
INTRODUCTION TO
LOGIC & PROOF

Chris Johnson

Fall 2023

Contents

Contents ii

Introduction to the Course vi
Course format . vii
Assignments . vii

Homework . vii
Pop quizzes . viii
Proof portfolio . viii
Midterm exams . viii
Final exam . ix
Make-up assignments . ix
Extra credit . x

Expectations . x
Online notes . xi
LATEX . xi
How to study in this course . xi
Some personal information . xiii

1 Motivation for Logic and Proof 1
1.1 What are proofs? . 1
1.2 What is logic? . 5
1.3 Why should we learn about logic and proofs? 6
1.4 Applied math and pure math 6

2 Basic Proof Techniques 8
2.1 Direct proofs and counterexamples 8

2.1.1 First examples of direct proofs 8
2.1.2 Counterexamples . 10
2.1.3 More direct proof examples and exercises 11
2.1.4 Theorems, conjectures, lemmas, corollaries, etc. . . . 14
2.1.5 Some practice in deductive reasoning 17

ii

CONTENTS iii

2.1.6 Divisibility . 21
2.2 Proofs by induction . 25

2.2.1 Warmup: The quicksort algorithm 25
2.2.2 Mathematical induction in proofs 28
2.2.3 Weak induction . 29
2.2.4 Strong Induction . 38
2.2.5 Prime numbers and the fundamental theorem of

arithmetic . 41
2.3 Proofs by contradiction . 43

2.3.1 Basic examples . 43
2.3.2 Irrational numbers 46
2.3.3 The infinitude of primes 47

3 Symbolic logic 49
3.1 Propositions and Predicates 49

3.1.1 Propositions . 49
3.1.2 Variables and predicates/open sentences 50
3.1.3 The universal and existential quantifiers 50

3.2 Logical operations and truth tables 51
3.2.1 Conjunction (and) . 52
3.2.2 Disjunction (or) . 52
3.2.3 Negation . 53
3.2.4 Negating quantifiers 54
3.2.5 Implication . 54

3.3 Converses, Equivalences, and Contrapositives 56
3.3.1 Converses . 57
3.3.2 Equivalences . 57
3.3.3 Contrapositives . 58

4 Sets 60
4.1 Basic ideas and definitions 60

4.1.1 Set-builder notation 63
4.1.2 Subsets and supersets 66
4.1.3 Equality . 68
4.1.4 The empty set . 69
4.1.5 Real numbers . 70

4.2 Operations on sets . 71
4.2.1 Unions . 71
4.2.2 Intersections . 72
4.2.3 Products . 76
4.2.4 Complements . 80

CONTENTS iv

4.2.5 Difference . 82
4.2.6 De Morgan’s laws . 84

4.3 Collections of sets . 87
4.3.1 Power set . 87
4.3.2 Indexing sets . 87
4.3.3 Unions and intersections with indices 88

4.4 Maps between sets . 89
4.4.1 Definitions and examples 89
4.4.2 Representing maps 92
4.4.3 Special types of maps 93
4.4.4 Images and preimages 97

4.5 Compositions of Maps . 99
4.5.1 Definitions and basic examples 99
4.5.2 Composing three or more functions; associativity . 100
4.5.3 Inverse maps . 102
4.5.4 Identity maps . 103

5 Relations 105
5.1 Basic definitions and examples 105
5.2 Special properties of relations 109

5.2.1 Symmetry . 109
5.2.2 Antisymmetry . 109
5.2.3 Reflexivity . 110
5.2.4 Transitivity . 111

5.3 Orderings . 111
5.3.1 Total orders . 111
5.3.2 Partial orders . 112

5.4 Equivalence relations . 114
5.4.1 Examples of equivalence relations 114
5.4.2 Equivalence classes 116

6 Binary Operators 120
6.1 Definitions and examples . 120

6.1.1 Familiar examples . 121
6.1.2 Composition of maps X → X 122
6.1.3 Addition and multiplication of 2× 2 matrices 123

6.2 Properties binary operators may have 125
6.2.1 Associativity . 125
6.2.2 Commutativity . 127
6.2.3 Identity . 128
6.2.4 Inverses . 130

CONTENTS v

6.2.5 Groups . 132
6.3 Arithmetic of congruence classes 133

6.3.1 Defining addition and multiplication 134
6.3.2 Addition and multiplication are well-defined 135
6.3.3 Distribution . 137

7 Odds and Ends 138
7.1 The Pigeonhole Principle . 138

Index 141

Introduction to the Course
The result of the mathematician’s creative work
is demonstrative reasoning, a proof; but the
proof is discovered by plausible reasoning...

GEORGE POLYA

Welcome to Math 250, Introduction to Logic and Proof. The main goal of
this course is to help students become proficient at mathematical proofs.
By the end of the course, students should be comfortable with reading
proofs, should appreciate the necessity of proofs, and be able to construct
their own proofs. Throughout the course we will see the most commonly
used proof techniques, starting informally by discussing the main ideas,
and later becoming more precise after we have introduced basic logic. As
we will see, “logic” here means something a bit more formal than the col-
loquial use of the word that you’re probably familiar with. For us, logic
will refer to certain types of “sentences” built from symbols that have
a specific meaning in mathematics, and rules for building more compli-
cated sentences from simpler ones. (In a way this is similar to a computer
program where certain basic keywords are combined according to spe-
cific rules to make the computer do something particular.)

In order to get practice proving theorems, we will need to introduce
some different contexts where we will have interesting statements to
prove. Our main contexts for proofs will be some basic number theory
(arithmetic of integers) and set theory. The number theory and set the-
ory we will introduce is only the tip of the iceberg for these topics, and
either topic could easily be an entire semester-long course by itself. We
will spend a bit of time on set theory since it is of fundamental impor-
tance for modern mathematics. As you will see if you continue taking
more advanced courses, many mathematical objects of interests – groups
and rings in abstract algebra, spaces in topology, manifolds in geometry,
vector spaces in linear algebra, and many other examples – are defined
in terms of sets. Thus knowledge of sets is important for any student
of mathematics. (Sets also clarify many of the topics you know in less
formal ways from previous mathematics courses.)

vi

INTRODUCTION TO THE COURSE vii

Course format
This semester I’m teaching this course as a discussion-based lecture, mean-
ing that most days I will introduce a topic in class, and show you various
examples of the topic, but I encourage you to stop me and ask ques-
tions as they arise. I will also periodically stop and ask if everyone has
any questions, and check that everyone’s still following the material. I
will also sometimes ask for you to work on your own proofs in class in
small, informal groups while I walk around the room answering individ-
ual questions as they arise. Sometimes I’ll ask for someone to volunteer
to put their proof on the board, and afterwards we’ll discuss the proof,
using any mistakes as an opportunity for more discussion to clarify any
misconceptions or confusion.

The material in this course is likely very different from the material
you’ve seen in earlier courses, and you should anticipate that you will
make mistakes sometimes – and that’s okay, it’s all part of the learning
process. I hope the format and atmosphere of the class will be casual
enough that you feel comfortable making mistakes and using those as
learning opportunities.

Assignments
Your grade in this class is determined primarily by four types of assign-
ments: weekly homework, sporadic pop quizzes, a proof porfolio, and
exams (three midterm exams, and a cumulative final exam).

Homework

Most weeks, homework will be posted to Canvas by 5pm on Friday af-
ternoon and due by 11:59pm the following Thursday. Homework assign-
ments will always be graded out of ten points, with about five points
coming from effort and the remaining points coming from accuracy. The
effort points you receive simply by making an “honest attempt” at each
problem assigned, regardless of whether your solution is correct or not.
The accuracy points come from one or two problems that I select to thor-
oughly grade. There are a few reasons for grading the homework this
way. This will be a course where regular feedback on your work is very
important, and so I want to be able to get your homework graded and
back to you quickly. However, I also think it’s important that you work
on several different problems to help solidify your understanding of the

INTRODUCTION TO THE COURSE viii

material. These goals (several problems to practice with, and thorough
feedback given quickly) stand in contrast to one another: the more prob-
lems I grade, the slower the grading will go. Grading homework half for
effort and half for accuracy is a compromise that helps me get you feed-
back quickly, while still giving you the opportunity to work on several
different problems each week.

Pop quizzes

With the exception of the very beginning of the semester, I won’t take
attendance in class. However, in order to encourage you to come to class
(and this is a class where coming regularly will be very important for
your understanding), I will give pop quizzes at the start of class on occa-
sion. These will be very short (sometimes consisting of a single problem),
will only take five or ten minutes of class time, and are only graded for ef-
fort. That is, as long as you are present in class you will receive full credit
on the pop quiz, even if your solutions to the problems on the quiz are
incorrect. This is meant to make the pop quizzes a low stress, low stakes
situation: you just need to be sure you’re in class and you get credit.
These will also serve as a place to start our discussion, as after the pop
quizzes are collected we’ll go over the solutions to the problems given
and can discuss any possible confusion or concerns about the problems.

Proof portfolio

The proof portfolio is a semester-long project where you will have an
opportunity to re-work some of the homework problems earlier in the
semester that you might have missed in order to show that you’ve learned
the material by the end of the course. This portfolio will consist of typed
solutions to earlier homework problems and will be due by the last day
of class. You will need to submit two drafts of the portfolio earlier in
the semester, with the first draft being due on Friday October 6, and the
second draft being due on Friday November 10. The final draft is due by
11:59pm on Friday, December 8.

Midterm exams

Our class will have three midterm exams during the semester. These
will be closed book, closed note, individual exams. Midterm exams will
always be graded out of 100 points, with each problem graded for accu-
racy. Partial credit is awarded when students begin solving a problem

INTRODUCTION TO THE COURSE ix

correctly but make mistakes or simply stop solving the problem. How-
ever, students must begin solving the problem correctly to receive partial
credit. Students will not receive partial credit for completely erroneous
or illogical work, or for solving a problem different from what is asked
on the exam.

The work you present on a midterm exam is expected to be written legibly
and easy to follow.

All students are expected to take each midterm exam. As discussed
in the Make-up exams and homework section below, make-up exams will
only be allowed in a few specific circumstances. Students should always
prepare to take the midterm at the date and time announced in class. Test
anxiety is not a legitimate reason to delay an exam. Students who miss
an exam for an unexcused reason will receive a grade of zero.

Tentatively, our midterm exams will take place on Wednesday Septem-
ber 13, Wednesday October 11, and Wednesday November 15. These
dates are subject to change, however.

Final exam

We will have a cumulative final exam at the end of the semester, the exact
date and time of which will be determined by the registrar. The structure
and format of the final exam is very similar to that of the midterm exams,
though the final will be somewhat longer and counts for a larger portion
of the student’s grade.

Make-up assignments

Generally speaking, no late work is accepted and no make-ups for missed
assignments are allowed. Of course, there are exceptions to this. For ex-
ample, if you are seriously ill or suddenly injured, then we will work
together to find a reasonable solution to a missed assignment. Or, if you
are student-athlete that will miss class because you are traveling with
your team to a university-sanctioned event and you notify me before you
leave with documentation from your coach, then we will find a reasonable
solution to what you have missed. However, if you happen to miss class
the day of an in-class assignment or when a written homework is due
because you overslept, are hungover, or simply too anxious or feel un-
prepared, you will not be allowed to make up any missed assignments
and you will receive a grade of zero on that assignment!.

As homeworks are taken up on Canvas, I do not plan to grant ex-
tensions or make-ups for these (even for university-sanctioned travel),

INTRODUCTION TO THE COURSE x

except in very extreme circumstances. Similarly, missed pop quizzes will
have a recorded grade of zero, even if you have an “excused” absence. To
compensate for this, I will drop some to-be-determined number of pop
quizzes for everyone at the end of the semester.

Extra credit

There is no extra credit of any form in this class.

Expectations
This will be class where details are very important, and you will be held
to a high standard when it comes to grading your work, both in terms of
the content of your work and how you present it. Since part of the goal
of this course is to help you transition to more advanced mathematics,
it’s important that you learn how mathematics is communicated. This
includes learning the standard ways in which mathematics is formatted
when it is written, and you will have points deducted from an assign-
ment’s grade if you don’t format your work in the standard way.

Students in this class are expected to be mature and conduct them-
selves in a professional manner. In terms of this classroom this means

• students are expected to come to class each day;

• be in class prepared with pencil and paper at the start of class

• students should have completed the assigned reading before com-
ing to class;

• pay active attention during class and have any computers, phones,
or tablets put away (students may take notes on a tablet, however);

• and be ready to participate in class by asking questions about exam-
ples from the previous lecture, problems from homework assign-
ments, or any concepts discussed in class or the assigned reading.

Students are expected to spend a minimum of eight hours per week work-
ing on material for Math 250 (working on homework, reading the text-
book, studying notes, etc.). Keep in mind eight hours is the minimum:
each additional hour spent working outside of class will have been well-
invested come exam time.

INTRODUCTION TO THE COURSE xi

Students are strongly encouraged to take advantage of the various
studying resources provided by the university and the mathematics de-
partment, such as the MTC.

Online notes
In addition to the textbook, I will be typing up my lecture notes for the
course and posting them online in Canvas. Students are expected to read
both the online lecture notes as well as the Bond & Keane textbook. The
readings for each week will be posted to Canvas.

LATEX
Virtually all serious mathematics (and really all scientific material) today
is created using LaTeX (pronounced “lay-tech” – the ’X’ at the end is sup-
posed to be like the Greek letter chi, χ) which is a typesetting language
that makes it relatively easy to “type math.”

While you will not be required to use LaTeX this semester, it would
be a good idea if you took some time to go ahead and learn it. With this
in mind, I’ll be posting some resources for LaTeX to Canvas each week to
help you get started if you choose to use LaTeX. The goal will be that by
the end of the semester, you’ll have everything you need to have typed
up all of your homework assignments and your proof portfolio in LaTeX.

Just to emphasize, you do not have to use LaTeX if you don’t want
to; you can use Microsoft Word or whatever other software you’d like
to type your proof portfolio. LaTeX does have a learning curve and can
seem daunting at first, but once you get over the initial “hump” of getting
started with LaTeX, I think you’ll find it to be much nicer for writing
complicated mathematicla expressions than something like Word.

How to study in this course
There is no denying that this will be a difficult course: the ideas we will
see will be very different from what you’ve seen in previous courses,
and it will take time to become accustomed to the method of thinking
necessary to prove theorems. You should anticipate that there will be
times that you find the material in this course frustrating. I don’t mention
that to scare you off from the course, but just to help prepare you for
when you feel stuck and can’t seem to wrap your head around something

INTRODUCTION TO THE COURSE xii

we discussed in class, because this will happen. The only real remedy
for this is to be persistent. The absolute worst thing you could do in
this course is to give up. Everyone (really, everyone) finds at least some
of this material difficult the first time they encounter it, but everyone
that doesn’t give up eventually figures it out. Your brain is going to get
stretched and exercised in this course, and like any exercise it can be
uncomfortable and awkward when you first start, but if you stay with it
you’ll get better and better; your brain will get stronger and stronger.

In terms of concrete tips for studying for this course, I’d suggest a few
specific things:

• Read the assigned sections of the lecture notes and the textbook.
Make a point to read them regularly. Get in the habit of finding a
quiet place where you can go and just sit down and read without
distractions. This means turning off (not just silencing, but com-
pletely shutting down) your phone or anything else that can inter-
rupt your thoughts as you read.

• While you read, try to be incredulous. Always ask yourself why
we’re doing what we’re doing. You should be asking yourself things
like “What was the point of some particular assumption we made?”
or “Why was that particular manipulation the right thing to do in
the proof?” As you get more comfortable with proofs, ask your-
self more questions while you read and study. “What would hap-
pen if this particular hypothesis was changed to that?” If you keep
pushing with questions like this, you eventually get into uncharted
territory, asking questions no one else knows the answer to, and
sometimes finding the answers yourself – and that’s where math
really starts to get fun and exciting.

• Take notes, not just in class (which you definitely should do), but
also while you read. The process of just writing things down some-
times helps strengthen the neural pathways in your brain and can
help you to recall information and understand things better. (I’m by
no means an expert in these things, but my understanding is that
there’s real science from the fields of neuroscience and education
behind this idea.) When discussing this with a collaborator once, he
agreed and said something that’s stuck with me: “You don’t read
math with your eyes, you read it with your hands.” When I was
a student I had two notebooks for my math classes. In one I wrote
“quick notes,” things I jotted down quickly during lecture or things
I’d write down while studying the textbook (things like definitions

INTRODUCTION TO THE COURSE xiii

and statements of theorems). In the other notebook I tried to very
carefully write down an organized version of the quick notes I’d
taken earlier, trying to fill in all of the details, explaining why a cer-
tain topic was useful or interesting to myself, etc. It was kind of
like writing my own version of a textbook while I was learning the
topic. While this was slow and time consuming, it was also very ef-
fective for studying, and probably why I type up lecture notes like
this now.

• Start on assignments early and work on them regularly. You will
be setting yourself up for failure if you wait until the day an as-
signment’s due to start it. The homework in this class will be hard
and sometimes it will take a serious investment in time in order to
complete it. You should just be aware of this early on and plan for
it. Once an assignment is available, plan to start on it the next day
and try to do a problem or two each day. This will save you from
a lot of stress compared to trying to do the whole assignment in a
short amount of time.

• Ask questions. Ask lots of questions. Ask questions of me during
class, outside of class, through email, etc. Feel free to ask questions
about “the bigger picture,” and not just the specifics of a particular
homework problem. Sometimes seeing the big picture and connec-
tions between topics we do in class to other things can help you
stay motivated when things seem hard.

• Take advantage of the Math Tutoring Center. The tutors in the
MTC know how hard a class like this can be: they’ve been there,
and they have come out the other side. They can help you with
homework problems, with conceptual questions about the “why”
of what we’re doing, tell you where they used some of these proof
techniques in other classes, etc. Sometimes I think some students
are “too proud” and don’t want to get help from the tutors at the
MTC, but this is a bit silly. I’d encourage you to regularly go to the
MTC, even if just to have a place to sit and work and study.

Some personal information
I am very excited to be teaching Math 250 this semester at Western Car-
olina, partly because it was a class like this that first made me interested
in math. When I first came to college (at WCU, in fact), I wasn’t a math

INTRODUCTION TO THE COURSE xiv

major but was instead a computer science major. As a CS major I’d taken
algebra, calculus, and statistics and while I did well in those classes, I
didn’t particularly love them. To me, math had seemed like a tool that
might be useful for other people that wanted to be scientists or engineers,
but I wanted to be a computer programmer and didn’t find my previous
math courses very interesting. Like a lot of students, I did what I felt
I needed to do to get a good grade in the class, but then promptly for-
got everything once the semester had ended, because I didn’t think I’d
actually need to know that material for anything else.

It was in Benjamin Schultz’s course (which I think was called Logic
and Proof for Computer Science, but I might be wrong; this was a CS ver-
sion of this class that isn’t taught anymore) that I first started to really
appreciate the idea of actually proving something. I was really amazed
by the idea that we could prove something was true in math (and com-
puter science), not just collect evidence that it was likely true, like you
do in other sciences. This intrigued me enough to add math as a minor,
and then at some point I decided to add math as a double major. My
intention was still to be a computer programmer, but I thought having
the math double major would at least look good on a résumé.

While in college I did a couple of summer internships for small re-
gional companies, and became a little bit disillusioned with the job of a
computer programmer. I enjoyed writing code, because I viewed each
little problem to solve as a riddle to figure out and I thought that was
fun, but the typical day-to-day of a 9am-5pm programming job seemed
less fun. I didn’t really know what to do, so my senior year I applied
to the masters program in math at WCU (which unfortunately no longer
exists), and that was when I started to really enjoy math. As an under-
graduate you think you know what math is about, but then in graduate
school you start learning a lot more stuff and see a whole mathematical
world you didn’t even know existed.

After the master’s program at WCU, I knew I wanted to get a PhD
in math and keep learning. I wound up going to Clemson for my PhD,
and learned more math I didn’t know even existed beforehand. After
finishing at Clemson in 2014, I had teaching positions at Wake Forest
University, Indiana University, and Bucknell University, before a tenure-
track job at Western opened up. I was happy to be hired by WCU and
have been here since Fall 2020.

Today I’m still interested in the topics I studied in my dissertation,
and do research in related problems. Roughly, this has to do with the dy-
namics (the study of how things changes) on certain surfaces that have
a very special kind of geometry. I like this stuff because it combines a

INTRODUCTION TO THE COURSE xv

lot of different kinds of math: topology, geometry, abstract algebra, com-
plex analysis, and dynamical systems are all things that pop up in what I
study. I also still get to use my computer programming skills to help me
in my research by writing simulations and conducting little experiments,
or having code that looks for examples of things that are too difficult to
do “by hand.” I really enjoy this stuff and would be happy to talk about
it with students, or even work on a undergrad research project if any stu-
dents are interested. (Or if students wanted to do an independent study
about something that’s at least tangentially related to my interest, I’d be
happy to do that as well.)

Chris Johnson
Fall 2023

1Motivation for Logic and Proof
1.1 What are proofs?
The content of this course is likely quite different from the mathematics
you’ve previously learned. Most likely the classes you’ve had up to this
point have been focused on computation, and how to interpret and apply
the values you’ve computed. For example, in calculus you learned how
to compute a derivative by following a certain algorithmic procedure,
and you learned that this quantity has interpretations as the slope of a
tangent line, or the velocity of a moving particle. If you’ve taken a course
in probability, you’ve likely learned how to compute the expected value
of a random variable and how to interpret this value as something like
the long-term average of samples of that random variable.

The topics in this course are more fundamental and foundational than
the topics in these other courses. That is, instead of learning how to per-
form specific computations, we are more interested in questions about
the why of the theory that underlies those computations. For example,
instead of learning how to use the chain rule to compute a derivative, we
are interested in why the chain rule works: is it just a “made up” rule
that we all believe, or is there a logical rationale for explaining where the
chain rule comes from and takes the form that it takes?

As a simpler example, in your earlier algebra courses you how to use
the quadratic formula to determine the value of x that solves the equation

ax2 + bx+ c = 0.

In those courses you were likely simply told that the x that satisfies this
equation is given by the formula

x =
−b±

√
b2 − 4ac

2a

and most likely only took this on faith. But where does this formula
come from? Why does this formula work to give us the x that satisfies
the quadratic equation above? To justify why this formula works, we
need a proof.

Informally, a “proof” can be thought of as an argument that justifies
beyond the shadow of a doubt why a statement is true. One important
thing to realize, which students often struggle with at first, is that a cor-
rect proof doesn’t simply provide evidence that a statement is likely true,
but it unquestionably establishes that a statement must be true.

1

CHAPTER 1. MOTIVATION FOR LOGIC AND PROOF 2

To illustrate the point, suppose you wanted to justify that the quadratic
formula above was correct that it always gave the value of x solving the
equation ax2 + bx + c = 0. You might be tempted to look at several ex-
amples, making various choices of a, b, and c, and for each one use the
quadratic formula to compute x, plug back into the original equation and
see if it’s satisfied or not. For example, maybe you choose a = 2, b = −9
and c = 7 and so consider the quadratic equation 2x2 − 9x+ 7 = 0. Then
you apply the quadratic formula to compute

x =
−(−9)±

√
(−9)2 − 4 · 2 · 7
2 · 2

=
9±
√
81− 56

4
=

9± 5

4
= 1 or

7

2
.

Finally we might plug these two values, x = 1 and x = 7/2, back into the
equation to see that the equation is satisfied:

2 · 12 − 9 · 1 + 7 = 2− 9 + 7 = 0

2 ·
(
7

2

)2

− 9 · 7
2
+ 7 =

49

2
− 63

2
+

14

2
= 0

At this point we believe the quadratic formula worked for this particu-
lar equation. But what if we chose different values of a, b, and c? You
might want to construct another example and see if the formula holds or
not, or maybe even write a simple computer program that verifies if the
quadratic formula works for several randomly chosen examples. Even if
were to look at tens of millions of examples and the quadratic formula
gave the correct solutions to the equation for each one, you have not yet
proven that the quadratic formula is correct; all we’ve done is collect evi-
dence that it probably is correct. No matter how many millions, billions,
trillions, ... of examples we consider, there will always be infinitely many
examples we haven’t yet considered. The power of a (correct) proof of
the quadratic formula is that it takes care of infinitely-many examples at
once.

So, how do we actually prove the quadratic formula, or any other
mathematical statement for that matter? In the case of the quadratic for-
mula, what we want is an argument that shows that no matter what
a, b, and c are, the x’s that solve ax2 + bx + c = 0 are given by x =
1
2

(
−b±

√
b2 − 4ac

)
. There are conceivably many different ways such an

argument might work, but the proof below is a pretty standard one.

CHAPTER 1. MOTIVATION FOR LOGIC AND PROOF 3

Remark.
You can very safely skip over the proof of the quadratic formula
that we present below. We will actually start our study of proofs
with simpler things, so don’t let the proof below scare you off!

Theorem 1.1 (The quadratic formula). The values of x which satisfy the
quadratic equation

ax2 + bx+ c = 0

where the coefficients a, b, and c are real (or complex) numbers are given by

x =
−b±

√
b2 − 4ac

2a
.

Proof. We will suppose that x solves the equation, and show that it must
have the form described. To do this, ultimately we would like to solve for
x in the equation ax2+bx+c = 0. Let us first move the c to the right-hand
side of the equation to obtain

ax2 + bx = −c.

We may now divide both sides of the equation by a to obtain

x2 +
b

a
x =
−c
a
.

If we add the quantity b2

4a2
to both sides of the equation, we then have

x2 +
b

a
x+

b2

4a2
=
−c
a

+
b2

4a2
.

The purpose of adding this term, b2

4a2
, to both sides of the equation is that

we can now factor the left-hand side. We can easily verify, simply by
“FOILing,” that

(
x+ b

2a

)2
= x2 + b

a
x + b2

4a2
. Thus we may rewrite our

above equation as (
x+

b

2a

)2

=
−c
a

+
b2

4a2
.

Before we go any further, let’s add the fractions on the right-hand side
together. This will require we get a common denominator, and so we

CHAPTER 1. MOTIVATION FOR LOGIC AND PROOF 4

must multiply and divide the first term, −c
a

by 4a giving us −c
a
· 4a
4a

= −4ac
4a2

.
Adding this the second term on the right-hand side gives us(

x+
b

2a

)2

=
−4ac+ b2

4a2
.

We now take the square root of both sides. Notice that as squaring re-
moves negatives, when we take the square root we must compensate by
considering both the positive and negative square root. This leads us to

x+
b

2a
= ±

√
−4ac+ b2

4a2
.

At this point we may finally solve for x to obtain

x =
−b
2a
±
√
−4ac+ b2

4a2
.

Simplifying by taking the square root of the denominator and then adding
our fractions together, we obtain the familiar quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

Do not worry if there are some details in the proof above that you don’t
fully understand, or a step that doesn’t completely “click” the first time
you read the proof. The key thing to recognize is that we have some
precise way of verifying the quadratic formula is true for all, infinitely-
many coefficients a, b, and c. Throughout the course we will see many,
many examples of proofs and will actually start off with simpler proofs
than this one, but we want to go ahead and acknowledge the power of
a mathematical proof: it establishes beyond any doubt that a statement
must be true.

It’s worth taking a minute to dwell on the significance of the last sen-
tence in the paragraph above, as this is what distinguishes mathematics
from virtually every other discipline. In fields such as physics, chemistry,
or economics, we may develop ideas (theories) to explain phenomena we
see, but these are only models for those phenomena and we can never
truly know if those models are actually correct. In a field such as physics,
the best we can ever do is to collect lots of evidence to support the no-
tion that the theories may be correct, but we can never know for sure.

CHAPTER 1. MOTIVATION FOR LOGIC AND PROOF 5

For instance, Isaac Newton developed a theory of gravity that seems to
be correct in most typical “day-to-day” scenarios, but it was later shown
that the theory is not perfect and it had to be replaced by a different, more
accurate theory of gravitation (Einstein’s theory of general relativity).

Instances such as the above do not happen in mathematics: once we
provide a proof to establish that a statement is true and declare it to be a
theorem, it is impossible to be disproven later.1

1.2 What is logic?
Mathematical logic is a very big subject, and we will only barely scratch the
surface of logic in this class. Our real focus is on proofs, but some proof
techniques really require a bit of logic in order to justify their use. Logic
in math is a very formal topic where we consider quantities that have
either a true or false value, and various ways we can build complicated
statements from these quantities and determine if those statements are
true or false. While mathematical logic is interesting, we will only touch
on the parts of it that are relevant for us in this class. However, after
we’ve introduced logic, you would be in a good position to learn more
about mathematical logic if you were so inclined.

It’s worth pointing out that mathematicians like to think that all of
math is essentially a consequence of logic. We like to believe that ev-
erything we do starts with very simple statements we all agree are true
(called axioms), and by combining basic rules about manipulating true
statements to get another true statement, we eventually arrive at inter-
esting statements we care about. Almost no one actually does math this
way, though. With the exception of some very basic (or very specialized)
cases, the way we think about constructing proofs and the practice of
doing mathematics is often pretty far removed from the axioms and the
mechanistic manipulation of statements. In the late 19th and early 20th
century there was a push to make the math that mathematicians actu-
ally do more like formal logic, led by people like Alfred Whitehead and
Bertrand Russell. Russell and Whitehead tried to carefully, methodically
lay out the foundations of modern mathematics in terms of logic. This
was a huge endeavour, and while it’s important in the history of math

1It could be, however, that our theorem requires assumptions that are not explicitly
stated – or perhaps not even known – at first! For example, the parallel postulate from
your high-school geometry class is true in the context of Euclidean geometry, but is not
true in the hyperbolic geometry that was discovered by Gauss, Bolyai, and Lobachevsky
in the 19th century.

