
Introduction to Numerical
Analysis

Charles C. Johnson

April 27, 2019

Contents

Contents ii

Introduction to the Course v
Overview . v

I Introduction to Programming in Matlab 1

1 Introduction to Matlab 2
1.1 Getting started with Matlab 2
1.2 Using Matlab as a calculator 2
1.3 Variables . 10
1.4 Data types . 14
1.5 Formatting strings . 24

2 Scripts and Functions 29
2.1 Scripts . 29
2.2 Functions . 32

3 Conditionals 41
3.1 Motivating example . 41
3.2 Logical values, comparisons, and/or 44
3.3 elseif . 50
3.4 if without else, and errors 54

4 Iteration 57
4.1 while loops and not-equals 57
4.2 for loops . 66

5 Recursion 73
5.1 The idea of recursion and induction 73
5.2 The base case . 74

ii

CONTENTS iii

5.3 Recursive functions in Matlab 75
5.4 Palindromic vectors . 76
5.5 Quicksort . 79

II Basics of Numerical Analysis 84

6 Computer Arithmetic 85
6.1 The idea in base ten . 85
6.2 IEEE double-precision floating-point numbers 89
6.3 The IEEE format . 94
6.4 Accuracy of floating-point representations 97

7 Quantifying error 103
7.1 Absolute and relative error 103
7.2 Significant digits . 105
7.3 Accumulation of error . 108
7.4 Considerations for programming 111

8 Rootfinding 117
8.1 The bisection algorithm . 118
8.2 Newton’s method . 122

III Review of linear algebra and calculus 126

9 Linear algebra 127
9.1 Systems of linear equations 127
9.2 Matrices . 148
9.3 Vectors . 169
9.4 The Matrix Equation A~x = ~b 185
9.5 Existence of Solutions . 189
9.6 Properties of Ax . 192
9.7 Matrix algebra . 195
9.8 Inverses . 216

10 Linear Algebra in Matlab 233
10.1 Vectors and matrices . 233
10.2 Arithmetic of matrices and vectors 238
10.3 Submatrices . 245
10.4 Systems, elementary row operations, and inverses 247

CONTENTS iv

11 Taylor Polynomials 257
11.1 Deriving the formula for a Taylor polynomial 257
11.2 The error in Taylor polynomial approximation 265

IV Numerical Algorithms 275

12 Root finding revisited, and fixed point iteration 276
12.1 Newton’s method, part 2 . 276
12.2 Fixed point iteration . 283

13 Interpolation 295
13.1 Polynomial interpolation . 295
13.2 Lagrange basis polynomials 297
13.3 Divided differences . 300
13.4 Error in polynomial interpolation 303
13.5 Splines . 307

14 Least Squares Approximation 312
14.1 Motivation . 312
14.2 Minimizing the average square of the error with calculus . . 313
14.3 Minimizing using inner products 315

15 Numerical Integration 325
15.1 Motivation . 325
15.2 Riemann sums and Riemann integration 326
15.3 Trapezoidal Riemann sums 328
15.4 Quadratic approximations / Simpson’s rule 329
15.5 Error in numerical approximations 334

Appendix A Installing and running Matlab 340

Introduction to the Course
On two occasions I have been asked, “Pray,
Mr. Babbage, if you put into the machine
wrong figures, will the right answers come
out?” I am not able rightly to apprehend the
kind of confusion of ideas that could provoke
such a question.

Charles Babbage

Overview

Welcome to Math M-371, Introduction to Numerical Analysis, at Indiana
University. The goal of this course is to give an in-depth introduction to
the field of numerical analysis, which is essentially the study of the nitty-
gritty details of performing mathematics on a computer. As we will discuss,
“most” numbers can not be represented exactly in a computer. This means
whenever we perform a calculation with such numbers, we are forced to use
an approximation of the numbers we want and not the true values. In other
words, “most” computations we perform have some inherent error. One of
our primary goals will be to understand this error very precisely and develop
ways to minimize the error. We will also discuss numerical algorithms for
estimating mathematical quantities which we can not directly compute; for
example, how can we program a computer to find the solution to some
complicated equation for us?

This material, by its very nature, is a mix of computer science and
mathematics. However, there is no prerequisite for familiarity with com-
puter science or computer programming for this course, so we will introduce
the necessary portions computer programming as we go. Any time we write
a computer program we have to make a choice of what programming lan-
guage we want to use – how we will tell the computer what to do. In this
course we will use Matlab, which is available for free to all students at IU.
This will require you to download and install Matlab on your computer,
and instructions for doing this are posted to Canvas.

We will spend the first few weeks of the semester learning how to write
code in general, and how to use Matlab in particular. After learning a
bit about Matlab, we will then discussing how numbers are represented

v

INTRODUCTION TO THE COURSE vi

in a computer, and begin developing algorithms for various mathematical
computations. This will require that we make an excursion through some
basic linear algebra, since many of the algorithms we develop will require
us to solve various systems of linear equations. Computing interpolating
splines, for example, requires that we solve a system of equations which
comes from requiring a function to have certain known values at prescribed
points and requiring the function’s derivatives to be certain values; the
solution to the system of equation will tell us coefficients of polynomials
that appear in the spline.

All of the material discussed in class appears in the official textbook,
Elementary Numerical Analysis, 3rd edition, by Atkinson and Han. How-
ever, we will discuss the material in a different order than that book and
may sometimes dive into the details more thoroughly than the book. In
particular we will try to derive any equations or formulas we use in the
course, and when appropriate we will prove any necessary theorems (or at
least sketch the proof).

Part I

Introduction to Programming
in Matlab

1

1Introduction to Matlab
Computer science inverts the normal. In
normal science, you’re given a world, and
your job is to find out the rules. In
computer science, you give the computer the
rules, and it creates the world.

Alan Kay

Numerical analysis is essentially about the nitty gritty details of do-
ing mathematics on a computer, ranging from technical issues about how
numbers are represented in a computer, how error accumulates as compu-
tations are performed, and developing algorithms for performing various
mathematical calculations.

To actually do any of this, though, we need to know how to write code.
This chapter provides an introduction to programming using Matlab, and
assumes no previous knowledge of computer programming.

1.1 Getting started with Matlab

Throughout this chapter we assume that you have access to Matlab. If you
have not yet installed Matlab, see the Appendix A or the notes instructions
posted to Canvas.

When you first start Matlab, you will see a window that is broken into
three subwindows. The window in the center, called the Command Window,
is where you can enter commands that you wish for Matlab to perform.
This window has a prompt that looks like >>, and when you start typing in
Matlab your text will appear next to this prompt. For our purposes right
now, we will mostly just talk about the Command Window and will wait
to introduce the other windows later.

1.2 Using Matlab as a calculator

Basic Calculations and Formatting

Matlab’s most basic functionality is evaluating arithmetic expressions: ba-
sically just a calculator. You can enter these expressions into Matlab like
you would basically guess: using + for addition, - for subtraction, * for

2

CHAPTER 1. INTRODUCTION TO MATLAB 3

multiplication, and / for division, entering an arithmetic expression and
pressing Enter results in Matlab doing the calculation and presenting you
with the result of that output immediately below. For example, to add
two plus two, we simply enter 2 + 2 at the >> prompt inside the command
window and hit enter. After entering this, you should see the following in
your command window:

>> 2 + 2

ans =

4

Notice that beneath the command you entered Matlab prints ans =

and then the result of the calculation below that. We’ll say more about
ans later, but for right now you can think of that as simply saying that the
answer of the previous calculation is four.

Of course, Matlab evaluates expressions according to the usual order
of operations where different types of operations have different precedence
with expressions in parentheses having highest precedence, followed by ex-
pressions that occur in exponents, followed by multiplication and division,
then lastly addition and subtraction.

>> 2 + 3 * 5

ans =

17

>> (2 + 3) * 5

ans =

25

CHAPTER 1. INTRODUCTION TO MATLAB 4

It’s worth pointing out that you must enter an asterisk, * (Shift-8 on
a standard US keyboard), to perform multiplication: Matlab will complain
if you try to simply put two expressions next to one another without an
asterisk or some other operator:

>> 2(3 + 5)

2(3 + 5)

Error: Unbalanced or unexpected parenthesis or bracket.

To exponentiate, we use the caret symbol, ^ which is Shift-6 on standard
US keyboards.

>> 2^(18/6)

ans =

8

Exercise 1.1.
Use Matlab to evaluate the following expressions:

(a) 123

42

(b) 2 + 3 ∗ 5/7

(c) 2 + 3/5 ∗ 7

This all works like you would probably expect, except for a couple of key
points. The first thing to notice is that, by default, Matlab only displays

CHAPTER 1. INTRODUCTION TO MATLAB 5

the first four digits of a calculation. For example, the fraction 22
7

, when
represented as a decimal requires infinitely-many decimal places:

22

7
= 3.142857142857142857142857142857...

the 142857 above repeats forever. However, if we ask Matlab to compute
22/7 it will tell us the following:

>> 22/7

ans =

3.1429

Not only did we only see four digits, but the last digit was rounded up since
the fifth (unseen) digit was a five.

If we want to see more digits, we need to enter the command format

long which tells Matlab to give us fifteen decimal places instead.

>> format long

>> 22/7

ans =

3.142857142857143

If we want or need to go back to the default four decimal places, we can
evaluate the command format short.

>> 12/97

ans =

0.1237

CHAPTER 1. INTRODUCTION TO MATLAB 6

>> format long

>> 12/97

ans =

0.123711340206186

>> format short

>> 12/97

ans =

0.1237

Another “oddity,” but one that is not exclusive to Matlab, is the fol-
lowing: suppose you asked Matlab to evaluate 2.24 · 10 − 22.4. Of course,
2.24 · 10 = 22.4, so this expression should be zero, but we ask Matlab to
evaluate this we have

>> 2.24*10 - 22.4

ans =

3.5527e-15

Let’s first notice that this number is not zero. Let’s also note that e-15
is Matlab’s notation for telling us to multiply by 10−15. I.e., 3.5527e-15
really means

3.5527× 10−15 = 0.0000000000000035527

So, for this calculation that should be zero, Matlab is telling us the result is
this small (but non-zero) number. This isn’t really a problem with Matlab
per se, but a problem with the way that numbers are represented in a
computer. We will have a lot more about this to say in the future, but it’s
good to at least go ahead and be aware of this.

CHAPTER 1. INTRODUCTION TO MATLAB 7

Built-in Functions

Many standard mathematical functions are available in Matlab, such as
roots, logarithms, and the trig functions. To compute square roots we use
the function sqrt:

>> sqrt(1024)

ans =

32

To compute a higher root, like a cubed root, we can either raise to the
1
3

power,

>> 27^(1/3)

ans =

3

Or we could use the nthroot function to compute the n-th root of a number,
n
√
x. To calculate the n-th root of x with nthroot, we first say what number

we want to calculate the root of, and which root we want. That is, to
compute n

√
x we would use something like nthroot(x, n). For the seventh

root of 16384, for example, we would enter the following:

>> nthroot(16384, 7)

ans =

4

CHAPTER 1. INTRODUCTION TO MATLAB 8

The usual trig functions are available in Matlab under the names you
would expect: sin for sine, cos for cosine, tan for tangent, etc. However,
if you start entering values in degrees into these commands you will quickly
see that they do not give you back what you were hoping:

>> sin(90)

ans =

0.8940

Of course, the reason for this is that these commands assume the input
they are given is in terms of radians. In order to use radians it would be
helpful if we could enter multiples of π, but this is easy to do in Matlab:
we simply use pi for π.

>> sin(pi/4)

ans =

0.7071

>> cos(3*pi)

ans =

-1

We can also take logarithms with log, although this is actually the
logarithm base e, not base 10:

>> log(10)

ans =

CHAPTER 1. INTRODUCTION TO MATLAB 9

2.3026

If you want to calculate the logarithm with another base, you can rewrite
it in terms of natural logs:

logb(x) =
ln(x)

ln(b)

So, for example, to calculate log2(32) we could compute

>> log(32)/log(2)

ans =

5

Since log is the logarithm base e, it might be convenient to know how
to enter e in Matlab. Unfortunately, e is not the mathematical constant
e in Matlab. However, Matlab does provide us with a function exp for
computing powers of e. That is, exp(x) is ex:

>> log(exp(17))

ans =

17

Thus e in Matlab is given by exp(1) since e = e1.

Very long expressions, whitespace

If you want to enter a very, very long expression, it can be helpful to break
it up over multiple lines: it’s usually easier to read something broken up
into smaller chunks than it is enter one huge command. In order to do this

CHAPTER 1. INTRODUCTION TO MATLAB 10

in Matlab, we must end a line with an ellipsis, ..., and hit Enter, then
continue entering the command on the next line.

>> 2 + 3 + 5 + 7 + ...

11 + 13 + 17 + 19

ans =

77

Matlab also ignores whitespace (e.g., spaces and tabs). Thus you can
insert extra space between characters in your command if you’d like, and
this does not affect the calculation.

>> 2 + 3 + 5 + ...

4 + 9 + 25 + ...

8 + 27 + 125 + ...

16 + 81 + 625

ans =

930

1.3 Variables

Storing and using the results of previous calculations

It is often helpful to save the values of previous calculations for future use
so that you don’t have to re-compute them later. We can easily do this in
Matlab by assigning those values to a variable. To create a variable and
assign it a value, we simply type the name we want to give the variable,
followed by an equals sign, followed by the value (or a calculation resulting
in some value we want to hold on to).

CHAPTER 1. INTRODUCTION TO MATLAB 11

favoritePrime = log(exp(17 * (2 + 3)) * ...

exp(1 + 1 + 2 + 3))/log(exp(46))

favoritePrime =

2

This creates a variable called favoritePrime and sets to the value of
whatever expression is on the right, in this case that is 2.

Notice that after executing the above command, there is now an entry
in the Workspace window to the right of the Command Window for the
variable we have created. In general the Workspace shows you the names
and values of all currently assigned variables. Notice that ans is in here:
the ans we have been seeing is actually the name of a variable. Every time
you evaluate an expression in Matlab, Matlab assigns the result of that
expression to the variable ans – unless you’re already assigning that value
to some other variable.

>> 5 + 2

ans =

7

>> ans * 3

ans =

21

>> nextPrime = sqrt(9)

nextPrime =

3

>> ans + 2

CHAPTER 1. INTRODUCTION TO MATLAB 12

ans =

23

Notice that when we create a variable and assign it a name, Matlab
prints out the variable we have created and its value. This can be a bit
redundant and annoying, but we can tell Matlab to not print anything out
after assigning a variable (or performing any other command) by ending
the command with a semicolon.

>> x = 4;

>> y = 7;

If you later want to display the value of a variable later, you can use the
disp function.

>> disp(x)

4

It is often helpful when creating variables to use names that describe
whatever the value in the variable is supposed to represent. Using vague,
generic names like x and y is usually a good way to forget what those
variables were supposed to represent.

>> secondsPerMinute = 60;

>> minutesPerHour = 60;

>> hoursPerDay = 24;

>> daysPerYear = 365;

>> secondsPerYear = secondsPerMinute * ...

minutesPerHour * ...

hoursPerDay * ...

daysPerYear

CHAPTER 1. INTRODUCTION TO MATLAB 13

secondsPerYear =

31536000

When you name a variable, there are a few rules you have to follow:
variable names can not be any arbitrary thing, but instead have to satsify
the following conditions:

1. Contain only letters, numbers, and the underscore ().

2. Must begin with either a letter or an underscore.

If you would like to give a variable a multiword name, you can cap-
italize the letter of each word to make the words easier to read (e.g.,
minutesPerHour or favoritePrime) above, or use the underscore instead
of a space.

>> age_of_IU = 2019 - 1820

age_of_IU =

199

It is sometimes desirable to “get rid” of variables; to have Matlab pre-
tend you had never assigned anything to a variable. You can delete a
variable by using the clear command followed by the variable name, which
makes Matlab forget you had ever created the variable.

>> willForget = 12;

>> 2 * willForget

ans =

24

>> clear willForget

CHAPTER 1. INTRODUCTION TO MATLAB 14

>> 2 * willForget

Undefined function or variable ’willForget’.

You can also clear all of the variables by just entering clear.

>> a = 2;

>> b = 3;

>> c = 5;

>> a * b * c

ans =

30

>> clear

>> a * b * c

Undefined function or variable ’a’.

1.4 Data types

Every expression entered in Matlab has a corresponding data type . In-
ternally, everything in a computer is ones and zeros, and a sequence of
ones and zeros has no intrinsic value: it has to be interpreted as something
particular. For example, the sequence 01100001 represents the number 97
when interpreted as an integer; it represents the letter A when interpreted
as an ASCII character; it represents the number 18.0 when represented as
an 8-bit floating point number (under some assumptions). Don’t worry if
you don’t know what all of the previously mentioned terms mean: the im-
portant thing is to understanding ones and zeros have no intrinsic meaning
and we have to make a choice of how to interpret those ones and zeros.

A data type is basically just a choice of interpretation for those ones
and zeros. For our purposes in this class there are six basic data types
we will care about: integers, floating-point numbers, strings, vectors, cell
arrays, and logical values. There are also “subtypes” of these data types
which determine how many bits Matlab will actually use to represent that

CHAPTER 1. INTRODUCTION TO MATLAB 15

quantity. We don’t need to worry too much about all of this right now. A
significant portion of the class will be devoted to understanding the integer
and floating-point types, so we’ll talk about those letter. We’ll also discuss
the logical type soon when we get more involved in writing code. For now,
let’s just go ahead and talk about strings and vectors.

Strings

Sometimes we will want Matlab to format the output of our calculations
in a nice way. Instead of just printing out numbers, for example, we may
want to print out a description of what the number means. This is helpful
if we are performing several calculations in a loop and want an easy way to
keep track of which values we print out correspond to which input. (We’ll
talk about loops later, I’m just saying sometimes it’s convenient to print a
description of our calculation instead of just a number.)

Before we can discuss how to display things in a nice way, we need to
discuss strings. A string is collection of text. In Matlab strings always
occur between quotation marks, but they can be either single quotes or
double quotes. For example, ’This is a string’ is a string in single
quotes, while "Ceci n’est pas une string." is a string in double quotes.

Whenever we start a string with a quotation mark, single or double,
we must end it with the same quotation mark. Inbetween those single or
double quotation marks we may place the other quotation mark and it does
not prematurely end the string.

>> disp(’In Scrabble, "syzygy" is worth 21 points.’)

In Scrabble, "syzygy" is worth 21 points.

Since our string above started with a single quote, it doesn’t end until
we get to another single quote. This lets us put double quotes in the middle
of the string without any problem. Likewise, we can put single quotes in a
string easily if we start and end the string with double quotes:

>> disp("Short words like ’id’ are also useful.")

Short words like ’id’ are also useful.

CHAPTER 1. INTRODUCTION TO MATLAB 16

We can assign strings to variables and then print them out with disp,
just like for numerical values.

>> shakespeare = "Alas, poor Yorick.";

>> disp(shakespeare)

Alas, poor Yorick.

Remark.
There is actually a difference between strings created with single quotes
and double quotes in Matlab. For our purposes in this class, 99.9% of
the time that distinction won’t matter. The one place it does matter
is when we want to have a vector of strings, which we’ll discuss soon.

Vectors

One of the nice things about Matlab is that it is built for doing calculations
with “multidimensional” data with vectors. In Matlab, a vector is a finite
list of values. We specify this finite list by using square brackets, [and],
and putting a comma separated list of values between the brackets. Usually
we want to assign this list to a variable. For example, a list of the first few
primes would be given by

>> somePrimes = [2, 3, 5, 7, 11, 13, 17, 19];

If we want to access a particular element of the list, we give the list’s
name and then in parentheses specify the index (aka position) of the value
we want. For example, the first thing in our list somePrimes above is
somePrimes(1), and the fourth thing in our list is somePrimes(4).

CHAPTER 1. INTRODUCTION TO MATLAB 17

>> somePrimes(1)

ans =

2

>> somePrimes(4)

ans =

7

(If you’re used to writing code in other languages like C or Java, notice
that this is slightly different from what you might be expecting: indices in
Matlab start at 1, not 0.)

If you want to know how many things are in a vector, you can use
length to determine the length of the vector.

>> length(somePrimes)

ans =

8

There are lots of operations we can perform to vectors. For example,
we can multiply every element in a vector by a constant:

>> myVector = [-2, 5, 3, 7];

>> doubled = 2 * myVector

doubled =

-4 10 6 14

CHAPTER 1. INTRODUCTION TO MATLAB 18

We can also add a constant to every element of a vector:

>> plusTwo = 2 + myVector

plusTwo =

0 7 5 9

We can also subtract and divide like you would expect.

