exercise 14.2.
Show that 1

∥v∥v is a unit vector.

14.4 The Gram-Schmidt Algorithm
We now show how to to find an orthonormal (and hence orthogonal) ba-
sis for any subspace of Rn through an algorithm called the Gram-Schmidt
process. The algorithm works as follows. Let B = {b1, b2, ..., bn} be a basis
for a subspace V of Rm. We will construct a new basis U = {u1, u2, ..., un}
which will be orthonormal: i.e., each ∥ui∥ = 1 and ⟨ui, uj⟩ = 0 for i ̸= j.
We will build the U basis iteratively, expressing u2 in terms of u1, u3 in
terms of u1 and u2, and so on.

To begin, let u1 = 1
∥b1∥b1. So u1 is a unit vector pointing in the same

direction as b1. Now consider the orthogonal projection of b2 onto u1,

proju1
(b2) = ⟨b2, u1⟩u1.

Then the vector b2 − proju1(b1) is orthogonal to u1. Scaling to make this
vector have length one, we set

u2 =
1

∥b2 − proju1
(b1)∥

(
b2 − proju1

(b1)
)
.

Now let W2 denote the subspace spanned by u1 and u2 and consider the
orthogonal projection of b3 onto W2:

projW2
(b3) = ⟨b3, u1⟩u1 + ⟨b3, u2⟩u2.



CHAPTER 14. NORMS 290

Then b3 − projW2(b3) is an element of W⊥
2 . Scaling so that this vector has

unit length, we set u3 to be

u3 =
1

∥b3 − projW2
(b3)∥

(
b3 − projW2

(b3)
)
.

We continue in this way, building onto our list of orthonormal basis vec-
tors one at a time.

The orthogonality of the basis vectors is the real important part of the
process: we could first build an orthogonal basis and then scale all our
vectors to unit vectors at the very end. Doing so, we can express the
Gram-Schmidt process as follows:

1. Let v1 = b1.

2. Once vk is found, set Wk = span(v1, v2, ..., vk) and define vk+1 =
bk+1 − projWk

(bk+1). Writing out what the projection gives

vk+1 = bk+1 −
⟨bk+1, v1⟩
⟨v1, v1⟩

v1 −
⟨bk+1, v2⟩
⟨v2, v2⟩

v2 − · · · − ⟨bk+1, vk⟩
⟨vk, vk⟩

vk

Continue this procedure until vn is found.

3. Set uk = 1
∥vk∥

vk.

At the end of this procedure, {u1, u2, ..., un} will be an orthonormal basis.

Example 14.4.
Apply the Gram-Schmidt process to orthonormalize the following
basis for of R4:b1 =


1
1
0
−1

 , b2 =


2
1
2
2

 , b3 =


3
2
1
1

 , b4 =


0
1
1
0




We will first build an orthogonal basis {v1, v2, v3, v4}, and then
scale each vector to have unit length. We begin by setting

v1 = b1 =


1
1
0
−1

 .
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To find v2 we take W1 = span(v1), and then find a vector in W⊥
1 by

setting

v2 = b2 − projW1
(v1)

= b2 −
⟨b2, v1⟩
⟨v1, v1⟩

v1

=


2
1
2
2

− 2 + 1 + 0− 2

12 + 12 + 01 + (−1)2


1
1
0
−1



=


2
1
2
2

− 1

3


1
1
0
−1



=


5/3
2/3
2
7/3


Now we set W2 = span(v1, v2) and find v3 ∈ W⊥

2 by taking

v3 = b3 − projW2
(b3)

= b3 −
⟨b3, v1⟩
⟨v1, v1⟩

v1 −
⟨b3, v2⟩
⟨v2, v2⟩

v2

=


5/19
2/19

− 13/19
7/19


Next we takeW3 to be span(v1, v2, v3) and find v4 ∈ W⊥

3 by taking

v4 = b4 − projW3
(b4)

= b4 −
⟨b4, v1⟩
⟨v1, v1⟩

v1 −
⟨b4, v2⟩
⟨v2, v2⟩

v2 −
⟨b4, v3⟩
⟨v3, v3⟩

v3

=


− 6/13
8/13
0

2/13


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Now, {v1, v2, v3, v4} is an orthogonal set of non-zero vectors, which
implies that it is a linearly independent set, and since this is a subset
of R4, it is also a basis. So we have an orthogonal basis. However,
our vectors do not have unit length. To get an orthonormal basis we
need to scale each vector so that it has unit length, which we do by
multiplying the vector by one over its norm.

First we calculate the norm of each of our vectors,

∥v1∥ =
√

⟨v1, v1⟩ =
√

12 + 12 + 02 + (−1)2 =
√
3

∥v2∥ =
√

38/3

∥v3∥ =
√

13/19

∥v4∥ = 2
√

2/13

Dividing each vector by its norm gives us a unit vector,

u1 =
1

∥v1∥
v1 =


1/3

√
3

1/3
√
3

0
−1/3

√
3



u2 =
1

∥v2∥
v2 =


5/3

√
38/3

2/3
√

38/3

2/
√

38/3

7/3
√

38/3



u3 =
1

∥v3∥
v3 =


5/19

√
13/19

2/19
√

13/19

− 13/19
√

13/19

7/19
√

13/19


u4 =

1

∥v4∥
v4 =

− 6/13
√

8/13

8/13
√

8/13

02/13
√

8/13


Now {u1, u2, u3, u4} is an orthonormal basis for R4.
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14.5 Practice Problems
Problem 14.1.
Show that for any three vectors u, v, and w in Rn,

dist(u,w) ≤ dist(u, v) + dist(v, w).

Problem 14.2.
Prove the following parallelogram law: for all u, v ∈ Rn,

∥u+ v∥2 + ∥u− v∥2 = 2∥u∥2 + 2∥y∥2.



ASolutions to Exercises
A.1 Chapter 1
1.1 Example 1.1(e) is linear because it can be written as

0 · x1 + 0 · x2 + · · ·+ 0 · xn,

but Example 1.2(e) is not linear because it does not have the form

(x1, ..., xn) 7→ a1 · x1 + a2 · x2 + · · ·+ an · xn.

If it did have this form, then we would have

(2x1, ..., 2xn) 7→ 2a1 · x1 + 2a2 · x2 + · · ·+ 2an · xn.

and as
a1 · x1 + a2 · x2 + · · ·+ an · xn = 1

we would have

2a1 · x1 + 2a2 · x2 + · · ·+ 2an · xn = 2

but our function is supposed to send everything to 1, yet here is something
that gets sent to 2.

1.2 (a) We’ll plot x+ y = 1 in blue and x− 2y = 3 in red:

−1 1 2 3

−2

2

4

Since the lines intersect, there is a solution to the system. Solving the
system gives (x, y) = (5/3,−2/3).