CHAPTER 1. MOTIVATION FOR LOGIC AND PROOF 6

and logic, it shows that actually boiling everything down to the axioms
is really unwieldy for modern mathematics.

We will take the view in this course that the basics of logic are worth
being aware of, but are secondary to our primary goal of getting com-
fortable reading and writing proofs.

1.3 Why should we learn about logic and
proofs?

Although it may not feel like it based on your course work up to this
point, mathematics is really all about proof, and mathematicians are in
the business of proving theorems. Even “users” of mathematics who may
not directly prove their own theorems will rely on theorems proven by
other people, and it’s good to be able to read proofs on your own to be
able to understand them instead of treating them like a black box that just
somehow magically works. Most students won’t become professional
mathematicians, but they will become users of mathematics in various
forms.

It should also be pointed out that constructing a proof is really an ex-
ercise in deductive reasoning, and this type of reasoning transcends writ-
ing proofs or even doing math in general. Writing a computer program is
also an exercise in deductive reasoning, and I think the two (writing code
and constructing proofs) complement each other well. In both cases, you
learn how to think very carefully and how to be very detail-oriented; if
you’re not, then your proofs are incorrect and your code is full of bugs.
The more experience you get with this kind of careful, deliberate rea-
soning (regardless of the form it takes), the easier all other exercises in
deductive reasoning become.

1.4 Applied math and pure math
As mentioned earlier, this course will be quite different from most of the
other math courses you’ve taken up to this point. In particular, this is
probably your first experience with a course in “pure math.” Most math-
ematicians think of math as roughly dividing into two categories, usu-
ally called applied math and pure math. Applied math is the mathematics
that’s concerned with solving problems that arise in concrete applica-
tions, such as problems from physics or engineering. Pure math, how-
ever, is mathematics that’s not necessarily developed with a particular

CHAPTER 1. MOTIVATION FOR LOGIC AND PROOF 7

application in mind. Sometimes doing pure math is a bit like exploring
an uncharted territory just for the sake of exploring it. This is not to say
that pure math doesn’t have applications, it’s just that applications aren’t
the driving force behind the math.

One example of where math that was traditionally considered pure
later became applied has to do with number theory and cryptography.
One of the things that interest people in number theory has to do with
prime numbers, integers like 3 or 19 that aren’t divisible by anything
but 1 and themselves. We’ll say a bit about prime numbers later, but
one thing that’s interesting is that all integers are basically built out of
prime numbers: every integer has a prime factorization, which is a way
of expressing that number as a product of prime numbers. For example,
the prime factorization of 28 is 2 × 2 × 7. It turns out that constructing
prime factorization is pretty difficult, even on a computer. For very large
numbers, we don’t have any very efficient ways of computing the prime
factorization. This all seems very “pure math,” very theoretical, and peo-
ple thought that’s all it was for hundreds of years. In later part of the
20th century however, people realized that they could use this fact that
prime factorizations are difficult to compute to construct cryptographic
algorithms: ways of encoding information that makes it very difficult for
someone to decipher a message we don’t want them to read. Today you
use these algorithms all the time, even if you don’t realize it. Every time
you purchase something on the Amazon, for example, information such
as your credit card number is encrypted before it’s sent to Amazon. (Lots
and lots of other information you send and receive electronically is en-
crypted as well, but credit card numbers are one thing we can all relate
too – you really don’t want some random person to be able to determine
your credit card numbers.)

We mention this distinction between pure math and applied math be-
cause it might be easy to lose sight of our goals in this class, since some
of the things we’ll be doing won’t have easy-to-describe, immediate ap-
plications. In a more applied class like ordinary differential equations,
you’re always seeing applications and that can help keep the material
interesting. In this class the applications are often less transparent and
harder to appreciate. For this reason it might be best to view our as-
signments in the class as exercises to build up your deductive reasoning
abilities, than as something that has an immediate, easy-to-see applica-
tion.

2Basic Proof Techniques
Pure mathematics is, in its way, the poetry of
logical ideas.

ALBERT EINSTEIN
New York Times obituary of Emmy Noether

May 4, 1935

In this chapter we begin our study of proofs in earnest, discussing a
few of the most common proof techniques through several basic exam-
ples. Along the way we discuss some of the common terminology that
you will encounter in mathematics (e.g., the distinction between a theo-
rem, a lemma, and a corollary), explain the standard way theorems and
proofs are formatted, as well as introduce some typical symbols that you
will often see in mathematics texts.

This chapter has a few exercises given without solutions and you are
strongly encouraged to at least attempt each of the exercises as the best
way to learn math is not simply by reading, but by actively working on
problems. If a problem seems too difficult, frustrating, or time-consuming
that’s okay; you should at least attempt the exercises, however, and ask
the instructor if you run into trouble or are confused by anything.

2.1 Direct proofs and counterexamples

2.1.1 First examples of direct proofs

We begin our discussion of proofs by viewing several examples of a tech-
nique often called “direct proof.” A direct proof is a proof that follows a
very linear order where we begin by stating any assumptions being made
(the hypothesis of the theorem), and proceeds by showing immediate
consequences of those assumptions, then consequences of those conse-
quences, etc., until we arrive at the desired conclusion.

To get started, let’s see how to prove that the sum of two even num-
bers is again an even number. What you might be tempted to do here
is look at a few examples to see if the claim is reasonable. Perhaps you
haphazardly pick a few examples and compute 2 + 4 = 6, 8 + 12 = 20,
and 4 + 28 = 32. In each instance we added two even numbers and saw
the result was even. Thus we might believe the claim that the sum of

8

CHAPTER 2. BASIC PROOF TECHNIQUES 9

two even numbers is even is reasonable, but this isn’t a proof. There are
infinitely-many pairs of even numbers we need to consider, and we’ve
only checked three, so there are infinitely-many examples we haven’t
yet considered. How can we be sure that amongst those infinitely-many
pairs of even numbers there isn’t some choice which summed to an odd
number?

What we need is some general way of expressing each even number.
If we could do that, then perhaps we can show the sum of our two num-
bers must have the same kind of expression. Put another way, we need
to be very precise about the definition of an even number. So, let’s recall
that an even number is an integer (whole number) which is a multiple of
the number 2. That is, an even number is a number that can be written
as 2n for some integer n. For example, 4 equals 2 · 2, 28 equals 2 · 14, and
10 equals 2 · 5.

The fact we used “n” in our definition above, instead of some other
letter or symbol, doesn’t really matter. Thus if we want to consider two
different even numbers, we might write one of them as 2n and the other
as 2m.

With all of this in mind, let’s now prove that the sum of two even
numbers is even.

Theorem 2.1. The sum of two even numbers is an even number.

Proof. Let x and y be two even numbers. Thus we may express x and y
as x = 2n and y = 2m for some integers m and n. Their sum then equals

x+ y = 2m+ 2n = 2(m+ n).

As the sum x+ y is a multiple of 2, being 2(m+ n), it is an even number.

Before we discuss the structure of the proof, let’s talk about how it is
presented. Observe that our theorem is clearly set apart in the text above
so that when you read it, you can easily see the claim being asserted.
Immediately below the statement of the theorem, we have the proof that
appears and is also set apart from the text. We have the word ’Proof’
which indicates we are about to start the proof, and at the end of the
proof there is a small block, . This block indicates the end of the proof,
making it easier for the reader to know where the proof has stopped and
the main text resumes. This symbol, , is called a Halmos tombstone, and
was introduced by Paul Halmos. The story goes that Halmos thought
of unproven theorems as enemies to be vanquished, and the proof was
what killed the enemy, so he marked their death with a tombstone.

CHAPTER 2. BASIC PROOF TECHNIQUES 10

Remark.
Almost any mathematical proof you read today will end with a Hal-
mos tombstone, but occasionally you’ll see the letters QED appear
at the end of a proof instead. This is an acronym for the Latin ex-
pression quod erat demonstrandum which means “which was to be
demonstrated.” That is, the author is claiming they have shown
what they set out to show and are now done.

Let’s now carefully walk through the structure of proof of Theorem 2.1.
Our goal is to show that if any two even numbers are added together, the
result is an even number. So, we first suppose that x and y are any two
even numbers. Notice that we are not choosing two particular even num-
bers: we are not just picking an example of an x or a y. Instead, x and y
are two “placeholders” that could be any of the infinitely-many choices
of even numbers. Since x and y are even numbers, we know we can write
them as 2m and 2n for some appropriate choice of m and n. (It’s easy to
see that m is x

2
and n is y

2
, but the actual values of m and n don’t really

matter.) Now, when we add these two even numbers together, we can
write their sum x + y as 2m + 2n. As each of those terms has a factor
of 2, we can factor it out and write the sum as 2(m + n). This means
the sum x + y is a multiple of 2, which is exactly what it means to be an
even number! We have thus shown that adding any two even numbers
together always results in an even number.

2.1.2 Counterexamples

Notice again that our proof applies for all of the infinitely-many choices
of even numbers, whereas explicitly testing specific pairs of numbers will
only show us the statement is true for those pairs of numbers. However,
we can disprove a false claim by finding any single example where the
claim is not true.

For example, suppose someone were to erroneously claim that the
sum of two odd numbers is always odd. If we can find a single pair
of odd numbers which do not add up to an odd number, then we have
disproven the claim (or, if you’d prefer, we’ve proven the claim is false).
Just a second of thought easily produces an example, such as 1 + 3 = 4.
Here we have two odd numbers, 1 and 3, whose sum is an even number.

CHAPTER 2. BASIC PROOF TECHNIQUES 11

Thus the claim that “the sum of two odd numbers is always odd” must
be false.

In general, a single example that disproves a claim is called a counterexample.
Perhaps right now counterexamples seem a little bit silly and a bit con-
trary to what we want to do: aren’t we trying to prove things, not dis-
prove them? Counterexamples are often useful for us to test our un-
derstanding and help us to be sure we aren’t going down a rabbit hole
trying to prove something that isn’t actually true. That is, we may make
some conjecture based on our experience or intuition that we hope will
be true. Instead of immediately trying to prove the statement we hope
is true must be true, we can instead try to construct a counterexample to
see if working on a proof will be futile. This may still seem strange at the
moment, but we’ll come to appreciate counterexamples more as we’ve
seen more examples.

2.1.3 More direct proof examples and exercises

As we stated above, a “direct proof” is one which follows a very linear
chain of reasoning where we start from a given hypothesis and proceed
step by step to produce a chain of simple consequences until we reach
our desired conclusion. Often these kinds of proofs are derivations where
our starting point is the definition of some quantity and we perform basic
algebraic manipulations one at a time to get to our result. This essentially
what we did in our proof that the sum of two even numbers is always
even. Let’s see a couple more examples of this kind of proof where we
are ultimately “unwinding” the definition.

Some examples you might have seen before in calculus involve jus-
tifying the various derivative rules, such as proving the derivative of
f(x)+g(x) is f ′(x)+g′(x). We’ll walk through this proof in just a minute,
but let’s first spend some time recalling the definition of the derivative.

There are several ways different ways you can think about what the
derivative really represents1, but for simplicity we’ll use the simple inter-
pretation that the derivative f ′(a) represents the slope of the line tangent
to the graph y = f(x) at the point (a, f(a)). This quantity seems difficult
to work with directly, but the key idea of calculus is to approximate dif-

1There’s a well-known article by William Thurston, one of the greatest mathemati-
cians of the 20th century, called On Proof and Progress in Mathematics where he dis-
cusses how people think about mathematics. At one point he mentions seven differ-
ent ways to think about the derivative of a function! That article is available online
at https://arxiv.org/pdf/math/9404236.pdf and is recommended reading for
anyone interested in becoming a mathematician.

https://arxiv.org/pdf/math/9404236.pdf

CHAPTER 2. BASIC PROOF TECHNIQUES 12

ficult quantities with easier to compute ones. Approximating the slope
of the tangent line at (a, f(a)) with the slope of the secant line through
(a, f(a)) and another nearby point, say (a + h, f(a + h)), leads to the fol-
lowing definition:

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

.

(There is one caveat here: this limit may not exist! If the limit does ex-
ist, then we say the function is differentiable at a. If this limit exists for
all choices of x = a in the domain of the function, then we just say the
function is differentiable.)

With the definition of the derivative at our disposal, we’re now ready
to prove some basic properties of the derivative. In the examples below
the key idea will be to start from the definition of the derivative and
manipulate it a little bit at a time until we reach our claim.

Theorem 2.2. If f(x) and g(x) are two functions which are both differentiable
at a, then their sum f(x) + g(x) is also differentiable at a and the derivative
equals f ′(a) + g′(a).

Before we “formally” write down the proof of this theorem, let’s talk
through how such a proof might work.

Let’s begin by simply writing out what the definition of the derivative
of f(x) + g(x) at a should be:

lim
h→0

f(a+ h) + g(a+ h)− (f(a) + g(a))

h

Our goal is to manipulate this a little bit at a time until we ultimately
arrive at the definition of f ′(a) plus g′(a). One simple thing we can do to
get started is to distribute the minus that appears in the numerator:

lim
h→0

f(a+ h) + g(a+ h)− f(a)− g(a)
h

.

Now we can rearrange the terms in the numerator, grouping the “f terms”
together and similarly for the “g terms”:

lim
h→0

f(a+ h)− f(a) + g(a+ h)− g(a)
h

.

We may now break our fraction up into the sum of two fractions:

lim
h→0

(
f(a+ h)− f(a)

h
+
g(a+ h)− g(a)

h

)
.

CHAPTER 2. BASIC PROOF TECHNIQUES 13

At this point we should see the light at the end of the tunnel. We simply
use one of the basic properties of limits to split our one limit above into
a sum of two limits:

lim
h→0

f(a+ h)− f(a)
h

+ lim
h→0

g(a+ h)− g(a)
h

.

We finally observe that these two terms are, by definition, the derivatives
of f ′(a) and g′(a), thus our limit definition of the derivative of f(x)+g(x)
at a can be rewritten as f ′(a) + g′(a), and the theorem is proven.

Typically a proof you read in a book won’t be as verbose as what we
have above. If you were to look up the proof of this theorem in a calculus
textbook, it might more succinctly give you something like the following:

Proof of Theorem 2.2.

lim
h→0

f(a+ h) + g(a+ h)− (f(a) + g(a))

h

= lim
h→0

f(a+ h) + g(a+ h)− f(a)− g(a)
h

= lim
h→0

f(a+ h)− f(a) + g(a+ h)− g(a)
h

= lim
h→0

(
f(a+ h)− f(a)

h
+
g(a+ h)− g(a)

h

)
= lim

h→0

f(a+ h)− f(a)
h

+ lim
h→0

g(a+ h)− g(a)
h

=f ′(a) + g′(a)

However, being succinct in proofs is not always a good thing, espe-
cially when you’re just learning to write proofs on your own. Instead,
you should feel free to include as much detail as you feel is necessary to
convincingly describe each step in your proofs. More details help you to
be sure you’re not inadvertantly making incorrect steps in your proofs as
you construct the proof, and they also make it easier for someone reading
your proofs to follow your reasoning. (There is nothing more annoying
than a proof that does not adequately explain each of its steps! It’s kind
of like reading code to a computer program that doesn’t have enough
comments to clearly describe how the code works.)

CHAPTER 2. BASIC PROOF TECHNIQUES 14

Remark.
Typically when you see a proof of a theorem in a text it will occur
immediately after the statement of the theorem. However, some-
times authors will delay the proof and spend some time first dis-
cussing the logic and rationale behind the idea of the proof before
jumping into technical details, or they might talk about applications
of the theorem before giving its proof. When this happens the proof
should reference what theorem is being proven, just as our proof
above was preceeded by Proof of Theorem 2.2.

Exercise 2.1.
Test your understanding of the ideas of proof introduced so far by

proving each of the following statements. Format your answers to
these exercises as a theorem followed by a proof.

(a) Prove that the sum of two odd numbers is always even. (Hint:
It might be helpful to first try to carefully define exactly what an
odd number is.)

(b) Prove that the product of two even numbers is always even.

(c) Prove that the product of two odd numbers is always odd.

2.1.4 Theorems, conjectures, lemmas, corollaries, etc.

We have used the word “theorem” a few times already, and certainly
you’ve seen other things called “theorems” in previous mathematics courses
(e.g., the Pythagorean theorem), but we haven’t properly defined ex-
actly what that term means just yet. The word “theorem” is itself a bit
odd, since it’s not something most people typically use in their everyday
speech. So, what exactly is this strange word and where does it come
from?

The origins of the word “theorem” seem to go back to the Greek
word θεωρηµα (transliterating from Greek to Latin this becomes theorema)

CHAPTER 2. BASIC PROOF TECHNIQUES 15

which means something like to be contemplated. The use of this word in
the mathematical sense appears to go back to Euclid who used this word
to describe the results he was explaining in his book Elements which sur-
veyed the geometry and number theory known to the ancient Greeks at
that time.

Mathematicians have continued the tradition started by Euclid by
referring to their results as “theorems.” That is, the word theorem just
means a statement that has been proven. In some technical settings the
word theorem is used to literally mean any true statement. For example,
2 + 2 = 4 is technically a theorem. However, most of the time when we
use the word “theorem” we are talking about a particularly important
statement (such as the Pythagorean theorem, or the fundamental theo-
rem of calculus).

Statements that have been proven to be true, but aren’t quite as signif-
icant are often referred to as a proposition. The exact distinction between
what gets called a “theorem” and what gets called a “proposition” is a
little bit hand-wavy, vague, and subject to the personal opinions of who-
ever is authoring what you’re reading. Ultimately they’re the same thing
(a true statement), but people usually like to reserve “theorem” for es-
pecially important statements, and use “proposition” for statements that
are not quite as impressive.

Some other terms you’ll often encounter in mathematics texts are “lem-
mas” and “corollaries.” These too really just mean a true statement (just
like propositions and theorems), but are used in specific situations. Lem-
mas are usually even less impressive than propositions: they are in some
ways the most minor of results. However, usually lemmas appear as
stepping stones or building blocks to some other larger propositoin or
theorem. That is, a lemma often refers to a statement which has been
proven, and while perhaps not so interesting in and of itself, is used in
proving some other result. You can think of lemmas more as convenience
to someone reading a proof: instead of having one very long and tedious
proof, it can be easier to digest and follow if some smaller pieces of a
proof are pulled out, and we call those smaller pieces lemmas.

Remark.
The word “lemma” is again another term that sounds strange be-
cause it’s not something we really use in everyday speech. It comes
from the Greek λεµµα (transliterated as “lemma”) which means

CHAPTER 2. BASIC PROOF TECHNIQUES 16

something to peel off, like the rind of a fruit. This might seem like
a very strange choice of word at first glance, but in some ways it
makes sense. Lemmas are usually stepping stones to more inter-
esting theorems, and so they are sort of peeling away some of the
difficulty in the theorem’s proof.

A corollary is again a true statement (something whose proof has
been, or can easily be, established), but which is often an immediate con-
sequence of some other theorem. As an easy example, since part (c) of
Exercise 2.1 showed that the product of two odd numbers is odd, an im-
mediate consequence is that the square of an odd number is odd.

Corollary 2.3 (Corollary of Exercise 2.1, part (c)). The square of an odd num-
ber is odd.

As a corollary is supposed to be an immediate consequence of a the-
orem, it’s not uncommon that proofs of corollaries don’t appear in texts.
(Sometimes they do, sometimes they don’t – it’s another thing that comes
down to an author’s personal preference.)

Remark.
Even if the proof of a corollary isn’t provided in a text, it’s good
practice to try to prove the corollary to yourself. After you’ve gotten
some practice with proofs, this becomes an easy exercise you can
do to make sure you’re understanding what you’ve been reading.
If you can’t prove a corollary, that’s often a hint that you may not
understand something as well as you thought you did.

There’s one more word we’ll go ahead and introduce, though it’s one
whose meaning you might be able to guess: conjecture. A conjecture is
a statement which is believed to be true, but which has not yet been
proven. Often mathematicians make lots and lots of conjectures in the
process of doing research; in a certain way, mathematics is a continual
loop of making conjectures and then trying to upgrade the conjecture to
a theorem by proving it. You could think of a conjecture as an unsolved
problem, and a mathematician’s goal is to solve the problem by provid-
ing a proof the conjecture is true, or a counterexample to show it is false.

CHAPTER 2. BASIC PROOF TECHNIQUES 17

One famous example of a conjecture (unsolved problem) is the Col-
latz conjecture, which has to do with the following process. Suppose you
are given a positive integer n. You produce a new integer, let’s call it m
according to the following rules:

• if n is even, then m is n/2; and

• if n is odd, then m is 3n+ 1.

We then repeat the process using the new number m in place of n. That
is, we start off with some given number and then start producing a list of
numbers according to the procedure described above.

If we started with n = 17 for example, we would next compute 3 ·17+
1 = 52; we then compute 52/2 = 26, and then 26/2 = 13, then 3 · 13+1 = 40,
and so on. We keep repeating this process until we produce the number
1. The Collatz conjecture states that this process will always terminate
(i.e., we will always eventually produce the number 1) regardless of what
number start with. In the case of 17, the complete list of numbers we
produce will be

17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

As simple and innocuous as this problem seems, no one actually knows
if the Collatz conjecture is true or false, and the problem has been around
since the 1930’s. People have used computers to check if the Collatz con-
jecture holds for numbers up to 268 which is approximately 2.95 × 1020

or
2, 950, 000, 000, 000, 000, 000, 000.

Despite checking for such an incredibly large number of values, no one
has been able to prove the Collatz conjecture will hold for all starting
points: we have only checked finitely many numbers, so there are still
infinitely many left to worry about.

2.1.5 Some practice in deductive reasoning

Typically when you create your own proofs of theorems, you won’t be
able to follow an algorithm procedure where you follow a preordained
set of steps and arrive at the result. Proof writing is an exercise in deduc-
tive reasoning, where we start with some hypotheses (which in this case
means assumptions we’re making, such as that two numbers x and y are
even integers), and try to deduce some desired conclusion (such as the
sum of x and y must also be even). However, there often isn’t a simple

CHAPTER 2. BASIC PROOF TECHNIQUES 18

path in getting from “I know these assumptions” to “I can deduce this
conclusion.” Often you’ll have to spend some time thinking about what
you know and deriving simpler conclusions that are (hopefully) a little
bit closer to your ultimate desired conclusion. It takes some practice to
get used to this, so let’s spend some time working with some concrete
problems to help us get more practice with deductive reasoning.

Suppose are given a typical 8 × 8 chess board, and a collection of
dominos which are 2 × 1. (That is, if each square of the chess board was
one inch by one inch, our dominoes would be two inches by one inch.)
We are interested in covering the chess board by these dominoes in such
a way that the following properties are satisfied:

1. every square of the chess board is covered by dominoes;

2. no dominoes overlap; and

3. every domino is completely contained on the board (no dominoes
are hanging off the edge of the board).

We’ll say the chess board is perfectly covered if there is some way of placing
dominoes on the chess board so these conditions hold.

A first question that comes to mind is the following: Can a standard
8×8 chess board be perfectly covered? This statement is either true or it’s
false, and we want to establish which one it is. To prove the statement is
true, we only need to exhibit a perfect covering. To prove the statement
is false, we’d need to have some kind of reason to explain why it is false:
failing to find a perfect covering through trial and error does not show
the statement is false, it only shows we don’t know how to build a perfect
covering.

If you have access to a chess board and dominoes, it’s worthwhile to
sit down and see if you can build a perfect covering. It turns out the
8× 8 chessboard can be perfectly covered, and in fact it can be covered in
lots of different ways. Simply constructing an example of such a perfect
covering is not too difficult, and just presenting such an example proves
that an 8×8 chessboard can be perfectly covered by 2×1 dominoes. Let’s
present this as a theorem.

Theorem 2.4. An 8×8 chess board can be perfectly covered by 2×1 dominoes.

Proof. The configuration of dominoes presented below with four rows of
dominoes placed vertically is an example of such a covering.

CHAPTER 2. BASIC PROOF TECHNIQUES 19

Let’s make one little observerationabout the proof of Theorem 2.4
above. The theorem is the statement that some particular “thing” (in
this case a perfect covering of an 8 × 8 chess board) must exist. One
completely reasonable way to prove such a theorem is to simple give an
example of the “thing” we’re claiming exists. However, sometimes these
existence proofs are less concrete; there may be some abstract reasoning
that justifies the “thing” in question must exist, without actually stating
what it is. The proof of the intermediate value theorem from calculus2 is
an example of such a thing.

Question.
Here’s a question that’s worth pondering, but you shouldn’t be too
worried if you can’t answer it: it’s not an easy question, but some-
thing you might enjoy thinking about. Now that we know perfect
coverings of an 8 × 8 chessboard exist, how many are there? How
would you even start to determine the answer to such a question?
Questions like this that ask how many ways something can be done
are part of a branch of mathematics called combinatorics. Combi-

2The intermediate value theorem states that if a function f(x) is continuous on [a, b],
then for each value of y0 between f(a) and f(b), there must exist an x0 in the interval
such that f(x0) = y0.

CHAPTER 2. BASIC PROOF TECHNIQUES 20

natorics is often introduced together with graph theory in a course
called discrete mathematics that math and computer science majors
are both required to take.

That problem was easy, so let’s consider a similar problem that’s a
little bit harder:

Exercise 2.2.
Suppose you covered up the right-most column and top row of the
chess board with strips of paper, effectively leaving a 7 × 7 chess
board. Is it possible to perfectly cover this remaining 7× 7 board?

Often in mathematics we can start off with concrete examples of prob-
lems we care about, solve those concrete problems, and then look to see
if we can generalize our solutions to get a theorem that applies to lots of
situations. For example, is there anything really special about the num-
ber 7 in Exercise 2.2? If so, what’s special and what other numbers have
that special property? Can we ask the same question about another n×n
board where n has the same “special” property that 7 had?

Let’s now consider a more difficult problem involving chessboards:
Suppose we take an 8× 8 chess board and cover up two opposite corners
(e.g., the upper left-hand and lower right-hand corners). Can we per-
fectly cover the remaining 62 squares with 2 × 1 dominoes? You should
spend some time thinking on this problem first before reading the solu-
tion below.

In order to solve this problem we will need to make an observation
that is perhaps not immediately obvious, but which will supply us with
the necessary tools to show the 8×8 board with opposite corners blocked
can not be perfectly covered by 2 × 1 dominoes. These types of obser-
vations are often the key steps in proving more involved theorems and
sometimes only come after spending a fair deal of time pondering the
problem before the “Ah-ha!” moment occurs.

Notice that every 2×1 domino covers exactly one black and one white
square, whether it’s oriented horizontally or vertically. This means if we
have any hope of having a perfect covering, then the remaining squares
on our board must have just as many black squares as white squares.
However, the opposite corners of a chessboard always have the same

CHAPTER 2. BASIC PROOF TECHNIQUES 21

color: two opposite corners will be black, and the other pair of opposite
corners will be white. As a consequence, our chessboard with opposite
corners blocked will have a different number of black and white squares,
either 30 black and 32 white or vice versa. As a consequence, it’s impossi-
ble to perfectly cover an 8×8 chessboard with opposite corners removed
by 2× 1 dominoes!

2.1.6 Divisibility

To get some more practice with direct proofs, let’s look at a few more
examples concerning divisibility. We say that an integer a divides an
integer b if there exists an integer m so that b = am, and we sometimes
denote this by writing a|b. We also say that b is a multiple of a when
a|b. For instance, 3 divides 21 since 21 = 3 · 7, so we might write 3|21
and say 21 is a multiple of 3. However, 3 does not divide 16: there is
no integer m that solves 16 = 3m. (Notice we are explicitly talking about
integers when we talk about divisibility like this. There is a real number
m solving 16 = 3m, namely m = 16

3
≈ 5.3333, but this is not an integer.) If

a does not divide b, then we write a - b. Since 3 does not divide 16, 3 - 16.
Let’s prove one important property of divisibility, namely that it is

transitive.

Theorem 2.5 (Transitivity of divisibility). If a, b, and c are integers with a|b
and b|c, then a|c.

Before just jumping into the proof of Theorem 2.5, let’s try to infor-
mally reason our way through how the proof might have to work. We
are assuming a|b and b|c, so that must mean there are some integers m
and n so that b = am and c = bn. But, since b equals am, we can re-
place the b that appears in our equation c = bn to get c = amn! So, our
number that we multiply a by to get c as a multiple of a is just mn. If
we wanted, we could call this number p – i.e., we just define p to be mn
– then we’d have c = ap and we’ve shown that a|c. This is basically the
proof of Theorem 2.5, but let’s write it down properly.

Proof of Theorem 2.5. As a|b, there exists an integer m so that b = am. Sim-
ilarly, since b|c there is an integer n so that c = bn. Notice that as b equals
am, we may express the equation c = bn as c = amn. Defining p to be the
product mn, we have c = ap, and so a divides c.

CHAPTER 2. BASIC PROOF TECHNIQUES 22

Exercise 2.3.
Suppose a, b, and c are integers with a|b and a|c. Show that a|(b+c).

Sometimes it can be helpful to measure how far one number is from
dividing another. For example, even though 16 is not divisible by 3, it’s
only one greater than a number that is divisible by 3. In particular, 3
divides 15 and 16 is only one greater than 15. As another example, 9
does not divide 25, and is 7 greater than a number is a multiple of 9:
25 = 18 + 7 = 9 · 2 + 7. You could interpret this number, 7, as being how
much is left over (or how much remains) if you were to try to divide 9
into 25.

In general, whenever we have two integers a and bwith a 6= 0, we can
write b = am+ r where r is one of 0, 1, 2, ..., |a| − 1.

Theorem 2.6 (The Division Algorithm). Let a and b be integers with a > 0.
There are unique integers m and r with 0 ≤ r < a so that b = am+ r.