>> myVector / 2

ans =

-1.0000 2.5000 1.5000 3.5000

>> 3 - myVector

ans =

5 -2 0 -4

We can also exponentiate, but this is slightly different than what you might
think. If we tried to do something like myVector2̂, Matlab will complain:

>> squared = myVector^2

Error using ^

One argument must be a square matrix and the other must be

a scalar. Use POWER (.^) for elementwise power.

The reason for this error message is that Matlab can also work with matrices
(which we won’t talk about just yet) and there the caret operator means

CHAPTER 1. INTRODUCTION TO MATLAB 19

something a little different. If you want to square every element of a vector,
you must instead use .^:

>> squared = myVector .^ 2

squared =

4 25 9 49

We can also do calculations with several vectors at a time, provided the
vectors have the same lengths. For example, we can easily add and subtract
two vectors component-by-component.

>> vector1 = [1, 2, 3, 4, 5, 6];

>> vector2 = [0, -1, 3, 8, -2, 3];

>> vector1 + vector2

ans =

1 1 6 12 3 9

>> vector1 - vector2

ans =

1 3 0 -4 7 3

This can be useful, by the way, if you have lots of things you want to add
to or subtract from one another. If we store those values as vectors, we can
just add or subtract the vectors instead of all of the elements individually.

We can also multiply vectors component-by-component, but here we
have to use .* instead of just * (again, because * means matrix multiplica-
tion which is a completely different operation).

CHAPTER 1. INTRODUCTION TO MATLAB 20

>> vector1 * vector2

Error using *

Inner matrix dimensions must agree.

>> vector1 .* vector2

ans =

0 -2 9 32 -10 18

We can use the functions max and min to find the largest and smallest
values in a vector.

>> vector1 = [7, 2, 34, -2, 483, 1384, 18742, -234897, 239];

>> max(vector1)

ans =

18742

>> min(vector1)

ans =

-234897

Sometimes it is convenient to not only know what the largest or smallest
value in a vector is, but also know the index of that value. The max and min

functions can tell us this information as well. That is, these functions can
return multiple values instead of just one value. By default Matlab only
gives us the first value unless we tell it we want to store multiple outputs.
To do this we can create a vector of variables, say maxVal for the maximum
value in the vector and maxIdx for the index of the maximum entry, to
which we assign the output of the max function.

CHAPTER 1. INTRODUCTION TO MATLAB 21

>> [maxVal, maxIdx] = max(vector1);

>> maxVal

maxVal =

18742

>> maxIdx

maxIdx =

7

>> vector1(maxIdx)

ans =

18742

In the example above, we created two variables at once with the left-
hand side of the first line. Matlab will store the maximum value of the vector
vector1 into maxVal and the index of that maximum value in maxIdx.
In the other commands we are ismply verifying that these really are the
maximum value and the index of the maximum value.

Vectors of strings

We can also create vectors of strings: a list of strings, just like we have a list
of numbers. However, there are some oddities we need to be aware of. If
you tried to create a vector of strings contained in single quotes, something
a little strange happens. Consider the following code which we might use
to try to create a vector of strings containing three names.

>> names = [’Alice’, ’Bob’, ’Charlene’]

names =

’AliceBobCharlene’

CHAPTER 1. INTRODUCTION TO MATLAB 22

Notice that Matlab came back and said our supposed vector of strings
was just one long string. Trying to index individual elements of the names

confirms this is one long string:

>> names(1)

ans =

’A’

>> names(2)

ans =

’l’

>> names(6)

ans =

’B’

If we were to repeat the above putting our strings in double quotes,
however, things work like you would expect:

>> names = ["Alice", "Bob", "Charlie"]

names =

13 string array

"Alice" "Bob" "Charlie"

>> names(1)

ans =

CHAPTER 1. INTRODUCTION TO MATLAB 23

"Alice"

>> names(2)

ans =

"Bob"

>> names(3)

ans =

"Charlie"

What’s going on? Why does Matlab take the strings in single quotes and
concatenate them together, but keeps the strings in single quotes separate?
This is kind of a weird historical accident. In older versions of Matlab
you could only create strings using single quotes, and internally Matlab
represented these strings as vectors of characters. Most of the time this
doesn’t really matter, but if you try to create a vector of strings (with
single quotes), Matlab gets “confused” and thinks you really have one long
string, one long vector of characters. This is annoying, so newer versions
of Matlab have a separate string data type, what you create with double
quotes, which you can have vectors of without getting everything lumped
into one giant vector of characters.

For the majority of what we’re going to do in this class, the distinction
between a vector of characters and a string doesn’t matter, so we can use
single quotes or double quotes for our strings as we’d like. The one exception
to this is when we actually want a vector of strings.

As an example of where this might be useful, let’s suppose that we have
a vector that represents student’s grades on an exam. We might not want
to know simply what the highest or lowest grades were, but which students
received those grades. To keep track of the students in the class, we might
like to have a vector of names.

So let’s suppose we have a vector of student names and a vector grades
on an exam, where the grades are listed in the same order as the students
in the vector of names we create. We’ll then use max and min to not only
determine the highest and lowest grades, but which students received those
grades.

CHAPTER 1. INTRODUCTION TO MATLAB 24

>> students = ["Alice", "Bob", "Chloe", ...

"Daniel", "Eric", "Felice"];

>> grades = [82, 85, 94, 78, 67, 92];

>> [maxGrade, maxIdx] = max(grades);

>> [minGrade, minIdx] = min(grades);

>> disp(maxGrade)

94

>> disp(students(maxIdx))

Chloe

>> disp(minGrade)

67

>> disp(students(minIdx))

Eric

So the maximum grade of 94 was obtained by Chloe, and the minimum
grade of 67 was obtained by Eric.

1.5 Formatting strings

We end this chapter by discussing how we can format strings to print out
information in a nice way. Continuing with the example of grades on an
exam above, how could we print out a string that says something like

The highest grade was 94, obtained by Chloe.

Obviously we could just type the above into a disp, but this would have
the “94” and “Chloe” hardcoded – it would always print the 94 and Chloe,
even if we were to change the grades or names of students. It would be nice
if we had some code that, regardless of what the grades were or who got
the highest grade, printed a single string of text saying what the highest
graded was and who obtained it. We know how to write code to determine
the highest grade and the name of the student that received that grade, but
can we find some way of formatting the string we want to print out so that
it prints out those values?

Matlab provides us with two special functions that do exactly this, called
fprintf and sprintf. Both functions take a single string which has some

CHAPTER 1. INTRODUCTION TO MATLAB 25

“placeholders” in it, and then a list of variables which it will put in for
those placeholders.

Let’s see an example before we try to describe fprintf and sprintf in
general.

>> fprintf("Two plus two is %d.", 2 + 2)

Two plus two is 4.>>

The fprintf command above has a string which has the special code
%d inside of it. These two characters form a placeholder for a decimal
number (which, confusingly, means a whole number). This is followed by
a comma, and then an expression which evaluates to a decimal number
(whole number). Matlab takes the we gave it, finds the placeholder, and
replaces that placeholder with the value of the expression we passed.

Notice that after printing the string but with 4, the value of 2 + 2, in
place of the %d, Matlab instantly puts the command prompt next to the
string. Usually we won’t want this to happen, and so we can tell Matlab to
print a new line by putting \n at the end of the string.

>> fprintf("Two plus two is %d.\n", 2 + 2)

Two plus two is 4.

>>

Anywhere we put a \n, inside a string passed to fprintf, Matlab will
insert a new line into the string it’s printing.

>> fprintf("Line numero uno\nLine dos \n Line three.\n\n")

Line numero uno

Line dos

Line three.

>>

CHAPTER 1. INTRODUCTION TO MATLAB 26

Notice that the first \n immediately gives us a new line: no additional
whitespace or anything, just a new line. If we place a space before or after
the \n, Matlab prints those spaces as well. (Of course, we can’t really
see the space before the newline, but we definitely see the space after the
newline: that’s why the third line has a space just before Line three.) In
the example above we ended with two newlines, which is why the command
prompt got moved down further than you might expect. If there was one
newline, the >> prompt would occur immediately below the text which
says Line three. An additional newline moves the prompt down one more
space.

We can have multiple of these placeholders inside our single format
string, but for each placeholder that appers we must have an expression
whose value will be placed where that placeholder is:

>> sum = 1 + 2 + 3 + 4 + 5;

>> product = 1 * 2 * 3 * 4 * 5;

>> fprintf("The sum is %d, and the product is %d.\n", ...

sum, product)

The sum is 15, and the product is 120.

Instead of passing one variable for each placeholder, we can actually
pass one vector that contains all of the values.

>> years = [1977, 1980, 1983];

>> fprintf("Star Wars movies came out in %d, %d, and %d.\n", ...

years)

Star Wars movies came out in 1977, 1980, and 1983.

In the examples above we used %d for our placeholder, but there are
other placeholders for other types of data. For fractional numbers we use
%f, or %e if we want to use scientific notation. Consider the following two
lines of code for printing out an approximation of π9:

CHAPTER 1. INTRODUCTION TO MATLAB 27

>> fprintf("pi^9 = %f.\n", pi^9)

pi^9 = 29809.099333.

>> fprintf("pi^9 = %e.\n", pi^9)

pi^9 = 2.980910e+04.

We actually have some control over how many decimals are printed with
%f, which for our purposes in this class will occasionally be useful, so we’ll
go ahead and mention it. By using %.3f, for example, we can only print
out the first three digits after the decimal place; %.4f would print out four
digits; %0.9f would print out nine digits; and so on.

>> fprintf("Two digits: %.2f\n", pi)

Three digits: 3.14

>> fprintf("Three digits: %.3f\n", pi)

Three digits: 3.142

>> fprintf("Four digits: %.4f\n", pi)

Four digits: 3.1416

>> fprintf("Nine digits: %.9f\n", pi)

Nine digits: 3.141592654

Sometimes we may want to may want to put other strings inside our
string, and %s is the placeholder to use for that.

>> teacher = "Gauss";

>> pupil = "Riemann";

>> fprintf("%s was a student of %s.\n", pupil, teacher)

Riemann was a student of Gauss.

The function fprintf can also print text to files, which is what the first
f refers to. Sometimes we may not want to print anything out just yet, but
instead save the formatted string. For this we can use sprintf which works
just like fprintf, except it returns a string instead of printing it out.

CHAPTER 1. INTRODUCTION TO MATLAB 28

>> subject = "Alice";

>> verb = "plays";

>> object = "basketball";

>> str1 = sprintf("%s %s %s.", subject, verb, object);

>> subject = "Bob";

>> verb = "sings";

>> object = "folk songs";

>> str2 = sprintf("%s %s %s.", subject, verb, object);

>> disp(str1)

Alice plays basketball.

>> disp(str2)

Bob sings folk songs.

2Scripts and Functions

Science is what we understand well enough
to explain to a computer. Art is everything
else we do.

Donald Knuth

Entering commands directly into Matlab’s command window at the >>

prompt is convenient for certain tasks, especially when you’re just learning
Matlab and want to play around with various commands to immediately
see what happens. For some tasks, however, it’s better to save a sequence of
commands in a file, and then have Matlab execute all of those commands
in order. There are two related ways to do this in Matlab: scripts and
functions.

2.1 Scripts

A script is a file with a .m extension which, as stated above, is simply a
list of commands that Matlab executes one after the other. Matlab starts
at the first line in the file, executes any commands on that line; then moves
to the second line, executes any commands on that line; then moves to the
third line, executes any commands on that line; and so on until we reach
the end of the file.

As a silly example, let’s create a script which prints the phrase Hello,
world. in four different languages each time it is ran.

In Matlab, click on the New Script button to create a new file. The
region which contained the Command Window should now be split into
two parts: the Editor window is on top showing the contents of a new
empty file, and the command window is on the bottom.

29

CHAPTER 2. SCRIPTS AND FUNCTIONS 30

Inside this new file, add the following commands:

language = ["English", ...

"German", ...

"French", ...

"Spanish"];

phrase = ["Hello, world.", ...

"Hallo Welt.", ...

"Bonjour le monde.", ...

"Hola mundo."];

fprintf("’%s’ is %s.\n", phrase(1), language(1));

fprintf("’%s’ is %s.\n", phrase(2), language(2));

fprintf("’%s’ is %s.\n", phrase(3), language(3));

fprintf("’%s’ is %s.\n", phrase(4), language(4));

CHAPTER 2. SCRIPTS AND FUNCTIONS 31

Now save the file we’ve created as helloworld.m. Your window should
look like the following:

In your Command Window, you can now enter the command helloworld,
hit enter, and the lines of code in helloworld.m will be executed.

CHAPTER 2. SCRIPTS AND FUNCTIONS 32

2.2 Functions

A function in Matlab is very similar to a script, except for two key differ-
ences: a function can take arguments, and it can return a value. This means
that when we call the function, we can pass it values which the function
can use in any calculations it performs, and it can also give us back the
result of any calculations as something we could store in a variable. This
will make more sense if we have some examples.

Let’s start off with a very silly function: we’ll create a function called
triple which takes one argument, and returns three times that number.
We’ll present the code for such a function below, and then talk about what’s
going on. First we create a new file for our function by selecting New -¿
Function from the toobar. This will create a new tab in the Editor window
which will contain the contents of our file. By default, Matlab will give us
a template for our function, but we can just delete all of this text and put
the following in the file:

CHAPTER 2. SCRIPTS AND FUNCTIONS 33

function product = triple(num)

product = 3 * num;

end

If we save this file as triple.m, then we will have access to a new
command called triple. In the Command Window we can then enter
something like triple(7), and Matlab will come back and say the result
of executing this command is 21.

>> triple(7)

ans =

21

So, what’s going on with the code above that we put in the triple.m

file? The first line,

function product = triple(num)

has three key ingredients:

• The first word, function, tells Matlab we are creating a function.
This must always appear when we want to create a new function.

• The next part, product =, tells Matlab that we’re going to have a
variable called product that appears in the definition of our function,
and this variable is special. Whatever product is equal to at the end of
the function is the value that will be returned. There’s nothing special
about the name product here – we’re just using this name since we’re
going to multiply two numbers, and the result of a multiplication is
called a product. We could just as easily called the variable result

or returnValue or gandalfTheGrey; it’s just a variable name.

• The triple(num) tells us two things: the name of the function is
triple, and triple takes one argument which we are calling num

since it’s just some number.

CHAPTER 2. SCRIPTS AND FUNCTIONS 34

Below the first line we have the body of the function: these are the
commands that make up the definition of the function, the commands that
Matlab will execute whenever we call the function. In this particular ex-
ample the function consists of one command, which just sets product to be
three times num. You’ll notice the body of the function is indented. This
is not strictly required, but is considered good practice. We’ll see several
instances later when some of the lines below one line of code are special, and
it makes everything a little easier to read and comprehend when these spe-
cial lines are indented. Don’t worry too much if this seems a little strange
or you can’t imagine why this is useful right now: as we do more involved
examples we’ll see why indentation is nice, even if not strictly required.

Finally, the function ends by the keyword end at the end of the function.
This is always required: any function we start we must end, and end is the
way we do that.

Now, if you have this file triple.m saved on your computer and enter
something like triple(7) into the Command Window, what exactly hap-
pens? First, Matlab looks in the current directory for a file named triple.m

which would contain the contents of a triple function. Then, intuitively,
what happens is that Matlab takes the contents of that file, but everywhere
num appears Matlab replaces num with the value we gave it in parenthesis, 7
in this case. (That isn’t literally what happens, but that’s how you should
think about it.) Now, Matlab executes the lines we have between the line
containing function and end, with num replaced by 7. Once all the com-
mands are executed, Matlab records the value of product at the end and
says that’s the result of our function. That is why Matlab set ans to be 21.

We can now use the result of this function in other calculations or save
it to a variable.

>> x = triple(7);

>> y = x + 2 * triple(5)

y =

51

Before we see more involved examples, let’s consider what would happen
if we changed the contents of the triple.m file to be

CHAPTER 2. SCRIPTS AND FUNCTIONS 35

function product = triple(num)

product = 19

product = 3 * num;

product = 0;

end

Notice in particular there is no semicolon on the first line in the body of
the function. If we try to use this function now, by say calling triple(7)

and saving the result as x, then displaying the value of x, we would get the
following:

>> x = triple(7);

product =

19

>> disp(x)

0

There are a few things to notice here. First note that Matlab printed out
the line that said product was 19. This is because we left a semicolon off of
this line. Usually we will want semicolons at the ends of lines in the body
of a function to suppress the output associated to any sort of intermediate
or incomplete calculations we’re performing.

Also notice that the value of x is zero. This is because the value returned
by the function is the last value that the special variable product in our
function is set to. The previous values of product are lost and forgotten:
only the last value matters for the result of the function.

Let’s move on to a slightly more involved example: let’s create a function
that gives the Euclidean distance between two points (x1, y1) and (x2, y2)
in the plane. Of course, the distance between these two points is computed
by √

(x2 − x1)2 + (y2 − y1)2

so let’s create a function which returns this value.

CHAPTER 2. SCRIPTS AND FUNCTIONS 36

Let’s name our function eucldist, so we’ll create a file named eucldist.m

which will contain the definition of this function.
This time, since we need to give four numbers (two x values and two y

values), we will have a comma delimited list of four numbers representing
our x and y values as the list of arguments. Our eucldist.m file might
then contain the following:

function dist = eucldist(x1, y1, x2, y2)

deltaX = x2 - x1;

deltaY = y2 - y1;

dist = sqrt(deltaX^2 + deltaY^2);

end

While the entire command for calculating the distance between our
points could be put on one line, here we elected to split the command up
a little. While this might seem silly in this particular example, it’s usually
good practice to try to take complicated commands and split them up into
simpler pieces that are individually easier to understand. Here we created
variable deltaX and deltaY represent the change in the x coordinates and
the change in the y coordinates. We then computed the square root of the
sum of the squares of these changes in x and y values. This represents the
distance we are trying to calculate and want the function to return, so we
set the variable dist to be the result of this calculation.

Now we could use our eucldist function to compute distances between
points in the plane. The distance between points (1,−2) and (3, 7), for
example, can be computed as

>> eucldist(1, -2, 3, 7)

ans =

9.2195

So the distance between (1,−2) and (3, 7) is about 9.2195.

CHAPTER 2. SCRIPTS AND FUNCTIONS 37

Note the order of the arguments we pass to a function matters. If we
were to permute the arguments a little bit, we would get a different answer:

>> eucldist(1, 3, 7, -2)

ans =

7.8102

The way we made our function, we give it the x value of the first point,
followed by the y value of the first point, then followed by the x value of
the second point, and finally the y value of the second point appears at the
end. That is, the command eucldist(1, 3, 7, -2) above is giving us the
distance between (1, 3) and (7,−2).

Let’s give one more simple function: instead of computing Euclidean
distance between points, let’s compute the hyperbolic distance. Just as a
quick referesher (or introduction) to hyperbolic geometry, the hyperbolic
plane, denoted H, is represented by the upper half-plane. That is, the
hyperbolic plane is one half of the Euclidean plane: it only consists of points
whose y coordinates are positive. Given any two points (x1, y1) and (x2, y2)
in the upper half-plane (so, by assumption y1 and y2 are both positive
numbers), the distance between the points is measured in a little bit of a
weird way. The distance between points is cooked up so one specific thing
happens: the parallel postulate of Euclidean geometry fails. To make this
happen we have to change the way we measure distance pretty significantly,
and it turns out the formula we want for our distances is

2 ln

(√
(x2 − x1)2 + (y2 − y1)2 +

√
(x2 − x1)2 + (y2 + y1)2

2
√
y1y2

)
You don’t need to worry if you’ve never seen this before, the point is just
that it’s a kind of complicated formula that people care about. Even if
you’re the kind of person that cares about hyperbolic geometry, you might
not want to try to commit the function above to memory. In such a situation
it might be convenient to create a file that does the calcuation for you.

To do this, we will create a function hypdist similar to our eucldist

function before, except for two key differences: of course, we’ll compute
hyperbolic distance instead of Euclidean distance, but let’s also represent
our points as two vectors of coordiantes instead of four individual numbers.

CHAPTER 2. SCRIPTS AND FUNCTIONS 38

That is, instead of having arguments x1, y1, x2, y2 which give the x and
y coordinates of our points, let’s just have two arguments, say pt1 and pt2.
We’ll think of these as being vectors whose first entry is the x coordinate
of our point, and whose second entry is the y coordinate. For example, the
point (2, 5) would be represented as the vector [2, 5].

The contens of our hypdist.m file might then be

function dist = hypdist(pt1, pt2)

deltaX = pt2(1) - pt1(1);

deltaY = pt2(2) - pt1(2);

sumY = pt2(2) + pt1(2);

prodY = pt1(2) * pt2(2);

numerator = sqrt(deltaX^2 + deltaY^2) + sqrt(deltaX^2 + sumY^2);

denominator = 2 * sqrt(prodY);

dist = 2 * log(numerator / denominator);

end

Notice that we broke the big, ugly calculation for hyperbolic distance
and broken it up into several simpler pieces. If it turned out that we hap-
pened to have a mistake somewhere in our calculation, it’s usually a lot
easier to find that mistake and fix it when we break things up into simpler
steps.