294
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(b) We’ll add 4x+ 7y = 9 in green.

−1 1 2 3

−2

2

4

Notice that there is no point that lies on each of the lines, and hence
there are no solutions to the system.

1.3 Suppose (t1, t2) is a solution to the system. I.e.,

(a1 + cα1)t1 + (a2 + cα2)t2 = b+ cβ

α1t2 + α2t2 = β.

Now subtract c times the second equation from the first equation. On the
left-hand side this gives

(a1 + cα1)t1 + (a2 + cα2)t2 − c (α1t1 + α2t2)

=a1t1 + a2t2

On the right-hand side we have b+ cβ − cβ = b. Thus (t1, t2) satisfies

a1t1 + a2t2 = b.

Hence (t1, t2) is a solution to the system

a1x+ a2y = b

α1x+ α2y = β.

1.4 Keeping the same notation as in the proof of the first part of Theo-
rem 1.2, we must show that T ⊆ S. Let (t1, ..., tn) ∈ T be a solution to the
modified system in which the equation

a1x1 + · · ·+ anxn = b
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has been replaced by

(a1 + cα1)x1 + · · ·+ (an + cαn)xn = b+ cβ.

We simply need to show that (t1, ..., tn) also satisfies our original first
equation,

a1x1 + · · ·+ anxn = b.

Note that (t1, ..., tn) satisfies the following:

(a1 + cα1)t1 + · · ·+ (an + cαn)tn = b+ cβ.α1t1 + · · ·+ αntn = β

If we subtract c times the second equation from the the first, we have on
the left-hand side

(a1 + cα1)t1 + · · ·+ (an + cαn)tn − c (α1t1 + · · ·+ αntn)

=a1t1 + · · ·+ antn

and on the right-hand side, b+ cβ − cβ = b. Hence (t1, ..., tn) is a solution
to the original system of equations; (t1, ..., tn) ∈ S and so S ⊆ T .

1.5 Suppose that we are given a system of equations

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bn

and we modify the system by replacing one of the equations with some
non-zero multiple c of itself. Without loss of generality, we may assume
this is the first equation. (If it were a different equation, we could swap
two equations to make it the first equation.)

Let S be the set of solutions to the original system, and T the set of
solutions to the modified system. Obviously if (s1, ..., sn) ∈ S satisfies

a11s1 + · · ·+ a1nsn = b1,

then in the modified system we simply have

ca11s1 + · · ·+ ca1nsn = c(a11s1 + · · ·+ a1nsn) = cb

and so S ⊆ T as we have a solution to the modified system.
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Likewise, if (t1, ..., tn) satisfies the first equation in the modified sys-
tem,

ca11t1 + · · ·+ ca1ntn = cb1,

then

a11t1 + · · ·+ a1ntn ==
1

c
(ca11t1 + · · ·+ ca1ntn) =

1

c
· cb1 = b1

and thus T ⊆ S.

A.2 Chapter 2
2.1 Putting this matrix in RREF gives

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0


Thus there are three pivot columns.

2.2 In RREF this matrix becomes
1 0 −1 −1 1
0 1 −1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Since the system is consistent and there are two non-pivot columns, any
parametrization of the set of solutions to the system must contain two
free variables.

A.3 Chapter 3
3.1 The proofs of these properties are basically identical: we just write
out the vectors in components and verify the left-hand side of each equa-
tion matches the right-hand side.
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Since the proofs are identical we won’t give each one, but we will
prove the first one which can easily be modified for the other properties:

(u⃗+ v⃗) + w

=



u1
u2
...
un

+


v1
v2
...
vn


+


w1

w2
...
wn



=


u1 + v1
u2 + v2

...
un + vn

+


w1

w2
...
wn



=


u1 + v1 + w1

u2 + v2 + w2
...

un + vn + wn



=


u1
u2
...
un

+


v1 + w1

v2 + w2
...

vn + wn



=


u1
u2
...
un

+



v1
v2
...
vn

+


w1

w2
...
wn




=u⃗+ (v⃗ + w⃗)

A.4 Chapter 4

4.1 Suppose first that the system Ax⃗ = b⃗ has a solution. Then, by the
definition of the product Ax⃗, b⃗ is a linear combination of the columns of
A. In particular, if the components of x⃗ are x1, x2, ..., xn, then we have

b⃗ = x1a⃗1 + x2a⃗2 + · · ·+ xna⃗n.

Now suppose that b⃗ is in the span of the columns of A, again, by the
definition of the product Ax⃗, this precisely means the system Ax⃗ = b⃗ has
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a solution. In particular, if

b⃗ = λ1a⃗1 + λ2a⃗2 + · · ·+ λna⃗n,

then a solution to Ax⃗ = b⃗ is given by

x⃗ =


λ1
λ2
...
λn


A.5 Chapter 5
5.1 For any scalar λ, of which there are infinitely-many choices, the vec-
tor y⃗ = λx⃗ is another solution.

5.2 1. 


1 + 2x3
−1− x3 + x4

x3
x4

∣∣∣∣x3, x4 ∈ R


2. 

 22− 7x4
2− x4

−10 + 3x4x4

∣∣∣∣x4 ∈ R


3. 

 18 + x4 − 16x5
−45− 9x4 + 54x5
−15 + x4 + 19x5

∣∣∣∣x4, x5 ∈ R


4. 


−3x2 − 2x5

6− x3 − 3x4 − x5

x3
x4
x5


∣∣∣∣x2, x3, x4, x5 ∈ R


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A.6 Chapter 6
6.1 (a) Consider the vector equation,

λ1e⃗1 + λ2e⃗2 + · · ·+ λne⃗n = 0⃗.

In components this is 
λ1
λ2
...
λn

 =


0
0
...
0


The only solution to this is clearly λ1 = λ2 = · · · = λn = 0.

(b) An n-dimensional vector x⃗ with components x1, x2, ..., xn may be
written as

x⃗ = x1e⃗1 + x2e⃗2 + · · ·+ xne⃗n.

6.2 (a) Consider the vectors

u⃗ =

(
u1
u2

)
v⃗ =

(
v1
v2

)
.

Notice

Sm(u⃗+ v⃗) = Sm

(
u1 + v1
u2 + v2

)
=

(
u1 + v1 +m(u2 + v2)

u2 + v2

)
=

(
u1 +mu2

u2

)
+

(
v1 +mv2

v2

)
= Sm(u⃗+ v⃗)

Sm(λu⃗) = Sm

(
λu1
λu2

)
= λu1 +mλu2

λu2

= λ

(
u1 +mu2

u2

)
= λSm(u⃗).
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(b) (
1 m
0 1

)
6.3 Notice that

R

(
x
y

)
=

(
1 0
0 −1

)(
x
y

)
=

(
x
−y

)
and this implies R is linear.