The division algorithm promises us two things which might be a lit-
tle bit subtle the first time you see a theorem like this: it promises the
existence of the integers m and r, and it also promises us that these two
integers m and r are unique. That is, not only does it tell us that there is
some choice of m and r so that we can write b = am + r with 0 ≤ r < a,
but it also promises us there is exactly one choice of m and one choice of
r that will make this hold. Our proof of the division algorithm will thus
need to contain two distinct parts: proving existence of some m and r so
our equation holds, and proving uniqueness of the m and r.

Let’s momentarily suppose b is positive to get the idea of the existence
part of the theorem figured out. The idea will basically be to take the
largest possible multiple of a (this is the am part of the expression am+r)
that keeps am ≤ b. Once that’s done, we need to see see how much more
we need to tack on (this is the +r part of am + r) to get from am up to b.
This number we tack on could be zero (if am happened to equal b), but it
can’t be any bigger than a− 1 (we’ll leave this part as an exercise for you
to think about).

Let’s work through a concrete example to see the idea in action. Let’s
suppose we wanted to write b = 77 as am+ r where a = 12. We consider
the multiples of 12 which remain less than 73. These are 12, 24, 36, 48, 60,
and 72. The largest of these was 72 = 12 · 6 (i.e., m = 6). Now, how much

CHAPTER 2. BASIC PROOF TECHNIQUES 23

do we need to add onto 72 = 12 · 6 to bump it up to 77? Well, we need to
add 5 on (i.e., r = 5). This means we can write 77 = 12 · 6 + 5.

Exercise 2.4.
If a and b are positive integers and m is the largest positive integer
with am ≤ b, show that b − am is no larger than a − 1. (Hint: The
fact m is the largest integer with this property is important.)

To see that our m and r will be unique, we employ what will turn
out to be a very common trick for these kinds of proofs (i.e., you’ll see
this over and over if you keep taking proof based math courses): we’ll
suppose there are actually two different choices of m and r (call them m1,
m2 and r1, r2) satisfying our equation (i.e., b = am1 + r1 = am2 + r2 with
0 ≤ r1, r2 < a), and then see if they actually have to be the same thing or
not. If it turns out they have to be the same (that is, if it is forced upon us
that m1 = m2 and r1 = r2), then the m and r are unique.

In the case of our example 77 = 12 · 6 + 5 above, we’re saying m1 = 6
and r1 = 5, but supposing there was some other choice of m2 and r2 so
that 77 = 12m2 + r2 with 0 ≤ r2 < 12. Both of these expressions equal 77,
so they equal each other:

12 · 6 + 5 = 12m2 + r2

Let’s perform a bit of arithmetic now, by subtracting 12m2 from the right-
hand side over to the left-hand side:

12 · 6− 12m2 + 5 = r2.

Factoring the 12 out, we can write this as

12 · (6−m2) + 5 = r2.

Now we make an observation: we claim 6 −m2 will need to be zero. To
see why that must be the case, let’s momentarily writeN for 6−m2, so our
equation above is 12N + 5 = r2. If N 6= 0, it’s either positive or negative.
Let’s suppose for a second it’s positive. Then when we write r2 = 12N+5,
we must have that 12N ≥ 12, so r2 is then at least 17. But r2 was supposed
to be between 0 and 11, so this can’t happen. Similarly, if N ≤ −1, then
12N ≤ −12, so r2 = 12N + 5 ≤ −7. This is also a problem since r2 was

CHAPTER 2. BASIC PROOF TECHNIQUES 24

supposed to be non-negative. Thus the only possibility, if we’re really
going to have 0 ≤ r2 < 12 is that N = 0. But that means 6 −m2 = 0, so
m2 = 6. But then we have the expression r2 = 12 · 0 + 5 = 0 + 5 = 5, so
r2 = 5.

It’s a little bit to digest the first time you see this idea, but try to care-
fully work through the example above, or (even better) make up your
own concrete example and work through the same kind of reasoning
with the numbers you come up with. All we’re doing in the proof be-
low is repeating the same kind of reasoning, just leaving the quantities a,
b, m and r as variables instead of making a choice of a particular number
for each one.

Proof of Theorem 2.6. Suppose momentarily that b ≥ 0. Letm be the largest
integer such that am ≤ b. Now define the number r to be b − am. Since
b ≥ am, the number r = b− am we defined is non-negative. Now notice

am+ r = am+ b− am = b,

and so we have found integers m and r so that b = am+ r.
We still need to show that r satisfies 0 ≤ r < a, and that m and r are

the unique integers satisfying b = am + r with 0 ≤ r < a. As observed
above, r is non-negative so r ≥ 0. To see that r < a, notice that if r was
greater than or equal to a, then we could write r = a + s for some s ≥ 0.
But then

b = am+ r = am+ a+ s = (m+ 1)a+ s

Since s ≥ 0, though, (m + 1)a = b− s ≤ b. But this is impossible since m
is chosen to be the largest number with am ≤ b. (It’s impossible because
m+ 1 is necessarily bigger than m.)

To show m and r are the unique pair of integers satisfying b = am+ r
with 0 ≤ r < a, suppose there was another such pair of integers, call
them m2 and r2. Since b = am + r and b = am2 + r2, we must have
am + r = am2 + r2, which we may rewrite as am − am2 + r = r2, or
r2 = a(m−m2)+r2. Since r and r2 are both between 0 and a (not including
a), we claim that we must havem−m2 = 0. If this were not the case, then
either m−m2 ≥ 1 or m−m2 ≤ −1.

Ifm−m2 ≥ 1, then r2 = a(m−m2)+r ≥ a+r ≥ a, but this is impossible
since 0 ≤ r2 < a. If instead m − m2 ≤ −1, then r2 = a(m − m2) + r ≤
−a + r < 0, and this is also impossible since 0 ≤ r2 < a. Together these
mean that m−m2 = 0, so m = m2.

Once we know that m = m2, our expression am + r = am2 + r2 from
above becomes am+ r = am+ r2, or simply r = r2.

CHAPTER 2. BASIC PROOF TECHNIQUES 25

Exercise 2.5.
Suppose a is an integer and 0|a. Show that a = 0.

2.2 Proofs by induction
The next proof technique we will discuss is referred to as induction and
the idea of a proof by induction will be familiar to anyone who has used
“recursion” in computer programming. Before describing induction in
the general mathematical sense, we will see some recursive ideas from
computer science to help us warm up to mathematical induction.

2.2.1 Warmup: The quicksort algorithm

One common problem in computer science has to do with sorting a list
of values. The idea is simply that we have some collection of data that is
“out of order” and we wish to put it in an order from the least elements
to the greatest elements.

As a simple example, suppose we have a website that keeps track of
certain users which have a first and last name. This could be a course
management system used by a university, such as Canvas or Blackboard,
where the users are students in a course. Students may add or drop the
course at various points and the list of users for the site might not be
in alphabetical order: there’s no particular reason why students would
register for a course in alphabetical order. The instructor of the course
might wish to have an alphabetized list of students, however, and so our
list of users needs to be sorted. This begs the question of how do we sort
this data: how do we instruct a computer to take unordered data and put
it in order?

There are several different algorithms (specific lists of instructions for
accomplishing some general task) that computer scientists have devel-
oped for sorting data, and different algorithms have different strengths
and weaknesses. Some algorithms may sort data very quickly (which is
usually desirable), but might need to use a lot of memory in the process
(which is usually undesirable); other algorithms might use less memory,
but be slower. There are lots and lots of sorting algorithms out there, but
to illustrate the idea of recursion (and induction) we will consider the
quicksort algorithm.

CHAPTER 2. BASIC PROOF TECHNIQUES 26

The idea with quicksort is that we have some unordered collection of
data which we will essentially break into two halves: one half will be less
than some particular element in the list (let’s say the first element), and
the other half is greater than that element. We will then order each half,
and put the halves together. If we can do this, we’ve ordered the list.

The key thing in the description of the quicksort algorithm above is
that we take our list, break it into smaller lists and then order those smaller
lists. Now, how are we going to order the smaller lists? Well, we could
just repeat the process on those smaller lists! In general, we take our
lists and break them into half, then break those “sublists” into smaller
lists, and break those into smaller lists, etc. Eventually we get to a point
where our sublist consists of only one element, which is already sorted.
Once we get down to this “base case” we work our way back up to the
original list, putting everything back in order as we go.

To be concrete, let’s try to apply this process to order the following
list of numbers:

5, 8, 3, 2, 7, 4

We first pull off the first element of the list, 5, and look at the remaining
list of numbers: 8, 3, 2, 7, 4. Now we take these lists and look through
each entry and compare it to 5, storing all the elements less than 5 in one
list (this would be 3, 2, 4) and the elements greater than 5 in another list
(8, 7). If we could sort these lists, giving us 2, 3, 4 and 7, 8, we could then
easily put everything back together to get our ordered list 2, 3, 4, 5, 7, 8.
But now we have to sort these smaller lists, such as 3, 2, 4. How do we do
that? Let’s “rinse and repeat,” applying the same procedure to 3, 2, 4.

We’ll pull off the first entry, 3, and then divide the remaining entries
into lists which are smaller than 3 (just 2) and greater than 3 (just 4).
Now notice that each of these little lists of a single element is necessarily
already sorted! So, we take the list of smaller entries, concatenate 3 to it,
then add the list of larger entries. This gives us 2, 3, 4 which is sorted.

We can do the same thing to our list 8, 7 to turn it into 7, 8. Now we
take our smaller list, 2, 3, 4, attach 5 to it, then attach the larger list 7, 8, to
get the ordered list of numbers:

2, 3, 4, 5, 7, 8

For the sake of concreteness, here is the quicksort algorithm imple-
mented in Python:

CHAPTER 2. BASIC PROOF TECHNIQUES 27

def quicksort(data):
if len(data) <= 1:

return data

pivot = data[0]
lessThan = [datum for datum in data[1:] if datum <= pivot]
greaterThan = [datum for datum in data[1:] if datum > pivot]

lessThan = quicksort(lessThan)
greaterThan = quicksort(greaterThan)

return lessThan + [pivot] + greaterThan

Running this code does indeed organize the list of data we give it:

>>> quicksort([5, 8, 3, 2, 7, 4])
[2, 3, 4, 5, 7, 8]

Remark.
It’s completely fine if you’re not familiar with Python, or writing
code in general. This is just meant to be an example of how the
idea of induction can be applied. You should make an effort to un-
derstand the idea of the quicksort algorithm, but you certainly don’t
need to feel like you need to understand the code above if you don’t
want to.

There are two crucial properties of the quicksort algorithm we’ve pre-
sented:

• we apply the same algorithm to a smaller list of data than what we
are originally given; and

• the algorithm immediately returns its value, instead of running
again, if it’s given a list of one (or zero) elements.

CHAPTER 2. BASIC PROOF TECHNIQUES 28

That is, we continually apply the same algorithm to smaller and smaller
data sets, and the algorithm stops once we reach the smallest possible
data set. This last step is extremely important: without a condition like
this, the algorithm might try to repeat forever and ever. In general, for
recursive functions it’s important to have a “base case” where the func-
tion stops calling itself, otherwise we could have an “infinite recursion”
that never ends.

2.2.2 Mathematical induction in proofs

Proof by induction is a technique where we prove infinitely-many state-
ments by taking one statement, and expressing in terms of a simpler
statement. The idea is that we’re basically breaking down something
complicated into simpler, simpler, simpler pieces until we get all the way
down to the simplest situation which we can prove. This simplest situ-
ation is called the base case, and it’s something that we’ll have to verify
using some other technique (such as a direct proof). We then have an
inductive step that tells us how to relate a more complicated statement
to a simpler one. One crucial thing is that the inductive step needs to be
moving us a little bit closer to the base case each time.

There are two flavors of mathematical induction that we’ll discuss,
called weak induction and strong induction. The names are a little mislead-
ing because they make it seem like “strong induction” would somehow
be more powerful than “weak induction,” but that’s not the case. The dif-
ference between them is what kind of assumption we’re going to make in
the induction step; or, put another way, how much we’re breaking down
our complicated statement.

In the case of weak induction we’re basically relating our current state
in the proof to just the previous states, whereas in strong induction we’re
relating the current state to all the previous states. The distinction will
make more sense after we see some examples.

Remark.
Often when people discuss induction they don’t distinguish between
“strong induction” and “weak induction” and just use the word “in-
duction” to mean whichever technique they’re using.

CHAPTER 2. BASIC PROOF TECHNIQUES 29

2.2.3 Weak induction

Let’s try to be a little bit more clear about precisely what (weak) induc-
tion is before we start jumping into examples. Let’s say that we have
infinitely-many related statements we wish to prove are true, and let’s
say we have some way of ordering these statements. That is, there is a
first statement, a second statement, a third statement and so on. What-
ever the statements happen to be, let’s denote them by S1 for the first
statement, S2 for the second statement, etc.

For example, suppose we wanted to show that for all positive integer
n we had that n ≤ 2n. The infinitely-many statements here are 1 ≤ 21,
2 ≤ 22, 3 ≤ 23, and so forth. In term of our notation, we’re writing S1 for
the statement that 1 ≤ 21, and S2 for the statement that 2 ≤ 22, and S3 is
our short-hand for 3 ≤ 23, etc. Here we have infinitely-many statements,
that have a natural “order” to them: Sn is the statement n ≤ 2n for each
positive integer n.

Now, how can we prove all of these infinitely-many statements? For
any finite number of cases we can verify each individual statement, but
that doesn’t prove all infinitely-many statements. It’s conceivable that
the first 500 million statements are true, but the next one is false; verify-
ing a finite number of statements always falls short of proving infinitely-
many.

Induction gives us a tool for proving these infinitely-many statements.
In particular, the principle of weak induction states that all of the state-
ments Sn will be true provided two things hold: S1 is true, and we can
show that if Sn−1 is true then Sn must be true for each n ≥ 2.

Remark.
Informally, induction is like climbing a ladder. Is it true that you
can climb a ladder as high as you’d like? Well, if you can get on the
ladder, and you know how to go from one rung of the ladder to the
next, then you should be able to climb as high as you’d like. Here
getting on the ladder is like the base case, and going from one rung
of the ladder to the next is the inductive step.

We should think of the first statement, S1 (e.g., 1 ≤ 21) as being the
simplest case, and it’s something we can often verify directly. This is

CHAPTER 2. BASIC PROOF TECHNIQUES 30

called the base case. The second part, showing that if Sn−1 is true, then
Sn must be true is called the inductive step.

So, in the case of our claim that n ≤ 2n above, the base case that S1

is true (i.e., 1 ≤ 21) is something we directly check, since 1 is less than 2.
For the inductive step, we need to justify that if n − 1 ≤ 2n−1 for n ≥ 2,
then it must be true that n ≤ 2n as well. So, we will suppose that n is
at least 2 n − 1 ≤ 2n−1 is true; we assume this is something we have
already shown. (This statement that we’re assuming n − 1 ≤ 2n−1 – or
more generally, that we assume Sn−1 is true in proving Sn – is referred to
as the inductive hypothesis.)

Now we need to use this assumption to show that n must be less
than 2n. To do this, we need to try to manipulate the expression we have
assumed is true (that n−1 eq2n−1) to get the expression we want to show
is true (that n ≤ 2n). To do this, let’s do something really simple: let’s just
add 1 to each side of the expression:

n− 1 ≤ 2n−1

=⇒ n− 1 + 1 ≤ 2n−1 + 1

=⇒ n ≤ 2n−1 + 1

Above we used the symbol =⇒ for the first time, but we’ll see it several
more times in this course, and you may have seen it in previous courses.
This symbol means “implies,” and when we write something like A =⇒
B that means that B is a logical consequence of A: if A is true, then B
must be true. For example, above we had n− 1 ≤ 2n−1 =⇒ n− 1 + 1 ≤
2n−1+1. This means that if n−1 ≤ 2n−1 is true, then a logical consequence
is that n − 1 + 1 ≤ 2n−1 + 1 is true. We’ll be a bit more precise about
the idea of implication when we discuss logic later, but for now we’re
meaning this in an intuitive kind of way.

Anyway, back to our proof. We now now that n − 1 ≤ 2n−1 is true,
then a consequence is that n ≤ 2n−1 + 1. Let’s notice that since n ≥ 2 we
have 1 ≤ n− 1, so we can write

n ≤ 2n−1 + 1 ≤ 2n−1 + n− 1

But now we can use our inductive hypothesis again! Since we’ve as-
sumed n− 1 < 2n−1 we have

2n−1 + n− 1 ≤ 2n−1 + 2n−1

and now we can do some arithmetic. We may rewrite 2n−1 + 2n−1 as
2 · 2n−1 which equals 2n. Putting all of this together, we have that n ≤ 2n

provided n− 1 ≤ 2n−1. Let’s rewrite this as an theorem and its proof.

CHAPTER 2. BASIC PROOF TECHNIQUES 31

Theorem 2.7. For every positive integer n, the inequality n ≤ 2n is satisfied.

Proof. We will induct on n. The base case, 1 ≤ 21 is verified as 1 ≤ 2.
Now suppose that for n ≥ 2, we have n− 1 ≤ 2n−1. We then have

n− 1 ≤ 2n−1

=⇒ n− 1 + 1 ≤ 2n−1 + 1

=⇒ n ≤ 2n−1 + 1

We now observe that since n ≥ 2, we have n − 1 ≥ 1 and so have the
following inequalities:

n ≤ 2n−1 + 1

≤ 2n−1 + n− 1

We now apply our inductive hypothesis that n − 1 ≤ 2n−1 to extend our
string of inequalities above,

n ≤ 2n−1 + 1

≤ 2n−1 + n− 1

≤ 2n−1 + 2n−1

= 2 · 2n−1

= 2n.

The theorem has been established.

Remark.
In the proof of Theorem 2.7 above, we started off by saying “We
will induct on n.” You’ll often see this phrase at the start of a proof
by induction, and this does two things: it tells us we’re about to
see a proof by induction; and it also tells us that n is the variable
that indexes all of the statements we have. Recall in our description
of the principle of weak induction above, we had infinitely many
statements Sn for n = 1, n = 2, n = 3, and so on. Sometimes in other
contexts we may want our variable to be something different like k
instead of n. All we’re doing by saying we’re going to “induct on
n” is informing the reader that n is the variable in our statements.
Sometimes you’ll see this at the start of a proof by induction, but
sometimes you won’t: it just depends on the preference of whoever

CHAPTER 2. BASIC PROOF TECHNIQUES 32

wrote the proof you’re reading.

Let’s walk through a proof by (weak) induction to get some familiar
formulas for summations. Recall that the notation

n∑
i=1

f(i)

is short-hand for the sum

f(1) + f(2) + f(3) + · · ·+ f(n),

where f(i) is some expression involving i. We can start this sum at some
place besides i = 1. If we wanted to start it at i = 0, we’d have

n∑
i=0

= f(0) + f(1) + f(2) + · · ·+ f(n).

For example,
n∑
i=1

i = 1 + 2 + 3 + · · ·+ n

and
n∑
i=0

2i = 20 + 21 + 22 + · · ·+ 2n,

We would like to have a way to easily compute what this quantity is
without manually adding up things 20 plus 21 plus 22 and so on, which
can take a long time.

The first of these formulas you may have seen before (for example, it
comes up in calculus when evaluating a Riemann sum), and so you may
know that this first expression has a nice formula:

n∑
i=1

=
n(n+ 1)

2
.

Let’s try to prove that this formula holds for every n. Using induction
isn’t the only way to do this, but since we want an example of an induc-
tive proof, we’ll use induction right now.

CHAPTER 2. BASIC PROOF TECHNIQUES 33

Let’s observe that the formula holds for the simplest possible case of
n = 1. In that case we have

1∑
i=1

i = 1 =
1 · 2
2
.

That is, if we replace all the n’s on both sides of the equation above by
1, we can directly verify the formula holds. We could also directly verify
the formula for n = 2, or n = 3, or n = 4, and so on. But we want to
verify the formula for all n, and we can’t do that directly since there are
infinitely-many choices of n. The idea with induction though, is that we
can cook up an argument that says if we know the formula’s true for one
n, then we can show it must be true for the next n as well. Thus once
we know the formula holds for n = 1, we’ll have an argument to show it
holds for n = 2. Once it’s established for n = 2, the same argument will
show the formula holds for n = 3, and so on. Thus we get to prove the
formula holds for infinitely-many n at once.

So, let’s say we want to verify the formula for some choice of n, but
have already verified it for the previous value, n − 1. That is, we are
assuming we know

n−1∑
i=1

i =
(n− 1)n

2

(Here we’re replacing all the n’s on the right-hand side of our formula by
n − 1.) Now, how do we “upgrade” the formula we’ve assumed holds
for n − 1 to hold for n? Well, let’s try to rewrite our summation in terms
of n− 1:

n∑
i=1

i = 1 + 2 + 3 + · · ·+ (n− 1) + n

Notice the first n terms are exactly
∑n−1

i=1 i, and so we can write

n∑
i=1

i =
n−1∑
i=1

i+ n.

But we have assumed our formula holds for the sup up to n−1. Plugging
that in we have

n∑
i=1

i =
(n− 1)n

2
+ n.

CHAPTER 2. BASIC PROOF TECHNIQUES 34

Now let’s add these quantities on the right-hand side together:

n∑
i=1

i =
(n− 1)n

2
+ n

=
(n− 1)n

2
+

2n

2

=
n2 − n

2
+

2n

2

=
n2 − n+ 2n

2

=
n2 + n

2

=
n(n+ 1)

2

Finally, just for the sake of presentation, let’s state our formula above
as a theorem and then write down its proof.

Theorem 2.8. For every positive integer n,

n∑
i=1

i =
n(n+ 1)

2
.

Proof. We will prove this by induction on n. The base case, n = 1, is
verified by direct computation:

1∑
i=1

i = 1 =
1 · (1 + 1)

2
.

For the inductive step, suppose the theorem has been proven for n − 1
with n ≥ 1. That is, we suppose

n−1∑
i=1

i =
(n− 1) · (n− 1 + 1)

2
=

(n− 1)n

2
.

Now to establish the proof for n, we rewrite our summation as

n∑
i=1

i = n+
n−1∑
i=1

i.

CHAPTER 2. BASIC PROOF TECHNIQUES 35

The second term on the right-hand side can be rewritten using our for-
mula to obtain

n∑
i=1

i = n+
(n− 1)n

2
.

Finally, we simply add n and (n−1)n
2

by getting a common denominator
and combining like-terms to obtain

n+
(n− 1)n

2
=

2n

2
+
n2 − n

2
=

2n+ n2 − n
2

=
n2 + n

2
.

Factoring out an n in the numerator on the last line above completes our
proof,

n∑
i=1

i =
n(n+ 1)

2
.

Remark.
The numbers that arise as

∑n
i=1 i for increasing choices of n (i.e.,

n = 1, then n = 2, then n = 3, ...) form a sequence of numbers called
the triangular numbers. These numbers (such as 1, 3, 6, 10, ...) are
called “triangular numbers” because if you were to create a triangle
where you had 1 object (say a bowling pin, or red Solo cup) on at
the top of the triangle, then two objects on the row beneath that,
and three on the row beneath that, and so on down to n rows, the
n-th triangular number corresponds to how many objects (bowling
pins, red Solo cups, ...) you will need to construct your triangle. For
instance, you need ten objects to create a triangle with four rows,
because 10 is the fourth triangular number,

∑4
i=1 i =

4·5
2

= 10.

CHAPTER 2. BASIC PROOF TECHNIQUES 36

In the previous example the formula for our summation
∑n

i=1 i was
given to us, and it was our job to prove the formula was correct. But
what if the formula had not been handed to us? What if we were just told
to figure out what the formula was supposed to be ourselves, and then
prove our conjectured formula was actually correct? Let’s see what to
do in that situation by considering the other example we had mentioned,∑n

i=0 2
i.

Finding the correct formula for our summation is a two-step process:
first we need to make a conjecture about what a formula for this expres-
sion should be, and then we need to actually prove our formula is correct.

Making a conjecture about what the formula should be can sometimes
be difficult, but let’s try to look at a few simple examples and see if we
notice any patterns. Let’s just write down the first few cases of the sum
above.

• If n = 0, then our expression is just 20 which just equals 1.

• If n = 1, our summation is 20 + 21 = 1 + 2 = 3.

• If n = 2, our summation is 20 + 21 + 22 = 1 + 2 + 4 = 7.

• If n = 3, our summation is 20 + 21 + 22 + 23 = 1 + 2 + 4 + 8 = 15.

Have any “obvious” patterns emerged? After looking at these num-
bers for a minute, you might realize that they look like one less than a
power of 2:

1 = 2− 1

3 = 4− 1

7 = 8− 1

15 = 16− 1

So, it might be reasonable to conjecture that the sum
∑n

i=0 2
i equals 2n+1−

1, as this formula agrees with the first four values we’ve computed above.
But how do we prove this formula is actually correct? This is a case where
we’re naturally set up for induction since there’s a “simplest” case (when
n = 0), and each other situation has a simpler case before it.

To be more precise, in our base case we can easily see the formula
holds just by direct computation:

0∑
i=0

2i = 20 = 1 = 20+1 − 1.

CHAPTER 2. BASIC PROOF TECHNIQUES 37

Now to justify the formula holds for larger n, suppose we’ve already
proven the formula is true for n − 1. That is, suppose we have already
shown that

∑n−1
i=0 2i = 2n − 1. Our goal is to rewrite the summation for

n in such a way we can take advantage of this formula. The “obvious”
thing to do is to pull off the largest term, and apply the formula on the
remaining summation:

n∑
i=0

2i = 2n +
n−1∑
i=0

2i = 2n + 2n − 1.

Now let’s just add 2n + 2n together. To do this we could factor 2n from
each term leaving us with 2n(1+1), and of course 1+1 = 2 so this becomes
2n · 2 or simply 2n+1. And this is basically our proof.

Theorem 2.9. For each integer n ≥ 0, we have
n∑
i=0

2i = 2n+1 − 1.

Proof. We will prove this by induction on n. The base case, n = 0, is
verified by direct computation:

0∑
i=0

2i = 20 = 1 = 20+1 − 1.

Now suppose the formula has been proven for n−1. That is, suppose we
have shown

n−1∑
i=0

2i = 2(n−1)+1 − 1 = 2n − 1

for n ≥ 0. To verify the formula for n we compute

n∑
i=0

2i = 2n +
n−1∑
i=0

2i

= 2n + 2n − 1

= 2n(1 + 1)− 1

= 2n · 2− 1

= 2n+1 − 1

CHAPTER 2. BASIC PROOF TECHNIQUES 38

Exercise 2.6.
Here are some exercises to consider to help you get used to induc-
tion problems.

(a) Show that for every positive integer n, 5 divides 6n − 1.

(b) Show that for every non-negative integer n the following equal-
ity holds:

n∑
k=0

3k =
3n+1 − 1

2
.

(c) Show that for every integer satisfying n ≥ 4 we have 2n < n!.

2.2.4 Strong Induction

Strong induction is very similar to weak induction: the idea is still that
we have a base case we can verify, and then want to show that the some
statement is true if “simpler versions” of that statement are true. How-
ever, instead of just supposing the preceeding statement is true, we sup-
pose all of the previous statements were true.

To be more precise, the principle of strong induction says that state-
ments Sn, for integers n ≥ 1, will be true if the first k statements S1, S2,
..., Sk are true (the base cases – notice there may be more than one base
case), and if S1, S2, ..., Sn−1 are true, then Sn is also true. This will be a
little clearer after a few examples.

One place where strong induction is useful is in finding solutions to
“recurrence relations.” A recurrence relation is a way of defining a se-
quence of numbers such that the “next” element in the sequence depends
on previous elements. One famous example that you may have seen be-
fore is the sequence of Fibonacci numbers. The Fibonnaci numbers are
numbers Fn defined as follows. We define F1 and F2 to both be 1, and
then each subsequent number Fn is defined to be the sum of the previous
two Fibonacci numbers, Fn = Fn−1 + Fn−2.

For example, the first few Fibonnaci numbers are

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

and our notation is that Fn is the n-th Fibonacci number. E.g., F7 = 13.

CHAPTER 2. BASIC PROOF TECHNIQUES 39

As another example of a recurrence relation, consider the sequence of
numbers an defined by

a1 = 1

a2 = 3

an = 2an−1 − an−2 for n ≥ 3

Using this expression for an, we can compute the next few entries in the
sequence are

a3 = 2a2 − a1 = 6− 1 = 5

a4 = 2a3 − a2 = 10− 3 = 7

a5 = 2a4 − a3 = 14− 5 = 9

At this point you likely see a pattern and may conjecture that an = 2n−1.
Let’s see if we can justify this using induction.

If we were to use weak induction, we would only be supposing an−1 =
2(n− 1) + 1, so when proving the inductive step we would have

an = 2an−1 − an−2
= 2(2(n− 1)− 1)− an−2
= 2(2n− 2− 1)− an−2
= 2(2n− 3)− an−2
= 4n− 6− an−2

and now we’re a little bit stuck because we were only making an as-
sumption about an−1 instead of an−2. This should be a hint that strong
induction might be the more useful tool.

If we were to use strong induction, we would suppose ak = 2k− 1 for
each k = 1, 2, 3, ..., n − 2, n − 1. Now when manipulating an, we could
write

an = 2an−1 − an−2
= 2(2(n− 1)− 1)− (2(n− 2)− 1)

= 2(2n− 2− 1)− (2n− 4− 1)

= 2(2n− 3)− (2n− 5)

= 4n− 6− 2n+ 5

= 2n− 1

which is what we wanted to show. Let’s now write this down precisely.