The hypdist function we created tells us, for example, the hyperbolic
distance between (1, 2) and (4, 2) is about 1.3863,

>> hypdist([1, 2], [4, 2])

ans =

1.3863

And the hyperbolic distance between (0, 1) and (0, 2) is about 0.6931

CHAPTER 2. SCRIPTS AND FUNCTIONS 39

>> hypdist([0, 1], [0, 2])

ans =

0.6931

Let’s now end our discussion of functions by noting that the definition
of hyperbolic distance above really requires that the y-coordinates of our
points are both positive. If either is zero or negative we’ll have a problem
since we’ll be trying to take the square root of a negative value, or possibly
divide by zero. However, Matlab is okay with this: Matlab doesn’t complain
if we try to divide by zero or take the square root of a negative number:

>> 1 / 0

ans =

Inf

>> sqrt(-1)

ans =

0.0000 + 1.0000i

The above shows that Matlab thinks 1
0

is infinity, and that
√
−1 is i

(which it’s writing as 0 + 1i). Sometimes these are things we like, but
sometimes they’re not. For example, if we try to find the hyperbolic distance
between (0,−1) and (0, 1) Matlab gives us the following:

>> hypdist([0, -1], [0, 1])

ans =

CHAPTER 2. SCRIPTS AND FUNCTIONS 40

0.0000 - 3.1416i

This is not okay: distances, even hyperbolic distances, should always
be non-negative real numbers – what is an imaginary distance? So, what
we like is for Matlab to first determine if the y-coordinates we give it are
positive, do our calculation if that’s the case, but then complain if our y-
coordinates are not positive. We will see how to get Matlab to do something
like this in the next chapter when we talk about conditionals.

3Conditionals
Everyone should know how to program a
computer, because it teaches you how to
think.

Steve Jobs

3.1 Motivating example

The code we have written thus far always performed the same operations
without regard to any kind of context. Our hypdist function in the last
chapter, for example, always did the same sequence of computations even
for values that would give non-sensical answers. In this chapter we will see
how to write code that executes different sequences of commands depending
on the context.

We’ll begin with a very mathematical example: the absolute value func-
tion. Recall that the absolute value of a number x is a piecewise function:
|x| is simply x when x ≥ 0, but it is −x when x < 0. For instance, |3| = 3,
but | − 2| = −(−2) = 2. How could we create such a function in Matlab?

Remark.
Matlab already has the absolute value function built in, and it’s called
abs. For example, abs(-2) will compute the absolute value of −2.
Our goal right now is not to create an absolute value function because
we need, but just to illustrate the idea of having code that executes
differently depending on the context.

Based on what we’ve done thus far, it’s not possible for us to create
a command that would give us back x when x ≥ 0, but gives us back −x
when x < 0. Instead, we need to introduce a new idea called a conditional ,
which is sometimes also called a if-then statement .

The idea is that we will check to see if some condition is true or false,
and then execute one sequence of commands if the sequence is true, and
another sequence of commands if the condition is false. The general format
for such a command in Matlab is

41

CHAPTER 3. CONDITIONALS 42

if (condition)

(code to execute if condition is true)

else

(code to execute if condition is false)

end

Where (condition) is some expression that can be either true or false.
For example, x ≥ 0 is either true or it’s false. Many times the condition
we’ll be interested will be of this form: comparing one number to see if
it’s less than, greater than, or equal to another number. As you might
expect, the condition x > 0 is written in Matlab as x > 0, but what about
if you allow equality: how do we enter x ≥ 0? We don’t have a ≥ key on
the keyboard that we can type, so we instead use >= as our greater-than-
or-equal-to operation. For example, the function (saved in a file named
nonnegative.m) prints out one line if x is non-negative, and print out
something else if x is negative:

function nonnegative(x)

if x >= 0

fprintf("%f is non-negative\n", x);

else

fprintf("%f is negative\n", x);

end

end

We can now execute our nonnegative function and it will tell us if the
value we gave it was non-negative or not.

>> nonnegative(3)

3.000000 is non-negative

>> nonnegative(-pi)

-3.141593 is negative

CHAPTER 3. CONDITIONALS 43

Let’s go ahead and make a few observations about the function above.
The statements we execute if the condition is true or false are indendented.
While this is not strictly necessary, indenting the commands that we will
execute if the condition is true or if it is false makes the code much easier
to read. Notice too that our function does not have a return value. All of
functions we have created up until this point performed some calculation
and they gave us back the result of that calculation. This was the value
of the special variable created on the first line of the function. E.g., for a
function that cubes a given value such as

function product = cube(x)

product = x^3;

end

there was a special variable product and the value of the function is
whatever product equals when the function ends.

In our nonnegative function above we are just printing some text to
the screen, and not performing any calculation. There’s nothing to return,
so we don’t need a special variable.

Let’s now use our knowledge of if-then statements to create our own
absolute value function, which we might call absval:

function val = absval(x)

if x >= 0

val = x;

else

val = -x;

end

end

Saving this in a file absval.m, we can use this function to calculate
absolute values:

CHAPTER 3. CONDITIONALS 44

>> absval(3)

ans =

3

>> absval(-2)

ans =

2

3.2 Logical values, comparisons, and/or

When using an if-statement, the condition given must evaluate to either true
or false. Values which are either true or false are referred to in Matlab as
logical values, and we usually arrive at logical values by using comparison
operators such as >=, though there are other ways to get logical values we
should be aware of.

Let’s first go ahead and mention the logical operators that we’ll use
most often. Above we say that >= was how the mathematical operation ≥
is entered in Matlab, and so it shouldn’t be too surprising that <= represents
≤ in Matlab. Similarly, > and < represent strict greater-than and less-than.
For example 3 < 3 will evaluate to false, while 3 <= 3 evaluates to true.

What about equality? You might guess that we would use = to test for
equality in Matlab, but keep in mind that = is already used in Matlab to
represent assignment. For example, when you enter number = 7, Matlab
creates a variable called number in which it stores the value 7. That is, a
single equals sign does not return true or false, it creates a variable and
gives it a value.

To test for equality in Matlab we instead have to use the operator ==

(two equals signs). The silly function below tells us if the given value is
equal to zero or not:

CHAPTER 3. CONDITIONALS 45

function iszero(x)

if x == 0

disp("The value is zero.");

else

disp("The value is not zero.");

end

end

The values true and false can also be returned from a function. For
example, we might create a function called iseven which checks to see if a
given number is even, and returns true if it is, but false if it is not. One
way we might determine if a number is even or not would be to take the
number, call it x for the moment, divide by two, and see if the result is an
integer or not. For example 18 is even since 18

2
= 9 is an integer, where as

17 is not even since 17
2

= 8.5 is not an integer. How do we know if a number
is an integer or not, though? That is, if we’re given a variable x in Matlab
which could potentially be any number, how can we determine if x was an
integer? One way to do this would be to take the floor of x and see if it
equals x or not.

Remark.
Recall that the floor of a number x, usually denoted bxc is the largest
integer which is no larger than x. Another way to say this, is that bxc
is what you get if you chop off everything to the right of the decimal
when writing the number’s decimal expansion. E.g., b13.234c = 13
and b4.99999c = 4.

We can compute the floor of a number in Matlab using the floor func-
tion:

>> floor(pi)

ans =

CHAPTER 3. CONDITIONALS 46

3

Our function to test if a given number is even or not would then be the
following:

function result = iseven(x)

y = x / 2;

if y == floor(y)

result = true;

else

result = false;

end

end

So, we’re given a number x, we set y to be half of this number, and then
we test to see if y is an integer or not by seeing if y is equal to its floor.
If the number is an integer, then the x we were given must have been an
even number and so we set result to be true. Otherwise we do not have
an even number and so we set result to be false.

Remark.
If you actually use the iseven function above in Matlab, you might
find the results it gives you slightly strange. For example, testing to
see if four is an even number gives the following:

CHAPTER 3. CONDITIONALS 47

>> iseven(4)

ans =

logical

1

Following what happens in the body of iseven, you’d expect this
to be true not 1. What’s going on here?

Matlab, and many other programming languages, actually use 1 to
represent true and 0 to represent false. Usually it’s simpler for us, as
humans, to actually use “true” and “false” because we don’t want to
think of this one or zero as a number – in the sense it’s not something
we’re going to want to do arithmetic with. This is why we used true

instead of 1, and false instead of 0, in our definition of the iseven

function above.

Let’s play around with our iseven function a little to see if we can
make it a little simpler. First note that we set result to be true if y ==

floor(y) is true, and we set result to be false when y == floor(y) is
false. I.e., result is just the value of the expression y == floor(y), so
why don’t we just set result to be the value of this expression? We can
then make the iseven function a bit shorter:

function result = iseven(x)

y = x / 2;

result = y == floor(y);

end

The last line might look a little weird, so let’s take a second to decipher
what’s going on. The line begins with result = which means we are going
to set the variable result to be the value of whatever is on the right-
hand side of that equals sign. The right-hand side is the expression y ==

CHAPTER 3. CONDITIONALS 48

floor(y), which compares y to floor(y) and evaluates to true if these
values are equal and false otherwise. The end result is that result gets
set to whatever the value of the expression y == floor(y) is.

We can actually make our iseven function more succinct by taking
advantage of a special function in Matlab called mod. The mod function
takes two arguments, say x and y, and it returns the remainder obtained
by trying to divide y into x. For example, mod(13, 5) evalutes to 3 since
the remainder of 13 divide by 5 is three: 13 = 2 · 5 + 3.

>> mod(13, 5)

ans =

3

Notice that if x is divisible by y, then the remainder of x divided by y is
zero. For example, 24 is divisible by 3, so the remainder is zero: 24 = 8·3+0.
In Matlab this means mod(24, 3) will evaluate to zero. In general, if x is
divisible by y, then mod(x, y) will equal zero. A number is even if and
only if it is divisible by two, so we could write our iseven function as

function result = iseven(x)

result = mod(x, 2) == 0;

end

Now imagine we wanted a function which checked if a number was di-
visible by either two or three. We can check if either of two logical values
is true using the operator || (two pipe characters; the pipe is obtained by
holding Shift and then hitting the blackslack, \, key on the keyboard). This
operator occurs inbetween two logical expressions and returns true if either
of the expressions is true (or if both expressions are true), and returns false
only if both expressions are false. For example, true || false, false ||

true, and true || true are all true since at least one of the operands is
true, but false || false is false.

If we wanted a function which determined if a given number x was
divisible by either two or three we would check the condition

CHAPTER 3. CONDITIONALS 49

mod(x, 2) == 0 || mod(x, 3) == 0

This would evalute to true if either mod(x, 2) == 0 is true (so x is divisible
by two) or if mod(x, 3) == 0 is true (so x is divisible by three). The
function below, for example, prints out a statement if the given number is
divisible by two or by three.

function divByTwoOrThree(x)

if mod(x, 2) == 0 || mod(x, 3) == 0

fprintf("%d is divisible by either two or three.\n", x);

else

fprintf("%d is divisible by neither two nor three.\n", x);

end

end

Similarly, there is a way to see if a number is divisible by both two and
three: the logical operation “and” in Matlab is represented by &&. This is
similar to the “or” operation, ||, in that we have

(condition 1) && (condition 2)

where (condition 1) and (condition 2) are two logical (true or false)
conditions. The “and” of two such conditions will be true if and only if
both conditions are true; the expression is false if either (or both) conditions
are false. For example, the expression

1 < 2 && 4 < 3

evaluates to false since the second condition, 4 < 3, is false.
A function which checks to see if a given number is divisible by both

four and six, for instance, would be the following:

function result = divByFourAndSix(x)

if mod(x, 4) == 0 && mod(x, 6) == 0

result = true

else

result = false

CHAPTER 3. CONDITIONALS 50

end

We could of course also simplify this function down to one line:

function result = divByFourAndSix(x)

result = mod(x, 4) == 0 && mod(x, 6) == 0

end

3.3 elseif

Based on what we’ve done, we now see how we could create a piecewise
function in Matlab. For example, suppose we wanted to create the following
function Matlab:

f(x) =

{
x2 − 3x if x ≤ 2

−x3 if x > 2

Such a function could easily be created with an if-statement

function result = f(x)

if x <= 2

result = x^2 - 3*x;

else

result = -x^3;

end

end

But what if the function was more involved? E.g., what if the function
had four different pieces such as

f(x) =


x2 if x < 0

x if 0 ≤ x ≤ 1

−x2 if 1 < x < 3

x3 − 2x if x ≥ 3

CHAPTER 3. CONDITIONALS 51

One approach would be to think of this function as having two pieces,
say and x < 0 piece, which evaluates to x2, and a x ≥ 0 piece which is
itself a piecewise function. That “new” piecewise function is itself piece-
wise, but with three pieces. We could try to think of this as a piecewise
function with two pieces, where one piece is itself piecewise. Treating each
of these “piecewise with two pieces” functions as corresponding to an if-else
statement, we could represent our piecewise function above as follows:

function result = f(x)

if x < 0

result = x^2;

else

if x <= 1

result = x

else

if x < 3

result = -x^2

else

result = x^3 - 2*x

end

end

end

If you look at the code above and feel that it’s a bit hard to decipher what
exactly is going on, you’re certainly not alone. Code like this is ugly, hard
to read, hard to understand, and is prone to errors. However, piecewise
functions are certainly something we care about, and more generally we
may want code that has more than two “branches” – that is, code that can
respond in multiple different ways, not limited to just two ways.

In situations like this we want to augment our if-else statement with an
elseif. The general format of an if-else statement with an elseif is as
follows:

if (condition 1)

(code that executes if condition 1 is true)

elseif (condition 2)

CHAPTER 3. CONDITIONALS 52

(code that executes if condition 1 is false,

but condition 2 is true)

elseif (condition 3)

(code that executes if condition 1 is false,

and condition 2 is false, but condition 3 is true)

...

elseif (condition n)

(code that executes if all of the previous

conditions were false, but condition n is rue)

else

(code that executes if all of the preceeding

conditions were false)

end

What happens is that Matlab looks down this list of conditions we have
given, checks them one-by-one, and once it finds one that is true, it executes
that code. It then skips all of the remaining conditions! That is, Matlab
first checks if (condition 1) is true. If so, it executes the code that we
have indented above, and then skips down to the end at the end our list
of conditions. If (condition 1) is false, Matlab then moves on to check if
(condition 2) is true or not. If the condition is true, Matlab executes the
code we have indenteded below condition 2, then skips to end. This process
continues until we get to the else at the very end: if none of the conditions
above were true, then this last bit of code is what gets executed.

You have to be careful attention to this when you’re writing code, oth-
erwise you can write code that will never execute. Consider the function
below:

function never(x)

if x < 3

fprintf("%f < 3\n", x);

elseif x < 2

fprintf("This will never print.");

else

fprintf("%f >= 3\n", x);

end

end

CHAPTER 3. CONDITIONALS 53

The claim is that the middle condition, the one which would print This
will never print. will never be executed. Why? The first condition
Matlab checks is whether x < 3 is true or not. If it is true, then Matlab
prints out a statement that the given number is less than three, and then
immediately jumps to the end that appears after our else. That is, Matlab
is done once it finds a condition is true and it doesn’t bother checking any
more conditions. So, if x < 3 is false, then certainly x ≥ 3, and so the
middle condition, that x < 2, is necessarily false, and the

fprintf("This will never print.");

will never have any opportunity to execute.
Just to verify this, consider what happens if we pass 1.5 to the function:

>> never(1.5)

1.500000 < 3

Again, notice Matlab didn’t check any more conditions once it finds one
that is true.

Using the elseif, our piecewise function from before becomes much
simpler and easier to understand:

function result = f(x)

if x < 0

result = x^2;

elseif 0 <= x && x <= 1

result = x;

elseif 1 <= x && x < 3

result = -x^2;

else

result = x^3 - 2*x;

end

end

This is much easier to decipher: it’s a lot easier to glance at this code
and see there are four different conditions being tested. In our earlier imple-

CHAPTER 3. CONDITIONALS 54

mentation of the piecewise function we have to stop and think for a minute
to see what’s going on.

The earlier example of a piecewise function where we had if-else state-
ments inside if-else statements inside if-else statements is sometimes said to
have “nested if’s” – if’s inside of if’s. While there are times when we can’t
avoid such a construction, we usually want to avoid having nexted if’s as
much as possible because they’re hard to understand and error prone.

You might notice that our most recent implementation of the piece-
wise function above actually has some redundancy. Consider the second
condition, for example, the one that has

elseif 0 <= x && x <= 1

The first part, 0 <= x, is actually unnecessary. Our very first condition in
the function, the line containing if x < 0, must have been false: otherwise
the Matlab would have executed the command result = x^2 and then
jumped to the end below our last else statement. Since x < 0 was false,
it must be that x >= 0 is true. That is, we don’t need to explicitly check x

>= 0 since it must be true if Matlab gets to our second condition.
Removing these redundancies, our code then becomes

function result = f(x)

if x < 0

result = x^2;

elseif x <= 1

result = x;

elseif x < 3

result = -x^2;

else

result = x^3 - 2*x;

end

end

3.4 if without else, and errors

In describing if-else conditions above, our code has had two “branches” (or
more if we used elseif), but sometimes we will want our code to only

CHAPTER 3. CONDITIONALS 55

have the one main branch, and occassionally do something extra. One
common example of this has to do with creating errors. For most functions
we’ll create, we will assume the arguments to the function are of a certain
type. For example, we may assume the given values are positive, or are
integers, or something else. However, Matlab doesn’t force someone using
our function from giving us some non-sensical values, so we may want to
check the arguments to make sure they are values we can work with. If
they are not, then we may want Matlab to create an error to tell the user
the value they gave us won’t work.

One example of this is our hypdist function for calculating hyperbolic
distance in the last chapter. The formula we have only makes sense if the
y-values of the points given are positive. If someone gives non-positive
y-values, the results we calculate won’t make sense: we’ll get things like
complex numbers for the distance between two points. So, we may want
to check the values we are given have positive y-coordinates. If not, we’ll
create an error with the error function that informs the user they must
give us positive y-coordinates. To create the error, we simply call error
with one argument which is a string describing the error.

function dist = hypdist(pt1, pt2)

if pt1(2) <= 0 || pt2(2) <= 0

error("y-coordinate must be positive.")

end

deltaX = pt2(1) - pt1(1);

deltaY = pt2(2) - pt1(2);

sumY = pt2(2) + pt1(2);

prodY = pt1(2) * pt2(2);

numerator = sqrt(deltaX^2 + deltaY^2) + ...

sqrt(deltaX^2 + sumY^2);

denominator = 2 * sqrt(prodY);

dist = 2 * log(numerator / denominator);

end

Now if someone tries to use our hypdist function with negative y-values,
they get an error:

CHAPTER 3. CONDITIONALS 56

>> hypdist([0, 1], [0, -1])

Error using hypdist (line 3)

y-coordinate must be positive.

Notice that none of the code after the error executed: whenever error
is called, nothing else in that function will ever execute. Consider the
function never containing the following code:

function never()

error("You silly person...");

disp("This will not display.");

end

If we try to call never, we see the following:

>> never()

Error using never (line 2)

You silly person...

>>

Notice the text "This will not display." did not display because it
occurs after the call to error.

Also notice that our if statement in hypdist above does not have an
else. In general, conditions must start with an if, and then they may
have one or more elseif clauses, they may then have an else, and then
they must end with end.

4Iteration
Computer science is no more about
computers than astronomy is about
telescopes.

Edsgar Dijkstra

4.1 while loops and not-equals

One of the most convenient things about computers is that they are much,
much faster at computations than a human. In particular, some types of
calculations we might be interested in may require hundreds, thousands,
or millions of individual calculations. While in principle we can do each of
those calculations, in reality it’s not very realistic for a human being to do
millions of calculations. A mathematician, for instance, may be interested
in determining if a given number is prime or not. In principle this is the
kind of thing we can do by hand, but reality it’s not something we really
want to do by hand for most large numbers because it requires lots of work.

Remark.
Recall that a prime number is a positive integer greater than 1 which
is not divisible by any number other than 1 and itself. For example,
the number 13 is prime since it is not divisible by any number less
than it (except 1), but the number 12 is not prime since it is divisible
by some values less than itself, namely 2, 3, 4, and 6 are all divisors
of 12.