6.4 The proofs of each of the above properties are basically identical: sim-
ply write out the left-hand and right-hand sides of each property and
verify that everything is equal. This is easy, but quite tedious, so we will
just give the proof of the first property.

Suppose that A and B are m × n matrices where the element in the
i-th row and j-th column of each matrix is aij and bij , respectively. Then
the element in the i-th row and j-th column of the sum A+B is aij + bij .
Since aij and bij are just numbers (real or complex, it doesn’t matter), we
know aij + bij = bij + aij , but this is the entry in the i-th row and j-th
column of B+A. Thus A+B and B+A have the same entries are so are
the same matrix: A+B = B + A.

6.5 This is another theorem that is easy, but tedious, to verify just by
writing out what the matrices look like in components. We will give the
details for the second property, however.

Suppose that A is m × n, B is n × p, and C is n × p, so that the sums
B + C and AB + AC and the products A(B + C), AB and AC are all
defined. Let aij denote the entry in the i-th row and j-th column of A,
and likewise the entries of B and C are bij and cij .

Notice that the entry in the i-th row and j-th column of AB is

n∑
k=1

aikbkj

and similarly, the entry in the i-th row and j-th column of AC is

n∑
k=1

aikckj

Hence the corresponding entry in AB + AC is

n∑
k=1

aikbkj +
n∑

k=1

aikckj =
n∑

k=1

(aikbkj + aikckj) =
n∑

k=1

aik (bkj + ckj)
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As the entry in the i-th row and j-th column of B + C is bij + cij , the
entry in the i-th row and j-th column of A(B + C) is thus

n∑
k=1

aik (bkj + ckj) .

Thus A(B + C) = AB + AC since these matrices have the same entries.

6.6 Notice that the i-th row, j-th column of λA is λaij , and so the entry in
the i-th row, j-th column of (λA)T is λaji, but this is exactly the entry in
the i-th row, j-th column of λ(AT ), and so (λA)T = λ(AT ).

Suppose A is m×n and B is n×p. The i-th row, j-th column of (AB)T

is the same as the j-th row, i-th column of AB which is

n∑
k=1

ajkbki.

The i-th row, j-th column of BTAT is

n∑
k=1

bkiajk.

Since ajkbki = bkiajk, the matrices are the same.

6.7 For ℓ ̸= i, notice that row ℓ of E is all zeros except for a 1 in the ℓ-th
position, thus in row ℓ column j of the matrix EA we have

n∑
k=1

eℓkakj = aℓj

since eℓk = 0 for all k except eℓℓ = 1.
Similarly, in row i the i-th row, j-th column of EA is

n∑
k=1

eikakj = caij

since eik = 0 for all k except eii = c.

6.8 We are assuming AB = I . Multiplying both sides on the right by B−1

gives ABB−1 = IB−1 but since BB−1 = I this simplifies to A = B−1.
Similarly if we were to multiply both sides on the left by A−1 we have
A−1AB = A−1I which simplifies to B = A−1.
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A.7 Chapter 7
7.1 Suppose the entries of U1 are uij , and the entries of U2 are vij . Since
these matrices are upper triangular, uij and vij are both zero if i > j (if
i > j, then uij and vij are below the diagonal).

The entry in the i-th row, j-th column of the product U1U2 is

n∑
k=1

uikvkj.

Suppose that i > j and rewrite the sum above as

n∑
k=1

uikvkj =

j∑
k=1

uikvkj +
n∑

k=j+1

uikvkj.

In the first sum on the right-hand side, as k ≤ j and i > j, we have i > k
and so each uik is zero. In the second sum, k > j and so vkj = 0. Hence
each term in the sum is zero.

7.2 Every lower triangular matrix without zeros on the diagonal can eas-
ily be written as a product of elementary matrices.

A.8 Chapter 8
8.1 Since λAmultiplies each column ofA by λ, and since the determinant
is linear in each column, we can pull a λ out of each column. For an n× n
matrix that means we’re pulling λ’s out of n columns, so we pick up a
factor of λn.

8.2 Consider cofactor expansion along the first row:

det(A)

=a det

(
e f
h i

)
− b det

(
d f
g i

)
+ c det

(
d e
g h

)
=a(ei− fh)− b(di− fg) + c(dh− eg)

=aei− afh− bdi+ bfg + cdh− ceg

=aei+ bfg + cdh− ceg − bdi− afh.

8.3 Consider the three types of elementary matrices separately.
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1. If E is an elementary matrix obtained by multiplying one row of
the identity by λ, then Theorem 8.6 tells us that det(E) = λ. The
second part of Corollary 8.4 tells us that det(EA) = λ det(A) since
EA is A with a row multiplied by λ. Hence

det(E) det(A) = λ det(A) = det(EA).

2. If E is an elementary matrix obtained by adding λ times the i-th
row of the identity to the the j-th row of the identity, then Theo-
rem 8.6 tells us det(E) = 1. The first part of Corollary 8.4 tells us
that det(EA) is det(A) + det(A′) where A′ is the matrix A but with
the j-th row obtained by λ times the i-th row. Since the rows of this
matrix are linearly dependent (the j-th row ofA′ is a multiple of the
i-th row), we have det(A′) = 0. Hence

det(EA) = 1 · det(A) = det(E) · det(A).

3. If E is an elementary matrix obtained by swapping two rows, then
det(E) = −1 by Theorem 8.6, and det(EA) = − det(A) by the third
part of Corollary 8.4, and so

det(EA) = −1 · det(A) = det(E) · det(A).

8.4 Suppose, for the sake of contradiction, AB was invertible; say the
inverse was C so ABC = I . This would mean A · (BC) = I and so
BC = A−1, but this is a contradiction since A was assumed to be non-
invertible.

A.9 Chapter 9
9.1 (a) This set is obviously non-empty; it is closed under addition as

0⃗ + 0⃗ = 0⃗; and it is closed under scalar multiplication as λ · 0⃗ = 0⃗ for
every λ ∈ R.

(b) Rn is obviously non-zero (e.g., 0⃗ ∈ Rn); it is clearly closed under
vector addition since the sum of two n-dimensional vectors is an n-
dimensional vector; and similarly is closed under scalar multiplica-
tion as for any λ ∈ R and any v ∈ Rn, λ · v ∈ Rn.

9.2 We want to find the scalars α, β, γ such that 2
4
−1

 = α

4
1
3

+ β

2
2
2

+ γ

 2
−1
0


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That is, we’re solving the system of equations4 2 2
1 2 −1
3 2 0

αβ
γ

 =

 2
4
−1

 .

Since the vectors giving the columns of this matrix are linearly indepen-
dent (because they form a basis), this matrix is invertible and so we com-
puteαβ
γ

 =

4 2 2
1 2 −1
3 2 0

−1 2
4
−1

 =

−1/3 −2/3 1
1/2 1 −1
2/3 1/3 −1

 2
4
−1

 =

−13/3
6

11/3


and so with respect to B1 we have

v =

−13/3
6

11/3


B

.