CHAPTER 2. BASIC PROOF TECHNIQUES 40

Theorem 2.10. In the sequence of numbers defined by the recurrence relation

a1 = 1

a2 = 3

an = 2an−1 − an−2 for n ≥ 3

the n-th term, an, is given by 2n− 1.

Proof. We will use the principle of strong induction. For our base cases,
we observe

a1 = 1 = 2 · 1− 1 and a2 = 3 = 2 · 2− 1

and so the formula holds for n = 1 and n = 2.
Now we will suppose the formula ak = 2k − 1 holds for each k from

1 through n− 1. Then we may rewrite the n-th term in the sequence as

an = 2an−1 − an−2
= 2(2(n− 1)− 1)− (2(n− 2)− 1)

= 2(2n− 2− 1)− (2n− 4− 1)

= 2(2n− 3)− (2n− 5)

= 4n− 6− 2n+ 5

= 2n− 1

and the theorem is proven.

Remark.
It will turn out that weak and strong induction are actually equiv-
alent: anything you can prove using one, you can also prove with
the other. However, it can sometimes be easier to think through the
proof and the reasoning will be “cleaner” if we use strong induc-
tion. If you wanted you could always just use strong induction or
always just use weak induction, but the proofs might be unneces-
sarily cumbersome for some types of problems.

CHAPTER 2. BASIC PROOF TECHNIQUES 41

Exercise 2.7.

• Show that the sum of the first n Fibonacci numbers equals
Fn+2 − 1.

• Show that the sum of the first n odd-indexed Fibonacci num-
bers,

n∑
k=1

F2k−1 = F1 + F3 + F5 + · · ·+ F2n−1,

always equals the n-th even-indexed Fibonacci number, F2n.

2.2.5 Prime numbers and the fundamental theorem of
arithmetic

Recall that we say an integer a divides an integer b, denoted a|b, if b = am
for some integer m. We also denote this relationship by a and b by saying
b is a multiple of a, or that a is a divisor of b. Notice that for every integer
n, n always divides itself and 1 always divides n. If the only positive
divisors of an integer are 1 and the integer itself, we say that integer is a
prime number. For example, the first few prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 21, 23, ...

(By convention we do not consider 1 to be a prime number. This may
seem like an odd convention, but we’ll see why this convention is adopted
in just a little bit.)

If a positive integer is not prime, we call it a composite number. For
example, 4, 6, 8, 9, 12, and 15 are composite numbers since they have
non-trivial divisors; that is, we can write composite numbers as products

CHAPTER 2. BASIC PROOF TECHNIQUES 42

of other numbers:

4 = 2 · 2
6 = 2 · 3
8 = 2 · 4
9 = 3 · 3
12 = 3 · 4
15 = 3 · 5

In fact, we can write composite numbers as products of prime numbers,
though we may need to multiple the same prime by itself multiple times.
For example, 8 equals 23 and 12 equals 22 ·3. The collection of prime num-
bers which multiply together to give us our composite numbers is called
the prime factorization of the number, and it turns out every positive in-
teger has a unique prime factorization. That is, not only can composite
numbers be written as a product of primes, but there’s exactly one way
to do this. This fact is known as the fundamental theorem of arithmetic,
and can be proven using strong induction.

Theorem 2.11 (The fundamental theorem of arithmetic). Every positive
integer n ≥ 2 has a unique prime factorization.

Proof. Let n ≥ 2 be a positive integer. We will use the principle of strong
induction to show n has a unique prime factorization. The base case is
simply when n = 2. In this case 2 is prime and the prime factorization
is simply 2. For the inductive hypothesis we will suppose that for each
k = 2, 3, 4, ..., n− 1, the number k has a unique prime factorization.

There are two cases to consider: whether n is prime or composite. If
n is prime, the its prime factorization is simply that number itself. This is
unique because if it were not, the number could be written as a product
of other numbers, but then would not be prime.

If n is composite, then by definition it can be written as a product of
other numbers: say n = ab where neither a nor b equals 1. (Again, the
fact n is composite implies we must be able to write n as a product like
this.) Notice that a and b are less than n and greater than 1, and so by the
inductive hypothesis they each have a unique prime factorization. This
product of a and b thus provides a prime factorization of n. To see that
the factorization is unique, suppose two different factorizations existed:
say

n = pe11 p
e2
2 · · · p

ei
i = qf11 q

f2
2 · · · q

fj
j

where the p’s and q’s above are distinct prime numbers.

CHAPTER 2. BASIC PROOF TECHNIQUES 43

2.3 Proofs by contradiction
The last proof technique that we’ll mention for now is called proof by
contradiction, and it gives us a way to prove something must be true by
essentially showing it’s impossible for it to be false. This is quite a bit
different from our previous proof techniques, and it can see a little weird
and it can take some time to wrap your head around it.

The way that proofs by contradiction work is by doing something
that seems extremely counterintuitive at first. The very first step in a
proof by contradiction is to assume that what you want to show is true is
actually false. You then show that if the statement were false, some other
statement which you know must be true would have to be false as well –
this is the contradiction.

As we’ll discuss more when we talk about logic in the next chapter,
all of our statements are either true or false. They must take on exactly
one of these values: our statements can not be both true and false. So,
if we had some chain of reasoning that told us a statement we already
know must be true would have to be false, then there must be a faulty
argument with our chain of reasoning. The idea is that if our first step
is assuming some statement were false, and all the intermediate steps
are logically consistent and we arrive at saying some true statement is
false, then the faulty step must be our initial assumption. Which would
mean the original statement, which we assumed was false, is actually
true. Again, this kind of reasoning is pretty weird the first time you see
it, but it will make more sense after we see some examples.

2.3.1 Basic examples

Let’s begin by showing something that would be pretty hard to prove
directly. We will show that for each integer n, if n3 + 5 is odd, then n
must be even. To do this, let’s suppose the opposite. For the sake of
providing a contradiction, we will suppose that if n3 + 5 is odd, then n is
also odd. This would mean n = 2m+ 1, and so

n3 + 5 = (2m+ 1)3 + 5

= (2m)3 + 3 · (2m)2 + 2 · 2m+ 1 + 5

= 8m3 + 12m2 + 4m+ 6

= 2(4m2 + 6m2 + 2m+ 3)

Notice this means n3 +5 would be even, but this contradicts our original
assumption that n3 + 5 was odd. Thus our conclusion must be that n is

CHAPTER 2. BASIC PROOF TECHNIQUES 44

necessarily even. Let’s now write this up properly as a theorem and its
proof.

Theorem 2.12. For each integer n, if n3 + 5 is odd, then n is even.

Proof. Let n be an integer and suppose that n3+5 is odd. Suppose for the
sake of contradiction that n was also odd, and so n = 2m + 1 for some
integer m. We may then rewrite n3 + 5 as

n3 + 5 = (2m+ 1)3 + 5

= (2m)3 + 3 · (2m)2 + 2 · 2m+ 1 + 5

= 8m3 + 12m2 + 4m+ 6

= 2(4m2 + 6m2 + 2m+ 3).

However, this is an even number and so contradicts the earlier assump-
tion that n3 + 5 was odd. Hence n must have been an even number.

As another example, we will show that if x and y are two odd num-
bers, then x2 + y2 can never be a perfect square. To do this, we will sup-
pose that instead x2 + y2 was a perfect square, we would have to have
a contradiction. Since x and y are odd, we can write x = 2m + 1 and
y = 2n+ 1. Then x2 + y2 is

(2m+1)2+(2n+1)2 = 4m2+4m+1+4n2+4n+1 = 4(m2+n2+m+n)+2

Let’s observe that this number is even, but is not divisible by 4 since the
remainder when dividing by 4 would be 2. Notice though, that if a per-
fect square z2 is even, then z is necessarily even. In fact, since z = 2k we
have z2 = 4k2, so an even number squared is divisible by 4. But now we
have a contradiction as our calculation above shows that x2 + y2 would
be a perfect even square which is not divisible by 4. Hence if x and y are
both odd, we must conclude that x2 + y2 is not a perfect square.

To write all of this up as a theorem and a proof, it might be conve-
nient to first prove a little lemma about our observation that perfect even
squares are divisible by 4.

Lemma 2.13. Every even perfect square is divisible by 4.

Proof. Let n be an integer which is an even perfect square. As n is a
perfect square, n = m2 for some integer m. As an odd number squared is
necessarily odd, we must have that m is an even number and can write
m = 2k for some integer k. We then have n = m2 = (2k)2 = 4k2, and so 4
divides n.

CHAPTER 2. BASIC PROOF TECHNIQUES 45

Theorem 2.14. If x and y are both odd numbers, then x2 + y2 is never a perfect
square.

Proof. Let x and y be odd numbers. We may write x = 2m + 1 and y =
2n + 1 for some integers m and n. Suppose for the sake of contradiction
that x2 + y2 is a perfect square. That is, we are assuming x2 + y2 = z2 for
some integer z. Observe we may rewrite x2 + y2 as

x2 + y2 = (2m+ 1)2 + (2n+ 1)2

= 4m2 + 4m+ 1 + 4n2 + 4n+ 1

= 4(m2 + n2 +m+ n) + 2.

Notice this is an even number. As this quantity also equals z2, we then
have z2 is an even number. However, by Lemma 2.13, z2 must be divis-
ible by 4. Our expression above contradicts this, though, as it expresses
z2 = 4k + 2 for some integer 2. Hence we must conclude that x2 + y2 is
not a perfect square.

Let us do one more basic example of a proof by contradiction be-
fore we turn to more interesting examples. As you know from experi-
ence, when solving equations in algebra, solutions to seemingly “simple”
equations may not be “simple” numbers. However, in some problems we
may only be interested in particular simple solutions. For example, if we
have a problem an expression where the variables represent quantities
like people, or cars, or the number of objects produced by a factory, we
may only be interested in whole number solutions to our equations. One
interesting question to consider, then, is whether a given equation has
any integer solutions.

Let’s show that there are no integer solutions to the equation 18x +
6y = 1. To do this, we will suppose that some integer solution (meaning
both x and y are integers) exists, and derive a contradiction. To do this,
we observe that if 18x + 6y = 1 then we may rewrite the equation as
6(3x+ y) = 1 which we can further write as 3x+ y = 1

6
. And herein lines

our contradiction: if x and y are integers, then any product or sum with
other integers always yields another integer, not a fraction.

Theorem 2.15. There are no integers x and y that solve the equation 18x+6y =
1.

Proof. Suppose for the sake of contradiction that x and y were two inte-
gers satisfying 18x+ 6y = 1. By dividing both sides of the equation by 6,
this would imply that x and y are integers solving 3x + y = 1

6
, yet this is

CHAPTER 2. BASIC PROOF TECHNIQUES 46

impossible as sums and products of integers are integers. In particular,
3x + y is an integer, whereas 1

6
is not. This contradiction establishes that

18x+ 6y = 1 has no integer solutions.

2.3.2 Irrational numbers

We will now give a famous example of a proof by contradiction to estab-
lish that certain numbers can not be written as ratios of whole numbers.
In particular, we will show that

√
2 can not be written as a ratio of inte-

gers by supposing it can be, and arriving at a contradiction.

Theorem 2.16. The number
√
2 can not be written as a ratio of integers.

Proof. Suppose for the sake of contradiction that
√
2 was equal to p/q

where p and q are integers. Without loss of generality, we may suppose
that p and q do not have any common factors. (If p and q did have com-
mon factors, then we could cancel those factors and replace p and q by
two numbers without common factors.) We would then have p2/q2 = 2,
which we could rewrite as p2 = 2q2. This would imply p2 is an even
number, and so p would also be an even number. As p is even, we may
write p = 2k for some integer k. Our equation p2 = 2q2 above would
then become 4k2 = 2q2. Dividing both sides of this last equation by 2, we
would have 2k2 = q2 showing that q2 is even, and so q must also be even.
We have now contradicted the fact that p and q were taken to not have
any common factors, as both numbers are even and so have a common
factor of 2.

Theorem 2.16 shows that some numbers can not be written as a ratio
of integers. In general, if a number can be written as a ratio of integers,
we call that number rational. For example, 3/7, − 2/3, and 7 are all rational
numbers. Numbers that can not be written as a ratio of two integers
are called irrational. Our proof above only shows that one particular
irrational number exists, but the proof can be extended to show many
other square roots are also irrational.

Exercise 2.8.
Show that if an integer n is not a perfect square, then its square root
is irrational.

CHAPTER 2. BASIC PROOF TECHNIQUES 47

It will turn out that “most” real numbers are actually irrational, but
the proof of this fact will have to wait until we’ve established some set
theory. Despite this, we can go ahead and prove lots of interesting prop-
erties of rational and irrational numbers.

Exercise 2.9.

(a) Show that the sum and product of two rational numbers is al-
ways rational.

(b) Is it true that sums and products of irrational numbers are al-
ways irrational? If so, give a proof. If not, find a counterexam-
ple.

(c) Show that the sum of a rational and irrational number is always
irrational.

(d) Show that the product of a non-zero rational and irrational num-
ber is always irrational.

2.3.3 The infinitude of primes

We give one more important example of a proof by contradiction, show-
ing that there are infinitely-many prime numbers. Recall that a prime
number is a positive integer whose only divisors are 1 and itself, such
as 2 or 19. The proof below is attributed to Euclid and uses the fact that
every composite number can be written as a product of primes to show
that any finite list of prime numbers is necessarily incomplete.

Theorem 2.17. There are infinitely-many prime numbers.

Proof. Suppose for the sake of contradiction that there were only finitely-
many prime numbers, say p1, p2, ..., pn. Consider the number

n = p1 · p2 · . . . · pn + 1.

Notice this number is not divisible by any of p1, p2, ..., pn as dividing
n by any pi will have a remainder of 1. However, n is either prime or

CHAPTER 2. BASIC PROOF TECHNIQUES 48

composite. If n is prime, then our list of primes was incomplete as n
is not an element of the list. If n is composite, then our list of primes
is incomplete since n has a prime factorization, yet none of the prime
numbers p1 through pn appear in its factorization. In either case, we have
contradicted the claim that the finite list p1 through pn contains all prime
numbers.

3Symbolic logic
In this chapter we begin our formal study of logic.

3.1 Propositions and Predicates

3.1.1 Propositions

We had previously mentioned that a statement in mathematics is a claim
that has either a true or a false value. One technical point here is that
a statement must definitively have a true or false value and that value
can not change. For example, “Albert Einstein won a Nobel prize on Novem-
ber 9, 1922” is a statement because it has a definitive true/false value
(true); and “Mitt Romney defeated Barack Obama in the United States’ 2012
presidential election” is also a statement since it has a definitive true/false
value (false). These true/false sentences are sometimes also referred to
as propositions.

In symbolic logic, our goal is often to determine ways of combining
statements to get other statements in such a way that we can determine
the true/false value of a complicated statement from the true/false value
of the simpler statements that are used to build the complciated state-
ment. The actual content of the statement is irrelevant in this case, and
only its true/false value matters.

For example, consider the following string of statements:

All men die.
Socrates is a man.
Thus Socrates will die.

or these statements:

All lizards have scales.
An iguana is a lizard.
Thus iguanas have scales.

Both of these examples can be rephrased as

All x have property P .
y is an x.
Thus y has property P .

49

CHAPTER 3. SYMBOLIC LOGIC 50

The line of reasoning in both examples above is the same; the actual con-
tent of what property P is or what x or y is doesn’t matter. All that mat-
ters is that we have one statement that can be used to infer another, and
we can substitute in various values for the variables involved later and
we will have a valid line of reasoning.

3.1.2 Variables and predicates/open sentences

Often our sentence will have variables in them, symbols that represent
an as-yet-undetermined quantity. This could be a place holder for a cer-
tain type of number (such as an integer, or maybe more specifically an
even integer, or a prime number), or for some more abstract mathemati-
cal object like a set or an element of a set. For example, one sentence with
a variable is x2 − 4 = 0. A declaration such as this, x2 − 4 = 0, is not true
or false until we make a choice of what the variable is. These declarations
with unassigned variables are referred to as open sentences or predicates.
We will often refer to a predicate involving a variable x as P (x) or Q(x).
If P (x) is the proposition x2 − 4 = 0, then P (2) and P (−2) are true, but
P (3) is false. Of course, our predicates may have multiple variables and
we may write things such as P (x, y) or Q(a, b, c) for predicates with two
or three variables.

3.1.3 The universal and existential quantifiers

The truth value of a predicate depends on the value of variables we give
it, but we can often “upgrade” a predicate to a statement by specifying
the statement must hold for all choices of the variable. For example, if
P (x) is the predicate “x2 + x is even”, then P (x) will be true for all in-
tegers x. We get a statement by quantifying our predicate. A quantifier
is a symbol that indicates that the predicate that follows the quantifier
should hold for certain choices of variables. We have two quantifiers: the
universal quantifier, denoted ∀means that the predicate should hold for
all choices of variable. For example, if P (x) is a predicate, the statement
∀xP (x) is read “for all x the predicate P (x) holds.” Sometimes we fur-
ther restrict our variables based on what type of variable we allowed to
plug in for x. For example, the predicate “P (x): x2 + x is even” holds for
all integers, so we may write ∀ integers x, P (x) to indicate we are only
claiming P (x) is true for all integers x.

The other quantifier we will use is the existential quantifier, denoted
∃ and is used to mean “there exists.” For instance, consider the claim that
3x > 2. This is true for some values of x, but not all x. Thus the statement

CHAPTER 3. SYMBOLIC LOGIC 51

∀x, 3x > 2 would be false since it does not hold for all x. However, since
it holds for at least one x (such as x = 1), the statement ∃x, 3x > 2 is true.
This is read “There exists an x so that 3x > 2.”

When a variable in a predicate is attached to a quantifier, such as
∀x, P (x) or ∃y,Q(y), then we say the variable is a bound variable. If a
variable is not bound, it is called a free variable. Notice that predicates
only get upgraded to statements when all of their variables are bound.

Predicates that involve several variables may have different quanti-
fiers attached to the variables. For example, if P (x, y) is a predicate in-
volving both x and y, then ∀x∃y, P (x, y) is read “for every x there exists
a y so that P (x, y).” As an example, for every real number x there exists
a real number y so that y + x > 0 and so the statement ∀x∃y, y + x > 0 is
true.

In general the order in which quantifiers appear is very important and
changing the order of the quantifiers can affect whether the statement is
true or false. For example, suppose P (x, y) is the predicate y = x2. The
statement ∀ real numbers x∃ real numbery, P (x, y), which would be read
“for every real x there exists a real y so that y equals x2”, is true. However,
we swap the quantifiers to be ∃y∀xP (x, y) our statement becomes “there
exists a real y so that for every real number x, y = x2” and this statement
is false. (No matter what real you take y to be, there will be a number
whose square is not y.)

3.2 Logical operations and truth tables
Whenever we have a statement, we can try to combine it with other state-
ments to form a new statement, and try to determine the truth or falsity of
the new statement based on the truth or falsity of the initial statements.
In a certain sense, all of mathematics boils down to starting from very
simple statements we all agree on (called axioms) and combining them
in various ways to deduce more interesting statements (theorems). We’ll
have more to say about this point of view of mathematics later, but for
the moment we just want to get acquainted with the basic ways we can
combine mathematical statements together.

As we introduce the various logical operations, we will start seeing
truth tables, which give us a concise way of describing whether a compli-
cated statement built from simpler statements is true or false, based on
whether those simpler statements are true or false.

CHAPTER 3. SYMBOLIC LOGIC 52

3.2.1 Conjunction (and)

One of the simples operations we can perform between two logical state-
ments P and Q is to consider their conjunction, which is also referred to
as a logical and. That is, given two statements P and Q, we construct a
new statement P ∧Q (read as P and Q) which will be true precisely when
both P and Q are true, and false if at least one (or both) of P or Q is false.
We summarize this with the following table, which is our first example
of a truth table.

P Q P ∧Q
T T T
T F F
F T F
F F F

To be precise about what the table above means, a truth table contains
one column per simpler statement (the P and Q) used in building a more
complicated statement (P ∧ Q), and then we have one row per possible
truth value of each of our simpler statements. Here since we have two
simple statements, P and Q, and each one takes on one of two truth val-
ues, there are a total of four rows.

As an intuitive example of the logical and, suppose P is the statement
It will rain today, and Q is the statement There will be a rainbow in the sky
today. Their conjunction would be the statement It will rain today and there
will be a rainbow in the sky today. The only way for this longer statement
to be true is if both statements It will rain today and There will be a rainbow
in the sky today. If it either doesn’t rain (whether there’s a rainbow or
not), or there’s not a rainbow (where it rained or not) is false, then the
conjunction P ∧Q is false.

3.2.2 Disjunction (or)

The disjunction of two statements, denoted P ∨Q and read P orQ, is true
if either P or Q (or both) is true. The corresponding truth table is

P Q P ∨Q
T T T
T F T
F T T
F F F

CHAPTER 3. SYMBOLIC LOGIC 53

So, for instance, if P was the statement The interior angles of a triangle
add to 180◦ and Q was the statement Every four-sided figure is a rectangle,
then the statement P ∨ Q would be true because P is true, even though
Q is false. The statement P ∧Q, however, would be false.

3.2.3 Negation

Every logical statement P has a negative, denoted ¬P and read not P ,
which simply has the opposite truth value as P . The corresponding truth
table is rather boring:

P ¬P
T F
F T

For example, the negation of It will rain today is It will not rain today.
Notice that exactly one of P or ¬P is true, and the other is false.

We can combine the negation operation with our conjunction and dis-
junction operations to negate a conjunction or a disjunction. That is, we
can consider ¬(P ∧Q) and ¬(P ∨Q). Of course, the truth tables for these
statements are easily determined from the truth tables of P ∧Q and P ∨Q:

P Q P ∧Q ¬(P ∧Q) P ∨Q ¬(P ∨Q)
T T T F T F
T F F T T F
F T F T T F
F F F T F T

It is sometimes helpful to observe that these negations can be rewritten
as follows: The negative of P ∧Q, ¬(P ∧Q), can be written as ¬P ∨ ¬Q.
That is, the “opposite” of P and Q is not P or not Q. Notice that if we
compare the truth tables of ¬P ∨ ¬Q and ¬(P ∧Q), they are identical:

P Q ¬P ¬Q P ∧Q ¬(P ∧Q) ¬P ∨ ¬Q
T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

Similarly, the negation of P ∨Q, ¬(P ∨Q), is ¬P ∧ ¬Q: the negative of P
or Q is not P and not Q.

CHAPTER 3. SYMBOLIC LOGIC 54

Exercise 3.1.
Verify that the truth table of ¬(P ∨Q) agrees with the truth table of
¬P ∧ ¬Q.

The take-away from this is that we can “distribute” a negative across
a statement, but conjunctions and disjunctions are exchanged: ands be-
come ors, and ors become ands.

Exercise 3.2.
Suppose P , Q, R, and S are logical (true/false) statements.

(a) Construct a truth table to verify that the negation of P ∧(Q∨¬R)
is ¬P ∨ (¬Q ∧R).

(b) Determine the negation of (P ∧ ¬Q) ∨ (¬R ∨ S), then construct
a truth table to verify that you have the correct negation.

3.2.4 Negating quantifiers

Suppose that our statement comes from a proposition with a quantifier.
For example, consider the statements ∀x, P (x) and ∃x,Q(x). What would
the negations of these statement be?

If the statement ∀x, P (x) is not true, then it is not the case that P (x) is
true for all x. That must mean there is at least one x where P (x) is false.
That is,

¬(∀x, P (x)) is equivalent to ∃x,¬P (x).

Similarly, if ∃x,Q(x) is not true, then it is not the case that there is some
x making Q(x) true and so for every x, Q(x) is false:

¬(∃x,Q(x)) is equivalent to ∀x,¬Q(x).

3.2.5 Implication

Perhaps the most important of our logical connectives (these operations
that combine simpler statements to get more complicated statements) is

CHAPTER 3. SYMBOLIC LOGIC 55

implication. Implication expresses a relationship between two statements
that if one statement is true, it must be the case that the other statement
is true. You should think of this as an “if-then” kind of statement. Notice
we have seen several examples of these kinds of statements when we
discussed theorems and proofs in the last chapter. For instance, we had
theorems such as “If x is an integer, then x2 + x is an even integer.” Here we
have “if-then” type statement where if the first part of the statement (x is
an integer) is true, then it follows that the second part (x2 + x is an even
integer) is also true.

In general, for two statements P and Q, we write P ⇒ Q (read “P im-
pliesQ”) to mean that if P is true, thenQ is necessarily true. For example,
if P is the statement x is an integer and Q is the statement x2 + x is an even
integer, then P ⇒ Q is a true statement.

We can’t just arbitrarily string together statements P and Q with P ⇒
Q and get a true statement, though. For example, if we continued to let
P denote x is an integer but change Q to be x2 + x is an odd integer, then
P ⇒ Q is false: it does not follow that x2+x is odd because x is an integer.

So, what are the various ways in which P ⇒ Q can be true or false?
Or, put another way, what is the truth table of P ⇒ Q? Our examples
above should tell us that if P and Q are both true, the P ⇒ Q is true as
well. If P is true and Q is false, however, then P ⇒ Q must be false. But
what about the other two possibilities, where P is false and Q is either
true or false?

It confuses everyone the first time they hear it, but “false implies true”
and “false implies false” are both true statements! The intuition for this is
something like the following: the statement P ⇒ Q should mean that if P
is true, thenQmust be true as well. However, it does not inherently mean
that Q must be false (or true) if P is false. To help this make sense, here
is an example shamelessly stolen from the Mathematics Stackexchange1:

Suppose a parent tells their child that if they eat their vegeta-
bles at dinner, then they will get a dessert.

(So, P is the statement “child eats their vegetables” and Q is the
statement “child gets a dessert”.)

Our question is when is the implication P ⇒ Q true or false,
or put another way, when did the parent lie to the child by

1https://math.stackexchange.com/questions/431639/
intuition-of-implication-in-propositional-logic

https://math.stackexchange.com/questions/431639/intuition-of-implication-in-propositional-logic
https://math.stackexchange.com/questions/431639/intuition-of-implication-in-propositional-logic

CHAPTER 3. SYMBOLIC LOGIC 56

making this statement?

The only way the parent lies is if the child eats their vegeta-
bles, but does not get a dessert. That is, if P is true but Q is
false, then P ⇒ Q would be false.

If the child eats their vegetables and gets a dessert, then the
parent did not lie. That is, if P is true and Q is also true, then
P ⇒ Q is true.

In the remaining situations, the child does not eat their veg-
etables (i.e., P is false). Did the parent lie if the child does
not get a dessert (Q is false)? No, the parent was consistent
with what they claimed: eating vegetables gets a dessert, and
so the child shouldn’t be surprised to not get a dessert if they
don’t eat their veggies.

But what if the child does not eat their vegetables (P is false),
yet still gets a dessert (Q is true)? Did the parent lie to the
child in that situation? No, the parent only promised a dessert
if the child ate their veggies: eating vegetables guarantees a
dessert. But there could be another reason the child received
a dessert besides eating their veggies (maybe they did all their
chores early, or completed all of their homework).

Putting all of this together, our truth table for implication is

P Q P ⇒ Q
T T T
T F F
F T T
F F T

3.3 Converses, Equivalences, and
Contrapositives

In the last section we learned about implication, which is a way for us to
describe when one statement implies another: P ⇒ Q means that if P is
true, then Q must be true as well. Sometimes this is stated by saying that
P is a sufficient condition for Q, or that Q is a necessary condition for P .

CHAPTER 3. SYMBOLIC LOGIC 57

3.3.1 Converses

Any time we have an implication P ⇒ Q we may consider the statement
Q⇒ P which is known as the converse of P ⇒ Q. In general, the validity
of P ⇒ Q tells us nothing about the validity of its converse, Q ⇒ P . For
example, consider the statements

P : the integer n is even
Q : the integer n2 + n is even

Notice that in this case P ⇒ Q is a true statement as it is correct that if n
is even, then n2 + n is even. But what about Q ⇒ P ? This would be the
statement If n2 + n is even, then n is even. However this implication is not
true. In particular, n2+n is always even regardless of whether n is or not.
Sometimes the converse of a valid statement is valid, but sometimes it is
not: it just depends on exactly what the statement is.

3.3.2 Equivalences

We say that two logical statements P and Q are equivalent if they always
have the same truth values. For example, if A, B, and C are statements
and we let P denote the statement ¬(A ∧ (B ∨ ¬C)) and Q denotes the
statement ¬A ∨ (¬B ∧ C), then the truth tables of these statements will
verify that these two statements are equivalent.

A B C ¬(A ∧ (B ∨ ¬C)) ¬A ∨ (¬B ∧ C)
T T T F F
T T F F F
T F T T T
T F F F F
F T T T T
F T F T T
F F T T T
F F F T T

As these statements are equivalent, you can use one in place of the other
in any logical sentence. This will be very important for establishing cer-
tain types of proofs as we’ll see later: sometimes we can replace a seem-
ingly difficult to prove statement with a logically equivalent, but easier
to think about, statement that we can prove.

Notice that two statements P and Q are equivalent, then it will nec-
essarily be the case that P ⇒ Q. That is, if P is true exactly when Q is

CHAPTER 3. SYMBOLIC LOGIC 58

true (and P is false exactly when Q is false), then P ⇒ Q will be a true
statement (in the case P and Q are both true we have true implies true,
which we know is true; and if P and Q are both false, we have false im-
plies false which is also false). In this particular case the order of P or
Q doesn’t matter: if P and Q are equivalent, then it is also the case that
Q ⇒ P . Thus the equivalence of two statements is expressed symboli-
cally by the statement (P ⇒ Q)∧(Q⇒ P). This is sometimes abbreviated
as as P ⇔ Q, which you can think of as the implication arrows going both
ways: from P to Q and also from Q to P . This is pronounced P equiva-
lent to Q or P if and only if Q, and you will sometimes see if and only if
abbreviated as iff .