Consider the following silly example: suppose we wanted to determine
if a given number, say 713 just for the sake of argument, was prime or not.
How could we determine this? Well, we would need to actually sit down
and check if 2 divided 713, or if 3 divided 713, or if 4 divided 713, or if
5 divided 713, ..., or if 712 divided 713. That is, there are 711 different
checks we have to perform. Each check by itself is pretty straight-forward
in Matlab: we can see if a given number n divides 713 or not by seeing if
mod(713, n) is equal to zero or not. So, we just need to compute mod(713,

57

CHAPTER 4. ITERATION 58

2), and mod(713, 3), and mod(713, 4), and ..., and mod(713, 712). We
really don’t want to write each of these by hand in Matlab, though.

Luckily, there’s a convenient way to get Matlab to perform some sort
of calculation multiple times – possibly millions of times – with only a few
lines of code. The simplest way to do this is with a while loop, whose
general form is as follows:

while (condition)

(code that executes as long as condition is true)

(after executing the code, the condition is checked again)

(if the condition is true, the code executes again)

end

A while loop evaluates a condition (like a condition that occurs in an if

statement) to see if it’s true or false. If the condition is false, the body of the
while statement (the code between while and end) is ignored and Matlab
moves on. If the condition is true, however, Matlab executes the code in
the body of the while loop, just like in an if statement. After executing
the code, however, Matlab then checks the condition again. If the condition
is true, the code executes again, and again checks the condition at the end.
This process repeats over and over until the condition finally becomes false.

Remark.
Notice that if you have a condition that never changes, that has no way
of becoming false, then the code will execute forever. This is usually
not what you want to have happen, so be sure your loop has some way
of ending!

In the case of determining if 713 is prime or not, we can use a while

loop like the following which we’ll place in a script primalityOf713.m.

n = 2;

CHAPTER 4. ITERATION 59

while mod(713, n) ~= 0

n = n + 1;

end

if n < 713

fprintf("713 is not prime; %d divides it\n", n);

else

disp("713 must be prime as nothing else divided it")

end

Let’s take a moment to carefully walk through what the above code will
do. First we create a variable n which we assigned the value two to. In
the while loop below, our condition is mod(713, n) = 0. This uses an
operator we had not yet discussed, =. This is the not-equals-to operator:
it returns true if the left-hand side and right-hand sides are not equal –
think of this as how to write 6= in Matlab. So, mod(713, n) returns the
remainder of dividing 713 by n. If this remainder is equal to zero, then
n divides 713 and our condition is false. When this happens, Matlab just
jumps down to the end below our while loop. If the condition is true,
meaning n does not divide 713, then we instead bump n up by 1. We then
repeat this process, checking if the new value of n divides 713 or not. We
finally stop once mod(713, n) equals zero. Notice that our condition will
not be true forever: if it turns out nothing less than 713 divides 713 (i.e., 713
is prime), then we will add one to n over and over and over until eventually
n = 713. Once that happens, certainly mod(713, n) will be zero (every
number divides itself), so the condition is finally false.

The last thing we do is check to see if n made it up to 713 or not. If it
did, 713 must have been prime. If not, the last value of n divides 713.

Just to be as clear as possible, let’s imagine what happens each time
the loop iterates, starting at 2:

1. n = 2. The remainder of 713 divided by 2 (i.e., the value of mod(713,
2)) is 1, so the condition is equivalent to 1 6= 0. This is true, so we
execute the code in the body of our while loop, which replaces n by
2 + 1 = 3.

2. n = 3. The remainder of 713 divided by is 2, so the condition 2 6= 0
is true, and we update n to be 4.

3. n = 4. The remainder of 713 divided by 4 is 1, and 1 6= 0, so we
update n to be 5.

CHAPTER 4. ITERATION 60

4. n = 5. The remainder of 713 divided by 5 is 3. Three is not zero, so
we update to 6, and continue.

5. ...

6. n = 22. The remainder of 713 divided by 22 is 9. This is not zero, so
update n to be 23.

7. n = 23. The remainder of 713 divided by 23 is zero. Now the condition
is false: zero equals zero, so 0 6= 0 is false. The loop ends. n is not
updated, but remains at 23.

Sure enough, if you execute this script you will get the following:

>> primalityOf713

713 is not prime; 23 divides it

As another example, let’s write a simple script to print out the first 50
integers. We can simply modify the code above by having n start at 1, and
updating our condition of the while loop to be n <= 50, and in the body
of the loop we’ll just print out n.

n = 1;

while n <= 50

fprintf("n = %d\n", n);

n = n + 1;

end

Saving this as, say, print50.m, executing the script prints out

n = 1

n = 2

n = 3

...

CHAPTER 4. ITERATION 61

n = 49

n = 50

The first few examples were a little bit simplistic, just to illustrate the
idea of a while loop, so let’s end our discussion of while loops by considering
two more interesting examples: the Collatz conjecture and determining if
any given number is prime or not.

The Collatz conjecture

The Collatz conjecture concerns a certain family of sequences of positive
integers generated in the following way. Given an integer n, we do one of
three things. If n is even, we compute n/2. If n is odd and n > 1, we compute
3n+1. If n = 1, we just stop. Now we generate a list of numbers by starting
with any number n, computing the next number using the rules above, then
computing the next number in the list by using the same procedure, but
with our most recently computed number. We continue doing this until we
get to 1. Starting from the number n = 9, for instance, we produce the
following list of numbers:

9, 28, 14, 7, 22, 11, 34, 17, 52, 26,

13, 40, 20, 10, 5, 16, 8, 4, 2, 1

Now, here’s a question: is it true that for any positive integer n we use
as our starting value, the sequence we generate will be finite? That is, will
we always eventually reach 1, or could we generate an infinite list, never
reaching 1? This is actually an open problem: no one knows the answer to
this question. If we were interested in studying this open problem, we might
first like to have some code that generates these kinds of lists of numbers
for us. In Matlab we could create function collatz which prints out a list
of numbers as follows:

function collatz(n)

while n > 1

disp(n)

if mod(n, 2) == 0

n = n / 2;

else

n = 3*n + 1;

CHAPTER 4. ITERATION 62

end

end

disp(n)

end

When we call this function with some argument n, it immediately jumps
into a while loop. As long as the number n is greater than 1, we print out
the value of n and then update n to be the next element in our sequence by
seeing if n is even or not and applying the appropriate rule. If we eventually
get down to n = 1, then the loop ends and we print out the last value of
n. (This is of course going to be 1, and we’re printing it just for the sake
of completeness.)

We can now easily generate these lists of numbers with our collatz

function. The list starting from 12, for instance, is given by executing
collatz(12):

>> collatz(12)

12

6

3

10

5

16

8

4

2

CHAPTER 4. ITERATION 63

1

Testing primality

Now let’s write a function which determines if a given number num is prime
or not by modifying our code for checking the primality of 713 above. Es-
sentially we’ll just replace the 713 in our code with num, but let’s also check
that the num we’re given makes sense. In particular, we may want to be sure
num is an integer that’s at least 2 – we don’t want to bother determining
if something like −

√
π is prime or not. If we’re given a value that’s either

not an integer or is not at least 2, then we should create an error.
Check if num is at least 2 is easy enough: we just use an if statement

where the condition is num >= 2. But how do we check to see if num is an
integer or not?

We said earlier that mod(m, n) returned the remainder of m divided by
n. This is true even if m is not an integer. For example, consider trying to
divide 72.4 by 7: 7 goes into 72.4 evenly ten times, and then there’s 2.4 left,

72.4 = 10 · 7 + 2.4.

In Matlab we have

>> mod(72.4, 7)

ans =

2.4000

We can use this to see if a number m is an integer or not by taking the
remainder of m divided by 1. The remainder will be zero if and only if 1
goes into m an even number of times – i.e., if m is an integer. Another way
to say this is that mod(m, 1) gives the fractional part of m which is zero if
m is an integer. For instance, π is not an integer whereas 19 is:

CHAPTER 4. ITERATION 64

>> mod(pi, 1)

ans =

0.1416

>> mod(19, 1)

ans =

0

Our function isprime below first determines if the given num is an in-
teger and if num is at least two. If not, then it creates an error. If num is
an integer at least two, then we loop from n = 2 until we find a divisor of
num. We then check to see if this divisor is equal to num or not: if it is, num
must be prime; if not, num is not prime.

function prime = isprime(num)

if mod(num, 1) ~= 0

error("num must be an integer.");

end

if num < 2

error("num must be at least 2.");

end

n = 2;

while mod(num, n) ~= 0

n = n + 1;

end

if n == num

prime = true;

else

CHAPTER 4. ITERATION 65

prime = false;

end

end

Now let’s create a script which uses our isprime function and a loop to
determine each of the prime numbers less than, say, 100. Calling this script
printPrimes.m we might do the following:

n = 2;

while n <= 100

if isprime(n)

fprintf("%d is prime\n", n);

end

n = n + 1;

end

Now we have can generate a list of primes less than 100:

>> printPrimes

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

CHAPTER 4. ITERATION 66

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

4.2 for loops

We saw in the previous section that we can create a while loop which
iterates a fixed number of times, with something like

n = 1;

while n <= 10

(code to execute ten times)

n = n + 1;

end

This type of construction where we loop some fixed number of times is
extremely common, and so there’s a “shortcut” in Matlab using a for loop.
The general format of a for loop is

for n=(start):(stop)

(code to execute stop - start number of times)

(n starts at ’start’, increments by one each time)

(then ends at at ’stop’)

end

CHAPTER 4. ITERATION 67

For example, a for loop that prints out the values one through ten is
given by

for n=1:10

fprintf("n = %d\n", n);

end

Executing this code prints out

1

2

3

4

5

6

7

8

9

10

Notice that we did not need to increment n ourselves in the code above:
there is no line with n = n + 1. When you create a for loop, Matlab does
this automatically for you.

Anything we can do with a while loop we can also do with a for loop
and vice versa. However, for certain types of problems, one choice may be
more natural than another. Usually it’s common to use a for loop when
you know for sure you want the loop to execute some fixed number of times,
and a while loop when you want to loop until some condition takes place,
but don’t necessarily know how long that will take.

As an example of where a for loop might be convenient, let’s create a
function which computes triangular numbers. Recall that the n-th triangu-
lar number, often denoted Tn, is the number obtained by

Tn = 1 + 2 + 3 + · · ·+ n.

CHAPTER 4. ITERATION 68

For example,

T1 = 1

T2 = 3

T3 = 6

T4 = 10

T5 = 15

...

You should know from calculus that there’s a nice formula to compute the
n-th triangular number, Tn = n(n+1)

2
, but let’s pretend we didn’t know that

formula and wanted to compute the triangular numbers in the naive way
by actually performing the summation above.

Computing the n-th triangular number is a situation where a for loop
might be desirable, because we know how many times the loop needs to exe-
cute: n times for tne n-th triangular number. The following triangularNumber

function computes the n-th triangular number:

function T = triangularNumber(n)

T = 0;

for i=1:n

T = T + i;

end

end

Note the in the example above we used i for the variable in the for

loop since we were already using n to tell us which triangular number we
wanted. Having the above function defined, we can compute Tn with the
code triangularNumber(n). For example, the fourth triangular number,
T4, is computed with

>> triangularNumber(4)

ans =

CHAPTER 4. ITERATION 69

10

Another very similar example is computing factorials: recall that n! is
defined as

n! = n · (n− 1) · (n− 2) · . . . · 2 · 1.

For example, 5! = 5 · 4 · 3 · 2 · 1 = 120. We can easily modify the code above
to create a function fact which computes factorials,

function F = fact(n)

F = 1;

for i=1:n

F = F * i;

end

end

Now we can compute 5! with the command fact(5):

>> fact(5)

ans =

120

Another common use of for loops is to iterate through a vector of values.
For example, suppose we wanted to compute the average (aka arithmetic
mean) of a collection of numbers. Say the numbers were v1, v2, v3, ..., vn
and we wanted to compute their average,

v1 + v2 + v3 + · · ·+ vn
n

If these values were contained in a vector v, so v(1) is the first value
v1, v(2) is the second value v2, and so on, then what we’d like to do is
have a loop which walks through the vector, pulling off one entry at a time,

CHAPTER 4. ITERATION 70

adding it onto the current sum of values, then divides by the number of
values. The number of values in a vector, recall, is given by the length

function. E.g., if v = [0, 5, -2], then length(v) is 3.
Putting all of this together, we can create a function average which

takes one argument, v, which is a vector of values, and returns the average
of those values.

function avg = average(v)

avg = 0;

for i=1:length(v)

avg = avg + v(i);

end

avg = avg / length(v);

end

Now we can compute the average of a list of values:

>> average([-3, 4, -17, 2, 0, 15])

ans =

0.1667

This idea of walking through a vector one element at a time is so com-
mon, there’s a built-in way to do it in Matlab using a for loop. If v is a
vector, then the code

for i=v

(code here will use ’i’ as an element in v)

(each element will appear exactly once in the)

CHAPTER 4. ITERATION 71

(order it appears in the vector)

end

will set i to be each element in the vector. For example, the function
displayEntries below simply displays each entry that appears in the given
vector.

function displayEntries(v)

for i=v

disp(i);

end

end

Passing this function a vector simply results in each element of the vector
being displayed on the screen.

>> displayEntries([7, 2, -1, 5, 3])

7

2

-1

5

3

Using this version of the for loop, our average function above could be
rewritten as

function avg = average(v)

avg = 0;

CHAPTER 4. ITERATION 72

for i=v

avg = avg + i;

end

avg = avg / length(v);

end

5Recursion
To understand recursion, you must first
understand recursion.

(Anonymous)

We now turn our attention to the last general programming topic we will
consider before moving on to discuss numerical analysis. The last technique
we mention is a powerful tool for solving many types of problems. In fact,
the basic idea does not belong exclusively to computer science, but rather
has been used by mathematicians for centuries.

5.1 The idea of recursion and induction

A common problem-solving strategy in many disciplines is to try to take
a big, difficult problem and break it up into smaller, easier problems. To
illustrate the idea, let’s consider a mathematical problem: Show that for
every positive integer n, the number 8n − 3n is divisible by 5.

At first glance this seems like a tall order: we want to show that for all
infinitely-many values of n, the number computed by 8n − 3n is a multiple
of 5. If we try to “spot check” the first few values of n, this certainly seems
to be true: 8− 3 = 5, 64− 9 = 55, 512− 27 = 485. We can’t actually check
all values of n in this way, however, since there are infinitely-many. What
we can do, however, is make one very clever observation. For each value of
n ≥ 2, we can rewrite 8n − 3n as follows:

8n − 3n = 8n − 3 · 8n−1 + 3 · 8n−1 − 3n

= 8 · 8n−1 − 3 · 8n−1 + 3 · 3n−1 − 3 · 3n−1

= 8n−1(8− 3) + 3 · (8n−1 − 3n−1)

= 5 · 8n−1 + 3 · (8n−1 − 3n−1)

At first glance it looks like we took a simple expression and replaced it with
a complicated one, but let’s notice two important things about this more
complicated expression: the first term is obviously divisible by 5, and the
second term will be divisible by 5 if 8n−1 − 3n−1 is divisible by 5. That is,
we have reduced the problem of seeing if 8n − 3n is divisible by 5 to seeing
if 8n−1 − 3n−1 is divisible by 5. Repeating the same sort of process, we
then see the problem reduces to seeing if 8n−2 − 3n−2 is divisible by 5. But

73

CHAPTER 5. RECURSION 74

then we can repeat the argument to see this is equivalent to 8n−3 − 3n−3

being divisible by 5. If we keep doing this over and over we’ll eventually
determine that 8n − 3n is divisible by 5 only if 81 − 31 is divisible by 5 –
but this we instantly know!

The key idea above is that we have a hard problem which we can try to
reduce to a slightly easier problem, and then we can reduce that problem a
little bit more, and then reduce that new problem, ..., we continue reducing
the problem until it becomes trivial. Computer scientists call this kind of
technique recursion , whereas mathematicians call it induction .

5.2 The base case

One key feature of our 8n−3n example above is that we eventually get down
to a point where we can stop reducing. Performing the arithmetic outlined
above, we eventually get down to simply 8 − 3 which of course is 5, and
then we can stop doing the reduction. In general, we always need to have
some kind of condition like this: a stopping point that we will always reach
after some finite number of reductions. This stopping condition is usually
called the base case , and you should think of it as the simplest possible
version of our problem. If we didn’t have a base case, then our reduction
procedure would never stop. This is kind of like having an infinite loop:
you just keep performing the same procedure over and over again without
anything to ever make you stop.

As another mathematical example before we write some code, let’s con-
sider the factorial. Recall that one way to define factorials is as

n! = n · (n− 1)!.

This has the same flavor as our reduction above: we reduce the problem of
computing n! to the problem of computing (n − 1)!. Of course, we repeat
the procedure to express (n − 1)! as (n − 1) · (n − 2)!, and then we want
to express (n − 2)! as (n − 2) · (n − 3)!, and so forth. Putting all of this
together, we get a string of multiplications for our n!:

n! = n · (n− 1)!

= n · (n− 1) · (n− 2)!

= n · (n− 1) · (n− 2) · (n− 3)!

...

As written, this process never ends because we can always just subtract 1
more and repeat. To prevent this procedure from going on forever we need

CHAPTER 5. RECURSION 75

a base case, a smallest possible value of n where we know the value of n!.
Of course, this should simply be 0! = 1. Taking this as our base-case, we
see that the process eventually ends: for any n ≥ 1 you give me, I can only
subtract 1 off finitely-many times before I get down to 0. E.g.,

5! = 5 · 4!

= 5 · 4 · 3!

= 5 · 4 · 3 · 2!

= 5 · 4 · 3 · 2 · 1!

= 5 · 4 · 3 · 2 · 1 · 0!

= 5 · 4 · 3 · 2 · 1 · 1
= 120

5.3 Recursive functions in Matlab

The basic format of a recursive function in Matlab is the following:

function result = myfunc(n)

if (base case condition)

result = (base case)

else

result = (some computation involving myfunc(n-1))

end

end

For example, we can write a recursive factorial function in Matlab as

function result = factorial(n)

if n == 0

result = 1

else

result = n * factorial(n-1)

CHAPTER 5. RECURSION 76

end

end

5.4 Palindromic vectors

As another, perhaps more interesting, example let’s write a function which
takes a vector as an argument, and determines if the entries in that vector
are palindromic: do they appear in the same order forwards and backwards?
For example, the vector

[1, 2, 0, 9, 0, 2, 1]

would be palindromic, but the vector

[1, 2, 0, 9, 0, 4, 1]

would not be.
So, how can we determine if a given vector v is palindromic or not?

There are a few ways we could try, but perhaps the easiest way is to “think
recursively” and try to reduce the problem of determining if v is palindromic
to seeing if some simpler vector is palindromic or not. In particular, if a
vector v is a palindrome, then there are two things that have to happen:

1. Its first entry and its last entry must be the same, and

2. the vector consisting of everything inbetween the first and last entries
must be a palindrome.

For instance, let’s consider the vector [7, 0, 5, 5, 0, 7]. We first
look at its very first and last entries,and see if they’re the same. They
are, they’re both seven, so now we ask if the vector [0, 5, 5, 0] is a
palindrome or not. To do this, we repeat the procedure: we see if this
vector’s first and last entries are the same, and if they are we see if the
vector of the middle entries is a palindrome. When should this procedure
stop? We should stop when we either determine there is no hope for the
vector to be a palindrome (e.g., the first and last entries do not match), or
the vector is trivially a plaindrome which happens if the vector has length
1 or length 0.

To actually write this in Matlab, let’s notice we need to be able to
determine a few things about a given vector. We have seen that the length

CHAPTER 5. RECURSION 77

of a vector v is given in Matlab by length(v), and we can access i-th
element of v with v(i). For instance, v(1) is the fist element of the vector,
v(2) is the second element, and so on. We’ll need to compare the first and
last entries of the vector, so we’ll want to compare v(1) and v(length(v)).
Access the last element in a vector is very common, so there’s a shortcut
for it in Matlab: we can access the element at the end of a vector v with
v(end).

We’ll also need to pull out the “middle” of the vector: the elements from
the second index to the next-to-last index. This construction of accessing
a “subvector” is also very common and there’s a simple way to do this in
Matlab. If v is a vector, then v(i:j) refers to the vector of all entries
between the i-th entry and the j-th entry, including those two endpoints.
For example, if v is the vector

v = [7, 0, -6, 1, 19, -2]

then v(3:5) is the vector containing the entries from the third element of
v up to the fifth element of v.