Similarly, for the basis B2 we compute0 0 1
4 1 2
0 1 3

−1 2
4
−1

 =

 7/4
−7
2


and so

v =

 7/4
−7
2


B

.

9.3 If the vector were in the image, then there would be a choice of

v =

(
x
y

)
such that x+ y

x− y
2x

 =

 2
−1
2

 .

Writing out the matrix representing this linear transformation we have
the following system of equations:1 1

1 −1
2 0

(x
y

)
=

 2
−1
2

 .
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Attempting to row-reduce the augmented coefficient matrix of this sys-
tem we would have1 1 2

1 −1 −1
2 0 2

 RREF−−−−→

1 0 0
0 1 0
0 0 1


meaning our system of equations is equivalent to one which has the
equation 0x+ 0y = 1, which clearly has no solution.

A.10 Chapter 10
10.1 Notice that non-zero v ∈ ker(T ) is an eigenvector with eigenvalue 0
as T (v) = 0 = 0 · v. Thus if T is not injective, and so there are non-zero
elements of the kernel, then T has 0 as an eigenvalue. If T has eigenvalue
0, then by definition this means there exists a non-zero vector v such that
T (v) = 0 · v = 0, so ker(T ) contains non-zero elements, and T is not
injective.

10.2 We want to find the vectors v solvingAv = −v which we can rewrite
as (A+ I)v = 0. This means we are trying to solve the system

(A+ I)v =

(
3 3
2 2

)(
x
y

)
=

(
0
0

)
.

Putting the matrix in RREF gives(
1 1 0
0 0 0

)
and so the system is solve when x = −y. Hence the space of eigenvectors
for this matrix with eigenvalue −1 is{(

y
−y

) ∣∣ y ∈ R
}

A.11 Chapter 11
11.1 To find the geometric multiplicities we can use the rank-nullity the-
orem.
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For the eigenvalue λ = −2i our matrix is

A =

4− 2i 10 8
−2 −4− 2i −3
0 0 3− 2i

 .

which in RREF becomes 1 2 + i 0
0 0 1
0 0 0


Since this matrix has one non-pivot column, its kernel (which is the eigenspace
associated with eigenvalue λ = 2i) has dimension 1, so the geometric
multiplicity of λ = 2i is 1.

Similarly, for eigenvalue λ = 3 we have the matrix

A =

 1 10 8
−2 −7 −3
0 0 0

 .

which in RREF becomes 1 0 −2
0 1 1
0 0 0


which has one non-pivot column, and so the eigenvalue λ = 3 has geo-
metric multiplicity 1.

11.2 Notice i · i = −1 = −1, but if conjugation were complex linear we
would require

i · i = i · i = i · −i = −i2 = 1.

11.3 Suppose z = x+ iy and z′ = x′ + iy′. We then simply compute

z · z′ = (x− iy) · (x′ − iy′)

= xx′ − ixy′ − ix′y − yy′

= (xx′ − yy′)− i(xy′ + x′y)

z · z′ = (x+ iy)(x′ + iy′)

= xx′ + ixy′ + ix′y − yy′

= (xx′ − yy′) + i(xy′ + x′y)

= (xx′ − yy′)− i(xy′ + x′y)
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A.12 Chapter 12
12.1 (a) If a matrix is diagonal, then it consists of 1 × 1 Jordan blocks

on the diagonal and zeros everywhere else, so it is in Jordan normal
form.

(b) If a matrix is in Jordan normal form but not diagonal, then there must
exist a Jordan block of size at least 2× 2. This means the correspond-
ing eigenvalue does not have full geometric multiplicity (i.e., the geo-
metric multiplicity is at least one less than the algebraic multiplicity),
and hence there are “not enough” eigenvectors for that eigenvalue
for the matrix to be diagonalizable.

A.13 Chapter 13
13.1 1.

⟨u, v⟩ = u1v1 + u2v2 + u3v3 + · · ·+ unvn

= v1u1 + v2u2 + v3u3 + · · ·+ vnun

= ⟨v, u⟩

2.

⟨u+ v, w⟩ = (u1 + v1)w1 + (u2 + v2)w2 + (u3 + v3)w3 + · · · (un + vn)wn

= u1w1 + v1w1 + u2w2 + v2w2 + u3w3 + v3w3 + · · ·+ unwn + vnwn

= u1w1 + u2w2 + u3w3 + · · ·+ unwn + v1w1 + v2w2 + v3w3 + · · ·+ vnwn

= ⟨u,w⟩+ ⟨v, w⟩

3.

⟨λu, v⟩ = λu1v1 + λu2v2 + λu3v3 + · · ·+ λunvn

= λ(u1v1 + u2v2 + u3v3 + · · ·+ unvn)

= λ ⟨u, v⟩

4.

⟨u, u⟩ = u21 + u22 + u23 + · · ·u2n
≥ 0
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5. If ⟨u, u⟩ = 0, then u21+u22+u23+ · · ·+u2n = 0 which means each of u1,
u2, u3, ..., un must be zero, so u = 0. If u = 0, clearly ⟨u, u⟩ = ⟨0, 0⟩ =
0.

13.2
⟨0, v⟩ = ⟨0 · v, v⟩ = 0 · ⟨v, v⟩ = 0.

13.3 Let u ∈ U . To show that u ∈
(
U⊥)⊥ we must show ⟨u, v⟩ = 0 for

each v ∈ U⊥. But if v ∈ U⊥, then by definition ⟨v, u⟩ = ⟨u, v⟩ = 0 for all
u ∈ U . Thus u ∈

(
U⊥)⊥, this establishes that U ⊆

(
U⊥)⊥. Thus U is a

subspace of
(
U⊥)⊥, but notice the dimension of

(
U⊥)⊥ is

dim
((
U⊥)⊥) = dim(V )−dim(U⊥) = dim(V )−(dim(V )−dim(U)) = dim(U).

So U is a subspace of
(
U⊥)⊥ of the same dimension, and hence U =(

U⊥)⊥.

13.4 No collection of three or more vectors in R2 can be linearly indepen-
dent since R2 is two-dimensional.

13.5 Notice that proju(v) is a scalar multiple of u, so if v − proju(v) is
orthogonal to u, then v − proju(v) is orthogonal to proju(v). So it suffices
to show v − proju(v) is orthogonal to u.

⟨v − proju(v), u⟩
= ⟨v, u⟩ − ⟨proju(v), u⟩

= ⟨v, u⟩ −
〈
⟨v, u⟩
⟨u, u⟩

u, u

〉
= ⟨v, u⟩ − ⟨v, u⟩

⟨u, u⟩
⟨u, u⟩

= ⟨v, u⟩ − ⟨v, u⟩
=0.