3.3.3 Contrapositives

We now mention one particularly important equivalence. As noted above,
the validity of P =⇒ Q does not necessarily mean anything about the
validity of Q =⇒ P . However, there is a statement that is always equiv-
alent to P =⇒ Q, which is the statement ¬Q ⇒ ¬P and called the
contrapositive of P =⇒ Q. We can verify that these are equivalent
statements by looking at their truth tables:

P Q P =⇒ Q
T T T
T F F
F T T
F F T

P Q ¬Q ¬P ¬Q =⇒ ¬P
T T F F T
T F T F F
F T F T T
F F T T T

This will turn out to be an extremely useful trick in proving theorems
because it means we can establish that a theorem P =⇒ Q is true by
proving its contrapositive, ¬Q =⇒ ¬P , as these are equivalent state-
ments. It’s hard to appreciate this the first time you learn about it, but it
is sometimes the case that a contrapositive is easier to think about than
the original statement.

As an example of establishing the proof of a theorem by proving the
contrapositive, let’s consider proving the following statement: if n is an
odd integer, then

√
2n is not an integer. Proving this directly is not so

clear, as the only obvious strategy is to write n = 2m + 1 (as n is odd),
and then we must show that

√
2(m+ 1) =

√
2m+ 2 is not an integer.

But how do we do that? If we try to prove the contrapositive instead,
then our goal is prove that if

√
2n is an integer, then n is an even number.

This seems a bit more straight-forward as if
√
2n is an integer then we

CHAPTER 3. SYMBOLIC LOGIC 59

may write it as m =
√
2n for some integer m, and by squaring both sides

we have that m2 = 2n, but this means m2 is an even number, and we
had previously established that even numbers square to even numbers
and odd numbers square to odd numbers, so m is also an even number
and we can write m = 2k. But as m =

√
2n we can write 2k =

√
2n, or

4k2 = 2n which we can further rewrite as n = 2k2, showing that n is an
even integer.

4Sets
A set is a Many that allows itself to be thought
of as a One.

GEORG CANTOR

“Sets” are abstract tools used for collecting information, and provide
a sort of universal language for expressing mathematics1. Even if you’ve
never seen or heard of sets before, they’ve been lurking in the back-
ground of most of the mathematics you’ve done in other courses. It can
be convenient sometimes to know a little bit of the basic language of sets,
as this will allow us to easily and compactly describe certain mathemati-
cal objects that we’ll encounter.

The goal of this chapter is to introduce the basic ideas, language, and
notation of the theory of sets. Some of this may seem strange and ab-
stract if you’ve never seen it before, so lots of examples are included to
hopefully elucidate anything that initially seems unintuitive. The main
thing you should take away from this chapter is to have a general idea of
what a set is; to learn some of the common notation; and obtain a basic
understanding how certain simple geometric objects (such as lines and
circles) can be represented as sets.

4.1 Basic ideas and definitions
A set is an unordered collection of objects. These objects could be num-
bers, points in space, functions, words, symbols, other sets, or (almost)
anything else. Most of mathematics is described in terms of sets, even
though this isn’t always made explicit.

We sometimes describe a set by explicitly writing out everything in
the set, separated by commas, and surrounded by curly braces. For ex-
ample, the set containing the first few positive, even numbers is

{2, 4, 6, 8, 10}.
1This idea of sets being a “universal language” for mathematics isn’t really correct,

but it’s a convenient way of thinking about sets. “Most” mathematicians most of the
time think of most mathematics as being described in terms of sets, but there are excep-
tions.

60

CHAPTER 4. SETS 61

The only thing that matters when we talk about a set is what is in the
set. The order in which an object occurs in a set does not matter, so the
following sets are all the same:

{2, 4, 6, 8, 10} = {10, 8, 6, 4, 2} = {8, 2, 4, 10, 6}.

The number of times we write an object in the set also does not matter
(as long as it occurs at least once):

{2, 4, 6, 8, 10} = {2, 2, 2, 4, 4, 6, 8, 10, 10, 10, 10, 10}.

We use the symbol ∈ to denote that something is an element of a set, and
/∈ to denote that something is not an element of a set:

2 ∈ {2, 4, 6, 8, 10}
3 /∈ {2, 4, 6, 8, 10}.

Many times a set will be too big for us to write out all of the elements,
and in that situation we need some other notation to describe the set.
One common notation is to list a few elements in a set and then write
“...” to mean “continue the pattern.” For example,

{2, 4, 6, 8, 10, 12, 14, ...}

denotes the set of all positive even numbers; while

{5, 10, 15, 20, 25, 30, ...}

denotes the set of all positive multiples of 5.

Exercise 4.1.
Write down a set which contains all positive integers that satisfy the
following conditions: each number is a multiple of 4, a multiple of
6, and is less than 50. We begin with the set of all positive multiples
of 4 less than 50,

{4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48},

then we remove everything which is not a multiple of 6, leaving

{12, 24, 36, 48}.

CHAPTER 4. SETS 62

Of course, it can get tedious to write sets down in this way every time
we want to refer to a set. To save ourselves some writing if we are going
to refer to a set multiple times, we will often assign the set a name. For
example, if we write

E = {2, 4, 6, 8, 10, 12, 14, ...}

then we are saying we want to use the symbol E to refer to the set of
all positive even numbers. We are then justified in writing things like
28 ∈ E, 17 /∈ E, and −2 /∈ E.

It will sometimes be convenient to say that several things are or are
not in a given set. In this case we list all of those things separated by
commas and followed by ∈ or /∈:

8, 32, 96, 384 ∈E
3, 347,−10 /∈E

Many times the sets we will be interested in will be “special,” and we
will only be interested in those sets for a little while – e.g., while we’re
solving a particular problem. So, we might use E to denote one set now
and then later use the same symbol again to denote a different set. For
instance, in solving one problem we may let E denote the set {1, 2, 3},
and let we’ll use E to denote the set {−3, 7, 8}. It will usually be clear
from context which set a given symbol refers to.

There are some sets that are used over and over, again and again,
and those sets have special names and symbols that are reserved only for
those particular sets. One such set is the set of natural numbers, which is
the set of all positive whole numbers and is denoted by a capital N , but
written in what is often called “blackboard bold” and looks like N:

N = {1, 2, 3, 4, 5, 6, ...}.

Remark.
In older textbooks this N was originally written as a bold N. It’s
difficult to write bold letters on paper or a blackboard, however,
and so people started writing an extra line in the letter to denote the
letter was bold. This way of writing bold letters eventually became
popular enough that it made its way into typed works as a special

CHAPTER 4. SETS 63

typeface.

The set of all whole numbers (positive, negative, and zero) is called
the set of integers and is denoted by a blackboard bold Z:

Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}.

Remark.
Using the letter Z might seem like a weird choice for integers, but
it’s only weird if you’re an English speaker. Many influential math-
ematicians of the past, including Georg Cantor who is considered
the father of set theory, were German and so they of course used the
German equivalent of these words and used the first letter of those
German words. The German word for numbers is die Zahlen (die is
the feminine definite article in German, like la in French or Spanish),
hence the Z.

Conveniently, German and English have some commonalities
and so some German words are very similar to their English coun-
terparts, so most of these blackboard bold letters are actually what
you would guess using the English words. For example, the natural
numbers in German is die natürliche Zahlen, so N makes sense in both
German and English.

The number of distinct elements in a set A is called the cardinality of
the set and is denoted by either #A or |A|. For example #{7, 8, 0, 4, 3} = 5
while #{3, 6, 9, 12, ..., 84, 87, 90} = 30. The cardinality can be infinite as
well; both N and Z have infinite cardinality.

4.1.1 Set-builder notation

Unfortunately, there are times when the ... notation mentioned above can
be ambiguous. For example,

{2, 4, ...}

CHAPTER 4. SETS 64

could mean the set of all even numbers, or it could be all the powers of
2: both of the following sets match the pattern

{2, 4, 6, 8, 10, ...}
{2, 4, 8, 16, 32, ...}.

To get around this ambiguity we sometimes use set builder notation. In
this notation we write two curly braces, like normal, but separated into
two parts by a vertical bar. On the left-hand side of the bar we write a
variable (or sometimes a collection of variables) that give us some pattern
that all of the elements in the set follow, and on the right-hand side we
given a condition (usually in the form of an equation or inequality, but
sometimes written in words) that the variable must satisfy in order to
be an element of the set. The collection of all positive even integers, for
example may be written in set builder notation as

E = {x
∣∣x = 2n for some n ∈ N}.

That is, we start off by considering the natural numbers, but to be an
element of E, a given natural number x has to be two times some other
natural number. (A number is even if and only if it is divisible by two.)

We could define the set of all positive odd numbers as

O = {x
∣∣x = 2n− 1 for some n ∈ N}.

Exercise 4.2.

(a) Write the set of all positive, whole number multiples of 5 in set
builder notation.

(b) Write the set of all whole number multiples (including nega-
tives) of 5 in set builder notation.

(a)
{x
∣∣x = 5n for some n ∈ N}

(b)
{x
∣∣x = 5n for some n ∈ Z}

CHAPTER 4. SETS 65

Another common set of numbers is the set of rational numbers, which
are ratios of integers where the denominator is not zero. These are quo-
tients2, so the set of all rational numbers is denoted Q. In set builder
notation we can express Q as

Q =

{
p

q

∣∣∣∣ p, q ∈ Z and q 6= 0

}
.

In the examples thus far we have only considered sets of numbers,
but there is nothing special about numbers: the elements of a set can be
any type of object. They could be names of people,

{William, Charles, Percy, Fred, George, Ron, Ginny},

or abstract symbols,
{♥,♣,♦,♠},

or points in space, {
(x, y)

∣∣ − 2x+ 8y = 10
}

.

You can even have sets that contain other sets:

{{1, 2}, {1, 3}, {2, 3}}.

Sets are ubiquitous in mathematics: the vast majority of things you work
with are, or are defined in terms of, sets. This point may not have been
made clear to you before in earlier mathematics courses because it may
not have been needed, but for our purposes in this class we will need to
deal with sets on a regular basis, so it’s important that we have a good
understanding of them.

2Conveniently, the German word for the quotient is der Quotient, and so the Q makes
sense for English speakers too!

CHAPTER 4. SETS 66

4.1.2 Subsets and supersets

We say that a set A is a subset of a set B if every element of A is also an
element of B. When this happens we write A ⊂ B.

Example 4.1.
Every natural number is an integer, so the set of natural numbers is
a subset of the set of integers: N ⊂ Z. Every integer is also a rational
number (e.g., 3 = 3/1), so Z ⊂ Q.

Example 4.2.
Suppose that A is the set of all the multiples of 3, and B is the set of
all multiples of 12:

A =
{
x
∣∣x = 3n for some n ∈ N

}
,

B =
{
x
∣∣x = 12n for some n ∈ N

}
.

Since every multiple of 12 is also a multiple of 3 (because 3 divides
12), B is a subset of A: B ⊂ A.

When A is a subset of B we say that B is a superset of A. That is,
when we write A ⊂ B the set on the left is a subset of the set on the right;
and the set on the right is a superset of the set on the left. The superset
is the “larger” set, and the subset is the “smaller” set. Sometimes it will
be convenient for the symbol ⊂ to be written in the other direction: for
example B ⊃ A. Here B is still the larger superset, and A is the smaller
subset. (Compare this to writing 3 < 4 and 4 > 3.)

In our mind’s eye we often picture the relationship between a set and
a any subsets or supersets as shown in Figure 4.1.

We will use pictures like this, which are called Venn diagrams, many
times when describing sets, even if the sets we’re talking about don’t
really look like the two-dimensional shapes we’ll draw: though the pic-
tures aren’t technically accurate (e.g., A and B may not be actually be the
set of points making up two ovals in the plane), it’s often very helpful to

CHAPTER 4. SETS 67

B

A

Figure 4.1: If A ⊂ B, then we imagine A as sitting inside of B.

use these kinds of abstract pictures because they provide us with some
intuition about how different sets are related to one another.

Notice again that we say A is a subset of B if every element of A is
also an element of B. This means, in particular, that for every set A, A
is a subset of itself: every element of A is also an element of A. We are
thus justified in writing A ⊂ A. If we want to explicitly exclude this
possibility, we use the symbol (: writing A (B means that A is a subset
of B and A is not all of B.

Exercise 4.3.
Suppose thatA andB are two sets andA (B. Show that this means
there must exist at least one element of B which is not an element of
A. Suppose A (B. That is, A ⊆ B but A 6= B. This means B 6⊆ A.
Since B is not a subset of A, it is not the case that every element of
B is also an element of A; in other words, there exists at least one
element of B (possibly many more, but at least one) which is not an
element of A.

When A (B we call A a proper subset of B. For example, the natural
numbers are a proper subset of the integers, and the integers are a proper
subset of the rational numbers.

Remark.
There is a little bit of ambiguity that can occur with the symbol ⊂:
some authors use ⊂ to mean (, and use ⊆ to mean ⊂. That is, some
people will use A ⊆ B to mean that A is a subset of B, possibly all

CHAPTER 4. SETS 68

of B, and A ⊂ B to mean that A is a subset of B but not all of B.
This is reminiscent to using≤ and < in comparing numbers, but it’s
not completely standard.

To avoid any potential ambiguity we will typically useA (B to mean
that A is a proper subset of B, and A ⊆ B to mean that A is a subset of B
but could potentially be all of B.

4.1.3 Equality

We say that two sets A and B are equal if they have precisely the same
elements: that is, if x ∈ A then x ∈ B and if y ∈ B, then y ∈ A as well.
This is exactly the same thing as saying A ⊆ B and B ⊆ A. When this
happens we, unsurprisingly, write A = B.

Example 4.3.
Let A and B be the sets described below:

A =
{
x ∈ Z

∣∣x = 2n for some n ∈ Z, and x = 3m for some m ∈ Z
}
,

B =
{
y ∈ Z

∣∣ y = 6n for some n ∈ Z
}
.

Show that A and B are equal.
Here, A is the set of all integers which are simultaneously multi-

ples of 2 and 3, while B is the set of all integers which are multiples
of 6. If you start writing down a few elements ofA, then you’ll prob-
ably be convinced pretty quickly that, sure enough, everything in A
is a multiple of 6, but let’s actually prove this.

We first want to show that A ⊆ B: i.e., every integer which is a
multiple of both 2 and 3 must be a multiple of 6. So suppose x ∈ A,
we want to show that x ∈ B as well. If x ∈ A then x = 2n = 3m for
some pair of integers m and n. This equation means, in particular,
that 2 divides 3m. Since 2 is a prime number it must divide either
3 or m (this is basically the definition of a prime number; see the
Wikipedia page about prime numbers for more information). Since
2 does not divide 3, it must divide m. Thus m = 2k for some k. This
means x = 3m = 3 ·2k = 6k, and so xmust be a multiple of 6. Hence
if x ∈ A, then x ∈ B as well, so A ⊆ B.

CHAPTER 4. SETS 69

We also need to show that B ⊆ A. Suppose that y ∈ B, so y = 6k
for some k. But then y = 3 · 2 · k, and so y is simultaneously a
multiple of 2 (take n = 3k in the definition of A) and a multiple of 3
(let m = 2k). Thus B ⊆ A.

As A ⊆ B and B ⊆ A, A = B.

Remark.
Just a reminder that it’s okay if you don’t understand an example
when you first read it in these notes. The important thing is to make
an effort to try to understand it. Usually just making an effort,
even if you don’t feel comfortable that you understood what you
just read, still helps to get your brain thinking about the idea. You
may find that if you read something you don’t understand, then
step away from it for a while (a few hours, maybe a day or two)
and then re-read it, it might make sense on the second reading. If
you still don’t understand the example on a second reading, don’t
beat yourself up about it. Feel free to ask questions about the idea
through email, office hours, or in class if you’re still unable to under-
stand what’s going on. The most important thing is to keep trying
and not let one thing you don’t understand discourage you from
trying anything else.

4.1.4 The empty set

There is one special set in mathematics called the empty set which is the
only set that contains no elements; it is the only set of cardinality zero
and is denoted ∅.

A set without anything in it might sound uninteresting, but there is at
least one surprising thing about the empty set: the empty set is a subset
of every other set. That is, for any set A, ∅ ⊆ A. Why is this the case?
We should only write ∅ ⊆ A if every element of ∅ is also an element of A.
Since ∅ has no elements, however, it immediately satisfies this definition!
All the elements of ∅ (all zero of them) are also elements of A!

CHAPTER 4. SETS 70

Exercise 4.4.
If the idea that the empty set is a subset of every other set sounds a
little bit odd, re-read the above paragraph and think about the logic
behind the last sentence until it makes sense. The solution to this
exercise in the appendices gives another way to think about this if
the first explanation above simply won’t “click” for you. Here’s
another way to think about subsets that might make ∅ ⊆ A a little
easier to digest. By definition, B ⊆ A if every element of B is also
an element of A. Think of this like a test: you hand me an element
of B and I tell you Pass or Fail, where I say Pass if the element is an
element in A, and Fail if it’s not. To see if B ⊆ A or not, we’ll subject
every element of B to this test. If any element of B fails the test, then
B is not a subset of A. However, if no element fails the test, then B
is a subset of A.

Now, for any setA let’s try to apply this test to ∅. So, for every el-
ement of ∅we apply our test, and if nothing fails, then ∅ ⊆ A. There
are no elements of ∅, however, so there’s nothing to fail. There’s no
failure, so ∅ ⊆ A.

4.1.5 Real numbers

So far we have described three different sets of numbers: the natural
numbers N, the integers Z, and the rational numbers Q. We now de-
scribe one more set of numbers which we will use in this class: the real
numbers.

To define the real numbers rigorously would take us very far afield,
and so we will be a little bit hand-wavy in the definition. A real number is
simply the coordinate of a point on the real line; equivalently, it is the col-
lection of all numbers that we can write down with a (possibly infinite)
decimal expansion. All of the numbers described thus far (natural num-
bers, integers, and rational numbers) are real numbers: we can write 6 as
6.000...; we can write -3 as -3.000...; we can write 22

7
as 3.142857142857142857...

The set of all real numbers is denoted R. Notice we have the following
string of subsets:

N (Z (Q (R.

Notice that the examples of real numbers we wrote down above all
have a decimal expansion which is eventually repeating. However there

CHAPTER 4. SETS 71

are numbers that can’t be written in this way. One simple example is
√
2.

We can write
√
2 as an infinite decimal expansion

√
2 = 1.414213562...,

this expansion never repeats no matter how many digits you write down.
We won’t do it, but it can be shown that every rational number has an
eventually repeating decimal expansion. So, another way to say that the
decimal expansion of

√
2 never repeats, is to say that it is impossible to

write
√
2 as a ratio of two integers. That is,

√
2 is not a rational number.

A real number that is not rational is called an irrational number.

4.2 Operations on sets

4.2.1 Unions

Given a collection of sets there are many different ways we can combine
the sets together to get new sets. Here we discuss the three most impor-
tant such operations: unions, intersections, and products.

Given two sets A and B, their union is the “smallest” set which con-
tains every element of A as well as every element of B, and is denoted
A ∪B. You should think of the union as gluing two sets together to get a
bigger set.

Example 4.4.
Let A = {2, 4, 6, 8, 10} be the set of all even integers between 1 and
10, and let B = {1, 3, 5, 7, 9} be the set of all odd integers between 1
and 10. Then their union A ∪ B is the set of all integers between 1
and 10:

A ∪B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Exercise 4.5.
Let A and B be any two sets. Show that A ⊆ A ∪ B and B ⊆ A ∪ B.
To show A ⊆ A∪B, we need to show that every element of A is also
an element of A ∪ B. Let x ∈ A be any element of A; we need to
show x ∈ A ∪ B as well. Notice, however, that A ∪ B consists of all
elements which are in A or B. Since x is in A, it is certainly in A or
B, and so x ∈ A ∪B. Thus A ⊆ A ∪B.

CHAPTER 4. SETS 72

The argument that B ⊆ A ∪ B is exactly the same, but with B’s
where A’s appeared above.

Given any two sets A and B, there are going to be lots of other sets
that contain A and B as subsets. In the example above, for instance, the
set

{1, 2, ..., 10, 11}

contains both A and B as a subset, as does N and Z. The union A ∪ B is
the smallest set containing bothA andB as subsets in the following sense:
If A ⊆ C and B ⊆ C, then A ∪B ⊆ C.

4.2.2 Intersections

Another operation we can perform on two sets is to intersect them. The
intersection of two sets A and B, denoted A ∩ B, consists precisely of all
of the elements which are in both A and B. That is, x ∈ A∩B if and only
if x ∈ A and x ∈ B.

Example 4.5.
Let A be the set of all multiples of 6, and B the set of all multiples of
10,

A = {...− 18,−12,−6, 0, 6, 12, 18, ...},
B = {...− 30,−20,−10, 0, 10, 20, 30, ...}.

Then A∩B is the set of all the numbers which are both multiples of
6 and 10.

A ∩B = {...,−90,−60,−30, 0, 30, 60, 90, ...}.

Example 4.6.
Suppose that S is the set of all characters that have ever appeared in

CHAPTER 4. SETS 73

a Star Wars film,

S = {Luke Skywalker, Obi-Wan Kenobi, Kylo Ren, · · · },

that R is the set of all droids from the Star Wars films,

R = {R2D2, C3P0, BB-8, · · · },

D is the set of all characters corrupted by the dark side of The Force,

D = {Darth Vader, Kylo Ren, Emperor Palpadine, ...}

and V is the set of all characters which appeared in Star Wars V: The
Empire Strikes Back,

V = {Luke Skywalker, Lando Calrissian, Boba Fett, · · · }.

Then the set of all droids that appeared in The Empire Strikes Back
is the intersection of the set of all droids and the set of all characters
that were in that movie:

R ∩ V = {C3P0, R2D2} .

The set of all characters which were corrupted by the dark side of
The Force and were in The Empire Strikes Back is the intersection of
all characters corrupted by the dark side of The Force and the set of
all characters in The Empire Strikes Back:

D ∩ V = {Darth Vader, Emperor Palpadine} .

Example 4.7.
Suppose that A is the set of all points in the plane (all (x, y)-pairs)
that are at most distance 1 from the origin.

CHAPTER 4. SETS 74

x

y

A =
{
(x, y)

∣∣x2 + y2 ≤ 1
}

And suppose thatB is the line with slope 1 through the point (0,−0.25)

x

y

B =
{
(x, y)

∣∣ y = x− 0.25
}

Then the intersection A ∩B is then the portion of the line B that
remains inside the discA. This is the dark purple line segment in the
figure below. (The original disc and line are drawn in very lightly
just for comparison; they are not part of A ∩B.)

CHAPTER 4. SETS 75

x

y

A ∩B =
{
(x, y)

∣∣ y = x− 0.25 and x2 + y2 ≤ 1
}

It may happen that two sets have nothing in common: for example,
the set A = {1, 2, 3} and the set B = {4, 5, 6} have no common elements.
In a situation such as the intersection of the two sets is empty, A∩B = ∅,
and we say that A and B are disjoint.

Exercise 4.6.
Let A and B be any two sets. Show that A ∩ B is a subset of A and
also a subset of B. By definition, A ∩ B contains everything that is
in both A and in B. Thus every element of A ∩ B is an element of
A, and this is exactly what it means to say A ∩ B ⊆ A. By the same
token, A ∩B ⊆ B.

Exercise 4.7.
Show that if A ⊆ B, then A ∩B = A. By assumption A ⊆ B, and so
every element of A is also an element of B. Since A ∩ B consists of
all the elements of both A and B, and everything in A is already an
element of B, we see A ∩B doesn’t “remove” anything from A.

CHAPTER 4. SETS 76

Just as the union A ∪ B was the smallest set containing both A and B
as subsets, the intersection A ∩B is the largest subset of both A and B in
the following sense: If C ⊂ A and C ⊆ B, then C ⊆ A ∩B.

Anytime you have several operations defined on some collection of
objects (e.g., unions and intersections defined for sets), you might be in-
terested in how those operations interact with one another. For unions
and intersections this interaction is similar distributive law for normal
numbers (e.g., that x · (y + z) = x · y + x · z).

Proposition 4.1. For any sets A, B, and C we have the following two distribu-
tive laws:

A ∩ (B ∪ C) = [A ∩B] ∪ [A ∩ C]
A ∪ (B ∩ C) = [A ∪B] ∩ [A ∪ C]

Proof. We will only prove the first distributive law; the proof of the sec-
ond one is almost identical.

Notice that elements of A ∩ (B ∪ C) are elements of A which are also
elements of either B or C. The elements of A ∩ B are elements of both A
and B; the elements of A ∩ C are elements of both A and C. Unioning
A ∩ B and A ∩ C together, we have exactly the elements of A which are
also in either B or C.

4.2.3 Products

One last operation we will mention is the Cartesian product, which we
will usually refer to simply as the “product.” Given two sets, A and B,
their (Cartesian) product is a set denoted A×B and which consists of all
ordered pairs (a, b) where a ∈ A and b ∈ B:

A×B =
{
(a, b)

∣∣ a ∈ A and b ∈ B
}
.

Example 4.8.
Let A = {x, y, z} and B = {u, v, x}. Then

A×B = {(x, u), (x, v), (x, x),
(y, u), (y, v), (y, x),

(z, u), (z, v), (z, x)}

CHAPTER 4. SETS 77

Example 4.9.
Let A be the interval [1, 4] and B the interval [2, 3]. Then the product
A × B consists of all pairs of numbers (i.e., all (x, y) pairs in the
plane) where the first coordinate is between 1 and 4, and the second
coordinate is between 2 and 3:

x

y

A×B =
{
(x, y)

∣∣ 1 ≤ x ≤ 4 and 2 ≤ y ≤ 3
}

It is fairly often that we will want to consider the product of a set with
itself, A×A. In such a situation we will usually simply write A2 to mean
A× A.

The three operations we described above can be defined for more than
two sets. For example, it makes sense to talk about the union, intersec-
tion, or product of three sets. It is completely reasonable, for example,
to say that the union A ∪ B ∪ C should be the smallest set containing all
the elements of A, all the elements of B, and all the elements of C. The
intersection A ∩ B ∩ C should contain only those elements that are in all
three sets A, B, and C.

Example 4.10.

CHAPTER 4. SETS 78

Consider the sets A, B, and C described below:

A = {1, 2, 3, ..., 10}
B = {2, 4, 6, ..., 20}
C = {−12,−9,−6, ..., 6, 9, 12}.

The union of these sets is

A ∪B ∪ C = { − 12,−9,−6,−3, 0, 1, 2, 3, ...10,
12, 14, 16, 18, 20}.

The intersection is
A ∩B ∩ C = {6}.

Of course, there’s nothing magical about having two sets or three sets:
we can define unions and intersections for any number of sets – even
infinitely-many.

Example 4.11.
For each n ∈ N define the set An to be the interval

[
− 1

2n
, 1
2n

]
. The

first few intervals are thus

A1 = [−1/2, 1/2]

A2 = [−1/4, 1/4]

A3 = [−1/8, 1/8]

A4 = [−1/16, 1/16]
...

The intersection of all these intervals is usually written in one of two
ways,

A1 ∩ A2 ∩ A3 ∩ · · · or
∞⋂
n=1

An,

and consists of all the elements which are in every An. In this case

CHAPTER 4. SETS 79

the only such element is 0:

∞⋂
n=1

An = {0} .

Exercise 4.8.
For each n ∈ N, let Bn be the following interval:

Bn =

[
1

2n
, 1− 1

2n

]
.

What is the infinite union of all the Bn’s,
⋃∞
n=1Bn? The union of

the Bn’s is the open interval (0, 1). To see this, let’s let U denote the
infinite union, U =

⋃∞
n=1Bn. We want to show U = (0, 1), which

means we need to show U ⊆ (0, 1) and (0, 1) ⊆ U . It is easy to see
U ⊆ (0, 1) since each Bn ⊆ (0, 1). To see (0, 1) ⊆ U , let x ∈ (0, 1)
be any arbitrary element. Since x > 0, there exists some value of
m1 such that x > 1

2m1
as 1

2n
decreases to 0 as n increases. Notice if

x > 1
2m1

, then x > 1
2M

for any M > m1. Similarly, since x < 1, there
exists some m2 such that x < 1− 1

2m2
. Note also that if M > m2, then

x < 1− 1
2M

.
Now let M be the maximum of m1 and m2, M = max{m1,m2}.

Then x > 1
2M

and x < 1− 1
2M

; i.e., x ∈ BM . Since BM ⊆ U , this shows
x ∈ U .

Thus we have established that (0, 1) = U .

The product might be slightly, but not very, surprising. When we
write a product of three sets we will mean the collection of ordered triples;
a product of four sets is the collection of ordered quadruples. In general,
the product of n sets is the set of all ordered n-tuples. (An n-tuple is an
ordered list of n items. A 2-tuple is simply a pair; a 3-tuples is a triple; a
5-tuple has the form (a, b, c, d, e).)

CHAPTER 4. SETS 80

Example 4.12.
Let A, B, and C be the following sets:

A = {1, 2, 3}
B = {α, β}
C = {], [}

Then A×B × C is the following set

{(1, α,]), (1, α, [), (1, β,]), (1, β, [),
(2, α,]), (2, α, [), (2, β,]), (2, β, [),

(3, α,]), (3, α, [), (3, β,]), (3, β, [)}

It is very common to consider the Cartesian product of a set A with
itself n times, so we usually denote this as An.

Example 4.13.
The set of all ordered triples of integers could be written Z3:

Z3 =
{
(x, y, z)

∣∣x, y, z ∈ Z
}

We can also talk about products of infinitely-many sets, but for sim-
plicity we will avoid that for the time being.