>> v = [7, 0, -6, 1, 19, -2];

>> v(3:5)

ans =

-6 1 19

We can thus access the “middle” of a vector v, the stuff between the
second entry and the next-to-last entry, with v(2:end-1). This gets all the
elements from the second element to one shy of the end of the vector. With
the vector v above, for example, this is

>> v = [7, 0, -6, 1, 19, -2];

>> v(2:end-1)

ans =

CHAPTER 5. RECURSION 78

0 -6 1 19

With all of this at our disposal, we can now determine if a vector is
plaindromic or not with the following isPalindrome function.

function palindrome = isPalindrome(v)

if length(v) <= 1

% If a vector is short enough, it’s

% automatically a palindrome.

palindrome = true;

elseif v(1) == v(end)

% If the ends agree, check the middle.

middle = v(2:end-1);

palindrome = isPalindrome(middle);

else

% If the ends disagree, we do not

% have a palindrome.

palindrome = false;

end

end

Now we have a function which tells us, for example, the vector [1,

7, 19, 3, 3, 19, 7, 1] is a palindrome, but [1, 7, 19, 3, 4, 19,

7, 1] is not.

>> isPalindrome([1, 7, 19, 3, 3, 19, 7, 1])

ans =

logical

1

>> isPalindrome([1, 7, 19, 3, 4, 19, 7, 1])

CHAPTER 5. RECURSION 79

ans =

logical

0

5.5 Quicksort

Let’s end our discussion of recursion by implementing the quicksort algo-
rithm. We will create a function called quicksort which takes one vector
of numbers as an argument, and returns a vector whose elements are the
same as those of the original vector, but sorted from least to greatest.

There are several different algorithms for sorting, but quicksort is one
that is especially well-suited for recursion. The idea is that we will take our
vector v and pull the first element out of the vector, and we will call this
value the pivot. We will then divide the remaining elements of v into two
halves: everything less-than-or-equal-to the pivot, and everything greater
than the pivot. These two halves are not automatically sorted, so we’ll
sort them (notice these are shorter vectors) by calling quicksort on those
vectors. We will then create a new vector whose first few entries are the
elements less than the pivot, after being sorted, followed by the pivot, fol-
lowed by the elements greater than the pivot, after sorting. This will result
in a sorted vector. When should this procedure end? We should stop our
recursive procedure once we have a vector which is short enough that we
know for certain it’s already sorted: if the vector has zero elements or one
element, it’s already sorted.

In order to implement the procedure above we need to be able to easily
divide our vector into the two halves that are less-than-or-equal-to the pivot
and greater-than the pivot. In principle we could do this ourselves by
writing a loop that walks through the vector element-by-element, and picks
off the ones less than the pivot or greater than the pivot. This sort of
procedure is so common, though, that Matlab provides us with a shortcut.
Given a boolean (true/false) condition that the elements of a vector v may
satisfy, we can construct a vector containing exactly those elements for
which the condition is true with

v(condition goes here)

CHAPTER 5. RECURSION 80

where in the condition we use the same variable name, v for instance, to
represent the individual elements of the vector we are testing the condition
against.

For example, if v = [1, 3, 2, -9, -4, 7, -2, 10], we could pull off
all the even elements with v(mod(v, 2) == 0), or all of the positive entries
with v(v > 0):

>> v = [1, 3, 2, -9, -4, 7, -2, 10];

>> evens = v(mod(v, 2) == 0);

>> positives = v(v > 0);

>> disp(evens)

2 -4 -2 10

>> disp(positives)

1 3 2 7 10

So, to get everything less-than-or-equal-to our pivot element, we might
use v(v <= pivot); everything greater-than the pivot element is given by
v(v > pivot). The one slightly subtle thing we do need to be careful about
is that we actually want to remove the pivot from the vector. If we don’t,
then we will eventually try to sort a list which is no shorter than our current
list, and when this happens the recursion repeats forever, and this is a bad
thing.

Remark.
No recursion can literally repeat forever when we execute a recursive
function on a computer. Each time you call a function, the computer
has to record the current “state” of the function that was executing
(e.g., the values of any variables created in the function), so that it
can get back to that state after the function you’ve called has finished.
This requires the computer to use up a little bit of memory. If you try
to call a function infinitely-many times, however, each time you make
a function call you use up a little more memory. Since there’s only
a finite amount of memory you eventually run out and the computer
can’t call any more functions.

In principle this kind of thing can happen when you call any re-

CHAPTER 5. RECURSION 81

cursive function, even if the process isn’t infinite it may require more
memory than is available. For this reason it’s sometimes desirable
to use iterative methods (loops) instead of recursion, since the loop
doesn’t require any additional function call and doesn’t use up any
more memory.

So, in order to remove the pivot element from our vector, let’s create a
new vector that contains everything from the second element of the vector
to the end, and then split that vector into two halves.

To put our sorted vectors back together, we can use the following type
of command:

[vec1 vec2 vec3]

takes the contents of three vectors, vec1, vec2, and vec3, and concatenates
them together into one long vector.

>> vec1 = [2, 7, 9];

>> vec2 = [0, -1, 0];

>> vec3 = [3, 1, 9];

>> v = [vec1 vec2 vec3]

v =

2 7 9 0 -1 0 3 1 9

We can also use individual values instead of vectors to insert those values
into our long vector.

>> vec1 = [1, 2, 3];

>> vec2 = [98, 99, 100];

>> v = [vec1 10 20 30 vec2]

v =

CHAPTER 5. RECURSION 82

1 2 3 10 20 30 98 99 100

function sorted = quicksort(v)

if length(v) <= 1

sorted = v;

else

% Remove the first element from the vector,

% but record its value as ’pivot’.

pivot = v(1);

remainder = v(2:end);

% Separate the remainder of the vector

% into two halves.

lessThan = remainder(remainder <= pivot);

greaterThan = remainder(remainder > pivot);

% Sort the halves.

lessThan = quicksort(lessThan);

greaterThan = quicksort(greaterThan);

% Put everything back together.

sorted = [lessThan pivot greaterThan];

end

end

Now we can sort vectors of numbers using our quicksort function:

>> quicksort([7, 3, -2, 5, -2, 10, 19, 3, 1])

ans =

-2 -2 1 3 3 5 7 10 19

CHAPTER 5. RECURSION 83

Part II

Basics of Numerical Analysis

84

6Computer Arithmetic

The purpose of computation is insight, not
numbers.

Richard Hamming

We now turn our attention away from learning the basics of Matlab, and
towards more fundamental issues about how numbers are represented in a
computer. The issues we discuss here are universal to any programming
language or piece of software. Whether you’re writing your own code in
Matlab, Java, C, Python, or some other language, or if you’re simply using
software someone else has written, it’s important to be aware of the limita-
tions involved in doing any kind of numerical calculation on a computer.

Our goal in this chapter we will explain how numbers are represented in
the IEEE floating-point format. We will begin by describing the basic idea
using decimal (base ten) numbers, simply because that number system is
the most familiar to us, and then we will switch to describing numbers in
binary, since this is how they are actually stored on the computer.

6.1 The idea in base ten

In base 10 (the number system we are most used to), we can write integers as
a string of digits, 0, 1, 2, ..., 9, and the position of a digit in this string tells
us a certain amount of information about the number we are representing.
Really, when we write down a string of digits like 4132 or 98, what we are
representing is the number which is obtained by adding up multiples of
powers of 10:

98 = 9× 101 + 8× 100

4027 = 4× 103 + 0× 102 + 2× 101 + 7× 100.

For numbers that have a fractional part, we break the number into two
halves with a dot: the portion to the left of the dot is multiplied by non-
negative powers of 10, and the part to the right is multiplied by negative
powers of 10. E.g., when we write 8.23 or 13.204 we really mean

8.23 = 8× 100 + 2× 10−1 + 3× 10−2

13.204 = 1× 101 + 3× 100 + 2× 10−1 + 0× 10−2 + 4× 10−3.

85

CHAPTER 6. COMPUTER ARITHMETIC 86

In general, we write

dn · · · d2 d1 d0.d−1 d−2 · · · d−m

where each di is a digit 0, 1, 2, ..., 9 to mean the number

n∑
i=0

di × 10i +
m∑
j=1

d−j × 10−j.

If we extend this to allow the portion of the string to the right of the dot
to be infinitely long (so we have a series instead of just a finite sum), then
we can represent every real number in this format.

dn · · · d2 d1 d0.d−1 d−2 · · · =
n∑
i=0

di × 10i +
∞∑
j=1

d−j × 10−j

Before we discussing representing numbers in binary, let’s go ahead and
note that there’s another way we could write such a number. We could
always choose to write a (non-zero) real number x as a product

x = σ · x · 10d

where σ = ±1, x is a real number in the range [1, 10), and d is an integer.
E.g.,

98 = 1× 9.8× 101

4027 = 1× 4.027× 103

8.23 = 1× 8.23× 100

13.204 = 1× 1.3204× 101

0.00278 = 1× 2.78× 10−3

−0.05283 = −1× 5.283× 10−2

In this setup where we write x = σ ·x ·10d we call σ the sign of the number,
x is called the mantissa, and the d is called the exponent.

Notice that every real number can be represented in this way – this is
basically just “scientific notation.” This might require, however, that we
can write the x part of the number be infinitely-long. Our goal today is
to explain how numbers are represented on a computer, and this infinitely-
long string of numbers is going to be problematic since any computer has
only a finite amount of memory. So we are going to have to deal with
the restriction that x can not have infinitely-many digits. Notice that the
exponent d can not be arbitrarily long either.

CHAPTER 6. COMPUTER ARITHMETIC 87

So let’s go ahead and make a restriction here. Keeping the same notation
as above, x = σ · x · 10d, let’s suppose that there are restrictions on how
many digits of x we can write down, and restrictions on the magnitude of
d. For example, let’s imagine that we want to represent numbers in this
format, but we only write down a total of 8 digits. E.g., we have eight
“boxes” into which we can write down the σ, the overlinex, and the d.
How should we allocate these boxes? It’s clear that the σ needs to take up
one, but only one, of these boxes since we need to write down either +1
or −1 in that box. Now there are seven boxes left. Maybe we decide that
the last two boxes should store the exponent part of the number. So this
number can be between −99 and 99, and the remaining five boxes can store
the mantissa. The number 123.456 we would then try to store in these eight
boxes as follows: first notice that in our notation above we would write this
as

123.45 = 1× 1.2345× 102.

So the contents of our eight boxes are as follows:

1︸︷︷︸
σ

1 2 3 4 5︸ ︷︷ ︸
x

0 2︸ ︷︷ ︸
d

Or, the number

−0.000048023 = −1× 4.8023× 10−5

would be represented as

-1︸︷︷︸
σ

4 8 0 2 3︸ ︷︷ ︸
x

0 2︸ ︷︷ ︸
d

Aside from the fact that we are using base 10 in these examples instead
of base 2, and that we’re not really making a deal about the fact that
we can store positve and negative numbers in the same box (i.e., we have
not literally restricted ourselves to only storing the digits 0 through 9 in
our boxes), this is how fractional numbers are basically represented on a
computer.

Let’s notice that we represent very big numbers in this format:

528, 340, 000, 000, 000 = 1× 5.2834× 1014

corresponds to
1 5 2 8 3 4 1 4 .

CHAPTER 6. COMPUTER ARITHMETIC 88

And we can represent very small numbers:

0.00000000000000000000000000010043 = 1× 1.0043× 10−28

corresponds to
1 1 0 0 4 3 -2 8 .

Notice that the roles of the digits in the mantissa change depending on the
exponent we use: i.e., the first digit could be in the 1014-ths place, or the
10−28-ths place. I.e., their roles are not fixed. For this reason this way of
formatting numbers is called floating point representation.

Let’s also notice there are some very obvious problems with representing
numbers in this way. For one thing, the numbers represent can not be
arbitrarily large: there are numbers that are too big for us to represent in
this floating point format with eight boxes set up the way we currently have
them set up. The largest number we can represent is

9.9999× 1099

which corresponds to maxing out all of our boxes

1 9 9 9 9 9 9 9

So we can’t store super big numbers, but let’s go ahead and notice this is
already a pretty huge number:

99999000

00000000000000000000000000000000.

So this might not actually be such a big problem in most “real world”
problems where we don’t need to deal with numbers that are anywhere
near this big.

Likewise, we can’t store arbitrarily small numbers. The smallest positive
number we can represent here is

1.0000× 10−99

which would be
1 1 0 0 0 0 -9 9

and this is admittedly a pretty small number:

0.00

00000000000000000000000000000000001.

CHAPTER 6. COMPUTER ARITHMETIC 89

So we do have a pretty big range between our largest possible and small-
est possible numbers. We could maybe argue that for most people, most of
the time, numbers in this range will suffice.

However, let’s notice there’s a much more serious problem. We only
have at most five (non-zero) digits in any number we represent. I.e., if we
wanted to represent a number like 278.1322, we don’t have enough “boxes”
to represent this number. In fact, we will have to sacrifice some of those
digits to attempt to represent this number. There are two obvious choices:
we could truncate the this seven-digit number (just chop off the last two
digits), or we could round the number to the nearest thing we can represent.
We’ll have more to say about rounding versus truncating later, but let’s not
worry too much about it right now: in this example the end result would
be the same either way. The very reasonable number 278.1322 has to get
converted to 278.13 for us to represent it in this floating point format:

278.13 = 1× 2.7813× 102 ; 1 2 7 8 1 3 0 2

Now let’s suppose we were performing some sort of experiment where we
were recording data from our experiment, and accuracy was important.
Maybe we’re studying a new type of Alzheimer’s drug and we need to
understand dosing very precisely. There may be a serious, real world change
between 278.1322, 278.1329, and 278.1335. However, note that the setup we
have here doesn’t give us a way to distinguish these values. In our floating
point setup with eight boxes, these all get turned into the same value. If we
are ignorant that such a thing might happen and expect however we store
these numbers to perfectly represent any number we want, we’re going to
run into some trouble. Of course, this is in some way the whole point of
this class since we are trying to understand how mathematics is done on a
computer.

6.2 IEEE double-precision floating-point

numbers

Above we basically described floating point numbers for decimal numbers
to illustrate the main ideas. Now we want to dive into how this is actually
done on a computer. In particular, we will describe what is known as the
IEEE double-precision floating-point format and is officially described in
IEEE 754-2008. This is the technical reference document created by the
IEEE (Institute for Electrical and Electronics Engineers) which describes
the standard way that numbers are represented in a computer. In particular,

CHAPTER 6. COMPUTER ARITHMETIC 90

when you enter a number in Matlab, this is by default how the number is
represented internally. (This also corresponds to the data type double in
languages like C and Java.)

Before we can describe this floating point format, we first need to un-
derstand how numbers are represented in binary in general (i.e., in a perfect
world without any restrictions on memory or formats for the mantissa and
exponent, etc.)

Numbers in binary

Integers

Just as in base-10 where we represent numbers as a string of digits 0, 1, 2,
..., 9 and the position of a number tells us what power of 10 to multiply
by, in binary (base-2) we represent numbers as strings of binary digits (aka
bits), 0 and 1, and the position of the number tells us what power of 2 to
multiply by.

In particular, the string of bits

bn bn−1 · · · b2 b1 b0

corresponds to the number
n∑
i=0

bi2
i

So the string 1101 corresponds to

1× 23 + 1× 22 + 0× 21 + 1× 20 = 8 + 4 + 0 + 1 = 13,

and the string 10011010 corresponds to

1× 27 + 0× 26 + 0× 25 + 1× 24 + 1× 23 + 0× 22 + 1× 21 + 0× 20

=128 + 0 + 0 + 16 + 8 + 0 + 2

=154.

Notice that in base-10, numbers have a 1’s place, a 10’s place, a 100’s
place, and so on, whereas in binary we have a 1’s place (20), an 2’s place
(21), a 4’s place (22), an 8’s place (23), etc.

If we just write down a string of 1’s and 0’s there is potentially some
ambiguity about whether we are representing a number in binary or decimal.
For example, if we just see the string 110, this might represent the number
six (if this is supposed to be binary), or one-hundered and ten (if this is
supposed to be in decimal). Usually whether we’re using binary or base-10

CHAPTER 6. COMPUTER ARITHMETIC 91

will be clear from context, but if there’s a possibility for confusion we will
put a subscript 2 to indicate the number is in binary, or a subscript 10 to
indicate the number is in written in base-10. E.g., 1102 for six and 11010

for one-hundered and ten.
To convert a number into binary, we need to find the largest power of 2

that is less than that number and then put a 1 in the corresponding spot.
We subtract that power of 2 and then repeat the process, filling in zeros
for any power of 2 that is too big. For example, let’s convert the base-10
number 375 into binary. First we need to find the highest power of 2 that
is less than 375. A moment’s thought reveals this is 256 which is 28. So 375
in binary will look like 1- - - - - - - and we need to determine whether these
seven remaining dashes are supposed to be 1 or 0. As 375 − 256 = 119,
notice that the next highest power of 2, 27 = 128 is too big, so the next
digit is zero: there is a 0 in the 27’s place. So now we know the number is
10- - - - - - -. Now the next biggest power of 2 is 26 = 64 which is less than
119, so there’s a 1 in the 26 = 64’s place. The number is thus 101- - - - - -.
We would then continue by seeing if the next highest power, 32 is less than
what remains, 119 − 64 = 55. Continuing in this way we have that 375 in
binary is 101110111.

Numbers with fractional parts

In base-10, digits to the right of a decimal place are multiplied by negative
powers of 10. Likewise, base-2 digits to the right of the decimal place are
multiplied by negative powers of 2. That is, a number with a fractional
number is in binary represented as

bn · · · b2b1b0.b−1b−2 · · · b−m

where each bit bi is either 0 or 1, and this corresponds to the number

n∑
i=0

bi2
i +

m∑
j=1

b−j2
−j.

For example, let’s consider the number in binary 1011.101. This corresponds
to

1× 23 + 0× 22 + 1× 21 + 1× 20 + 1× 2−1 + 0× 2−2 + 1× 2−3

=8 + 0 + 2 + 1 + 1/2 + 0 + 1/8

=11 + 0.5 + 0.125

=11.625

CHAPTER 6. COMPUTER ARITHMETIC 92

We can also convert decimal numbers into binary. Let’s start with 7.375,
and let’s first break this up into its integer and fractional parts. I.e., we’ll
find the binary representation for 8 and the binary representation of 0.375
and put them together. For 7, using the technique described above, we see
that 7 = 4 + 2 + 1, so in binary we have 7 = 1112. For the fractional part,
0.375 we do something similar to how we find the binary representation of
the integer part. We look at consecutive negative powers of 2, see if they
are bigger or smaller than the number (or what remains of the number),
put a 1 in the corresponding place if the number is smaller, subtract and
repeat the process; put a 0 and move to the next place if the value is bigger.

First we consider 2−1 = 0.5. This is bigger than our 0.375, so we put
a 0 in the corresponding place. The next power is 2−2 = 0.25 which is
smaller than what we have, so we put a 1 in the 1/4-th’s place in our binary
representation, subtract 0.375 − 0.25 = 0.125, and move to the next digit.
The next bit corresponds to 2−3 = 0.125 and this completes the process
(since the remainder is 0.125 − 0.125 = 0). To summarize, we have found
that 0.375 = 0+0.25+0.125 = 1/4+1/8 which tells us that in binary we have
0.375 = 0.0112. Combining this with the above we have 7.375 = 110.0112.

Just as there are numbers which in base 10 require infinitely-many places
after the decimal, there are numbers whose binary representations require
infinitely-many places. One simple example of this is the number 1/5. You
can verify that in binary we have

1/5 = 0.001100110011001100110011...

where the 0011 repeats indefinitely. Compare this to how a number like 1/3
written as a decimal in base 10 is 0.3333.... Let’s also notice that in base
10, 1/5 is simply 0.2: there are numbers that we can represent with a finite
number of decimal places in base-10 which require infinitely-many places in
binary!

Remark.
(This remark is a little bit off-topic and can be safely ignored by the
uninterested.)

At this point a reasonable question would be to ask why do we need
to convert into binary? Why can’t we just think of everything in base
10? You’ve probably heard before that everything in a computer is
0’s and 1’s, but why is that? Really, saying 0 and 1 is an abstraction
of what’s going on. A computer is more-or-less a collection of (lots
and lots) of transistors, which are essentially tiny electric (as opposed

CHAPTER 6. COMPUTER ARITHMETIC 93

to mechanical) switches that consist of three terminals: an emitter, a
base, and a collector. These terminals are connected to small pieces
of silicon that are are ”doped” with other elements, such as boron
or phosphorous. That is, impurities are intentionally introduced into
the silicon and this is done to change the number of electrons in the
material: silicon has four valence electrons, whereas phosphorous has
five and boron has three.

By replacing some of the silicon atoms in a wafer of silicon with
phosphorous, we obtain a wafer with an abundance of electrons (i.e.,
has a negative charge). If we instead replace some of those silicon
atoms with boron, then there is an absence of electrons (a positive
charge). Attaching this negative wafer to a positive wafer gives a diode.
If we attach terminals to the positive part and the negative part and
then attach these terminals to a power source, we force the current to
flow across the diode in a particular direction. The negatively charged
part of the diode is called an N-type semiconductor and emits electrons,
and the positively charged part is a P-type semiconductor and absorbs
electrons.