13.6 Notice that

projU(v) = projb1(v)b1 + projb2(v)b2 + · · ·+ projbn(v)bn.

Consider

⟨v − projU(v), bi⟩ =
〈
v − projb1(v)− projb2(v)− · · · − projbn(v), bi

〉
= ⟨v, bi⟩−

〈
projbi(v), bi

〉
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Notice that each of the
〈
projbj(v), bi

〉
equals zero as projbj(v) is a scalar

multiple of bj which is orthogonal to bi. The quantity above can be rewrit-
ten as 〈

v − projbi(v), bi
〉

which we know is zero by the previous exercise.

A.14 Chapter 14
14.2 ∥∥∥∥ 1

∥v∥
v

∥∥∥∥ =
1

∥v∥
∥v∥ = 1.



BSolutions to Practice Problems
B.1 Chapter 1
1.1 There is one unique solution: (2/15, 1/10).

1.2 This is one unique solution: (7, 4).

1.3 There are infinitely-many solutions. Each equation represents the
same line – solve each equation for y and they will all give you

y = −4x+ 5

Thus every point on this line is a solution to the system. One possible
parametrization to the set of solutions is

(x,−4x+ 5).

If we had instead solved for x to get x = 1
4
(−y + 5) we would obtain the

parametrization (
−y + 5

4
, y

)
.

1.4 This system has infinitely-many solutions. Geometrically, each equa-
tion represents a plane in three-dimensional spaces, and these two planes
intersect along a line. Every point on that line is a solution to the system.

Algebraically, we could subtract twice the first equation from the sec-
ond to turn the system into

x− y + z = 3

5y − 3z = −2

Solving the second equation for y tells us

y =
3z − 2

5
.

Plugging this into the first equation and solving for x gives

x =
13− 2z

5

Thus the solution set is parametrized by(
13− 2z

5
,
3z − 2

5
, z

)
.

311
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1.5 Notice that the first two equations of this system are the same as the
first two equations of the last system. Geometrically, we are intersecting
the line of solutions from the last system with another plane to pick out
a single point on the line.

The unique solution to this system is(
−5

3
, 6,

32

3

)
.

1.6 If we subtract the first equation from the third we obtain the equiva-
lent system

2x+ 3y = 4

y − 4z = 3

y − 4z = −4

At this point it’s clear the system has no solutions: we can’t make the
y − 4z equal to both 3 and −4 at the same time since 3 ̸= −4. Since this
equivalent system has no solutions, the original system must not have
any solutions either.

B.2 Chapter 2
2.1 Since there are many different possible echelon forms for a given ma-
trix, it’s easier to give the RREF of the matrices. To check your answer,
convert your non-RREF echelon form matrices into RREF and see if you
get the RREF of these matrices.

(a) 1 0 0
0 1 0
0 0 1


(b) 

1 0 0 0 −75
0 1 0 0 34
0 0 1 0 45
0 0 0 1 −3


2.2 (a) 1 0 0 2

0 1 0 1
0 0 1 0


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(b) (
1 0 2 1
0 1 1 3

)
(c) 

1 0 0 1 2
0 0 1 2 3
0 0 0 0 0
0 0 0 0 0


2.3 (a) (x, y, z) = (2, 3, 1/2).

(b) There are infinitely-many solutions. Taking z to be the free variable,
the solutions are parametrized by (3− 2z,−z, z).

(c) There are no solutions.

B.3 Chapter 3
3.1 Since v⃗ − w⃗ is really v⃗ + (−w⃗), we simply perform the same triangle
law but with −w⃗.

v⃗

w⃗

−w⃗

v⃗ − w⃗

3.2 We can rewrite this as a system of linear equations,

3x+ 5y = 2

−2x+ 0y = −3

8x+ 9y = 8
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Writing the augmented coefficient matrix of this system and then putting
it in to RREF, we see that there are no solutions.

3.3 Given any vector
(
a
b

)
we can write

(
a
b

)
= a

(
1
0

)
+ b

(
0
1

)

3.4 Given a vector
(
a
b

)
, we want to find values of x and y such that

x

(
−1
3

)
+ y

(
4
−2

)
=

(
a
b

)
We can turn this into a linear system,

−x+ 4y = a

3x− 2y = b

We can always solve such a system: putting the augmented coefficient
matrix into RREF we get 1 0 a+2b

5

0 1 3a+b
10


which means we can write

a+ 2b

5

(
−1
3

)
+

3a+ b

10

(
4
−2

)
.

For example, if
(
a
b

)
=

(
2
7

)
, then

16

5

(
−1
3

)
+

13

10

(
4
−2

)
=

(
2
7

)
.

3.5 In each situation we want to use the theorem saying that a set of vec-
tors is linearly independent if and only if we can only write

λ1v⃗1 + λ2v⃗2 + · · ·+ λnv⃗n = 0⃗
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by taking λ1 = λ2 = · · · = λn = 0. That is, all zeros is the only solution
to a certain system of equations. In the case of the vectors in part (a), for
instance, the system is

λ1 + λ3 = 0

−2λ1 + λ2 − 6λ3 = 0

2λ2 + 8λ3 = 0

Of course, (λ1, λ2, λ3) = (0, 0, 0) is a solution to this system, but our the-
orem tells us that this will be the only solution if and only if the vectors
are linearly independent. Thus in each case we want to see if the only
solution to the system of linear equations is all zeros.

(a) Not linearly independent.

(b) Not linearly independent.

(c) Not linearly independent. (You don’t actually need to do any calcu-
lations here. Since the solution to (a) and (b) are not linearly inde-
pendent, and this is just all of those vectors together, it has no hope
of being linearly independent.)

3.6 u⃗ will be in the span of the other vectors if we can write u⃗ as a linear
combination of the other vectors. To see if we can do this or not, we
turn this into a question of systems of linear equations. In particular, we
will be able to write u⃗ as a linear combination of th eother vectors only
if the system whose augmented coefficient matrix has these vectors as its
columns, v⃗1 v⃗2 · · · v⃗m u⃗

 ,

is consistent. That is, when we put this matrix into RREF, we don’t get a
row of the form (

0 0 · · · 0 x ̸= 0
)

3.7 Again, we turn this into a question of systems of linear equations. We
want to see if we can find λ1, λ2, λ3 such that

λ1


1
0
−2
1

+ λ2


0
1
1
4

+ λ3


3
2
1
−2

 =


4
7
2
−3





APPENDIX B. SOLUTIONS TO PRACTICE PROBLEMS 316

This is the same as seeing if there is a solution to

λ1 + 3λ3 = 4

λ2 + 2λ3 = 7

−2λ1 + λ2 + λ3 = 2

λ1 + 4λ2 − 2λ3 = −3

Writing the augmented coefficient matrix of this system and putting it
into RREF we get 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and so there is no solution – u⃗ is not in the span of the given vectors.