4.2.4 Complements

The last operation on sets we will describe is not defined for all sets, but
only for subsets of some given set. That is, in some applications there
will be some ambient set “in the background,” and all other sets we are
interested in will be subsets of this ambient set. In such a situation, we
sometimes call the ambient set the universe because it consists of every-
thing we care about for the problem at hand. For example, in geometry
the universe may be the set of all points in the plane, R2 – for some geo-
metric problems everything you care about might take place in the plane,
so that is your universe.

CHAPTER 4. SETS 81

Once we have a universal set U , we can define the complement of any
subset E ⊆ U , which you should think of as being the complete opposite
of E. To be more precise, given any set E inside the universe U , the
complement of E, denoted Ec, is the set of all elements in U which are
not in E:

Ec =
{
x ∈ U

∣∣x /∈ E} .
Example 4.14.
Suppose the universe U consists of all integers between 1 and 10,

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

• If E is the set of all even numbers between 1 and 10, E =
{2, 4, 6, 10}, then its complement consists of all the odd num-
bers, Ec = {1, 3, 5, 7, 9}.

• ifE is the set of all numbers in U greater than 7,E = {8, 9, 10},
then its complement is the set of all numbers less-than-or-equal-
to 7, Ec = {1, 2, 3, 4, 5, 6, 7}.

Exercise 4.9.
Let U be any universal set and E ⊆ U any subset. Show (Ec)c = E.

For notation convenience, let’s write D = Ec for the moment. Then
D is made up of all the x ∈ U such that x /∈ E. So what is Dc, aka
(Ec)c? By definition, Dc is the set of all x ∈ U such that x /∈ D. But
what does it mean if x /∈ D? Since D consists of everything not in E,
if x /∈ D that must mean x ∈ E. That is Dc = E.

Example 4.15.
Suppose the universe U consists of all points in the plane, U = R2.
If E is the set of all points whose distance to the origin is at most 1

CHAPTER 4. SETS 82

(so, E is the circular disc of radius 1 centered at the origin), then its
complement Ec consists of all the points distance more than 1 from
the origin (this would be the entire plane with a “hole” of radius 1
centered at the origin).

E

Ec

Exercise 4.10.
Given some universe U , what is the complement of the empty set
∅? What is the complement of U? The complement of the empty
set, by definition, is the collection of all elements of U which are not
elements of the empty set. But since the empty set has no elements,
nothing in U is in the empty set, and so the complement of ∅ is the
entire universe U .

The complement of U is the set of all elements of U which are not
elements of U – of course, there are no such elements (an element
can not simultaneously be in U and not in U , and so the set of all
such elements is empty. I.e., U c = ∅.

4.2.5 Difference

The difference between two sets E and F , denoted E \ F , is the set of all
elements in E which are not also elements in F :

E \ F =
{
x ∈ E

∣∣x /∈ F} .

CHAPTER 4. SETS 83

To have a picture of this, imagine that E and F are the overlapping re-
gions indicated below.

E

F

Then the set difference E \ F , is the shaded region below.

E \ F

Example 4.16.
Let S be the set of all Star Wars movies,

S = {Star Wars,The Empire Strikes Back,Return of the Jedi,
The Phantom Menace,The Clone Wars,Revenge of the Sith,
The Force Awakens,Rogue One,The Last Jedi,
Solo}

and let D be the set of all movies produced by Disney,

D = {Snow White,Pinocchio, ...,Coco,The Force Awakens, ...}.

Then S \ D would be the set of all Star Wars movies not produced
by Disney,

S \D = {Star Wars,The Empire Strikes Back,Return of the Jedi,
The Phantom Menace,The Clone Wars,Revenge of the Sith}

CHAPTER 4. SETS 84

Exercise 4.11.
Show that E \ F is equal to E \ (F ∩ E). To show that two sets are
equal, we need to show that each is a subset of the other. That is, we
must show E \ F ⊆ E \ (F ∩ E) and E \ (F ∩ E) ⊆ E \ F .

First note that if x ∈ E \ F , that means x is in E but not in F . If x
is not in F , then in particular it’s not in F ∩ E (everything in F ∩ E
is in F). Thus x ∈ E \ (F ∩ E), and so E \ F ⊆ E \ (F ∩ E).

Now suppose x ∈ E \(F ∩E). That is, x ∈ E but x is not in F ∩E.
This means in particular that x /∈ F : we already know x ∈ E so if
x ∈ F as well, we would have x ∈ F ∩ E. Hence x ∈ E but x /∈ F ,
which precisely means x ∈ E \ F . Thus E \ (F ∩ E) ⊆ E \ F .

Together these mean that the two sets are equal.

4.2.6 De Morgan’s laws

It is very common in mathematics to have multiple possible operations
you can perform on a given type of object, and then to ask how these
operations interact with one another. For example, in arithmetic two ba-
sic operations are addition and multiplication, and these two operations
“interact” via the distributive law a · (b+ c) = a · b+ a · c.

At this point we have a few different operations we can perform on
sets, and we want to know how they interact with each other. In par-
ticular, we have unions, intersections, and complements. These three
operations are related by two rules called de Morgan’s laws, which es-
sentially say that unions turn into intersections (and intersections turn
into unions) when we take complements.

More precisely, if E and F are two subsets of some universe U (recall
we always need a “universe” to discuss complements), then we have the
following:

(E ∪ F)c = Ec ∩ F c

(E ∩ F)c = Ec ∪ F c

That is, we can intentionally turn unions into intersections and vice versa,
but we also have to take the complement of the sets involved. Right now
it might be hard to appreciate why this is something we’d like to do, but
we’ll see later that when calculating probabilities we will have special
rules for calculating probabilities of unions and intersections. In some

CHAPTER 4. SETS 85

types of problems we use de Morgan’s laws to turn a complicated prob-
lem involving probabilities of unions into a simpler problem involving
probabilities of intersections. (This is a little ways down the road from
where we are now, but that’s where we’re heading.)

Example 4.17.
Suppose the universal set is U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and let
E = {1, 2, 3} and F = {3, 4, 5}. Verify directly that de Morgan’s
laws are satisfied.

Here we just want to compute the four sets stated in de Morgan’s
laws above (two sets per equation) and see if the equalities that are
claimed to be true are in fact satisfied.

First note E ∪ F = {1, 2, 3, 4, 5}. Hence (E ∪ F)c = {6, 7, 8, 9, 10}.
Now note Ec = {4, 5, 6, 7, 8, 9, 10} and F c = {1, 2, 6, 7, 8, 9, 10}. Their
intersection is Ec ∩ F c = {6, 7, 8, 9, 10}. So the first equation in de
Morgan’s laws is satisfied.

For the second equation we note E ∩ F = {3}, so (E ∩ F)c =
{1, 2, 4, 5, 6, 7, 8, 9, 10}. Now Ec and F c we computed above, and
their union is Ec ∪ F c = {1, 2, 4, 5, 6, 7, 8, 9, 10}, and so the second
equation in de Morgan’s laws is satisfied.

The proof of de Morgan’s laws essentially has to do with working out
what each side of each equation means. We will simply prove the first
law, leaving the second one as an exercise.

Proof of de Morgan’s first law. We wish to show that (E∪F)c = Ec∩F c. To
show two sets are equal we must show each one is a subset of the other:
i.e., we must show (E ∪ F)c ⊆ Ec ∩ F c and also that Ec ∩ F c ⊆ (E ∪ F)c.

Let x ∈ (E ∪ F)c. That is, x is an element of U which is in neither E
nor F . Since x /∈ E and x /∈ F , we have x ∈ Ec and x ∈ F c, so x ∈ Ec∩F c.
This shows (E ∪ F)c ⊆ Ec ∩ F c.

Now to show the other inclusion, let x ∈ Ec∩F c. Thus x is in both Ec

and x is in F c. This means x is in neither E nor F , and hence x /∈ E ∪ F .
By the definition of the complement, that means x ∈ (E ∪ F)c. Hence
Ec ∩ F c ⊆ (E ∪ F)c.

CHAPTER 4. SETS 86

Exercise 4.12.
Prove the second law of de Morgan. That is, if E and F are subsets
of a universal set U , then (E ∩ F)c = Ec ∪ F c.

There’s nothing really special about our using two sets in the state-
ments of de Morgan’s laws above instead of three or four or five or ... In
general, given any collection of subsets E1, E2, ..., En of some universal
set U , de Morgan’s laws extend to

(E1 ∪ E2 ∪ · · · ∪ En)c = Ec
1 ∩ Ec

2 ∩ · · · ∩ Ec
n

(E1 ∩ E2 ∩ · · · ∩ En)c = Ec
1 ∪ Ec

2 ∪ · · · ∪ Ec
n.

If you believe the proof of de Morgan’s laws for two sets, then it’s
easy to see how to get de Morgan’s laws for more than two sets. Let’s
consider the case when there are three sets, and let’s just call them E, F ,
and G. The first law says that

(E ∪ F ∪G)c = Ec ∩ F c ∩Gc.

How can we get this if we know only have de Morgan’s laws for two sets?
We’ll just cheat and rewrite the above as two sets. If we write H = E ∪F ,
then E ∪ F ∪ G can be written as H ∪ G. De Morgan’s laws on two sets
then tell us

(E ∪ F ∪G)c = (H ∪G)c = Hc ∩Gc.

Now let’s figure out what Hc is: since H = E ∪ F , we must have Hc =
(E ∪ F)c. But now de Morgan’s laws for two sets tell us Hc = (E ∪ F)c =
Ec ∩ F c. Plugging this in for Hc on the right-hand side above we have

(E ∪ F ∪G)c = (H ∪G)c = Hc ∩Gc = Ec ∩ F c ∩Gc.

The same trick works for de Morgan’s second law for three sets.
Now that we know de Morgan’s laws for three sets, it’s easy to extend

it to de Morgan’s law for four sets; once we have de Morgan’s laws for
four sets, we can easily extend to five sets; etc. We just keep taking a
“complicated” de Morgan’s law with lots of sets and rewriting it in terms
of de Morgan’s law with fewer sets. Repeating this process several times
we can always boil everything back down to de Morgan’s law with two
sets which we already know.

CHAPTER 4. SETS 87

4.3 Collections of sets
In this section we discuss some of the ways that we can collect multiple
sets together. As we had previously seen, sets can contain other sets as
elements. One particularly important example is the “power set” of a
set, which is the collection of all subsets of a given set. Other important
families of sets of sets are “index sets,” which give us a way of specifying
a set for each element in another set. We will also discussion the idea of
a partition of a set which is simply a way of breaking a given set up into
disjoint pieces.

4.3.1 Power set

Given any set X , we define its power set, denoted P(X) or P(X) or 2X ,
is the set of all sets which are subsets of X :

P(X) =
{
Y
∣∣Y ⊆ X

}
So, for example, if X = {1, 2, 3}, then its power set is

P(X) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

As another example, the power set of the empty set is the set that contains
the empty set:

P(∅) = {∅}.

4.3.2 Indexing sets

Sometimes it is convenient to be able to describe very large collections
of sets, and an “index set” is one way of doing this. To be more precise,
we refer to a set I as an index set if we have a collection of sets Si, one
for each i ∈ I . This idea is hard to appreciate the first time you learn
it, but it turns out to be of fundamental importance in defining certain
mathematical objects.

Although in practice we usually use index sets to describing very
large collections of related sets, our index sets are not required to be large.
For example, suppose I was the set {1, 2, 3}. This forms an index set for
any collection of three sets, say

S1 = {0, 2, 5}, S2 = Z, and S3 = {2, 3, 5, 7, 11, 13, ...}

Our index set (in this case {1, 2, 3}) is just a convenient way of recording
the allowable indices, the i’s, the parametrize our collection of three sets.

CHAPTER 4. SETS 88

As a more involved example, an index set could be the collection of
all natural numbers, N. A family of sets indexed by N is just any infinite
collection of sets where there’s a first set (corresponding to 1), a second
set (corresponding to 2), and third set, a fourth set, and so on.

For instance, we might consider the sets

Xn = {m ∈ N
∣∣n|m} for each n ∈ N.

Here X1 would be the set containing all natural numbers divisible by 1
(soX1 would just be all natural numbers),X2 would be the set containing
all natural numbers divisible 2 (all the even numbers), X3 would be the
set of all natural numbers divisible by 3, and so on.

As one more example, let’s suppose our indexing set was the interval
(0, 1) – the set of all real numbers x satisfying 0 < x < 1. Now suppose
for each x ∈ (0, 1) we considered the set

Yx = (−x− 1, x3) =
{
y ∈ R

∣∣ − x− 1 < y < x3
}
.

So, for example, Y1/2 would be the interval (−3/2, 1/8), and Y3/4 would be
the interval (−7/4, 27

64
). Graphically, you can picture the Yx’s as the consist-

ing of the y-coordinates that live on the vertical line segments connecting
points on the graph y = −x− 1 to points on the graph y = x3.

4.3.3 Unions and intersections with indices

Once we have an indexed family of sets (i.e., a family of sets Si, one per
each i in an index set I), we can consider operations like unions and
intersections for all the sets in our collection. The union of all these Si

CHAPTER 4. SETS 89

would consist of the elements that are in at least one Si and is denoted⋃
i∈I

Si: ⋃
i∈I

Si =
{
x
∣∣ ∃i ∈ I, x ∈ Si} .

For example, using our examples Si, Xn, and Yx sets mentioned in the
previous section, we would have⋃

i∈I

Si = Z,
⋃
n∈N

Xn = N, and
⋃

x∈(0,1)

Yx = (−2, 1).

The intersection of an indexed family of sets, denoted
⋂
i∈I

Si, consists of

all the x that are elements of every Si:⋂
i∈I

Si =
{
x
∣∣ ∀i ∈ I, x ∈ Si} .

Using our three families of sets from before, their intersections are⋂
i∈I

Si = {2},
⋂
n∈N

Xn = ∅,
⋂

x∈(0,1)

Yx = (−1, 0).

4.4 Maps between sets
The material in this chapter will be crucial when we begin to discuss
random variables later, however we will not need this material until then.
You may want to only skim over this chapter for now, then return to it
once we begin discussing random variables in class.

4.4.1 Definitions and examples

Given two sets A and B, a map from A to B (also called a function from
A to B) is a rule which associates to each element of A an element of
B. Sometimes we will represent maps pictorially by drawing A on the
left, B on the right, and then having arrows going from elements of A to
elements of B.

Example 4.18.
Suppose A = {a, b, c, d} and B = {1, 2, ..., 6}. One possible map

from A to B is pictured below:

CHAPTER 4. SETS 90

a

b

c

d

1

2

3

4

5

6

The map in Example 4.18 associates 1 to a; associates 2 to b; 2 is also
associated to c; and finally d gets associated to 6.

It is convenient to give a map a name so that we can refer to it without
drawing pictures like this all of the time. Let’s refer to the map from
Example 4.18 as f . To say that f takes elements of A and associates an
element ofB to them we write f : A→ B. We then callA the domain of f
andB is called the codomain of f . The range of f is the subset ofB which
actually get associated to an element of A. For the map in Example 4.18
the range is {1, 2, 6}.

There are several different notations that are used to describe which
elements of B a map associates to elements of A. Some commonly used
ones are f(a) = b and a 7→ b. The first one you’ve probably seen before,
but the second one might be new. We pronounce a 7→ b as “a maps to b.”

Example 4.19.
Considering the map f shown in Example 4.18 we have

f(a) = 1

f(b) = 2

f(c) = 2

f(d) = 6

CHAPTER 4. SETS 91

Using the other notation we would write

a 7→ 1

b 7→ 2

c 7→ 2

d 7→ 6

It is important to realize that a map f : A → B can only associate
one element of b to a given element of a (even though there could be
several elements of A associated to a given b ∈ B). A map f : A → B
must also associate every element of A to something in B, even though
not every element of may B necessarily have something associated to it.
(The range of f : A→ B is by definition the set of all elements inB which
have an element of A associated to them.)

Example 4.20.
The following is not a map:

a

b

c

d

1

2

3

4

5

6

CHAPTER 4. SETS 92

Example 4.21.
The following is not a map:

a

b

c

d

1

2

3

4

5

6

4.4.2 Representing maps

It is common to represent a map by a formula, for example consider the
map f : Z→ Z which takes a given number and squares it. It’s not really
reasonable to represent this map pictorially since Z has infinitely-many
elements, so we instead describe the map by an algebraic rule and write
f(x) = x2 or x 7→ x2.

Another way to represent a map is to consider its graph. In general,
the graph of a map f : A → B, which we will denote Graph(f), is a
subset of A×B which consists of pairs of the form (a, f(a)). That is,

Graph(f) =
{
(a, b) ∈ A×B

∣∣ b = f(a)
}
.

When we have a map from the set of real numbers R (defined below) to
itself, it is common to actually draw these points in the plane R2. That is,
given a map f(x) we plot all of the pairs (x, y) where y = f(x).

CHAPTER 4. SETS 93

Example 4.22.
The graph of the map f : R→ R given by x 7→ x2 − 3x is

−2 −1 1 2

−2

−1

1

2

4.4.3 Special types of maps

As mentioned above, a map f : A→ B must associate every element ofA
to some element of B (i.e., for every a ∈ A, f(a) is defined), but not every
element of B must have an element of A associated to it (there may be
some b ∈ B such that for every a ∈ A, f(a) 6= b). In the special case where
every element of B does have an element of a associated to it, we say the
map f is surjective or onto. Equivalently, a map is surjective when its
codomain and range are the same.

Example 4.23.
The map f : Z → Z defined by f(x) = x + 3 is surjective. Every
y in the codomain Z gets associated an x from the domain, namely
x = y − 3.

Example 4.24.

CHAPTER 4. SETS 94

The map pictured below is surjective.

a

b

c

d

e

f

g

1

2

3

4

5

Remark.
The terms surjective and onto are completely synonymous, and which
one a person uses is largely a matter of personal preference.

Notice that the map pictured in Example 4.24 has the property that
multiple elements of the domain get associated to the same element in
the codomain: both b and c get associated to 2, while both e and g are
associated to 4. When this does not happen, we give the map a special
name.

We say that a map f : A → B is injective or one-to-one (commonly
denoted 1-1) if each element of A is associated to a unique of B. That is,
if a1 and a2 are distinct elements of A, then f(a1) 6= f(a2).

CHAPTER 4. SETS 95

Example 4.25.
The following map is injective.

a

b

c

d

e

1

2

3

4

5

6

7

Example 4.26.
The map f(x) = x+3 from Example 4.23 is injective: if x1 6= x2, then
f(x1) = x1 + 3 6= x2 + 3 = f(x2).

When a map is both injective and surjective, we say the map is bijective.
Bijective maps play a special role in most areas of mathematics because
having a bijection between two sets means those two sets are “the same.”
That is, you may label the elements of the sets differently and think of
them in different ways, but each element in one set has exactly one ele-
ment in the other set associated to it: we can pair the elements of the sets
together one by one.

CHAPTER 4. SETS 96

Example 4.27.
The following map is injective.

a

b

c

d

e

1

2

3

4

5

Example 4.28.
The map f(x) = x + 3 from Example 4.23 is bijective as it is both
surjective and injective.

Remark.
If we know that a given map f : A → B is injective, surjective, or
bijective, then we also instantly know how the cardinalities ofA and
B are related. If f is injective, then #A ≤ #B. If f is surjective, then
#A ≥ #B. If f is bijective, then #A = #B. This holds even when
A and B have infinitely-many elements! These ideas can be used
to make sense of when one “type” of infinity is bigger than another
type of infinity.

The notion of different sizes of infinity was very controversial
when first proposed by Georg Cantor in the late 19th century, but
today is a commonly accepted and understood part of mathematics.
For a very easy and brief introduction to the idea of different sizes
of infinity, watch the short short TED-Ed video How big is infinity?,

CHAPTER 4. SETS 97

https://youtu.be/UPA3bwVVzGI.

When a map f : A → B is bijective, there is always a map g : B → A
which “undoes” f in the following sense: for every a ∈ A, g(f(a)) = a,
and for every b ∈ B, f(g(b)) = b. We call the map g the inverse of f and
usually denote it by f−1. (Notice that f−1 is not f raised to the negative
first power! This is simply a common, if unfortunate, notation for the
inverse.)

Example 4.29.
The bijective map f is denoted in black in the image below, while
its inverse f−1 is given in red.

a

b

c

d

e

1

2

3

4

5

4.4.4 Images and preimages

Just as a map f : A→ B associates elements of B to elements of A, it also
associates subsets of B to subsets of A by applying f to every element of
a subset of A.

https://youtu.be/UPA3bwVVzGI

CHAPTER 4. SETS 98

Suppose that f : A → B is any map and that X ⊆ A is any subset of
A. We can define a subset ofB, which we’ll denote f(X), in the following
way:

f(X) =
{
f(x)

∣∣x ∈ X}
This set f(X) is called the image of X under f .

Example 4.30.
Let A = {a, b, c, d}, B = {1, 2, ..., 6} and let f be the map from

Example 4.18. If X = {a, b, c}, then its image f(X) is {1, 2}.

a

b

c

d

1

2

3

4

5

6

Given any Y ⊆ B, the preimage of Y is the set of all elements in A
which get mapped to an element of Y . The preimage is often denoted
f−1(Y), even if f is not bijective.

f−1(Y) =
{
x ∈ A

∣∣ f(x) ∈ Y }

Example 4.31.
Let A, B, and f be as in Example 4.30. If Y = {1, 2}, then f−1(Y) =

CHAPTER 4. SETS 99

{a, b, c}.

Exercise 4.13.
Let A, B, and f be as in Example 4.30. What is the preimage of
{3, 4, 5}? The preimage of {3, 4, 5} is the empty set, ∅.

4.5 Compositions of Maps

4.5.1 Definitions and basic examples

We can sometimes take a pair of maps and combine them together to get
a new map, called the “composition” of the original maps. In particular,
we would like to take the output of one map and use it as the input to
another map. For this to be defined, however, we need to be careful
about the domains and codomains of the maps involved. In particular,
let’s suppose that f : A → B is a map with domain A and codomain B,
and that g : B → C is a map with domain B and codomain C. In this
situation we can take an element a ∈ A, apply f to it to obtain an element
f(a) ∈ B. Since f(a) is in B, though, and g takes inputs from the set B,
we can now apply g to f(a) to get an element g(f(a)) ∈ C. This gives us
a new map called the composition of f and g, sometimes denoted g ◦ f ,
which is a map with domain A and codomain C,

g ◦ f : A→ C defined by a 7→ g(f(a)).

Notice that this notation g ◦ f tells you the functions being applied from
the right to the left. That is, in g ◦ f the map f is applied first, and is
followed by g.

Compositions of maps are somtimes indicated in simple diagrams
such as

A
f−→ B

g−→ C

where following the arrows of the diagram indicates the composition
where we start with an element of A, apply f to obtain an element of
B, then apply g to obtain an element of C.

CHAPTER 4. SETS 100

Notice that compositions often can not be “reversed.” That is, if f :
A → B is a map from A to B, and g : B → C is a map from B to C, then
we can define the composition g◦f , but we cannot define the composition
f ◦ g. We can’t define f ◦ g because g takes an element of B as input
and produces an element of C as an output, whereas f requires its inputs
come from A, and so this composition f ◦ g is not defined.

As a few simple concrete applications of compositions, consider the
map f : N → Q given by f(n) = 1

n
and g : Q → R given by g(x) =

√
x.

The composition g ◦ f : N → R is a map which takes initial inputs from
the natural numbers and ultimately produces real numbers as an output,

N f−→ Q g−→ R.

The actual value of g ◦ f at a natural number n is determined by simply
applying the maps in sequence:

(g ◦ f)(n) = g(f(n)) = g

(
1

n

)
=

√
1

n
.

For example, (g ◦ f)(2) is
√

1
2

and (g ◦ f)(9) is
√

1
9
= 1√

9
= 1

3
.

4.5.2 Composing three or more functions; associativity

We can extend our operation of composition by chaining multiple com-
positions together. For instance if we have maps f : A → B, g : B → C,
and h : C → D, then we can consider the composition h ◦ (g ◦ f), which
takes an element a ∈ A and ultimately maps it to h(g(f(a))).

A
f−→ B

g−→ C
h−→ D

For example, letting f : N→ Q and g : Q→ R be the maps earlier, we
could compose with the map h : R→ {0, 1} defined by

h(x) =

{
0 if bxc is even
1 if bxc is odd

This map produces a 0 or 1 based on whether the floor of its argument is
even or odd: e.g., h(π) = 1 as bπc = 3 is odd; and h(e) = 0 as bec = 2 is
even.

The composition of all three maps, h ◦ (g ◦ f),

N f−→ Q g−→ R h−→ {0, 1}

CHAPTER 4. SETS 101

is map from N to {0, 1}which could be expressed as

(h ◦ (g ◦ f))(n) =

0 if
⌊√

1
n

⌋
is even

1 if
⌊√

1
n

⌋
is odd

Notice that if we compose three maps,

A
f−→ B

g−→ C
h−→ D

there are two conceivable ways we could get a composition: we could
consider (h◦g)◦f or h◦ (g ◦f). The difference between these two options
is which composition is “constructed” first before being composed with
the remaining map. Conveniently, though, these are actually the same
map. That is, the map from A to D given by (h ◦ g) ◦ f will equal the map
from A to D given by h ◦ (g ◦ f). The reason for this is that for each a ∈ A,
both expressions will take us to the same element of D:

((h ◦ g) ◦ f)(a) = (h ◦ g)(f(a))
= h(g(f(a)))

= (h ◦ (g ◦ f))(a)

So we don’t actually need to bother with writing all these parentheses
and can just write h ◦ g ◦ f . This property of sliding parentheses around
(choosing different precedences for which maps are composed first) with-
out changing the final result is called the associative property of composition.

We can continue to consider compositions of several maps between
sets, as long as we are careful that the codomain of a map corresponds
to the domain of the “next” map in the composition. For instance if we
have maps

A
f−→ B

g−→ C
h−→ D

i−→ E
j−→ F

k−→ G

then we can define the composition k ◦ j ◦ i◦h◦g ◦f to define a map with
domain A and codomain G.

Remark.
In more advanced branches of mathematics such as algebraic topol-
ogy, algebraic geometry, and homological algebra, it is actually com-
mon to consider certain special compositions of infinitely-many maps.
It seems unwieldy at first glance, but under certain circumstances
you can use properties of some finite number of the compositions
to get information about other parts of the infinite composition, and

CHAPTER 4. SETS 102

this is one common “trick” used to make complex calculations much
simpler in those areas of math.

Exercise 4.14.
Let f : X → Y and g : Y → Z be two maps between sets.

(a) Show that if f and g are both injective, then the composition g◦f
is injective.

(b) Show that if f and g are both surjective, then the composition g◦
is surjective.

4.5.3 Inverse maps

When a map f : A → B is bijective, we can define a map called the
inverse map of f , denoted f−1, which is a map from B to A which “un-
does” the map f . That is, for b ∈ B we define f−1(b) to be the element
a ∈ A so that f(a) = b. Notice that such an a must exist since f is surjec-
tive, and that element a is unique because f is injective. Thus we have a
well-defined map f−1 : B → A.

Exercise 4.15.
Suppose f : A→ B is bijective and f−1 : B → A is its inverse. Show
that f−1 is also bijective.

Two key properties of bijective maps and their inverses are the fol-
lowing:

∀a ∈ A, f−1(f(a)) = a, and
∀b ∈ B, f(f−1(b)) = b.

These two properties justify the idea that f and f−1 “undo” one another.

CHAPTER 4. SETS 103

Example 4.32.
The following are examples of bijective maps with their inverses.

• The map f : R→ R given by f(x) = x3 is bijective with inverse
f−1(x) = 3

√
x.

• The map f : R → R given by f(x) = 2x + 3 is bijective with
inverse f−1(x) = 1

2
(x− 3).

• The map f : Z→ Z given by f(x) = x+c, where c is any fixed,
constant integer, is bijective with inverse f(x) = x− c.

Exercise 4.16.
Suppose that f : A → B and g : B → C are both bijective with
inverses f−1 : B → A and g−1 : C → B. Show that the composition
g ◦ f : A→ C is also bijective and its inverse equals f−1 ◦ g−1 : C →
A.

4.5.4 Identity maps

Every setA has a special map associated to it called the identity map, and
denoted idA : A → A. This is the map which simply sends each element
of A to itself; it is the map that “does nothing.” For each a ∈ A, idA(a) is
defined to be A.

Notice that our earlier properties for a bijective map and its inverse
can be expressed in terms of identity maps as follows: if f : A → B is
bijective and f−1 : B → A is its inverse, then

f−1 ◦ f = idA and f ◦ f−1 = idB.

Exercise 4.17.

CHAPTER 4. SETS 104

Let f : A → B be any map (no assumptions about injectivity or
surjectivity). Show that idB ◦ f = f and f ◦ idA = f .

5Relations
5.1 Basic definitions and examples
We often want to compare mathematical objects to one another and es-
tablish various “relationships” between quantities. For example, when
considering integers we may compare integers together by saying that
one is less than another, or say that two integers are related if one divides
the other. As we will see, maps between sets can also be thought of as a
relationship between mathematical objects (elements in the domain and
in the codomain of the function). There are also special types of rela-
tionships called “equivalence relations” that permeate mathematics and
which you have seen examples of before, even if you didn’t realize it at
the time. We will get started, though, by first simply defining what “re-
lation” between two sets is, and then seeing several examples.

Given two sets X and Y , a relation between X and Y is simply a
subset R of X × Y . Simply defining a relation has no other restricts: it’s
just some chosen subset of ordered pairs (x, y). (There are special types
of relations that do have restrictions, but we’ll discuss those later.)