If we take two such diodes and sandwich them together so they
share the positively charged part (i.e., we have negative-positive-negative,
or NPN) and then attach terminals to each part (one terminal on each
negative end, and one terminal for the positive part in the middle),
we have a transistor. At the PN-interface where the P-type semi-
conductor attaches to the N-type semiconductor, electrons from the
N-side cross over to the P-side and this gives a stable arrangement
of electrons. At this PN-interface there is a voltage “barrier:” cur-
rent does not flow across the PN-interface unless attached to a power
source with high enough voltage to overcome this barrier. The clever
thing about a transistor is that we have two PN-interfaces that we can
play off of each other. By connecting terminals to the three parts of
our transistor, (the two N’s on the outside and the P in the middle),
we basically have a switch where current flows across the transistor if
the power source is high enough to overcome the voltage barrier (the
switch is on), but does not flow if the voltage is low (the switch is off).

This whole thing with ones and zeros is really an abstraction for
setting a transistor to high voltage (1) or low voltage (0) so that our
switch is “on” or “off.” By combining transistors in various ways
we can construct logic gates which take two inputs and produce an
output if the inputs are both turned on (as in an AND gate), or if at
least one of the switches is on (an OR gate), or if exactly one of the

CHAPTER 6. COMPUTER ARITHMETIC 94

switches is one (an XOR gate), or which can switch an off to an on
and an on to an off (a NOT gate), and so on. We can also chain these
gates together in various ways to build “adders” that do arithmetic
with binary numbers: treating the inputs as 1’s and 0’s in binary
representation of number, we can combine logic gates in such a way
that we can add binary numbers.

So, the whole point of this binary stuff is that at a fundamental,
“close to the metal” point of view, computers really are working with
1’s and 0’s (although this is really just saying whether there is enough
voltage to cross the barriers at the PN interfaces in a transistor).

6.3 The IEEE format

In the IEEE standard which virtually all computers and programming lan-
guages use to represent numbers we have 64 bits: sixty-four “boxes” in
which we can store either a 1 or a 0, and we want to use these 64 boxes to
represent the binary numbers above, similarly to how we represented some
fractional base-10 numbers with eight boxes above.

First some conventions. As before we will think about writing a number
x (in binary) as a product:

x = σ × x× 2d

where σ = ±1 (the sign), x is a number in the range [1, 2) (the mantissa),
and d is an integer (the exponent).

For example, 99.59374 = 1100011.100112. Written as above we have

1100011.100112 = 1× 1.100011100112 × 28.

(In case it’s easier to see in base-10, this is the same as 1×1.55615234375×
64.)

As another example, consider the number −0.1494140625. In binary
this is −0.00100110012 = −(1/8 + 1/64 + 1/128 + 1/1024). In our format above
this is

−0.00100110012 = −1× 1.00110012 × 2−3

We want to use sixty-four bits (boxes) to represent this number. Notice
that the exponent can be negative, so we need a way of representing this
negative number with just zeros and ones (no symbol ’-’). In the IEEE
standard, the way to do this is to actually cheat ane make it so that we

CHAPTER 6. COMPUTER ARITHMETIC 95

don’t have to store any negative exponents. I.e., we are going to modify
our definition above so that a number x is written as

x = σ × x× 2E−1023

where E will be a non-negative integer between 0 and 2047 (which is the
binary number consisting of consecutive 10 ones). So to represent the num-
bers 99.59374 above we would take E = 1031 (which of course we will be
convering into binary, E = 100000001112), and for −0.1494140625 we have
E = 1020 = 11111111002. So when we record the exponent in our “boxes”
of sixty-four numbers, we won’t record the actual exponent we want, but
that exponent plus 1023 (this way we can still represent negative numbers,
but recording things less than 1023), but without having to worry about
how to represent a negative number without using a special symbol for −.

(This is actually a way that computers represent negative integers, so no
mantissa or exponent stuff, without using a special symbol – or equivalently
a bit for the sign, called two’s complement, but we won’t discuss that now.)

Let’s now make an observation about the mantissa, the x, above. In
the case of base-10 numbers, that first digit in the mantissa could be any
number between 1 and 9. However, for binary this number will always be
a 1. Since this is always a 1, we don’t really need to record it and can
instead just record the stuff after the decimal. I.e., we will further modify
our current format for floating point numbers to represent x as

x = σ × (1 + x̂)× 2E−1023

where x̂ represents the fractional part of x.
Now we’re ready to describe the IEEE format: we represent a fractional

number x = σ × (1 + x̂) × 2E−1023 as a string of sixty-four bits where we
use the left-most bit for the sign of the number (0 corresponds to σ = 1,
and 1 corresponds to σ = −1), the next eleven bits for the E-portion of the
exponent, and the remaining fifty-two bits for the x̂-portion of the mantissa:

b64︸︷︷︸
σ, one bit

b63 b62 · · · b54 b53︸ ︷︷ ︸
E, eleven bits

b52 b51 · · · b2 b1︸ ︷︷ ︸
x̂, fifty-two bits

So, for example, the number 99.59374 above we saw was the same as

99.59374 = 1100011.100112

= 1× 1.100011100112 × 28

= 1× (1 + 0.100011100112)× 21031−1023

CHAPTER 6. COMPUTER ARITHMETIC 96

so, x̂ = 100011100112 and E = 1031 = 10000000111. When this is actually
stored in the computer using all 64 bits, notice we use all eleven bits of the
E portion, but so far we’ve only written down the eleven of the 52 bits for
the x̂-portion. To use all fifty-two bits, we pad with zeros on the left. So,
putting all of this together, 99.59374 is stored in the computer as

0 10000000111 00010001110011

The number −0.1494140625 we have seen above is

−0.1494140625 = −1× 1.00110012 × 2−3

= −1× (1 + 0.00110012)× 21020−1023

and so we have E = 1020 = 11111111002 and x̂ = 0.00110012. Since this
number is negative, we have set the first bit of our 64-bit representation to
1 and we have

1 01111111100 00011001

By convention, a string of a all zeros is considered to be the number 0
in the IEEE standard. Note that this is simply a convention, but without
it we would have no way of representing the number zero; using the format
above, a string of all zeros would correspond to the number

1× (1 + 0)× 20−1023 = 2−1023.

There are three other special strings of bits which, by convention, do not
represent the decimal numbers you might guess from the format.

The string with σ = 0, E a string of all 1’s and x a string of all 0’s

0 111 · · · 1︸ ︷︷ ︸
11 bits

000 · · · 0︸ ︷︷ ︸
52 bits

corresponds to infinity; the same string but with the left-most bit equalling
1 corresponds to negative infinity. Setting the exponent E to be all 1’s
and the mantissa x to be anything other than all 0’s corresponds to not a
number , often denoted NaN . This is a value that is reserved for erroneous
calculations which don’t have a well defined value, such as division by zero.

Let’s notice now that storing numbers in the format we’ve described is
not perfect. There are inherent imperfections in storing real numbers in
this format. In particular, “most” real numbers require an infinite amount
of “information” to be represented perfectly, and this is always going to be
impossible when we only have a finite amount of information to store.

CHAPTER 6. COMPUTER ARITHMETIC 97

Notice too that there are limits on the largest and smallest values we can
store. Keeping in mind the conventions about 0, ±∞ and NaN described
above, the largest number we can store in the IEEE double-precision format
is

0 1111111110 111 · · · 1

this corresponds to the value

1× (1 + (1− 2−52))× 21023 ≈ 1.7977× 10308.

This is a huge nmber. For comparision, cosmologists estimate the number
of elementary particles in the visible universe is somewhere around 1086.

Similarly, the smallest positive number we can store is a tiny, tiny num-
ber – about 2.225 × 10−308. For comparision, the mass of an electron is
about 9.109× 10−31 kg.

6.4 Accuracy of floating-point

representations

The IEEE format gives us a very wide range of numbers which we can
represent. The range of representable numbers is not the problem for most
applications; the more serious issue is the accuracy of these representations.

In particular, notice that not all numbers can be represented perfectly,
so we might like to have some way of measuring how accurately we can
store numbers.

The machine epsilon of a floating-point format is defined to be the
difference between 1 and the next largest number that can be stored. For
the IEEE double format this corresponds to

0 01111111111 000 · · · 001

which is
1× (1 + 2−52)× 21023−1023 = 1 + 2−52.

The machine epsilon is thus 1 + 2−52 − 1 = 2−52, which in decimal is about

0.0000000000000002 = 2× 10−16.

This means that two “adjacent” numbers in this format are at least 2×10−16

apart from one another. I.e., we shouldn’t trust double-precision floating-
poing numbers to more than about sixteen decimal places in base ten.

CHAPTER 6. COMPUTER ARITHMETIC 98

A more precise way to state this is that the machine epsilon tells us
the maximum amount of error that occurs when we have to round a binary
number up or down to store it in the floating-point format we’re using.

For example, suppose we have a real number x which we have determined
how to write as

x = σ × (1 + x)× 2E−1023,

but suppose the mantissa, x, requires more than 52 bits. Here we have
to make a choice about what to do when we store the number: should we
truncate the x to make it fit, or should we round it up or down?

As a simpler example, suppose we had a floating-point format where we
only had six bits to use for x, and we want to store something that would
require seven bits – say x = 0.1001111 We could truncate and throw away
the seventh bit, storing 100111, or we could round to the next nearest num-
ber up which would be 0.100111 + 0.000001 = 0.101000 and store 101000.
(This is completely analogous to rounding 0.1234997 up to 0.1235.)

Regardless of which method we use, truncating or rounding, let’s denote
by fl(x) the actual number we store in our floating point format. Notice
that in general fl(x) 6= x, but it is some small perturbation of x. I.e., for
some small ε,

fl(x) = x · (1 + ε).

The exactly value of this ε depends on x. If we can actually store x perfectly,
then x = fl(x) and ε = 0. The bigger ε is, the more “round-off” error we
have.

If we were to simply truncate the bits of x down to n bits, then fl(x) ≤ x
and so notice ε ≤ 0. Furthermore, the “worst case scenario” would be
truncating off infinitely-many 1’s. I.e., replacing

x = 0.x1 x2 x3 · · · xn 1 1 1 · · ·

with
0.x1 x2 x3 · · · xn.

This is equivalent to subtracting the number

0. 000 · · · 00︸ ︷︷ ︸
n bits

111 · · · = 0. 000 · · · 0︸ ︷︷ ︸
n− 1 bits

1 = 2−n.

Keeping in mind we are only doing this to the mantissa x, we have

x = σ × (1 + x)× 2d

fl(x) ≥ σ × (1 + x− 2−n)× 2d.

CHAPTER 6. COMPUTER ARITHMETIC 99

Now notice that as fl(x) = x(1 + ε), we have

ε =
fl(x)

x
− 1,

and thus

ε =
fl(x)

x
− 1

≥ σ × (1 + x− 2−n)× 2d

σ × (1 + x)× 2d
− 1

=
1 + x− 2−n

1 + x
− 1

=
1 + x

1 + x
− 2−n

1 + x
− 1

=
−2−n

1 + x

≥ −2−n

That is, by using n bits for the mantissa x when truncating, the possible
error in our floating-point representation is bounded by

−2−n < ε ≤ 0.

Remark.
In some references, such as the Atkinson & Han textbook, the bound
given will have an n + 1 where we have n. The difference between
the two bounds is that we are counting the number of bits in the
mantissa, x, whereas they are counting the number of bits in 1 + x
which requires one extra bit to store the 1. For example, if x = 1101
we are only counting these four bits, but some sources count five bits
for 1 + x = 1.1101.

What are the possible values of ε when we instead round up or down
to the nearest value? First, when should we round up and when should we
round down? For a number of the form

0.x1 x2 · · · xn0y1y2y3 · · ·

CHAPTER 6. COMPUTER ARITHMETIC 100

when we round, we’ll round down because we have a number that’s “less
than halfway” to the next number.

When we round down, fl(x) < x. In particular, because we assumed
there was a 0 in the (n+ 1)-st bit, that means we have subtracted off

0. 000 · · · 0︸ ︷︷ ︸
n+ 1 zeros

y1y2y3 · · ·

Regardless of what the bits y1y2y3 · · · are, this number can be no larger
than

0. 000 · · · 0︸ ︷︷ ︸
n+ 1 zeros

111 · · · = 0. 000 · · · 0︸ ︷︷ ︸
n zeros

1 = 2−(n+1)

Thus

ε =
fl(x)

x
− 1

≥ σ × (1 + x− 2−(n+1))× 2d

σ × (1 + x)× 2d
− 1

=
1 + x− 2−(n+1)

1 + x
− 1

=
1 + x

1 + x
− 2−(n+1)

1 + x
− 1

=
−2−(n+1)

1 + x

≥ −2−(n+1)

Thus, when rounding down, ε ≥ −2−(n+1). When rounding up we have a
similar type of computation. In particular, a number of the form

0.x1 x2 · · · xn1y1y2y3 · · ·

will be rounded up. This means we will add to our number

0. 000 · · · 0︸ ︷︷ ︸
n− 1 zeros

1− 0. 000 · · · 0︸ ︷︷ ︸
n zeros

1y1y2y3 · · ·

(This is what we have to add to the number to guarantee that all of the yi
bits together with the 1 in the (n + 1)-st bit roll over to zeros.) This that
we add number is at most

0. 000 · · · 0︸ ︷︷ ︸
n zeros

1 = 2−(n+1).

CHAPTER 6. COMPUTER ARITHMETIC 101

Performing the same calculation as before, but now writing fl(x) ≤ σ× (1+
x+ 2−(n+1))× 2d, we see

ε ≤ 2−(n++).

Hence, when rounding is used and we have n bits to store the manitssa, the
bounds on the error ε are

−2−(n+1) ≤ ε ≤ 2−(n+1).

Just to summarize, what we see is that there’s a difference in the magni-
tude of the possible error when we truncate a number versus rounding the
number. In particular, the worst possible error that occurs when truncating
is double the worst possible error that occurs when rounding.

Let’s also notice that not all integers in our range of possible values can
be stored exactly. In particular, if the integer’s binary representation re-
quires more bits than we can store in the mantissa, we can’t store the integer
exactly, even though it falls within the range of values we can represent.

For example, in the IEEE double-precision floating-point format, we
have 52 bits for the mantissa, and so we can store the numbers 1, 2, 3, ...,
253 exactly:

1 = 1× 20 = 1× (1 + 0.0)× 20

2 = 1× 21 = 1× (1 + 0.0)× 21

3 = 1.1× 21 = 1× (1 + 0.1)× 21

4 = 1× 22 = 1× (1 + 0.0)× 22

5 = 1.01× 22 = 1× (1 + 0.01)× 22

6 = 1.1× 22 = 1× (1 + 0.1)× 22

7 = 1.11× 22 = 1× (1 + 0.11)× 22

8 = 1× 23 = 1× (1 + 0.0)× 23

...

253 = 1.0× 253 = 1× (1 + 0.0)× 253

Notice 253 corresponds to

0 10000110100︸ ︷︷ ︸
E=1076

000 · · · 0︸ ︷︷ ︸
x

What about the number 253 +1? If chopping/truncating, we can’t represent
this number, since we’d just drop off the last 1 in the mantissa! If rounding,
this would get rounded up to

1× 1. 000 · · · 01︸ ︷︷ ︸
51 zeros

×253

CHAPTER 6. COMPUTER ARITHMETIC 102

But this is (1 + 2−52)× 253 = 253 + 2. Thus regardless of whether we round
or chop, 253 + 1 is impossible to represent in this format.

7
Quantifying error

Every careful measurement in science is
always given with the probable error ...
every observer admits that he is likely
wrong, and knows about how much wrong he
is likely to be.

Bertrand Russell

7.1 Absolute and relative error

When storing a number in the computer, there is almost always some
round-off error . I.e., the number we store is usually only an approx-
imation to the number we really want. We let fl(x) denote the number
actually stored in the computer to represent a real number x. To under-
stand how “good” of an approximation fl(x) is, we want to consider the
relative error.

Recall that if we approximate some value by some other quantity, we can
consider both the absolute and the relative error int he approximation. To
be more precise, suppose xT is the true value and xA is an approximation.
The absolute error in the approximation is defined to be

xT − xA.

For instance, if we approximate xT = e by xA = 2.7183, then the absolute
error is

xT − xA = e− 2.7183 ≈ −0.00001875.

The relative error is the absolute error divided by the true value,

xT − xA
xT

.

The relative error in approximating e by 2.7183, for example, is

e− 2.7183

e
≈ −0.000006849.

We prefer to use relative error because it scales the absolute error to give
us an idea of how bad the error is relative to the size of the true value.

103

CHAPTER 7. QUANTIFYING ERROR 104

Example 7.1.
Suppose the true value of a project which was estimated to be $1,125,000
was $1,152,000. The absolute error is $27,000, and the relative error
is

$27, 000

$1, 152, 000
= 0.0234.

Now consider a project that was estimated to cost $10,000 but actually
cost $37,000. The absolute error is again $27,000 but the relative error
is

$27, 000

$37, 000
= 0.729.

The absolute error in approximating a real number x by the floating
point number fl(x) is thus x− fl(x), and the relative error is

x− fl(x)

x
.

Let’s call this value −ε. A little algebra reveals that this is the negative of
the “perturbation” ε we had introduced before.

x− fl(x)

x
= −ε

=⇒ fl(x)− x
x

= ε

=⇒ fl(x)− x = xε

=⇒ fl(x) =x+ xε

=x(1 + ε).

How bad can this ε be? Let’s notice that when we store x we first convert
it to the form x = σ× (1+x)×2E−1023. We lose accuracy because we might
not be able to store all of the bits of x. That is,

fl(x) = σ × (1 + fl(x))× 2E−1023

Now notice the relative error is

−ε =
x− fl(x)

x

=
σ × (1 + x)× 2E−1023 − σ × (1 + fl(x))× 2E−1023

σ × (1 + x)× 2E−1023

=
x− fl(x)

1 + x

CHAPTER 7. QUANTIFYING ERROR 105

We have seen that when truncating ε ≥ 2−52. Notice that 2−52 is also
the machine epsilon of the IEEE double precision format. This is not a
consequence: carefully writing down all of the algebra we have described
above essentially proves the following theorem.

Theorem 7.1.
If truncation is used, the relative error in approximating a real number
x by the floating point number fl(x) is bounded above by the machine
epsilon.

7.2 Significant digits

We can relate the relative error in an approximation to the number of
significant digits. In approximating a number xT by xA, the number of
significant digits is the number of consecutive digits, starting from the
left-most non-zero digit, where xA agrees with xT .

Example 7.2.
If xT = e = 2.7182818... and xA = 2.7183, then xA has four significant
digits.

Notice that the number of significant digits depends on the base being
used!

Example 7.3.
If xT = 15.2718 and xA = 15.2701, then in binary xT = 1111.010001011...
and xA = 1111.010001010.... Notice in base ten there are four signifi-
cant digits, but in binary there are twelve!

CHAPTER 7. QUANTIFYING ERROR 106

In base ten, we have k significant digits if the absolute value of the
relative error is less than 5× 10−(k+1):∣∣∣∣xT − xAxT

∣∣∣∣ < 5× 10−(k+1).

Example 7.4.
If xT = 123.4567 and xA = 123.4566, then there are six significant
digits and∣∣∣∣xT − xAxA

∣∣∣∣ =
0.0001

123.4567
= 0.000000081... < 0.0000005 = 5×10−7 = 5×10−(6+1)

In binary we have a similar inequality: there will be k significant digits
of the relative error is less than 2−(k+1).

Example 7.5.
If xT = 3.625 and xA = 3.75, then∣∣∣∣xT − xAxT

∣∣∣∣ =

∣∣∣∣−0.125

3.625

∣∣∣∣ = 0.03448 < 0.0625 = 2−4 = 2−(3+1)

Now, notice that in binary xT = 11.101 and xA = 11.110, and these
two numbers have three significant digits.

Keep in mind that significant digits start from the left-most non-zero
number. If xT = 0.0001234 and xA = 0.0001257, then there are two signifi-
cant digits.

If we “normalize” the numbers by writing them in scientific notation,
such as

xT = 1.234× 10−4

xA = 1.257× 10−4

then we can just count the number of agreeing digits from the left, assuming
both numbers have the same exponents (the −4 in the ×10−4 of the example

CHAPTER 7. QUANTIFYING ERROR 107

above). If the exponents disagree, then there are no significant digits. For
instance,

xT = 1.234× 10−4 = 0.0001234

xA = 1.234× 10−5 = 0.00001234

have no significant digits.
It’s important to realize that we lose significant digits during calcu-

lations. For example, if fl(x) and fl(y) both have n significant digits in
approximating x and y, it could be that an arithmetic operation, such as
subtraction, produces fewer significant digits. That is, fl(fl(x)− fl(y)) may
have fewer significant digits than fl(x) or fl(y). Intuitively this means that
when we do calculations usings approximations, we can wind up with re-
sults which are worse approximations to the result of the calculation than
the original numbers we used were approximations. Said another way, error
can accumulate as we perform calculations with approximations. This is
very common, for instance, when subtracting two very close numbers.