B.4 Chapter 4
4.1 (a)

x⃗ =

−11
3
0


(b)

x⃗ =

−11/2
3/2
0


(c)

x⃗ =

−4
4
3


(d)

x⃗ =

5/2
3/2
x3


where x3 is free.

(e) No solution.
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4.5 No. Put the matrix into RREF and notice there is a row without piv-
ots. By Proposition 4.1 from lecture, the columns can not span all of R4.

4.3 No. Put the matrix into RREF and notice there is a row without piv-
ots. By Proposition 4.1 from lecture, the columns can not span all of R4.

4.4 Yes. Put the matrix whose columns are given by these vectors in
RREF and notice there is a pivot in every row.

B.5 Chapter 6
6.1 (a) AB + F

This is defined and

AB + F =

 8 7 7 1
8 6 8 3
15 3 3 0


(b) 2D − 3E

2D − 3E =

−17 −2
5 −10
−9 11


(c) AC

This product is not defined because A is 3× 3 and C is 4× 3.

(d) 4AD + E

4AD + E =

33 18
9 20
15 −3


(e) FBC

This product is not defined as F is 3× 4 and B is 3× 4.

(f) BCF

BCF =

 56 2 22 33
101 17 53 36
−9 −9 −13 9


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(g) AF −DE

This is undefined. A is 3 × 3 and F is 3 × 4, so the product AF is
defined and is 3× 4 matrix. D is 3× 2 and E is 3× 2, so the product
DE is not defined.

6.2

AT =

1 2 1
2 1 1
0 −1 −3

 BT =


0 2 4
1 3 0
1 3 0
2 −1 1


CT =

 1 2 3 1
1 2 4 2
−1 −3 5 3

 DT =

(
−1 4 0
2 1 1

)

ET =

(
5 1 3
2 4 −3

)
F T =


4 2 1
0 1 −1
0 3 −1
1 1 2


6.3 From problem 5a we know that each column of AB is a linear combi-
nation of the columns of A. In particular, if

B =

(
a b
c d

)
then the first column of AB is

a

(
1
−3

)
+ c

(
−3
5

)
,

and the second column of AB is

b

(
1
−3

)
+ d

(
−3
5

)
Hence we have two linear systems we need to solve:(

1 −3
−3 5

)(
a
c

)
=

(
−3
1

) (
1 −3
−3 5

)(
b
d

)
=

(
−1
17

)
In general, if we take the matrix(

1 −3 x
−3 5 y

)
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and put it into RREF, then we have(
1 0 − 5x/4 − 3y/4
0 1 − 3x/4 − y/4

)
Taking x and y to be −3 and 1, for the first column of AB, we see that
a = −5/4(−3)− 3/4(1) = 3, and c = 2.

For the second column, take x and y to be −1 and 17 respectively, and
the above tells us that b = − 23/2 and d = − 7/2.

Hence our matrix B is

B =

(
3 −23/2
2 −7/2

)
6.4 Notice that in the product r⃗A, each element of the first row of A gets
multiplied by r1; each element of the second row of A gets multiplied by
r2; and so on. The elements in the first column are then added together
to get the first entry in r⃗A; the elements in the second column are then
added to get the second entry in r⃗A and so on.

(
r1 r2 · · · rm

)

a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn


=
(
r1a11 + r2a21 + · · ·+ rmam1 r1a12 + r2a22 + · · ·+ rmam2 · · · r1a1n + r2a2n + · · ·+ rmamn

)
=
(∑m

i=1 ria1i
∑m

i=1 ria2i · · ·
∑m

i=1 riani
)

Notice this can be written as

r1
(
a11 a12 · · · a1n

)
+r2

(
a21 a22 · · · a2n

)
+· · ·+rm

(
am1 am2 · · · amn

)
That is, r⃗A is a linear combination of the rows of A.

6.5 (a) The entry in the i-th row and j-th column of AB has the form

n∑
k=1

aikbkj.
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So the j-th column of A has the form

∑n
k=1 a1kbkj∑n
k=1 a2kbkj

...∑n
k=1 amkbkj


Writing this out we have

a11b1j + a12b2j + · · ·+ a1nbnj
a21b1j + a22b2j + · · ·+ a2nbnj

...
am1b1j + am2b2j + · · ·+ amnbnj


Let’s separate this into a sum of vectors, where we isolate the com-
ponents multiplied by each bkj which we may then write as

a11b1j
a21b1j

...
am1b1j

+


a12b2j
a22b2j

...
am2b2j

+ · · ·+


a1nbnj
a2nbnj

...
amnbnj


Factoring the bkj out of each vector we have

b1j


a11
a21

...
am1

+ b2j


a12
a22

...
am2

+ · · ·+ bnj


a1n
a2n

...
amn

 .

This is a linear combination of the columns of A, and we get linear
combinations of the columns of A by multiplying A with a column
vector. In particular, if b⃗j denotes the j-th column of B, then we have
show that the j-th column of AB is A⃗bj .

(b) Proceeding as in part (a), we know that the i-th row of AB has the
form (∑n

k=1 aikbk1
∑n

k=1 aikbk2
∑n

k=1 aikbkp
)
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Each of these entries has a term with a factor of ai1, and one with a
factor of ai2, and so on. We separate the row, breaking it up into a
sum of rows where everything is multiplied by ai1, plus a row where
everything is multiplied by ai2, and so forth:(

ai1b11 ai1b12 · · · ai1b1p
)

+
(
ai2b21 ai2b22 · · · ai2b2p

)
+

...

+
(
ainbn1 ainbn2 · · · ainbnp

)
Now factor out the aik’s,

ai1
(
b11 b12 · · · b1p

)
+ai2

(
b21 b22 · · · b2p

)
+ · · ·

+ain
(
bn1 bn2 · · · bnp

)
Notice that this is exactly the i-th row of A times the matrix B.

6.6 Notice that the third column is equal to the first column plus the sec-
ond column. That is, if a⃗1, a⃗2, and a⃗3 denote the first, second, and third
columns of A, then

a⃗3 = a⃗1 + a⃗2,

which means
a⃗1 + a⃗2 − a⃗3 = 0⃗.

Thus 1 2 3
4 5 9
6 7 13

 1
1
−1

 = 0⃗.

Since the columns of AB are linear combinations of the columns of A
and we now have a linear combination which gives us the zero vector,
we know 1 2 3

4 5 9
6 7 13

 1 1 1
1 1 1
−1 −1 −1

 =

0 0 0
0 0 0
0 0 0


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6.7 (a) This matrix is invertible and its inverse is

1

5− 6

(
1 −3
−2 5

)
=

(
−1 3
2 −5

)
(b) This matrix is invertible and its inverse is

1

4− (−9)

(
4 −3
3 1

)
=

(
4/13 −3/13
3/13 1/13

)
.