For example, if X = {1, 2, 3, 4} and Y = {a, b, c}, then one possible
relation would be

R = {(1, a), (1, b), (2, b), (3, b), (3, a)}.

If we have an element (x, y) ∈ R, we sometimes write xRy. For exam-
ple, in the relation described above, we have 1Ra and 3Ra.

Notice that a map f : X → Y determines a special type of relation:
given any such map we can consider a relation where the ordered pairs
of X × Y are of the form (x, f(x)) for each x ∈ X . This is a perfectly
legitimate subset of X × Y , and so it defines a relation. In general, this
particulation relation determined by a function is sometimes called the
graph of the function and denoted Graph(f),

Graph(f) =
{
(x, y) ∈ X × Y

∣∣ y = f(x)
}
.

This generalizes the familiar notion of a graph of a function you’re famil-
iar with from algebra and calculus.

As an example, consider the map f : R → R defined by f(x) = x2.
The graph of this function (in the algebra/calculus sense you’re familiar
with) is a parabola in the plane, the (x, y) pairs that satisfy y = x2. We
can interpret this as a subset of points (x, y) in R2 = R×R, namely those

105

CHAPTER 5. RELATIONS 106

(x, y)-pairs where the y value is equals to x2 for each x. This is exactly the
object Graph(f) described above:

Graph(f) =
{
(x, y) ∈ R× R

∣∣ y = x2
}
.

So, every map f : X → Y defines a relation we call the graph. Notice,
though, that not every relation is necessarily the graph of a map. For
example, the relation R between X = {1, 2, 3, 4} and Y = {a, b, c} above
is not the graph of a map, for a few reasons:

1. The element 1 ∈ X appears in two different entries in R, (1, a) and
(1, b).

2. The element 3 ∈ X appears in two different entries in R, (3, a) and
(3, b).

3. The element 4 ∈ X does not appear in any entry in R.

In general, for a relation R ⊆ X × Y to be the graph of a map, the
relation must have that each x appears as the first entry in one and one
element of R.

Exercise 5.1.
Determine if each of the relations between X = {1, 2, 3, 4} and Y =
{a, b, c} below is a graph of a map or not.

(a) R = {(1, a), (2, b), (3, c), (4, a)}

(b) R = {(1, a), (2, a), (3, a), (4, a)}

(c) R = {(1, c), (2, b), (2, a), (3, c)}

(d) R = {(1, a), (1, b), (1, c)}

Since some relations are graphs of functions, but not all are, you can
think of a relation between sets as being a generalization of the idea of a
function.

The setsX and Y that appear in our definition of a relation don’t have
be distinct; that is, we could consider a subsetR ofX×X , and we call this
a relation on X . For instance, if X = Z, a subset R of Z × Z is a relation

CHAPTER 5. RELATIONS 107

Z. You actually already know some common relations on Z, even if you
never thought of them as subsets of Z× Z.

Of course, any map f : Z→ Z defines a relation (the graph), but some
other relations you already know are the following:

Divisibility
If we consider the subset of Z× Z where the first entry divides the
second entry, {

(x, y) ∈ Z× Z
∣∣ ∃n ∈ Z, y = nx

}
then this defines a relation. Let’s momentarily refer to this relation
as R. We would then have elements like (2, 8) ∈ R and (−3, 12) ∈ R
and we might write this as 2R8 and −3R12. Notice that if instead
of using the letter R for this set we use the symbol |, this becomes
our familiar notation for divisibility, 2|8 and −3|12.

Inequality
Now consider the subset of Z× Z where the first entry is less-than-
or-equal-to the second entry,

R =
{
(x, y) ∈ Z× Z

∣∣x is less than y ∨ x = y
}

then we have a relation where, for instance, 0R5 and −7R− 1. Let-
ting the symbol ≤ denote this set (i.e., ≤= R), we then have our
familiar notation 0 ≤ 5 and −7 ≤ −1.

Neither of the examples described above is the graph of a function, be-
cause for example 2|2 and 2|4; and 0 ≤ 0 and 0 ≤ 1. That is, there are
“x-coordinates” or our ordered pairs which appear multiple times, and
this can’t happen for functions.

As another relation on the integers, we could consider ordered pairs
(x, y) where we require that either both x and y are even, or both x and
y are odd. This is sometimes stated more succinctly by saying that x and
y have the same parity, which just means they’re both even or they’re
both odd, whichever it happens to be. Writing this down “directly” in
set-builder notation is a bit cumbersome, but let’s notice that we could
rephrase this saying that the difference between x and y is divisible by 2.

To see this, notice that if x and y were both even, say x = 2m and
y = 2n for integers m and n, then

x− y = 2m− 2n = 2(m− n)

CHAPTER 5. RELATIONS 108

and so the difference of two even numbers is divisible by 2. If we had x
and y were both odd, say x = 2m + 1 and y = 2n + 1 for integers m and
n, then

x− y = 2m+ 1− (2n+ 1) = 2m+ 1− 2n− 1 = 2m− 2n = 2(m− n),

and again the difference of two odd numbers is divisible by 2. Finally,
if one of the numbers was even and one was odd, say x = 2m + 1 and
y = 2n for integers m and n, then

x− y = 2m+ 1− 2n = 2(m− n) + 1

which will not be divisible by 2, since we would have a remainder of 1.
Putting this all together, we can define relation R where xRy if x and

y have the same parity (both are even or both are odd):

R =
{
(x, y) ∈ Z× Z

∣∣ 2|(x− y)}
So, for example, −2R14 and 3R127. This particular relation is sometimes
expressed as saying x and y are congruent modulo 2 if xRy where R is
the relation above. This relation also has some special notation where we
write ≡2 for R. I.e., −2 ≡2 14 and 3 ≡2 127.

We can extend this notion of congruence for any integer. That is, for
any integermwe can define a relation≡m on Z×Z by saying x ≡m y (i.e.,
the pair (x, y) is an element of the subset equivm ⊆ Z× Z we are about to
define) if their difference is divisible by m, m|(x− y),

≡m=
{
(x, y) ∈ Z× Z

∣∣m|(x− y)} .
So, for example, 5 ≡4 17 since 17 − 5 = 12 which is divisible by 4; and
10 ≡9 19 since 19 − 10 = 9 which is divisible by 9. This special relation
we have defined, called congruence modulo m, is also sometimes written
as

x = y (mod m)

For example,

5 = 17 (mod 4) and 10 = 19 (mod 9).

CHAPTER 5. RELATIONS 109

5.2 Special properties of relations
If you spent a lot of time thinking about the various common relations we
could define on a set, you might begin to notice there are a few special
properties that are common among many different relations. It might be
convenient, then, to give some of these commonly recurring properties
special names, so that you could easily state that a relation has a partic-
ular property without redefining it each time. Here we mention a few of
the most common properties.

5.2.1 Symmetry

Many relations we will consider will be symmetric in the sense that xRy
if and only if yRx. For example, in our congruence relation ≡m defined
in the last section, it’s easy to verify that x ≡m y if and only if y ≡m x. To
see this, suppose x and y are integers with x ≡m y. Then, by definition,
this means m|(x − y), and so x − y = mn for some integer n. But then
since y − x is just the negative of x − y, y − x = m(−n) and so m|(y − x)
as well and we have y ≡m x. (Since we’re stating this as xRy “if and only
if” yRx, we technically still need to show that if y ≡m x then we must
have x ≡m y. The proof, however, is exactly the same as the proof above,
just with the roles of x and y reversed.)

Notice that not all relations will be symmetric. For example, 2|4 but
4 - 2. Thus symmetry is a special property of some, but not all, relations.

5.2.2 Antisymmetry

Another common property many relations satisfy is called “antisymme-
try.” This is not simply the “opposite” of the symmetry defined above,
but means something a bit more preicse. We say a relation R on a set X
(i.e., R ⊆ X ×X) is antisymmetric if when xRy and yRx, we must have
x = y. For example, the relation ≤ on the integers has this property: if
x ≤ y and y ≤ x, then x = y. The divisibility relation on the natural
numbers also has this property:

Lemma 5.1. If x, y ∈ N with x|y and y|x, then x = y.

Proof. Suppose x and y are integers where x divides y and y divides x.
Since x|y we can write x = ym for some integer m, and similarly as y|x
we have y = xn for some integer n. We may use this to write

x = ym = (xn)m = xnm.

CHAPTER 5. RELATIONS 110

We could subtract xnm from both sides of the equation to write x−xnm =
0 or x(1 − nm) = 0. This means either x = 0 or 1 − nm = 0. However,
as we working over the integers, we can not have x = 0. Thus we must
consider 1−nm = 0 meaning nm = 1. The only positive integer solutions
to this, though are n = m = 1 and so our equations x = ym and y = xn
both simply become y = x.

Exercise 5.2.
Is the divisibility relation on Z antisymmetric? That is, if x and y
are integers (including zero and the negatives) with x|y and y|x, is it
true x = y?

Exercise 5.3.
Is it possible for a relation R on a set X to be both symmetric and
antisymmetric? If so, give an example. If not, prove no such relation
can exist on any set X .

Exercise 5.4.
Is it possible for a relation to be neither symmetric nor antisymmet-
ric? If so, give an example. If not, prove that every relation must be
symmetric or antisymmetric.

5.2.3 Reflexivity

We call a relation R on a set X reflexive if for every x ∈ X we have xRx.
Many of our examples of relations thus far are reflexive:

• The divisibility relation is reflexive since every integer divides it-
self.

CHAPTER 5. RELATIONS 111

• The ≤ relation is reflexive as for every x we have x ≤ x.

• The congruence relations on the integers are reflexive as for every x
we have x− x = 0 and every integer divides 0, so x ≡m x for every
integer x and every integer m.

5.2.4 Transitivity

A relationR is called transitive if xRy and yRz implies xRz. For example,
the inequality ≤ is transitive as if x ≤ y and y ≤ z, then we must have
x ≤ z as well.

Exercise 5.5.
Show that the divisibility relation on the integers is transitive. That
is, show that if x, y, z ∈ Z with x|y and y|z, then we must have x|z
as well.

5.3 Orderings
Some of the most important relations on a set are “orderings,” which give
us a way of comparing different elements in a set. For example, you’re fa-
miliar with the orders of<,≤,>, and≥ for the real numbers (and subsets
of the reals such as integers and rationals). We will define two different
types of orderings called “total orderings” and “partial orderings” that
generalize the essential properties of these relations.

5.3.1 Total orders

A total order (also sometimes called a linear order) on a set X is a rela-
tion R that has the following properties:

• R is reflexive (i.e., ∀x ∈ X, xRx);

• R is transitive (i.e., ∀x, y, z ∈ X, (xRy ∧ yRz) =⇒ xRz);

• R is antisymmetric (i.e., ∀x, y ∈ X, (xRy ∧ yRx) =⇒ x = y); and

• All elements of X are comparable under R (that is, for every x, y ∈
R we have either xRy or yRx: symbolically, ∀x, y ∈ X, xRy ∨ yRx).

CHAPTER 5. RELATIONS 112

The first three properties we have seen defined in the last section, but the
last property is new. It simply means there every pair of elements can be
compared by our relation R.

As mentioned above, the “obvious” examples of total orders are the
orderings you already know and love on the real numbers. It will in
fact turn out that every set can be given a total order (in fact, a very
special type of total order called a “well-order”), but we will postpone
discussing that for now since it requires a detour through a more so-
phisticated (and in some ways controversial) part of set theory called the
“axiom of choice.”

Exercise 5.6.
Construct a total order on the set {α,B,,, 13}. How many total
possible total orders are there on this set? More generally, how many
possible total orders are there on a finite set of cardinality n?

5.3.2 Partial orders

While it will turn out that every set can be given a total order, many of the
relations we will care about won’t satisfy the fourth condition of a total
order. That is, not all orders we will care about will allow us to compare
every possible pair of elements in the set. These are referred to as “partial
orders.”

To be more precise, a partial order on a set X is a relation R on X that
is reflexive, transitive, and antisymmetric. Notice that every total order
is necessarily also a partial order, just a very special type of partial order.
Thus the “obvious” examples of total orders (the usual orderings on the
real numbers and its subsets) are also examples of partial orders.

As for examples of partial orders that are not total orders, we have
already seen a few:

Example 5.1.
The relation of divisibility is an ordering on the the natural num-
bers, N. We can easily verify each of the three required properties:

CHAPTER 5. RELATIONS 113

Reflexivity The divisibility relation is reflexive since every natural
number divides itself: n|n as n = 1 · n.

Transitivity Suppose m, n, and p are natural numbers where m|n
and n|p. That is, n = am and p = bn for some integers a and b.
We then have

p = bn = b(am)

and so m|p as well.

Antisymmetry Supposem and n are natural numbers withm|n and
n|m. Then n = am and m = bn for integers a and b. We may
write n = am = abn and so n − abn = 0, or n(1 − ab) = 0.
Since we are only working with natural numbers, n can not be
zero, and we must have 1 − ab = 0. The only natural number
solution to this, though is a = b = 1, and so n = m.

Thus divisibility is a partial order, but it is not a total order. To
verify this we just need to show that there natural numbers m and
n where n - m and m - n. One easy example is n = 2 and m = 3.

Example 5.2.
Recall that given a set X , its powerset (denoted P(X) or 2X) is the
set of all subset of X . There is a partial ordering on the powerset
of any set X given by the subset relation. That is, we consider the
relation A ⊆ B for subsets A and B of X .

We can check this satisfies the three necessary properties to be a
partial order:

Reflexivity Every subset A of X (i.e., every element A ∈ P(X)) is a
subset of itself, so A ⊆ A.

Transitivity If A, B, C are subsets of X with A ⊆ B and B ⊆ C,
then A ⊆ C as every element a ∈ A is also an element of B,
and every element of B (which includes those elements of A
since A ⊆ B) is an element of C.

Antisymmetry If A and B are subsets of X where A ⊆ B and B ⊆
A, then A = B.

CHAPTER 5. RELATIONS 114

Notice that the partial order ⊆ is not a total order if X contains
at least two elements. In this case say the elements are x1 6= x2, then
the sets {x1} and {x2} are not comparable: neither is a subset of the
other.

5.4 Equivalence relations
Another special type of relation on a set is an “equivalence relation,”
which gives us a notion of two elements in a set being equivalent, and
sets of equivalent elements form “equivalence classes” which are subsets
of the set. It will turn out that equivalence relations are ubiquitous in
mathematics: many objects you are familiar with are in fact equivalence
classes. In fact, equivalence classes are necessary to even carefully define
what a real number is in a precise way.

An equivalence relation on a set X is a relation which is reflexive,
symmetric, and transitive. Recall this means that for every x ∈ X we
must have xRx (reflexivity); for every x and y in X we have that xRy if
and only if yRx (symmetry); and for all x, y, z ∈ X if xRy and yRz, then
xRz as well (transitivity).

5.4.1 Examples of equivalence relations

One example of an equivalence relation is the congruence relationship
between integers we defined earlier. Recall that for a fixed non-zero in-
teger m ∈ Z, we consider a relation denoted x ≡m y defined by the
condition that m|(x− y).

Exercise 5.7.
Check that congruence modulo m is an equivalence relation on Z.

We often use the symbol ∼ to denote an equivalence relation. That is,
we write x ∼ y if ∼ is an equivalence relation on some set X containing
x and y, and say that x is equivalent to y.

CHAPTER 5. RELATIONS 115

Example 5.3.
As another example of an equivalence relation on pairs of non-zero
integers, (a, b) ∈ (Z \ {0})2, we may consider two pairs of non-zero
integers, (a, b) and (c, d) to be equivalent if ad = bc. Let’s first check
that this is in fact an equivalence relation by verifying it is reflexive,
transitive, and symmetric.

For notation convenience, let us write (a, b) ∼ (c, d) if ad = bc.

Reflexivity Notice that for any (a, b) we have (a, b) ∼ (a, b) as ab =
ba.

Symmetry Suppose (a, b) ∼ (c, d), and so by assumption ad = bc.
We need to show (c, d) ∼ (a, b) as well, meaning we need to
verify cb = da. Of course, if ad = bc then cb = da since multi-
plication of integers is commutative.

Transitivity Suppose (a, b) ∼ (c, d) and (c, d) ∼ (e, f). We wish to
show (a, b) ∼ (e, f) meaning we need to verify that af = be.
By assumption we know ad = bc and cf = de. Now observe

ad = bc

=⇒ adef = bcef (multiplying both sides by ef)
=⇒ afde = becf (rearranging the factors)
=⇒ afde = bede (using de = cf)
=⇒ af = be (cancelling de from each side)

Example 5.4.
One example of an equivalence relation that is important in a branch
of mathematics called “algebraic geometry” is the following. We
take the set X to be the set of all points in the plane R2 except for
the origin: X = R2 \ {(0, 0)}. Now we declare two of these points,
say (x1, y1) and (x2, y2) to be equivalent there is some λ 6= 0 so that
x1 = λx2 and y1 = λy2. We can check that this is an equivalence
relation:

CHAPTER 5. RELATIONS 116

Reflexivity (x, y) ∼ (x, y) by taking λ = 1.

Symmetry If (x, y) ∼ (x′, y′), then there is some non-zero λ so that
x = λx′ and y = λy′. We can rewrite these equations as x′ = 1

λ
x

and y′ = 1
λ
y. This shows (x′, y′) is a multiple of (x, y) and so

(x′, y′) ∼ (x, y).

Transitivity Suppose (x, y) ∼ (u, v) and (u, v) ∼ (s, t). We must
show (x, y) ∼ (s, t). Notice that there are numbers λ and µ so
that x = λu, y = λv, and u = µs, v = µt. But then we easily see
x = λu becomes x = λµs and y = λµt.

5.4.2 Equivalence classes

If ∼ is an equivalence relation on X , then we can partition X into into
“equivalence classes.” An equivalence class for ∼ is a subset of X con-
sisting of elements which are all equivalent to one another, and contain-
ing all of the equivalent elements. For example, if ∼ is the equivalence
relation on Z given by x ∼ y if x and y have the same parity (equiva-
lently, x ≡2 y or 2|(x − y)), then there are two equivalence classes: the
even integers and the odd integers.

As another example, if we consider the equivalence relation ≡3 on
Z (so x ≡3 y if 3|(x − y)) there are three equivalence classes, indicated
below:

{...,−9,−6,−3, 0, 3, 6, 9, ...}
{...,−8,−5,−2, 1, 4, 7, 10, ...}
{...,−7,−4,−1, 2, 5, 8, 11, ...}

Let us momentarily refer to these subsets of Z as S0, S1, and S2 (mean-
ing the three sets described above which contain 0, 1, or 2, respectively).
Notice that these partition Z:

Z = S0 ∪ S1 ∪ S2.

CHAPTER 5. RELATIONS 117

Remark.
Because the sets S0, S1, and S2 together form a partition of Z, it’s
not simply that their union is Z, but each pair of sets is disjoint:
Si ∩ Sj = ∅ for any choice of i, j ∈ {0, 1, 2} with i 6= j. This is
sometimes indicated by replacing the symbol∪withtwhich means
disjoint union. That is, if we write A = B t C that means not only
is A the union of B and C, but it also means B and C are disjoint,
B ∩ C = ∅. Thus above we could write Z = S0 t S1 t S2.

In the case of the equivalence relation on R2 \ {(0, 0)} described in
Example 5.4, the equivalence classes are precisely lines in R2 which go
through the origin (but with the origin removed).

We often want to consider the set of all equivalence classes of some
equivalence relation ∼ on a set X . This set is denoted X/ ∼. As a simple
toy example, let us consider the set

X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

We will define an equivalence relation on X by declaring 1 ∼ 2, 2 ∼ 4,
3 ∼ 5, 3 ∼ 6, 4 ∼ 8, 7 ∼ 7, 9 ∼ 10. (Technically we haven’t completely
described the relation since we would also need to declare 1 ∼ 4, for
example, and 6 ∼ 3. However, we can extend the list above uniquely
to define an equivalence relation, and we are implicitly doing that.) The
equivalence classes would then be

{1, 2, 4, 8},
{3, 5, 6},
{7}, and
{9, 10}.

And so X/ ∼would be the set containing these equivalence classes,

X/ ∼= {{1, 2, 4, 8}, {3, 5, 6}, {7}, {9, 10}} .

This becomes very cumbersome to write, so we adopt a common notation
that makes it easier to describe the equivalence classes. Given any set
X with equivalence relation ∼ and any x ∈ X , we often refer to the
equivalence class containing x as [x]. So, for example, in the example
above we have [1] = {1, 2, 4, 8} and [3] = {3, 5, 6}. Notice that we can

CHAPTER 5. RELATIONS 118

pick any element of the equivalence class and it would describe the same
set. For instance, [2] = {1, 2, 4, 8}, [4] = {1, 2, 4, 8}, and [8] = {1, 2, 4, 8}
as well. Because these sets are all equal to each other, we are justified in
writing [1] = [2] = [4] = [8], as well as [3] = [5] = [6] in our example
above.

In the case of our equivalence relation≡3 on Z above, the set of equiv-
alence classes can be described as

Z/ ≡3= {[0], [1], [2]}.

Sometimes for certain commonly used equivalence relations, the no-
tation for equivalence classes will be a little bit different. For example,
when discussing congruence modulo m, it is common to see the equiva-
lence class of a number [x] to be written as x. So, for example, the equiv-
alence classes Z/ ≡3 are often denoted as 0, 1, and 2. This set of equiva-
lence classes, which we’ve so far denoted Z/ ≡3 is often denoted Z3. Of
course, we can consider congruence modulo other values. Here are a few
other collections of equivalence classes of Z under congruence modulo a
number:

Z2 = {0, 1}
Z3 = {0, 1, 2}
Z4 = {0, 1, 2, 3}
Z5 = {0, 1, 2, 3, 4}

Remark.
The equivalence classes of Z under congruence modulo m (i.e., ele-
ments of Zm) are often referred to as congruence classes.

The set of equivalence classes from the equivalence relation defined
in Example 5.4 is often denoted RP1 and called the real projective line.
The equivalence classes themselves, as we mentioned above, are lines
through the origin in R2 but with the origin removed. Given a point
(x, y), we often refer to the equivalence class containing that point (i.e.,
the line through (x, y) which passes through the origin, sans the origin
itself) as [x : y], and these are called the homogeneous coordinates of that

CHAPTER 5. RELATIONS 119

point in RP1. Notice that each such line determines a unique point on
the upper half of the unit circle, we can think of each equivalence class
as being a point on that upper half of the circle, and the ’ends’ of that
(corresponding to the points (1, 0) and (−1, 0) in the plane) are actually
in the same equivalence class, and so are identified. This shows that we
can think of RP1 as being a circle!

Remark.
This idea of identifying points that lie on the same line that goes
through the origin is fundamental in algebraic geometry. It turns
out that if we consider these kinds of equivalence classes, we can
do geometry on the set of all equivalence classes and many state-
ments in geometry are actually greatly simplified in this setting,
even though the setup seems very abstract the first time you en-
counter it.

6Binary Operators
Mathematics is the study of analogies between
analogies. All science is. Scientists always
want to show that things that don’t look alike
are really the same. That’s one of their
innermost Freudian motivations. In fact, that’s
what we mean by “understanding.”

GIAN-CARLO ROTA
Mathematics, Philosophy, and Artificial

Intelligence

In this chapter we discuss the notion of a “binary operation” on a set,
which is an abstract generalization of many familiar notions in mathe-
matics. As you study more mathematics, you may observe that it is ex-
tremely common to combine two objects of the same mathematical type
in some way to get another object of the same type. For example, we
may add two integers to obtain a new integer; we might multiply two
rational numbers to get another rational number; we could compose two
functions to get another function; or we might multiply two square ma-
trices to get another square matrix.

Here we will discuss the general idea of “combining two objects to
get a third,” where the type of objects we combine come from some fixed
set, be it the the set of integers, the rationals, or something else. After
giving the basic definitions and some exmaples, we will spend some time
discussing desirable properties that our binary operations may have, and
finally spend some time discussing one particularly important family of
examples of binary operators.

6.1 Definitions and examples
A binary operator on a set X is simply a map that takes two elements of
X as inputs, and produces an element of X as an output. That is, it is
simply a map from X ×X to X . In general this can be any arbitrary map
of the form X ×X → X without any rhyme or reason as to how the map
combines two elements to get a third.

You have already dealt with binary operators many times before in
your mathematics courses, but you may not have thought of them as

120

CHAPTER 6. BINARY OPERATORS 121

maps in this form. For example, consider the map Z × Z → Z given by
(x, y) 7→ x+y. This is of course just addition of integers, simply expressed
as a map. As another familiar example, consider the map Q × Q → Q
given by (x, y) 7→ xy; this is just the usual multiplication of rational num-
bers that you know and love, simply expressed as a map.

Before we see any more examples of binary operators, it’s worth point-
ing out that binary operators often have a special symbol associated with
them that is used in infix notation. That is, suppose we have a map
f : X × X → X , this gives us some binary operator. Instead of writ-
ing f(x, y), people will often use notation such as x f y as a short-hand
for f(x, y), using the name of the function inbetween its two arguments,
similar to how we use + inbetween two numbers such as 2 + 3.

In these notes we will use ? as our generic binary operator, unless
there is some other commonly used notation for that operation. (You
will often see other textbooks use the dot · or simply use juxtaposition to
indicate a binary operator is used.)

For example, we might define a map ? : Z×Z→ Z by x ? y = 3x− 2y.
Applying this to the integers x = 7 and y = 4, for example, we would
have 7 ? 4 = 3 · 7− 2 · 4 = 13, 6 ? 1 = 16, and −3 ? 5 = −19.

Exercise 6.1.
Does division form a binary operator on the set of rational numbers,
Q? If not, can we restrict to a subset of Q to get a binary operator?
Is there any subset of the integers, X ⊆ Z, so that division forms a
binary operator on X?

6.1.1 Familiar examples

We already mentioned a few familiar examples of binary operators on Z
and Q, but let’s mention a few more familiar examples you’re familiar
with.

Addition, Subtraction, and Multiplication on R The familiar arithmetic
operations of addition, subtraction, and multiplication on the real
numbers are also binary operators: they take two given real num-
bers x and y and produce a third real number, x+ y, x− y, or xy.

CHAPTER 6. BINARY OPERATORS 122

Division on R \ {0} Division on the reals does not define a binary oper-
ation on all of the reals since division by zero is undefined. How-
ever, if we restrict from the reals to the subset of non-zero reals,
R \ {0}, then we do have a binary operator: dividing one non-zero
real number by another non-zero real number will produce a non-
zero real number.

Exponentiation on the natural integers On the set of natural numbers
N we can define an operation by sending the pair of natural num-
bers (x, y) to the number xy. Since x and y these are both positive
integers, the result of xy will also be a positive integer.

Unions and intersections Suppose X is any fixed set, and consider its
powerset P(X), the set of all subsets of X . On the powerset there
are two familiar binary operations we have previously seen: unions
and intersections. Given any two subsets of X , A,B ⊆ X , their
union A∪B and their intersection A∩B are both subsets of X , and
so elements of P(X).

Exercise 6.2.
Is exponentiation, (x, y) 7→ xy, a binary operation on the set of all
integers, Z?

6.1.2 Composition of maps X → X

As another example of a binary operation that might feel a little less fa-
miliar, we could consider composition of functions. That is, suppose we
have any fixed set X and we let f and g both be functions with domain
and codomain X . That is, f : X → X and g : X → X are two maps. We
can construct a new map, also from X to X , by considering the composi-
tion g ◦ f .

CHAPTER 6. BINARY OPERATORS 123

Just to have a concrete example, suppose X is the set {1, 2, 3, 4} and
consider the maps f and g indicated below:

f(1) = 1 g(1) = 2

f(2) = 4 g(2) = 2

f(3) = 3 g(3) = 4

f(4) = 2 g(4) = 4

The composition g ◦f gives us a new map from the set {1, 2, 3, 4} to itself,
which we can easily determine:

(g ◦ f)(1) = g(f(1)) = g(1) = 2

(g ◦ f)(2) = g(f(2)) = g(4) = 4

(g ◦ f)(3) = g(f(3)) = g(3) = 4

(g ◦ f)(4) = g(f(4)) = g(2) = 2

6.1.3 Addition and multiplication of 2× 2 matrices

Two more extremely important example of binary operators are addition
and multiplication of matrices. In order to make the discussion as simple
as possible, we will only consider addition and multiplication of 2 × 2
matrices, but these ideas can be defined for matrices of other sizes as
well.

By a 2× 2 real matrix, we simply mean a collection of four real num-
bers listed as a table with two rows and two columns. For example,(

1 0
3 π

)
and

(
0 1
−1 0

)
are two such matrices. The collection of all such two by two matrices is
denoted M2(R):

M2(R) =
{(

a b
c d

) ∣∣ a, b, c, d ∈ R
}
.

We define the sum of two such matrices “component-wise,” simply mean-
ing that add the corresponding entries of the two matrices (e.g., the en-
tries in the first row, first column; or the entries in the second row, first
column; etc.) to produce a new matrix with these numbers in the corre-
sponding positions. That is, we define the sum of two matrices as(

a b
c d

)
+

(
e f
g h

)
=

(
a+ e b+ f
c+ g d+ h

)

CHAPTER 6. BINARY OPERATORS 124

This is a nice binary operation on M2(R): we take two 2×2 matrices, and
combine them together to get a third 2× 2 matrix.

The other operation we want to define gives us a way of multiply-
ing two matrices. The first time you see this operation it seems strange
and complicated, but there is an easy way to remember it that we will
describe shortly.

We define the product of two 2× 2 matrices to be the following:(
a b
c d

)
·
(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
For example,(

1 2
0 3

)
·
(

0 1
−1 2

)
=

(
1 · 0 + 2 · (−1) 1 · 1 + 2 · 2
0 · 0 + 3 · (−1) 0 · 1 + 3 · 2

)
=

(
−2 5
−3 6

)
.