Example 7.6.
Let’s consider an example in base ten, just to make the computations
easier to follow; the idea in base two is exactly the same.

Suppose we represent real numbers as decimals in base ten, record-
ing a total of four digits for the mantissa. Say the true values of x and
y are

x =
301

2000
≈ 0.150500000 . . .

y =
301

2001
≈ 0.150424787 . . .

Then our approximations, which we’ll continue to denote as fl(x) and
fl(y), are

fl(x) = 1.505× 10−1

fl(y) = 1.504× 10−1.

Now notice that the true value of the difference x− y is

x− y =
301

2000
− 301

2001
=

301 · 2001− 301 · 2000

2001 · 2000
= 0.0007521

CHAPTER 7. QUANTIFYING ERROR 108

However, the difference in our approximations is

fl(x)− fl(y) = 1.505× 10−1 − 1.504× 10−1

= (1.505− 1.504)× 10−1

= 0.001× 10−1

= 0.0001

= 1× 10−4

Now, when we approximate the true difference we have

fl(x− y) = 7.521× 10−5

whereas our approximation to the difference using the approximations
is

fl(fl(x)− fl(y)) = 1× 10−4.

So, even though fl(x) and fl(y) had four significant digits, the difference
has zero significant digits in approximating x− y!

7.3 Accumulation of error

In general, floating point approximations inherently contain error, and as
we do calculations with these approximations, that error can propagate. It’s
good to understand how “quickly” this can occur, so we will compute how
quickly the relative error grows for each of the four arithmetic operations.

Multiplication

Let’s consider multiplication first. Suppose we have two real numbers x
and y which we approximate with floating point numbers fl(x) and fl(y).
Letting −εx and −εy denote the relative error in the approximations, we
may write fl(x) = x(1+εx) and fl(y) = y(1+εy). We want to multiply these
numbers together – we want to approximate the product xy. We’ll perform
multiplication with the floating-point approximations to obtain the product
fl(x) · fl(y). Notice, however, that even though fl(x) and fl(y) are numbers
we have represented in the computer, their product is not necessarily a
number we can represent, and so the result of our multiplication is fl(fl(x) ·
fl(y)). Letting −εxy denote the relative error in approximating fl(x)·fl(y) by
fl(fl(x) · fl(y)), so we may werite fl(fl(x) · fl(y)) = fl(x) · fl(y) · (1 + εxy). How

CHAPTER 7. QUANTIFYING ERROR 109

does this number compare to the true product xy? A little bit of arithmetic
gives the following:

fl(fl(x) · fl(y)) = fl(x) · fl(y) · (1 + εxy)

= x(1 + εx) · y(1 + εy) · (1 + εxy)

= xy(1 + εx)(1 + εy)(1 + εxy)

= xy(1 + εx + εy + εxεy + εxεxy + εyεxy + εxεyεxy).

Keep in mind each relative error, each ε above, is less than the machine
epsilon which is a tiny number. When we multiply two tiny numbers we
get a really tiny number, and so the sum of ε terms above has the form

εx + εy + (product terms) ≈ εx + εy.

That is, the relative error in approximating the true value of the product
xy with the floating-point representation of product the floating-point rep-
resentations of x and y is approximately the sum of the relative errors in
approximating x and y.

Division

We can perform a similar sort of analysis for division, although the compu-
tation is a little bit more involved. In particular, we will replace one of our
factors that appears with an infinite series. Let’s first recall that if r is a
real number with |r| < 1, then the geometric series

∞∑
k=0

rk

converges to
1

1− r
.

Below we will want to replace a factor of the form 1
1+r

with a series, and so
we simply note

1

1 + r
=

1

1− (−r)
=
∞∑
k=0

(−r)k =
∞∑
k=0

(−1)krk.

Using the same notation as above, in calculating the propogation of error
with multiplication, but letting −εx/y denote the relative error in approxi-

CHAPTER 7. QUANTIFYING ERROR 110

mating the number fl(x)/fl(y), we have the following:

fl

(
fl(x)

fl(y)

)
=

fl(x)

fl(y)
(1 + εx/y)

=
x(1 + εx)

y(1 + εy)
(1 + εx/y)

=
x

y
(1 + εx)(1 + εx/y) ·

1

1 + εy

Now we replace the right-most factor with our series as described above.

x

y
(1 + εx)(1 + εx/y) ·

1

1 + εy

=
x

y
(1 + εx)(1 + εx/y) ·

∞∑
k=0

(−1)kεky

=
xy

y
(1 + εx/y + εx + εxεx/y)(1− εy + ε2

y − ε3
y + · · ·)

As mentioned when we computed the propogation of error for multiplica-
tion, each ε term is less than the machine epsilon which is a tiny number
and so products of such terms are extremely tiny. We unceremoniously
decide to ignore these extremely small values to write the following.

xy

y
(1 + εx/y + εx + εxεx/y)(1− εy + ε2

y − ε3
y + · · ·)

≈x
y

(1 + εx/y + εx)(1− εy)

=
x

y
(1 + εx/y + εx − εy − εyεx/y − εxεy)

≈x
y

(1 + εx/y + εx − εy).

That is, the relative error in approximating the quotient x
y

is approximately

εx/y + εx − εy

Addition and Subtraction

Since subtraction is equivalent to addition with a negative number we can
treat addition and subtraction as the same thing for the purposes of com-
puting how error propagates.

CHAPTER 7. QUANTIFYING ERROR 111

Remark.
An obvious question presents itself now: why can we treat addition
and subtraction as the same, but not treat multiplication and division
as the same? Isn’t division by y the same as multiplication by 1/y?
Mathematically, multiplication and division are basically the same,
but notice that to multiply by 1/y we would have to actually compute
what 1/y is. Given the decimal expansion of a number, computing 1/y
is non-trivial: there is some actual work we’d have to do to find the
decimal expansion of the inverse of y. For addition, however, life is
easier. In particular, subtracting y is the same as adding −y and it’s
completely trivial for us to find the decimal expansion of −y given
that of y. In terms of floating-point formats all we have to do is flip
our sign bit.

Using the same sort of notation as before, letting εx+y represent the
relative error in approximating fl(x) + fl(y) by fl(fl(x) + fl(y)) we compute

fl(fl(x) + fl(y))

= [fl(x) + fl(y)] (1 + εx+y)

= [x(1 + εx) + y(1 + εy)] · (1 + εx+y)

=(x+ y) ·
[
1 +

x

x+ y
εx +

y

x+ y
εy +

x

x+ y
εxεx+y +

y

x+ y
εyεx+y + εx+y

]
≈(x+ y) ·

(
1 +

x

x+ y
εx +

y

x+ y
εy + εx+y

)
The relative error in addition is thus approximately

x

x+ y
εx +

y

x+ y
εy + εx+y.

Notice that unlike the relative errors we had for multiplication and division,
these relative errors depends on both x and y. In particular, the fractions
x
x+y

and y
x+y

could actually be very large numbers. This happens when the

denominators in these fractions are very small; when x+ y ≈ 0. (I.e., when
we subtract two numbers which are very close to one another.)

7.4 Considerations for programming

We have seen above that the error in floating-point representations prop-
agates differently for different arithmetic operations. In particular, multi-

CHAPTER 7. QUANTIFYING ERROR 112

plication and division are considered stable operations since the relative
error grows slowly: all of the terms in our approximation of relative er-
ror are ε terms and are generally very small numbers. However, addition
and subtraction are considered unstable since the relative error can grow
quickly: the terms in our approximation of relative error have factors that
are fractions of x and y and these fractions could be quite large.

These observations about the stability or unstability of arithmetic op-
erations have practical consequences for computer programs, two of which
we’ll now demonstrate. As we will see, knowledge of how error propagates
can help us to write computer programs which perform more accurate cal-
culations. If we had a program which did some computation requiring
additions and subtractions, but found some way to perform the same calcu-
lation using multiplications and divisions, there will be less concern about
the error in our floating-point computations growing too quickly.

Roots of a quadratic

Consider for instance a quadratic equation which has been as

x2 + 2bx− 1 = 0

where b is some fixed positive number. In various applications we may need
to compute the roots of such a quadratic, and the most obvious way to do
this is with the quadratic formula. The quadratic formula applied to the
above tells us the roots are

x =
−2b±

√
4b2 + 4

2

= −b±
√
b2 + 2

Let’s consider the solution with the positive root for a moment,

x = −b+
√
b2 + 2.

Notice that since b =
√
b2, we must have b ≈

√
b2 + 2. Hence if we try to

compute −b+
√
b2 + 2 the error that occurs could be significant. However,

we may be able to write our root in a way that avoids this subtraction of
two very close numbers as follows:

x2 + 2bx− 1 = 0

=⇒ x2 + 2bx = 1

=⇒ x(x+ 2b) = 1

=⇒ x =
1

x+ 2b
.

CHAPTER 7. QUANTIFYING ERROR 113

Now keep in mind we know from the quadratic formula that x really does
equal −b +

√
b2 + 2, the issue is we don’t want to compute this on a com-

puter using floating-point numbers because of the error. However, when we
replace the x in the denominator above with −b+

√
b2 + 2 we have

x =
1

x+ 2b

=
1

−b+
√
b2 + 2 + 2b

=
1

b+
√
b2 + 2

We should trust the computation

x =
1

b+
√
b2 + 2

more than the computation

x = −b+
√
b2 + 2

because, even though mathematically they are the same, when performed
on a computer −b+

√
b2 + 2 is more likely to have greater relative error.

To make all of this concrete, let’s actually do both computations and
compare the results. Let’s consider the quadratic of the above form where
b = 478,

x2 + 2 · 478x− 1 = 0.

The true positive solution to this quadratic is

x =
√

228485− 478

which as a decimal is approximately 0.00104602396....
If we try to compute this using numbers stored in the IEEE double-

precision floating-point stardard, then x = 1
478+

√
4782+2

will give us

0.0010460228

whereas x = −478+
√

4782 + 2 will result in 0.002092045. The same number
computed using divisions has much less error. In terms of significant digits,
the first computation has six significant digits with the true value, whereas
the second has zero!

In terms of relative error, the division calculation has a relative error of
about

1.08685× 10−10

whereas the relative error in the second computation (subtracting two nearby
numbers) is about

−0.999972

CHAPTER 7. QUANTIFYING ERROR 114

Sums of several small numbers

As another example, let’s consider computing the partial sum of the first
one million terms of the harmonic series:

1 +
1

2
+

1

3
+ · · ·+ 1

999999
+

1

1000000

Of course, mathematically the order in which we perform the calculation
shouldn’t matter; it shouldn’t matter if we compute the sum as above or as

· · · 1

1000000
+

1

999999
+ · · ·+ 1

3
+

1

2
+ 1.

However, if we evaluate these sums on a computer using the IEEE single-
precision floating-point standard (this is similar to the double-precision
standard we have discussed in class, but only 32 bits are used; this is the
float data type in a language like C or Java), we will calculate different
results.

In Matlab we can use single precision floating-point numbers by using
single to store our numbers this way. (By default Matlab uses double
precisions, so we have to explicitly tell it when we want to use single pre-
cision.) We’ll compute these sums with for-loops that execute one million
times, calling the sum of 1 + 1/2 + · · · + 1/100000 forwards and the sum of
1/1000000 + · · ·+ 1/2 + 1 backwards.

forwards = single(0);

for i = 1:10^6

forwards = forwards + 1 / i;

end

backwards = single(0);

for i = 10^6:-1:1

backwards = backwards + 1 / i;

end

fprintf("The forwards sum is %f\n", forwards);

fprintf("The backwards sum is %f\n", backwards);

CHAPTER 7. QUANTIFYING ERROR 115

Remark.
Notice that above to compute the backwards sum we used a for loop
with i = 10^6:-1:1. This for loop starts at one million, 106, and
decrements by 1 each time until 1 is reached. In general, a for loop
with i = a:b:c will start at a, then add b after each iteration until c
is reached.

Executing this code gives

The forwards sum is 14.357358

The backwards sum is 14.392652

Of course, mathematically these two sums are supposed to be equal, so
what’s going on? To understand why these two sums are different, let’s
consider a general summation whose terms are given by a sequence of real
numbers a1, a2, ..., aN ,

S =
N∑
i=1

ai.

In the following, we will let fl(ai) = ai · (1 + εi) for each ai, and we will
denote the sum of the first k floating point representations of the first k
values of the ai by Sk. Notice that we may write Sk = ak + Sk−1 for k ≥ 2.

The floating point representation of S1 is really just the floating point
representaiton of a1:

S1 = fl(a1) = a1 · (1 + ε1)

The floating point representation of S2 requires we add a2 onto S1. This
S1 already has some error in it, and working through the arithmetic we see
S2 can be written as

S2 = fl(a2 + S1)

= fl(a2 + S1) · (1 + ε2)

= a2(1 + ε2) + S1(1 + ε2)

= a2(1 + ε2) + a1(1 + ε1)(1 + ε2)

CHAPTER 7. QUANTIFYING ERROR 116

We can repeat this sort of procedure for S3 as well to obtain

S3 = fl(a3 + S2)

= (a3 + S2)(1 + ε3)

= a3(1 + ε3) + S2(1 + ε3)

= a3(1 + ε3) + a2(1 + ε2)(1 + ε3) + a1(1 + ε1)(1 + ε2)(1 + ε3)

This pattern continues so that in general the k-th term of our summation
is written as

Sk =ak(1 + εk) + ak−1(1 + εk−1)(1 + εk) + ak−2(1 + εk−2)(1 + εk−1)(1 + εk)+

· · ·+ a1(1 + ε1)(1 + ε2) · · · (1 + εk)

Notice that the earlier terms of the summation get multiplied by more
error terms. Now, letting S denote the true value of the sum, the absolute
error in approximating the sum by the N -th sum of floating point numbers
SN is

S − SN

=
N∑
i=1

ai −
N∑
i=1

ai(1 + εi)(1 + εi+1) · · · (1 + εN)

=
N∑
i=1

ai (1− (1 + εi)(1 + εi+1) · · · (1 + εN))

=
N∑
i=1

ai (1− [1 + εi + εi+1 + · · ·+ εN + εiεi+1 + εiεi+2 + · · · εiεN + · · ·+ ε1ε2 · · · εN])

≈
N∑
i=1

ai (1− 1− εi − εi+1 − · · · − εN)

=
N∑
i=1

−ai(εi + εi+1 + εi+2 + · · ·+ εN)

Again, this simply means the earlier a term appears in the summation, the
more error it is going to be multiplied by in the final sum. Thus, to minimize
the error we should rearrange the sum so that smaller values appear earlier
in the sum. In terms of our forwards and backwards above, this means
backwards is the more accurate estimate.

8Rootfinding

The world looks like a multiplication-table,
or a mathematical equation, which, turn it
how you will, balances itself.

Ralph Waldo Emmerson

We now turn our attention away from technical issues of storing numbers
in a computer and towards algorithms for solving mathematical problems.
Many of these algorithms will require that we solve a system of linear equa-
tions, and before discussing those algorithms we should have a review of
some basic linear algebra. Before doing that, however, we will go ahead
and mention some common algorithms for finding the solutions of an equa-
tion which will not require any linear algebra.

Suppose we wish to find the solutions to a particular eqation of the form
f(x) = y0, or perhaps f(x) = g(x). Notice first the we may always assume
the right-hand side of the equation is zero. By subtracting anything on the
right-hand side to the left, such as f(x)−y0 = 0 or f(x)−g(x) = 0. For this
reason we may always assume our equation is written in the form f(x) = 0,
and we want to find a value of x that makes this true.

In very simple cases this may simply be an issue of doing the necessary
algebra, but in most cases we won’t be able to do do the algebra to explicitly
solve for x. For example, it’s not so clear how to find an x such that

√
x+ x3 − 13 = 0,

or
cos(x) = sin(x2).

In situation such as these, we may resort to approximating a solution of the
equation numerically with a computer. There are many different ways of
doing this, but we will discuss the three most important algorithms: bisec-
tion, Newton’s method, and the secant method. None of these algorithms is
perfect; each has its own pros and cons. As we will see, Newton’s method is
typically very fast, but may not converge to a root. The bisection algorithm
will always converge to a root (under certain conditions), but is rather slow.

117

CHAPTER 8. ROOTFINDING 118

8.1 The bisection algorithm

Suppose we wish to approximate a solution to the equation f(x) = 0. First
we might want to know that such a solution actually exists before we spend
a lot of time trying to find the solution. One simple condition guaranteeing
a solution is the following: if f is continuous on an interval [a, b] and if
f(a) < 0 and f(b) > 0 (or vice versa), then by the intermediate value
theorem there must exist an x ∈ [a, b] such that f(x) = 0. Throughout
this section we will assume f(x) is continuous and that we have found an
interval [a, b] where f(a) and f(b) have opposite signs. A concise way to
say this is that f(a) · f(b) < 0.

To estimate the solution we will try to “zero in” on a smaller interval
which must contain the true solution. We do this by chopping the interval
[a, b] into two halves. Letting c = a+b

2
denote the midpoint between a and

b, we consider the intervals [a, c] and [c, b]. Notice that one of three things
must happen:

1. f(c) = 0, in which case x = c is the solution;

2. f(a)f(c) < 0, in which case the solution is contained in the interval
[a, c]; or

3. f(c)f(b) < 0, in which case the solution is contained in the interval
[c, b].

That is, we can cut our range of possible values for the solution in half
very easily. Repeating this procedure we can in principle create arbitrarily
small intervals which are guaranteed to contain the solution. In particular,
if we want to approximate the solution to with some ε distance of the true
value, we can just iterate this procedure, continually chopping our intervals
in half, until we arrive at an interval of length less than ε, and then use
either endpoint of the interval as our approximation to the solution.

At each step of the iteration we check to see if our interval is less than
the desired size ε. If so, we stop and return one of the endpoints. If not,
we determine the midpoint c of the interval. We then simply update the
endpoints of our interval by replacing the left-hand endpoint a with c if we
determine the root is in the right-hand interval; or replacing the right-hand
endpoint b with c if we determine the root is in the left-hand interval.

Since you will need to implement the bisection algorithm yourself in a
homework assignment, we won’t give the Matlab code here, but we instead
give pseudo-code. That is, we give the basic idea of how the code should
work without writing down the actual Matlab.

CHAPTER 8. ROOTFINDING 119

Given a function f, two endpoints a, b,

and a desired accuracy epsilon.

Check to see if f(a) * f(b) < 0. If not, create

an error.

While b - a > epsilon:

Set c to be (a + b) / 2

If f(c) * f(a) < 0:

Update b to be c

Else:

Update a to be c

Return the last value of b

Notice in the pseudo-code above we did not actually check to see if the
c we computed was a root of f or not. The vast majority of the time we
will never find the true root, so we don’t bother to check in the above. If
you wanted to, you could update the code to explicitly check if c was a root
and if so then prematurely end the loop. (In Matlab this is done with the
keyword break.)

To illustrate the idea, let’s work through an explicit example. Suppose
wanted to estimate a value of x solving cos(x) = sin(x2) in the interval
[0, π/2], and we wanted our estimate to be within 1/100 of the true solution.
Then our function f would be f(x) = cos(x)− sin(x2), our endpoints would
be a = 0 and b = π/2 ≈ 1.57079633, and ε = 0.01.

We first compute that f(a) = 1 and f(b) = −0.6242. Since this produce
is negative, we begin the loop.

On the first iteration, b−a is 1.57079633−0 which is larger than 0.01. We
compute c = a+b

2
= 1.57079633

2
= 0.78539816. Now we multiply f(c) · f(a) =

0.78539816 ·1. This is positive, so the condition in the if statement is false,
and we execute the code in the else clause. That is, we will update a to
be 0.78539816, and leave b alone.

On the second iteration, b−a = 1.57079633−0.78539816 = 0.78539816.
This is greater than 0.01, so the loop continues. We now compute c = a+b

2
=

1.1780725, then multiply f(c) · f(a) = −0.606399 · 0.12863799. This is less
than zero, so the condition in the if statement is true, and we update b to
be the current value of c, 1.1780725, and we leave the value of a alone.

CHAPTER 8. ROOTFINDING 120

At this point we know the solution is between a = 0.78539816 and
b = 1.1780725.

On the third iteration we check b − a = 0.39269908. This is greater
than 0.01, so the loop continues. We compute c = 0.88357293, then check
f(c) ·f(a) is negative. It is, so we update b = 0.88357293 and leave a alone.

On the fourth iteration we compute b− a = 0.19634959, this is greater
than ε = 0.01, so the loop continues.