(c) This matrix is not invertible because 6 · 4− 8 · 3 = 0.

(d) This matrix is invertible and its inverse is 2/7 4/7 −5/21
1/7 2/7 1/21

−4/21 −1/21 −4/63


(e) This matrix is invertible and its inverse is

1/3 −4/3 3/2 −16/3
0 1 −2 10
0 0 1/2 −4
0 0 0 1


6.8 No, if a matrix has two identical columns it can not be invertible.
Having two identical columns implies the matrix’s columns are not lin-
early independent, and so the corresponding linear transformation can
not be injective.

6.9 No, such a matrix is not invertible for the same reason as the pre-
vious problem. The columns are not linearly independent, and so the
corresponding linear transformation is not injective.

6.10 If a matrix is not invertible, then the corresponding linear transfor-
mation is not bijective. This means the linear transformation is either not
surjective or not injective; in general a non-bijective map could be surjec-
tive but not injective, or injective but not surjective, but for linear maps
between two spaces of the same dimension, you’re surjective if and only
if you’re injective.

To see this notice that our non-invertible matrix has either a row or
a column which doesn’t have a pivot, depending on whether the map is
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not surjective or not injective. But since the matrix is square, if you’re
missing a pivot in a row, then you’re also missing a pivot in a column.

Hence our map is not injective, so its columns can not be linearly
independent, so some column is a linear combination of the others.

6.11 Notice that the matrix corresponding to this linear transformation is(
2 −1
1 3

)
The inverse of this matrix, which is the matrix of T−1, is

1

6− (−1)

(
3 1
−1 2

)
=

(
3/7 1/7
−1/7 2/7

)
This tells us that

T

(
x
y

)
=

(
(3x+ y)/7
(−x+ 2y)/7

)

B.6 Chapter 7
7.1 If we multiply out the block matrices we have I 0 0

A I 0
B D I

 I 0 0
P I 0
Q R I

 =

 I 0 0
A+ P I 0

B + PD +Q D +R I


But we’re assuming these matrices are inverses, so this has to be identity, I 0 0

A+ P I 0
B + PD +Q D +R I

 =

I 0 0
0 I 0
0 0 I

 .

But this implies

A+ P = B + PD +Q = D +R = 0.

Thus P = −A and R = −D. Then B + PD + Q = B − AD + Q = 0, so
Q = AD −B.

7.2 If the matrix is invertible, then its RREF is the identity, but this implies
the RREF of each matrix on the diagonal is also the identity. So if the
“large” matrix is invertible, then so are the “small” submatrices on the
diagonal.
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If the diagonal submatrices are invertible, then when the matrix is put
into RREF we also put the submatrices into RREF but these will be iden-
tity matrices. Since everything below the diagonal is zero, this means the
RREF of the entire matrix is the identity, and so the matrix is invertible.

7.3 The inverse is 

3/2 −2 0 0 0 0
−1/2 1 0 0 0 0
0 0 1/3 0 0 0
0 0 0 1 −4 1
0 0 0 0 5 −2
0 0 0 0 −2 1


7.4 1. (

2 6
4 7

)
=

(
1 0
2 1

)(
2 6
0 −5

)
2.  2 −4 2

−4 5 2
6 −9 1

 =

 1 0 0
−2 1 0
3 −1 1

2 −4 2
0 −3 6
0 0 1


3. 

1 −2 −2 −3
3 −9 0 −9
−1 2 4 7
−3 −6 26 2

 =


1 0 0 0
3 1 0 0
−1 0 1 0
−3 4 −2 1



1 −2 −2 −3
0 −3 6 0
0 0 2 4
0 0 0 1


7.5 By our LU factorization we have

1 0 0 0
3 1 0 0
−1 0 1 0
−3 4 −2 1



1 −2 −2 −3
0 −3 6 0
0 0 2 4
0 0 0 1



x1
x2
x3
x4

 =


1
6
0
3


We first solve the system

1 0 0 0
3 1 0 0
−1 0 1 0
−3 4 −2 1



y1
y2
y3
y4

 =


1
6
0
3


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Using back substitution we have
y1
y2
y3
y4

 =


1
3
1
4


Now we solve 

1 −2 −2 −3
0 −3 6 0
0 0 2 4
0 0 0 1



x1
x2
x3
x4

 =


1
3
1
4


Using back substitution again this becomes

x1
x2
x3
x4

 =


−34
−16
−15/2
8


B.7 Chapter 8
8.1 (a) The determinant is 14.

(b) The determinant is 5.

(c) The determinant is −6.

8.2 (a) The determinant is −8.

(b) The determinant is 6.

8.3 xy
z

 =

 3/40
7/4

11/10


8.4 (a) This matrix is not invertible.

(b) The inverse is

1

−48

 3 11 −10
6 −10 −4

−27 −19 26


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(c) The inverse is

1

−42


50 −16 −20 −42
−14 −14 14 0
−13 5 1 21
7 7 −7 −21


B.8 Chapter 9
9.1 V is a subspace.

9.2 V is not a subspace.

9.3 V is not a subspace.

9.4 U ∩ V is a subspace.

9.5 U ∪ V is not a subspace in general, but it will be a subspace if U ⊆ V
or V ⊆ U .

9.6 A basis for the image is given by


1
0
−1
−1

 ,


3
1
0
1

 ,


0
1
0
1




A basis for the kernel is given by

1
1
0
0




9.7 (a) The change of basis matrix is

BIS =

(
2 0
0 5

)−1

=

(
1/2 0
0 1/5

)
Thus

[v]B =

(
1/2 0
0 1/5

)(
−2
3

)
=

(
−1
3/5

)
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(b) The change of basis matrix is

BIS =

(
2 3
1 5

)−1

=

(
5/7 − 3/7
− 1/7 2/7

)
Thus

[v]B =

(
5/7 − 3/7
− 1/7 2/7

)(
−2
3

)
=

(
− 19/7
8/7

)
(c) The change of basis matrix is

BIS =

1 2 3
1 0 4
1 −2 2

−1

=

 4/3 − 5/3 4/3
1/3 − 1/6 − 1/6
− 1/3 2/3 − 1/3


Thus

[v]B =

 4/3 − 5/3 4/3
1/3 − 1/6 − 1/6
− 1/3 2/3 − 1/3

3
7
0

 =

− 23/3
− 1/6
11/3


9.8 (a)

B =


2
0
2

 ,

3
3
3

 ,

1
1
7

 C =

{(
1
1

)
,

(
2
3

)}
(
0 9 −27
4 3 19

)
(b)

B =


1
2
3

 ,

1
0
0

 ,

2
3
2

 C =

{(
1
0

)
,

(
0
3

)}
(
13 1 20
10/3 1 14/3

)
(c)

B =


0
0
1

 ,

1
0
0

 ,

0
1
0

 C =

{(
1
0

)
,

(
0
1

)}
(
3 1 4
2 1 7

)
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(d)

B =


0
0
1

 ,

1
0
0

 ,

0
1
0

 C =

{(
0
1

)
,

(
1
0

)}
(
2 1 7
3 1 4

)

B.9 Chapter 10
10.1 (a) The eigenvalues are 5 and 2. The eigenspace of 5 is{(

x
x

) ∣∣∣∣x ∈ R
}
.