One way that people often remember how to multiply matrices is by mul-
tiplying entries in from a row of the matrix on the left with entries from
a column of the matrix on the right, and adding the result together. For
example, when multiplying(

a b
c d

)
·
(
e f
g h

)
we consider the first row of the left-hand matrix (with entries a and b),
and the first column of the right-hand matrix (with entries e and g), mul-
tiply the corresponding elements of these rows and columns (giving ae
and bg), and then adding the result together (getting ae+ bg). This corre-
sponds to the entry in the first row, first column of the resulting product
matrix.

To get the entry in the first row and second column of the product, we
consider the first row of the left-hand matrix (entries a and b), the second
column of the right-hand matrix (entries f and h), multiply correspond-
ing entries (af and bh), add the results together (af + bh), and places this
in the first row, second column of the product. This pattern continues for
the other entries in the product: the entry in the i-th row and j-th col-
umn comes from multiplying and adding the entries of the i-th row of
the left-hand matrix and the j-th column of the right-hand matrix.

Though this operation seems weird and unwieldy when you first en-
counter, it is extremely important for more advanced mathematics courses,
both in pure mathematics and in applications.

CHAPTER 6. BINARY OPERATORS 125

Remark.
We won’t take the time to go through the details, but matrix mul-
tiplication is defined this way explicitly so that it corresponds to
composition of certain types of functions. If you take linear algebra,
you will learn there are special types of objects called “vectors,” and
collections of vectors form “vector spaces.” Matrices give a way
of representing maps with nice properties between vector spaces,
called “linear transformations,” and multiplication of matrices re-
ally corresponds to composition of these linear transformations.

6.2 Properties binary operators may have
A “binary operation” in itself is often too vague to be useful: there are just
too many possibilities for what a map X ×X → X could possibly be for
us to say much about binary operators in general. If, however, we restrict
ourselves to binary operators that have some desirable properties, it will
turn out we can actually start proving interesting theorems.

Remark.
We won’t take the time in this course to say much about these vari-
ous “special” binary operators with desirable properties, but this is
essentially the beginning of a branch of mathematics called abstract
algebra. As you will see if you take abstract algebra, we can actu-
ally prove quite a lot of interesting things if we assume the binary
operator has enough properties.

6.2.1 Associativity

A binary operator ? on a setX is said to be associative if for all x, y, z ∈ X
we have (x?y)?z = x? (y ?z). Intuitively, being associative means that if
we string binary operators together to perform the operation on several
elements two at a time, the way we grouop the elements together does
not change the result.

CHAPTER 6. BINARY OPERATORS 126

Most of the binary operators we have introduced will be associative,
though binary operators in general need not be. The usual arithmetic
operations of addition and multiplication on Z, Q, and R will all be as-
sociative, but subtraction is not associative. This is easy to verify with a
counterexample. Consider the case when x = 2, y = 3, and z = 4, then

(x− y)− z = (2− 3)− 4 = −1− 4 = −5

however
x− (y − z) = 2− (3− 4) = 2− (−1) = 3,

and so subtraction is not associative. Notice that since 2, 3, 4 ∈ Z and
Z ⊆ Q ⊆ R, this counterexample shows that subtraction is not associative
in Z, Q, or R.

One particularly important example of an associative binary opera-
tion is function composition, so we will state this as a theorem together
with a proof.

Theorem 6.1. Function composition is associative. In particular, if f , g, and h
are functions from a set X to itself, then (f ◦ g) ◦ h = f ◦ (g ◦ h).

Before giving the proof of Theorem 6.1, let’s walk through the idea.
First notice that we’re trying to show that two maps are the same. Re-
call that if two maps are equal, then they must map elements from the
domain to the codomain in the same way. That is, if ϕ and ψ were both
maps from a set A to a set B, then ϕ = ψ means that for every a ∈ A we
must have ϕ(a) = ψ(a). In our situation, this means we want to show
that ((f ◦ g) ◦ h)(x) equals (f ◦ (g ◦ h))(x) for every x ∈ X . We can do
this by simply “unwinding” the definition of f ◦ g (and g ◦ h, etc.) for
both compositions, and see if we get the same element. We’ll do this by
having an arbitrary element x in X , and verifying that after unwinding
the definition, both maps send x to the same place. Since our x was ar-
birarily chosen, this means this argument applies to all choices of x ∈ X ,
and so the maps must be equal.

Proof of Theorem 6.1. Let x ∈ X be arbitrary. Notice that applying (f◦g)◦h
to x yields

((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f(g(h(x)).

Similarly, applying f ◦ (g ◦ h) to gives gives

(f ◦ (g ◦ h))(x) = f((g ◦ h)(x)) = f(g(h(x)).

In both cases we have that the maps send x to f(g(h(x)). This holds for
all x since x ∈ X was arbitrary, and so the maps are equal.

CHAPTER 6. BINARY OPERATORS 127

We can also show that matrix multiplication is associative by directly
verifying that the products((

a b
c d

)(
e f
g h

))(
i j
k `

)
and

(
a b
c d

)((
e f
g h

)(
i j
k `

))
are equal. This is not difficult, but is tedious (and a good exercise in
matrix multplication), so we will leave it as an exercise.

Exercise 6.3.
Verify that multiplication of 2× 2 matrices is associative.

Remark.
If we’re willing to believe our earlier claim that matrix multipli-
cation really corresponds to composition of some special types of
maps, then we can sidestep the tedious computation of Exercise 6.3
by appealing to Theorem 6.1.

6.2.2 Commutativity

We say that a binary operator ? on a set X is commutative if for all x, y ∈
X we have that x ? y = y ? x. Multiplication of integers/rationals/reals
is commutative, but division (when defined) is not. For example, if we
divide the rational numbers 1 and 3, we could get either 3/1 = 3 or 1/3 de-
pending on the order in which we perform the division, and so division
is not commutative.

Function composition is also typically not commutative. For example,
if X is the set {1, 2, 3} and f and g are the maps from X to itself given
below,

f(1) = 1 g(1) = 2

f(2) = 1 g(2) = 3

f(3) = 2 g(3) = 1

CHAPTER 6. BINARY OPERATORS 128

then g ◦ f applied to 1 would give us g(f(1)) = g(2) = 3, whereas f ◦ g
applied to 1 gives f(g(1)) = f(2) = 1. Hence g ◦ f 6= f ◦ g. So we see that
function composition is not going to be commutative in general.

Exercise 6.4.
Are there any restrictions on the set X that would make function
composition of maps from X to itself commutative?

Matrix multiplication we can also verify is not commutative by giving
a counterexample. Notice(

1 2
0 1

)(
0 3
4 0

)
=

(
8 3
4 0

)
but if we reverse the order of the matrices we’re multiplying above, we
would have (

0 3
4 0

)(
1 2
0 1

)
=

(
0 4
3 8

)
.

Thus matrix multiplication is not commutative.

Exercise 6.5.
Consider the binary operator on the integers given by x ? y = x2 +
xy + y2. For example, 3 ? 5 = 32 + 3 · 5 + 52 = 49. Show that this
operation is commutative.

6.2.3 Identity

We had seen before that every set X has a special map from X to it-
self called the “identity map,” idX defined simply by x 7→ x. When we
mentioned the identity map before, we had stated that it had the spe-
cial property that for every map f : X → X , the compositions f ◦ idX
and idX ◦ f simply gave us back f . That is, composing a map with the
identity map doesn’t change the map. Something similar happens if we

CHAPTER 6. BINARY OPERATORS 129

consider the binary operation of addition on the integers (or rationals or
reals): adding zero to a number does not change the number. Similarly,
multiplying an integer (or rational or real number) by 1 does not change
anything. In each of these cases there’s some special element of our set
which does not affect other elements when we perform a binary opera-
tion. These are all examples of “identities” for the operation.

To be precise, if we have a binary operator ? on a set X , we say that
an element e ∈ X is an identity for ? if for every element x ∈ X we have
e ? x = x = x ? e.

Remark.
The letter e is often used for the identity element of a binary oper-
ator, and should not be confused with Euler’s constant. The use of
e seems to go back to an article by Heinrich Burkhardt from 1899,
where he referred to the identity element by the German word Ein-
heitselement and so used e to represent this special element.

We can verify with a little bit of computation that the follow matrix,
called the identity matrix, is an identity for matrix multiplication:(

1 0
0 1

)
.

By simply multiplying this special matrix on both the left and the right
of an arbitrary 2× 2 matrix, we will see that it does not affect the matrix:(

1 0
0 1

)(
a b
c d

)
=

(
1 · a+ 0 · c 1 · b+ 0 · d
0 · a+ 1 · c 0 · b+ 1 · d

)
=

(
a b
c d

)
(
a b
c d

)(
1 0
0 1

)
=

(
a · 1 + c · 0 b · 1 + d · 0
a · 0 + c · 1 b · 0 + 1 · 1

)
=

(
a b
c d

)
It’s worth noting that not every binary operator necessarily has an

identity. As a silly example, consider the binary operator of addition
defined on the natural numbers (positive integers). This is a perfectly
legitimate operation: if you add two natural numbers you get a natural
number. However, there is no natural number that could play the role
of the identity since any two non-zero positive integers added together
will yield an integer that is larger than either of the terms. Since we have
explicitly removed 0 from consideration, we don’t have an identity.

CHAPTER 6. BINARY OPERATORS 130

Exercise 6.6.
Does the operator ? on Z we defined earlier as x ? y = x2 + xy + y2

have an identity? That is, is there any integer e so that e?x = x = x?e
for all integers x?

As we’ve defined it, we’ve left open the possibility that there could be
multiple identity elements, but is this actually possible? It turns out that
if a binary operator has an identity, the identity must be unique: if e1 and
e2 were both identities, then e1 and e2 are actually the same element.

Exercise 6.7.
Show that if a binary operator has an identity, the identity is unique.

6.2.4 Inverses

Notice that for every non-zero rational number x = p
q

there exists a non-
zero rational number y = q

p
so that xy = 1: the product of the two num-

bers is the identity element. Similarly, for every integer x there is a corre-
sponding integer −x so that their sum x+ (−x) is 0, the identity element
for addition of integers.

In general, given a binary operator ? on a set X with an identity e, we
say that an element y ∈ X is an inverse of an element x ∈ X if x ? y =
e = y ? x. That is, if when we combine the two elements together with
the binary operation, we get back the identity element.

Notice that even when our binary operator has an identity, it could be
the case that some elements have inverses and some do not. For example,
multiplication is a binary operator on all the rational numbers, but it’s
precisely the non-zero elements that have a multiplicative inverse: There
is no rational number y so that 0 · y = 1, since multiplication by zero
always gives zero.

As another example, consider function composition. As we men-
tioned when we were defining maps, a function f : X → X need not
have an inverse. In fact, an inverse exists precisely when f is bijective; if
f is not bijective, f does not have an inverse.

CHAPTER 6. BINARY OPERATORS 131

As for matrices, some matrices have inverses, but some do not. For
example, we can check by direct computation that the matrices(

1 2
3 1

)
and

(
− 1/5 2/5
3/5 − 1/5

)
are inverses:(
1 2
3 1

)(
− 1/5 2/5
3/5 − 1/5

)
=

(
1 · (−1/5) + 2 · 3/5 1 · 2/5 + 2 · − 1/5
3 · − 1/5 + 1 · 3/5 3 · 2/5 + 1 · (−1/5)

)
=

(
1 0
0 1

)
(The computation with the order of the product reversed is easily checked.)

The matrix
(
1 2
0 0

)
does not have an inverse, however. To see this,

suppose for the sake of contradiction that there was some inverse matrix,(
a b
c d

)
. This would mean

(
1 2
0 0

)(
a b
c d

)
=

(
1 0
0 1

)
.

If we actually multiply out the matrices on the left, however, we are left
with (

a+ 2c a+ 2d
0 0

)
Notice we must have 0 in the lower right-hand corner, but this precludes
us from finding any choice of a, b, c, and d so that the product is the
identity. Hence this matrix can not have an inverse.

It can be shown that a 2 × 2 matrix
(
a b
c d

)
will have an inverse pre-

cisely when ad− bc 6= 0, and in this case the inverse matrix is(
d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc .

)
It is easy to check that this does indeed form an inverse of the original
matrix:(

a b
c d

)(
d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc .

)
=

(
ad

ad−bc +
−bc
ad−bc

−ab
ad−bc +

ab
ad−bc

cd
ad−bc +

−cd
ad−bc

−bc
ad−bc +

ad
ad−bc

)
=

(
1 0
0 1

)
Combining this with the result of the exercise below shows that this

is the inverse of our matrix.

CHAPTER 6. BINARY OPERATORS 132

Exercise 6.8.
Suppose ? is an associative binary operator with identity e on a set
X , and suppose that x ∈ X has inverse y: i.e., x ? y = e = y ? x.
Show that the inverse is unique. That is, show that if there existed a
y′ ∈ X so that x ? y′ = e = y′ ? x, then y = y′.

It is important to note that the associativeness above is required for us
to guarantee that inverses are unique. It is possible to construct examples
of non-associative binary operators where the inverse is not unique. For
instance, if our set X is {a, b, c, e} and we define an operator ? by

a ? a = a a ? b = e a ? c = e a ? e = a

b ? a = e b ? b = b b ? c = b b ? e = b

c ? a = e c ? b = c c ? c = b c ? e = c

e ? a = a e ? b = b e ? c = c e ? e = e

then this will be a binary operator where e is the identity, and both b and
c are inverses of a. Notice this operator will not be associative, though,
as

(a ? b) ? c = e ? c = c yet a ? (b ? c) = a ? b = e.

In the special case of an associative operator, the exercise above shows
us that inverses are unique, and so often adopt the notation that x−1 rep-
resents the inverse of x, if it exists.

6.2.5 Groups

It is very, very common for binary operators to be associative, have an an
identity, and for every element of the set to have an inverse. This situa-
tion is so common that we give sets with such binary operators a special
name: we call them a group. That is, a group is a set X together with
a binary operator ? that is associative, has an identity, and where every
element has an inverse. We’ve actually already seen a few examples of
groups: the integers together with addition form a group; the non-zero
rationals with multiplication form a group; the set of all bijective maps
from a set X to itself form a group. The collection of all matrices does not
form a group since not every element has an inverse. We’ve seen above,
though, that a 2×2 real matrix will have an inverse provided ad− bc 6= 0.

CHAPTER 6. BINARY OPERATORS 133

If we restrict ourselves to the set of matrices where this condition is sat-
isfied, then we will have a group which is denoted GL2(R):

GL2(R) =
{(

a b
c d

) ∣∣ a, b, c, d ∈ R and ad− bc 6= 0

}
.

We won’t say anything more about groups for now, but if you were to
take abstract algebra, learning about groups would be the starting point
of that class.

6.3 Arithmetic of congruence classes
We had previously defined an equivalence relation ≡m on the set of in-
tegers Z by declaring x ∼ y if m|(x − y). The collection of equivalence
classes under this equivalence relation is often denoted Zm. Recall that
given an x ∈ Z, we use the notation [x] to represent its equivalence class,
the set of all integers which are equivalent to [x].

For example, if m = 5, then the set of equivalence classes Z5 is the
following

Z5 = {[0], [1], [2], [3], [4]}

where

[0] = {...,−15,−10,−5, 0, 5, 10, 15, ...},
[1] = {...,−14,−9,−4, 1, 6, 11, 16, ...},
[2] = {...,−13,−8,−3, 2, 7, 12, 17, ...},
[3] = {...,−12,−7,−2, 3, 8, 13, 18, ...}, and
[4] = {...,−11,−6,−1, 4, 9, 14, 19, ...}.

Notice that when we write [0] or [2] for an equivalence class, we’re mak-
ing a choice of which element in the class to use to represent the class. If
we replace that element with any equivalence element, we still have the
same equivalence class, and so we could reasonably refer to Z5 as

Z5 = {[5], [−4], [7], [13], [−11]}

since [0] = [5], [1] = [−4], [2] = [7], [3] = [13], and [−11] = [4]. How-
ever, usually when people discuss these equivalence classes (also called
congruence classes), they will use the smallest non-negative elements of
the equivalence lass as the representative.

CHAPTER 6. BINARY OPERATORS 134

6.3.1 Defining addition and multiplication

We can define binary operators of addition and multiplication on Zm by
simply adding or multiplying the representatives, and then taking the
equivalence class of the resulting sum or product. For example, in Z5

we could compute [3] + [4] by adding 3 + 4 to get 7, and then taking the
equivalence class [7] as the result. Since [7] = [2], we might reasonably
write [3] + [4] = [2]. Similarly, the product [2] · [3] would be given by
the equivalence class represented by 2 · 3 = 6. Since [6] = [1], we have
[2] · [3] = [1].

As another example, consider addition and multiplication in Z12. Here
[8] + [6], for example, would give us [2] since 8 + 6 = 14 and 12|(14 − 2).
Notice also that something a bit odd happens with multiplication: it is
possible to multiply two non-zero congruence classes together and get
zero, something which does not happen with integers, rationals, or reals.
For instance, [8] · [3] = [8 · 3] = [24] = [0].

For small values of m, we can represent all the possibilities of adding
and multiplying congruences in Zm by creating a Cayley table. These
are m×m tables (one for addition, and one for multplication) where we
have a row and a column per congruence class, and then fill in the table
with the values of [r][c] where [r] corresponds to the congruence class for
a row, and [c] is the congruence class for a column. For example, in Z6

the table for addition is

+ [0] [1] [2] [3] [4] [5]
[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]

Whereas the table for multiplication in Z6 is

+ [0] [1] [2] [3] [4] [5]
[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]

CHAPTER 6. BINARY OPERATORS 135

Exercise 6.9.
Construct the Cayley tables for multiplication and addition in Z7

and in Z8.

6.3.2 Addition and multiplication are well-defined

Before we go too far in our study of arithmetic with congruence classes
(often also referred to as modular arithmetic), we should point out there
is one conceivable problem with the binary operators we defined above:
are they actually well-defined? That is, if we chose different representa-
tives of our equivalence classes, would we still get the same result? For
instance, [3] = [13] and [4] = [−11], but is it true that [3] + [4] will be the
same as [13] + [−11]? Here it’s easy to see these will be equal since we
computed [3] + [4] = [2] and since 13 + (−11) = 2, but will this always
happen? If our operator is to be “well-defined,” we need to know that
we will always compute quantities in the same, consistent way, regard-
less of the representatives of the equivalence classes that we choose to
work with.

The following theorem tells us that these operations we want to de-
fine will actually be well-defined: they result of multiplying or adding
congruence classes will be independent of the representatives we choose
to work with.

Theorem 6.2. Suppose x ≡ x′ (mod m) and y ≡ y′ (mod m). (That is,
[x] = [x′] and [y] = [y′] in Zm.) Then x+ y ≡ x′ + y′ (mod m) and xy ≡ x′y′

(mod m). (Or, in terms of our congruence classes, [x] + [y] = [x′] + [y′] and
[x][y] = [x′][y′].)

Proof. Since x ≡ x′ (mod m) and y ≡ y′ (mod m), there are integers a and
b so that x− x′ = am and y − y′ = bm. Thus x′ = am+ x and y′ = bm+ y.
Now consider x′ + y′. We may write this as

x′ + y′ = am+ x+ bm+ y = (a+ b)m+ x+ y

or
(x′ + y′)− (x+ y) = (a+ b)m

so m| ((x′ + y′)− (x+ y)), and x′ + y′ ≡ x+ y (mod m).

CHAPTER 6. BINARY OPERATORS 136

Similarly,

x′y′ = (am+x)(bm+y) = abm2+amy+bmx+xy = (abm+ax+by)m+xy

and so x′y′ ≡ xy (mod m).

Theorem 6.2 is exactly what we need to justify that the addition and
multiplication of congruence classes defined above is independent of our
choices of representatives of the classes involved in doing the computa-
tion:

Corollary 6.3 (Corollary of Theorem 6.2). If [x] = [x′] and [y] = [y′] in Zm,
then [x] + [y] = [x′] + [y′] and [x][y] = [x′][y′].

Proof. To show that [x] + [y] equals [x′] + [y′], notice that

[x] + [y] = [x+ y] and [x′] + [y′] = [x′ + y′].

Theorem 6.2 tells us that x+y ≡ x′+y′ (mod m), and so [x+y] = [x′+y′].
The proof for multiplication is similar.

Exercise 6.10.
Show that for each positive integerm, Zm forms a group under addi-
tion. That is, show that addition in Zm is associative, has an identity,
and each element has an additive inverse. Show that addition in Zm
is commutative.

Exercise 6.11.
Show that multiplication in Zm is associative, commutative, and
there exists an identity element. Does Zm necessarily form a group
under multiplication? What if we consider Zm \ {0}? Are there any
restrictions on m so that Zm \ {0} forms a group under multiplica-
tion?

CHAPTER 6. BINARY OPERATORS 137

6.3.3 Distribution

Now that we have two binary operations on Zm, we may be interested in
how they interact with one another. That is, can we say anything about
expressions in Zm which involve both multiplication and addition? Do
nice properties such as distribution hold? To be more preicse, can we
distribute multiplication across addition, just as we do with normal inte-
gers? I.e., is it true that [x]([y]+ [z]) = [x][y]+ [x][z] for all [x], [y], [z] ∈ Zm?

You shouldn’t be too surprised that we can distribute, but let’s give a
quick proof.

Theorem 6.4. Multiplication distributes across addition in Zm. That is, for all
[x], [y], and [z] in Zm we have

[x]([y] + [z]) = [x][y] + [x][z], and
([x] + [y])[z] = [x][z] + [y][z].

Proof. We simply note that since multiplication of regular integers dis-
tributes, we can apply the distributive property to representatives of our
congruence classes, and then take the corresponding congruence class.
That is,

[x]([y]+[z]) = [x][y+z] = [x(y+z)] = [xy+xz] = [xy]+[xz] = [x][y]+[x][z].

The other distributive rule is proved similarly.

7
Odds and Ends
7.1 The Pigeonhole Principle
The “pigeonhole principle” is a simple idea that we can sometimes use to
prove some surprisingly counterintuitive facts. The idea behind the pi-
geonhole principle is the following: if n pigeons are distributed amongst
m < n nests, then at least one nest must have two pigeons. For example,
if there are four nests and five pigeons, then at least one nest has two pi-
geons. It could be that one one nest has two pigeons and the others have
exactly one, or it could be that one nest has all five pigeons and the other
nests are empty, or some other configuration of pigeons in their nests, but
at least one nest must have at least two pigeons.

A more mathematical-sounding version of the pigeonhole principle
would be to say that there are no injective maps from a set X of cardinal-
ity n to a set Y of cardinality m < n.

As simple as the pigeonhole principle sounds, it can be surprisingly
useful as the next few examples show.

Example 7.1.
Suppose n ≥ 2 people are at a party. At least two people at the party
must know the same number of people attending the party.

Before justifying why this is true, let’s be sure we understand
what the claim is. We have a collection of people at a party, and per-
haps some people at the party know several attendees, some people
know very few, maybe someone knows everyone, maybe someone
knows no one. For each person attending the party we assign a
number, which is how many people at the party they know. If you
know six people at the party, your number is six; if you know no
one at the party, your number is zero; if you know twelve people
at the party, your number is twelve. We claim there must be two
people with the same number. Or, put another way, it’s impossi-
ble that each person at the party knows a different number of party
attendees.

To justify our claim using the pigeonhole principle, notice that
the number we assign to each person is between 0 and n − 1. Yet

138

CHAPTER 7. ODDS AND ENDS 139

there are n numbers to assign, so at least one number must be as-
signed to at least two people.

Remark.
A more mathematical sounding version of the example above is to
say that every graph has at least two vertices of the same degree.
We won’t take the time to define what those terms are, but you will
see them again when you take a course in discrete structures and
learn about graph theory.

Example 7.2.
Any subset of eleven numbers from {1, 2, 3, ..., 19} will contain two
numbers whose sum is 20. That is, if you choose eleven numbers
from 1 through 19, you will necessarily have two that add to twenty.

To justify this, we imagine there being ten “boxes” labelled (1, 19),
(2, 18), (3, 17), (4, 16), (5, 15), (6, 14), (7, 13), (8, 12), (9, 11), and (10).
Now each element of our chosen set of eleven elements in {1, ...19}
is placed in a corresponding box. Since there are eleven elements
and ten boxes, at least one box must contain two elements, which
means we will have two numbers that add to twenty.

Example 7.3.
If ten points are randomly placed in a 3× 3 square, there are at least
two points that are within distance

√
2 from one another.

Proof. Imagine the 3×3 square being made of nine 1×1 squares, and our
random points are thus placed in one of these nine “subsquares.” Since

CHAPTER 7. ODDS AND ENDS 140

we have ten points and only nine squares though, at least one square
must contain at least two points. But the furthest apart two points in
a 1 × 1 square can be is

√
2, corresponding to opposite corners of the

square.

Index
2× 2 real matrix, 123
n-tuple, 79
(Cartesian) product, 76
1-1, 94

antisymmetric, 109
associative, 125
associative property of composi-

tion, 101

base case, 30
bijective, 95
binary operator, 120
bound variable, 51

cardinality, 63
Cayley table, 134
codomain, 90
Collatz conjecture, 17
commutative, 127
composite number, 41
composition, 99
congruence classes, 118, 133
congruence modulo m, 108
congruent modulo 2, 108
conjecture, 16
conjunction, 52
contrapositive, 58
converse, 57
corollary, 16
counterexample, 11

de Morgan’s laws, 84
differentiable, 12
differentiable at a, 12
disjoint, 75
disjoint union, 117
disjunction, 52
divides, 21
domain, 90

equal, 68
equivalence class, 116
equivalence relation, 114
equivalent, 114
even number, 9
existential quantifier, 50

Fibonacci numbers, 38
free variable, 51
function, 89
fundamental theorem of arithmetic,

42

graph, 92, 105
group, 132

homogeneous coordinates, 118

identity, 129
identity map, 103
identity matrix, 129
if and only if, 58
iff, 58
image, 98
Implication, 55
index set, 87
inductive hypothesis, 30
inductive step, 28, 30
injective, 94
integers, 63
intersection, 72
inverse, 97, 130
inverse map, 102
irrational, 46
irrational number, 71

lemma, 15
linear order, 111
logical and, 52

map, 89

141

INDEX 142

modular arithmetic, 135
multiple, 21

natural numbers, 62
necessary condition, 56
negative, 53

one-to-one, 94
onto, 93
open sentences, 50

parity, 107
partial order, 112
power set, 87
predicates, 50
preimage, 98
prime factorization, 42
prime number, 41
proper subset, 67
proposition, 15
propositions, 49

quantifier, 50
quicksort algorithm, 25

range, 90
rational, 46
rational numbers, 65
real number, 70
real projective line, 118
recurrence relation, 38
reflexive, 110
relation, 105
relation on X , 106

set, 60
set builder notation, 64
strong induction, 38
subset, 66
sufficient condition, 56
superset, 66
surjective, 93
symmetric, 109

the empty set, 69
theorem, 15
total order, 111
triangular numbers, 35
truth table, 52

union, 71
universal quantifier, 50
universe, 80

variables, 50
Venn diagrams, 66

weak induction, 29

	Contents
	Introduction to the Course
	Course format
	Assignments
	Homework
	Pop quizzes
	Proof portfolio
	Midterm exams
	Final exam
	Make-up assignments
	Extra credit

	Expectations
	Online notes
	LaTeX
	How to study in this course
	Some personal information

	Motivation for Logic and Proof
	What are proofs?
	What is logic?
	Why should we learn about logic and proofs?
	Applied math and pure math

	Basic Proof Techniques
	Direct proofs and counterexamples
	First examples of direct proofs
	Counterexamples
	More direct proof examples and exercises
	Theorems, conjectures, lemmas, corollaries, etc.
	Some practice in deductive reasoning
	Divisibility

	Proofs by induction
	Warmup: The quicksort algorithm
	Mathematical induction in proofs
	Weak induction
	Strong Induction
	Prime numbers and the fundamental theorem of arithmetic

	Proofs by contradiction
	Basic examples
	Irrational numbers
	The infinitude of primes

	Symbolic logic
	Propositions and Predicates
	Propositions
	Variables and predicates/open sentences
	The universal and existential quantifiers

	Logical operations and truth tables
	Conjunction (and)
	Disjunction (or)
	Negation
	Negating quantifiers
	Implication

	Converses, Equivalences, and Contrapositives
	Converses
	Equivalences
	Contrapositives

	Sets
	Basic ideas and definitions
	Set-builder notation
	Subsets and supersets
	Equality
	The empty set
	Real numbers

	Operations on sets
	Unions
	Intersections
	Products
	Complements
	Difference
	De Morgan's laws

	Collections of sets
	Power set
	Indexing sets
	Unions and intersections with indices

	Maps between sets
	Definitions and examples
	Representing maps
	Special types of maps
	Images and preimages

	Compositions of Maps
	Definitions and basic examples
	Composing three or more functions; associativity
	Inverse maps
	Identity maps

	Relations
	Basic definitions and examples
	Special properties of relations
	Symmetry
	Antisymmetry
	Reflexivity
	Transitivity

	Orderings
	Total orders
	Partial orders

	Equivalence relations
	Examples of equivalence relations
	Equivalence classes

	Binary Operators
	Definitions and examples
	Familiar examples
	Composition of maps X X
	Addition and multiplication of 2 2 matrices

	Properties binary operators may have
	Associativity
	Commutativity
	Identity
	Inverses
	Groups

	Arithmetic of congruence classes
	Defining addition and multiplication
	Addition and multiplication are well-defined
	Distribution

	Odds and Ends
	The Pigeonhole Principle

	Index