The eigenspace of 2 is {(
x

− x/2

) ∣∣∣∣x ∈ R
}
.

(b) The eigenvalues are 1±
√
5

2
. The eigenspace of 1+

√
5

2
is{(

x
x(1 +

√
5)/2

) ∣∣∣∣x ∈ R
}
.

The eigenspace of 1−
√
5

2
is{(

x
x(1−

√
5)/2

) ∣∣∣∣x ∈ R
}
.

(c) The eigenvalues are 6, −
√
2 and

√
2. The eigenspace of 6 is

xx
x

∣∣∣∣x ∈ R


The eigenspace of −

√
2 is
z(−13− 9

√
2)/7

z(5 + 11
√
2)/7

z

∣∣∣∣ z ∈ R


The eigenspace of

√
2 is
z(−13 + 9

√
2)/7

z(5− 11
√
2)/7

z

∣∣∣∣ z ∈ R


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(d) The eigenvalues are 1 and 2. The eigenspace of 1 is
x0
0

∣∣∣∣x ∈ R


The eigenspace of 2 is 

2y
y
0

∣∣∣∣ y ∈ R


10.2 Notice that the matrix representing this linear transformation, with
respect to the standard basis, is2 −1 0

3 2 7
6 1 8


The eigenvalues of this matrix are 8, 4 and 0. If we take a basis given by
an eigenvector of each eigenvalue, such as

 7
−42
−39

 ,

 1
−2
−1

 ,

 1
2
−1


then with respect to this basis, T is represented by the matrix8 0 0

0 4 0
0 0 0


B.10 Chapter 11
11.1 (a) The characteristic polynomial is

x3 − 5x2 + 8x− 4 = (x− 1)(x− 2)2

Thus the eigenvalues are 1 and 2. Eigenvalue 1 has algebraic mul-
tiplicity 1 and geometric multiplicity 1. Eigenvalue 2 has algebraic
multiplicity 2 and geometric multiplicity 2.
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(b) The characteristic polynomial is

x3 − 5x2 + 8x− 4 = (x− 1)(x− 2)2

Thus the eigenvalues are 1 and 2. Eigenvalue 1 has algebraic mul-
tiplicity 1 and geometric multiplicity 1. Eigenvalue 2 has algebraic
multiplicity 2 and geometric multiplicity 1.

(c) This matrix has characteristic polynomial (x − 4)3, and 4 is its only
eigenvalue. The algebraic multiplicity is 3, but the geometric multi-
plicity is 2.

(d) This matrix has characteristic polynomial (x − 4)3, and 4 is its only
eigenvalue. The algebraic multiplicity is 3, but the geometric multi-
plicity is 1.

B.11 Chapter 12
12.1 (a) This matrix diagonalizes to

3 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 6


(b) This matrix diagonalizes to 1 0 0

0 2 0
0 0 3


(c) This matrix diagonalizes to 3 0 0

0 3 0
0 0 2


(d) This matrix does not diagonalize. It has eigenvalues 1 and 3, but

eigenvalue 1 has geometric multiplicity 1. Hence a Jordan normal
form for the matrix is 1 1 0

0 1 0
0 0 3


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(e) This matrix does not diagonalize. It has one eigenvalue, 2, which has
geometric multiplicity 1. Hence a Jordan normal form for the matrix
is 2 1 0

0 2 1
0 0 2


B.12 Chapter 13
13.1 We need to find the vectors v that solve the equation ⟨v, u⟩ = 0 for
each u ∈ U . Since we have a basis for U , however, each element of U may
be written as

u = λ1u1 + λ2u2 + λ3u3

where u1, u2, and u3 are the vectors above. By linearity of the inner prod-
uct we thus need to find the vectors v which satisfy each of the following:

⟨v, u1⟩ = 0

⟨v, u2⟩ = 0

⟨v, u3⟩ = 0

If we denote v as v =
(
w x y z

)
, then the above equations become

w + x− y = 0

2w + x− y + z = 0

w + 2x+ z = 0

U⊥ is then the set of vectors in R4 solving this system of equations. The
coefficient matrix of this system in RREF is1 0 0 1

0 1 0 0
0 0 1 1


which tells us

w = −z
x = 0

y = −z

Thus

U⊥ =



−z
0
−z
z

∣∣∣∣z ∈ R

 .
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13.2 Call this vector v and let u1, u2, u3 be the vectors in the basis of U
given in the first problem.

projU(v) =
⟨v, u1⟩
⟨u1, u1⟩

u1 +
⟨v, u2⟩
⟨u2, u2⟩

u2 +
⟨v, u3⟩
⟨u3, u3⟩

u3

=
5

3


1
1
−1
0

+
12

7


2
1
−1
1

+
11

6


1
2
0
1



=


97/14
148/21
− 71/21
149/42


13.3 Suppose {u1, u2, ..., un} is a basis for U . Then

projU(v) =
n∑

i=1

⟨v, ui⟩
⟨ui, ui⟩

ui

If v ∈ U , then ⟨v,ui⟩
⟨ui,ui⟩ is precisely the scalar that ui is multiplied by when

writing v as a linear combination of {u1, ..., un}, and so v = projU(v).
If projU(v) = v, then since projU(v) is a linear combination of the ui,

v ∈ U .

B.13 Chapter 14
14.1

dist(u,w) = ∥u− w∥
= ∥u− v + v − w∥
≤ ∥u− v∥+ ∥v − w∥
= dist(u, v) + dist(v, w)

14.2 Notice

∥u+ v∥2 = ⟨u+ v, u+ v⟩
= ⟨u, u+ v⟩+ ⟨v, u+ v⟩
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩
= ∥u∥2 + 2 ⟨u, v⟩+ ∥v∥2
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Similarly,

∥u− v∥2 = ⟨u− v, u− v⟩
= ⟨u, u− v⟩ − ⟨v, u− v⟩
= ⟨u, u⟩ − ⟨u, v⟩ − ⟨v, u⟩+ ⟨v, v⟩
= ∥u∥2 − 2 ⟨u, v⟩+ ∥v∥2

Adding these together gives

∥u+ v∥2 + ∥u− v∥2 = 2∥u∥2 + 2∥v∥2
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