In this way we continue to update a and b until their difference is less
than 0.01. Noticing that the distance between a and b halves at each step.
For this reason the process can not continue forever: if we take any positive
number and cut it in half enough times, it will eventually get smaller than
any other positive number. That is, limn→0

b−a
2n

= 0 and so it will eventually
be less than ε. We can actually be more precise about exactly how long it
will take the bisection algorithm to get down to an interval of length less
than any given ε.

Suppose that we let an and bn denote the endpoints of the interval we
have after the n-th iteration of the bisection algorithm. Since the intervals
are halved at each step we have

bn+1 − an+1 =
1

2
(bn − an).

CHAPTER 8. ROOTFINDING 121

We then easily see that bn − an = 1
2n

(b− a) by substitution:

b1 − a1 =
1

2
(b− a)

=⇒ b2 − a2 =
1

2
(b1 − a1)

=
1

2
· 1

2
(b− a)

=
1

22
(b− a)

=⇒ b3 − a3 =
1

2
(b2 − a2)

=
1

2
· 1

22
(b− a)

=
1

23
(b− a)

=⇒ b4 − a4 =
1

2
(b3 − a3)

=
1

2
· 1

23
(b− a)

=
1

24
(b− a)

...

=⇒ bn − an =
1

2n
(bn − an).

Letting α temporarily denote the true root of the function, we notice that
the distance between an and α goes to zero. Since an ≤ α ≤ bn we have

|α− an| ≤ bn − an =
1

2n
(b− a).

Similarly, |α− bn| ≤ 1
2n

(b− a). Thus both sequences of endpoints approach
the true solution α as n goes to infinity.

We want to iterate the bisection algorithm until bn−an is less than ε. We
see easily that this must happen, but how many iterations does it require?
Suppose the number of required steps was N , then from our computations
above we see that

CHAPTER 8. ROOTFINDING 122

bN − aN <ε

=⇒ 1

2N
(b− a) <ε

=⇒ b− a
ε

< 2N

=⇒ log2

(
b− a
ε

)
< N

That is, we want the number of iterations N to be the smallest integer such
that N > log2(b− a/ε) and this is simply the ceiling of this number. This
proves the following proposition.

Proposition 8.1.
Starting with endpoints a and b, the bisection algorithm will approxi-
mate a solution to f(x) = 0 with ε distance of the true solution after⌈

log2

(
b− a
ε

)⌉
iterations.

To estimate the solutions to cos(x) = sin(x2) starting in the interval
[0, π/2] within ε = 0.01 of the true solution, for example, will require eight
iterations as ⌈

log2

(
π/2− 0

0.01

)⌉
= d7.2953...e = 8.

8.2 Newton’s method

Another common root finding algorithm, called Newton’s method, has the
advantage of typically being faster than the bisection algorithm (that is,
it requires fewer iterations to achieve an approximation which is in within
a some desired distance of the true solution), and is often taught in first-
semester calculus classes. As we will see, analyzing Newton’s method will
require some more sophisticated ideas than were used to analyze the bi-
section algorithm above, and so we will have to interrupt our discussion of
Newton’s method to recall some facts about linear algebra and calculus.

CHAPTER 8. ROOTFINDING 123

The basic idea behind Newton’s method is that if we have a differentiable
function f , then we can approximate f near a point x0 by the line tangent
to the graph y = f(x0) at (x,f(x0)). Since the slope of this line is the
derivative f ′(x0), the equation of the tangent line is

y − f(x0) = f ′(x0) · (x− x0).

Instead of determining where y = f(x) crosses the x-axis, we will determine
where this tangent line crosses the x-axis. This is extremely easy because
we simply plug 0 in for the y above and then solve for x:

0− f(x0) = f ′(x0) · (x− x0)

=⇒ −f(x0)

f ′(x0)
= x− x0

=⇒ x = x0 −
f(x0)

f ′(x0)
.

We will treat this x-coordinate we’ve calculated, call it x1, as a new ap-
proximation to the root of f(x). Repeating the procedure from that point
we can find the tangent line to y = f(x) at x1, and determine where that
line crosses the x-axis, call that point x2:

x2 = x1 −
f(x1)

f ′(x1)
.

We can then repeat this process to find a third approximation,

x3 = x2 −
f(x2)

f ′(x2)
,

and so on. In general, given the n-th approximation xn, we compute the
next approximation xn+1 by

xn+1 = xn −
f(xn)

f ′(xn)
.

Example 8.1.
Use Newton’s method to approximate the solution to

x3 + 3x2 + x− 40 = 0.

CHAPTER 8. ROOTFINDING 124

Here we have

f(x) = x3 + 3x2 + x− 40

f ′(x) = 3x2 + 6x+ 1

Thus we compute succives approximations using the formula

xn+1 = xn −
x3
n + 3x2

n + xn − 40

3x2
n + 6xn + 1

Notice that we need a starting point x0 from which we will begin our
approximations. We will semi-arbitrarily chose x0 = 4 as our stating
point. The sequence of numbers generated by the formula above is
then

x0 = 4.000000000000000

x1 = 2.958904109589041

x2 = 2.622826786744639

x3 = 2.587950413448695

x4 = 2.587590568591517

x5 = 2.587590530523929

Notice that in the example above the values Newton’s method is giving
us seem to have stabilized to the ten-millionths place! (The first seven
digits after the decimal place have stabilized; 107 is ten million, 10−7 is one
ten millionth.) For the sake of comparison, supposed we used the bisection
algorithm to approximate a root of the polynomial in the example above
to within one ten millionth of the true value starting with the interval
[a, b] = [2, 4]. It would take the bisection algorithm⌈

log2

(
4− 2

10−7

)⌉
= 25

It will take the bisection algorithm five times as long to compute the same
root!

We would like to analyze Newton’s method more precisely, and to do
this we will need to use Taylor’s remainder theorem. We will need Taylor’s
remainder theorem at other points in the semester as well, so this is a good
time to spend a little while reviewing some facts about Taylor polynomials

CHAPTER 8. ROOTFINDING 125

and Taylor’s theorem. Since Taylor polynomials come from solving a certain
system of linear equations, and we will need to solve lots of various systems
of linear equations in discussing other algorithms, however, we will first
spend some time review the basics of linear algebra.

After the necessary background in linear algebra and calculus has been
established, we will come back to this issue of analyzing Newton’s method.

Part III

Review of linear algebra and
calculus

126

9Linear algebra

Algebra is the metaphysics of arithmetic.

John Ray

Now that we know the basics of Matlab and how numbers are stored
in a computer, we’re almost ready to start applying what we’ve learned to
see how to use a computer to solve mathematical problems. In particular,
we are going to be interested in developing and implementing algorithms
for solving some common types of mathematical problems. Most of these
algorithms will boil down to solving a system of linear equations, and some
will also require some basic facts from calculus. In this chapter we recall
some of the basic theory about linear algebra, and in the next we will
recall some basic properties of Taylor polynomials. For the sake of time our
treatment will not be completely comprehensive, but we will cover the bits
of linear algebra and calculus that are most relevant to us.

9.1 Systems of linear equations

A linear equation in n variables x1, x2, ..., xn is an equation which may
be written as

a1x1 + a2x2 + · · ·+ anxn = b

where a1, a2, ..., an, and b are real or complex numbers, and the x1, ..., xn
are unknowns . The constants a1, a2, ..., an are called the coefficients of
the equation.

Example 9.1.
Each of the following is a linear equation:

(a) 6x+ 2y = 3

(b) x1 − x2 + 3x3 + 22
7
x4 = 2

(c) x− y + z = 0

127

CHAPTER 9. LINEAR ALGEBRA 128

Example 9.2.
The following are not linear equations:

(a) xy = 1

(b) x1+x2
x3

= x4 − x5

(c) x2 = x+ y

Let’s go ahead and notice at this point that the set of all solutions to a
linear equation in two variables gives us a line. For example, the collection
of all (x, y) pairs that satisfy the linear equation

6x+ 2y = 3

is a line. This might be easiest to see if we take our linear equation and
rewrite in the more familiar slope-intercept form of a line by solving for y:

6x+ 2y = 3

=⇒ 2y = −6x+ 3

=⇒ y = −3x+
3

2

This is a line of slope −3 which passes through the point (0, 3/2) as in
Figure 9.1 on the following page.

It is because of this graphical interpretation that equations of the form
ax + by = c in two dimensions give lines that we call the functions above
linear functions and equations with linear functions are linear equations.
Notice that in three dimensions the set of solutions to a linear equation
give a plane and not a line, as in Figure 9.2, but we still use the term
“linear.”

A system of linear equations is a collection of linear equations, all
in the same number of variables.

Example 9.3.
Each of the following are systems of linear equations:

CHAPTER 9. LINEAR ALGEBRA 129

x

y

Figure 9.1: The set of points satisfying the linear equation 6x + 2y = 3 is
a line in the plane.

y

x

z

Figure 9.2: The set of points satisfying the linear equation x− y+ z = 0 is
a plane in 3-space.

(a)

3x+ 2y =4

6x− y =9

CHAPTER 9. LINEAR ALGEBRA 130

(b)

4x+ 3y =3

4x+ 3y =2

(c)

x+ y + z =3

2x− y + 3z =0

A solution to a system of a linear equations is a collection of numbers,
one for each variable, which makes all of the equations true simultaneously.
In the case of Example 9.3(a) it’s easy to check that (x, y) = (22/15,−1/5)
is a solution to the system by simply plugging x = 22/15 and y = −1/5 into
each equation in the system and verifying that both equations are true:

3 · 22

15
+ 2 · −1

5
=

22

5
− 2

5

=
20

5

=4

6 · 22

15
− −1

5
=

44

5
+

1

5

=
45

5

=9

In Example 9.3(b) it’s also easy to see that there are no solutions to
the system: there is no choice of x and y that can make 4x + 3y = 3 and
4x+ 3y = 2 at the same time, since 3 6= 2.

It’s a little bit harder to see, but there are actually infinitely-many
different solutions to Example 9.3(c). Let’s try to explain why this is. If
we solve the first equation for y we have

y = 3− x− z.

CHAPTER 9. LINEAR ALGEBRA 131

So triple (x, y, z) solving the system has to also satisfy this equation (since
this is just the first equation rewritten). Now if (x, y, z) is a solution to the
system, then it must also solve the second equation as well as y = 3−x−z.
This means we can rewrite the second equation as

2x− (3− x− z) + 3z = 0.

If we now solve this equation for z we have

2x− (3− x− z) + 3z = 0

=⇒ 3x+ 4z − 3 = 0

=⇒ z =
3− 3x

4
.

If we now plug this back into y = 3− x− z we have

y =3− x− 3− 3x

4

=
12− 4x

4
− 3− 3x

4

=
9− x

4
.

So, what does this mean? It means if (x, y, z) is a solution to the system,
then y and z are both determined by x:

y =
9− x

4
and z =

3− 3x

4
.

Here x can be whatever value you’d like (in a situation like this we some-
times call x a free variable) and once you’ve chosen x, you know what
y and z must be. Since there are infinitely-many different choices for x (x
can be any real number you’d like), there are infinitely-many solutions.

Right now the above algebra probably seems tedious – easy, but a little
bit of boring work to figure out. We will quickly see that there are some
algorithms that make finding solutions to systems like this much easier.

Solution Sets

Given a system of linear equations our goal will typically be to find all
possible solutions to the system. The collection of all possible solutions is
called the solution set of the system. In principle, the solution set of an
arbitrary system of equations could be very complicated, but for systems
of linear equations, the solution sets are actually very nice.

CHAPTER 9. LINEAR ALGEBRA 132

In fact, the solution set of a system of linear equation comes in one of
three flavors: it could be empty (no solutions), it could contain exactly one
point (a unique solution), or it could contain infinitely-many points. Let’s
think about why this is in two variables.

Let’s suppose that you had a system of linear equations in two variables:
say there are n equations, and the i-th equation has the form aix+biy = ci,
so the system looks something like the following:

a1x+ b1y =c1

a2x+ b2y =c2

...

anx+ bny =cn.

Each one of the equations determines a line in the plane. The solution set
of the system is the collection of points that are simultaneously on all of
the lines. It could be that all of the lines intersect at a single point giving a
unique solution; it could be that no point is on all of the lines at the same
time (no solution); or it could be that all the lines are actually the same and
there are infinitely-many solutions (every point on the line is a solution).

Let’s consider one example of each situation just by considering the
graphs of the lines.

Example 9.4.
The following system has one unique solution:

x− y =−1

2x+ y =7

−3x+ 9y =21

CHAPTER 9. LINEAR ALGEBRA 133

Here there is a unique solution because there is exactly one point that
is on all three lines.

Example 9.5.
The following system has no solutions:

x+ y =5

−2x+ 8y =10

2x− 3y =7

There are no solutions because there is not a point that is on all three
lines simultaneously.

CHAPTER 9. LINEAR ALGEBRA 134

Example 9.6.
The following system has infinitely-many solutions:

−x+ y =1

2x− 2y =−2

−3x+ 3y =3

In this case all three lines are actually the same line on top of one
another, so any solution to one equation is instantly a solution to
both of the other equations.

The same situation can happen in any number of variables: regardless
of whether your system of equation is in 2 variables, 3 variables, or 457
variables, a system of linear equations has either no solutions, one unique
solution, or infinitely-many solutions.1

Whenever a system of equations has a solution (regardless of whether
it has one solution or infinitely-many) we say the system is consistent .
If the system does not have any solutions, however, we say the system
is inconsistent . So the systems in Example 9.4 and Example 9.6 are
consistent, while the system in Example 9.5 is inconsistent.

Solving a System of Linear Equations

Now that we what a linear system is and the different “flavors” the solution
can come in, how do we go about determining the solutions?

1This is true if we’re talking about real or complex linear systems. We will see later
in the semester that there are some applications where we’d like to use another type of
number system, and in that case it could be possible to have only finitely-many distinct
solutions to a system.

CHAPTER 9. LINEAR ALGEBRA 135

Let’s consider “manually” solving a couple of different systems before
we try to come up with an algorithm.

Example 9.7.
Solve the following system:

x− y =7

y =3

This is a system everyone can solve without any knowledge of linear
algebra: the second equation tells us explicitly what y has to be, so
all of the (x, y) solutions to the system have to take y to be three.
Plugging this back into the first equation we then have x− 3 = 7 and
we can easily solve x = 10. Thus (x, y) = (10, 3) is a solution, the
unique solution, to this system.

Example 9.8.
Solve the following system:

x− y =7

2x− y =17

To solve this system we might first try to isolate a variable in one of
the equations. For example, if we subtract twice the first equation
from the second equaton we would have

2x− y − 2(x− y) = 17− 2 · 7
=⇒ 2x− y − 2x+ 2y = 17− 4

=⇒ y = 3

We are then back to exactly the same situation as the previous example
and so the solution is again (10, 3).

When two different systems of equations have the same set of solutions,
such as the examples above, we say the systems are equivalent .

CHAPTER 9. LINEAR ALGEBRA 136

Notice that certain types of systems of equations are very easy to solve,
and others can seem more complicated. Here is another easy example:

Example 9.9.
Solve the following system

2x+ 3y − z = 4

y + 2z = 2

z = −1

This system is very easy to solve because one of the equations instantly
tells us what one of the variables has to be: we know that z must be
−1. If we plug this into the second equation we have y − 2 = 2, so
y = 4. Now that we know y and z, we can plug back into the first
equation to determine 2x+ 12 + 1 = 4, and thus x = −9

2
.

We really like the types of systems as in the last example because they
are almost trivial to solve: we just plug back into our equations and get one
variable at a time. We would like it, then, if when given a more complicated
system we were somehow able to determine an equivalent, but easy-to-solve,
system. Since the systems are equivalent, solving the easy system tells us
the solution to the easier system.

The main question, then, is how do we determine if two systems are
equivalent?

To do this, let’s come up with a list of some simple operations that we
can perform on a system of equations to come up with an equivalent system.
What we are about to describe will work for any number of systems in any
number of variables, so we’ll state things very generally but then do some
simpler examples.

Theorem 9.1.
If two rows in a linear system are exchanged, the newly obtained system
is equivalent to the original one.

CHAPTER 9. LINEAR ALGEBRA 137

Proof.
The equations defining the system haven’t been changed, just re-
ordered.

Example 9.10.
The following two systems are equivalent:

2x+ 3y − z = 4 −x+ 6y + 4z = −2

x− y + 3z = 9 x− y + 3z = 9

−x+ 6y + 4z = −2 2x+ 3y − z = 4

Theorem 9.2.
If one equation in a linear system is modified by adding a multiple of

another equation to it, the newly obtained system is equivalent to the
original one.

Before proving this theorem in general, let’s consider a very simple case:
two variables and two equations. Say our system looks like

a1x+ a2y = b

α1x+ α2y = β

Suppose the system is consistent and so there’s some point (s1, s2) that
satisfies the system: if we plug in x = s1 and y = s2, then both equations
are solved simultaneously.

Now say that we modify the system by adding a multiple of the second
equation to the first. That is, we will replace the first equation by adding
c times the second equation to it, for some constant c. We then have the
following system:

(a1 + cα1)x+ (a2 + cα2)y = b+ cβ

α1x+ α2y = β

CHAPTER 9. LINEAR ALGEBRA 138

We claim that (s1, s2) is still a solution to this system. Since (s1, s2) satisfied
the second equation before, and that second equation hasn’t changed, all
we need to do is verify that (s1, s2) satisfies the modified first equation, but
this is easy:

(a1 + cα1)s1 + (a2 + cα2)s2

= a1s1 + cα1s1 + a2s2 + cα2s2

= (a1s1 + a2s2) + c(α1s1 + α2s2)

= b+ cβ

A solution to the original system is thus a solution to this modified system
as well. This shows that the solution set of the first system is a subset of
the solution set of the second system. We still need to show that a solution
to the modified system is also a solution to the original system, but the idea
is basically the same as the above, so we will leave that as an exercise.

Exercise 9.1.
Show that if (t1, t2) is a solution to the system

(a1 + cα1)x+ (a2 + cα2)y = b+ cβ

α1x+ α2y = β,

then it is also a solution to the system

a1x+ a2y = b

α1x+ α2y = β.

Suppose (t1, t2) is a solution to the system. I.e.,

(a1 + cα1)t1 + (a2 + cα2)t2 = b+ cβ

α1t2 + α2t2 = β.

Now subtract c times the second equation from the first equation. On
the left-hand side this gives

(a1 + cα1)t1 + (a2 + cα2)t2 − c (α1t1 + α2t2)

=a1t1 + a2t2

CHAPTER 9. LINEAR ALGEBRA 139

On the right-hand side we have b+ cβ − cβ = b. Thus (t1, t2) satisfies

a1t1 + a2t2 = b.

Hence (t1, t2) is a solution to the system

a1x+ a2y = b

α1x+ α2y = β.

Proving the general theorem is basically repeating the same argument
above, just with more equations and variables.

Proof of Theorem 9.2.
Consider a linear system of m equations in n variables. Say two of the
equations in this system are

a1x1 + · · ·+ anxn = b and α1x1 + · · ·+ αnxn = β.

We want to leave the second equation alone, but replace the first equa-
tion with

(a1 + cα1)x1 + · · ·+ (an + cαn)xn = b+ cβ

for some constant c. The claim is that doing so doesn’t change the set
of solutions.

Let’s call the set of solutions to the original system S, and the set
of solutions to the modified system T . We want to show these two sets
are the same: we want to show that S = T , which means we need to
show that S ⊆ T and T ⊆ S.

Let (s1, ..., sn) ∈ S be a solution to the original system. We need to
show this is also a solution to the modified system. Of the equations
defining the systems, however, m − 1 of the equations are the same.
So the only thing we need to check is that (s1, ..., sn) is also a solution
to

(a1 + cα1)x1 + · · ·+ (an + cαn)xn = b+ cβ

CHAPTER 9. LINEAR ALGEBRA 140

We simply plug in (x1, ..., xn) = (s1, ..., sn) and verify that the equation
holds:

(a1 + cα1)s1 + · · ·+ (an + cαn)sn

=a1s1 + cα1s1 + · · ·+ ansn + cαnsn

=(a1s1 + · · ·+ ansn) + c(α1s1 + · · ·+ αnsn)

=b+ cβ

This shows that S ⊆ T .
We leave the second part of the proof, that T ⊆ S, as an exercise.

Exercise 9.2.
Finish the proof of Theorem 9.2. Keeping the same notation as in
the proof of the first part of Theorem 9.2, we must show that T ⊆ S.
Let (t1, ..., tn) ∈ T be a solution to the modified system in which the
equation

a1x1 + · · ·+ anxn = b

has been replaced by

(a1 + cα1)x1 + · · ·+ (an + cαn)xn = b+ cβ.

We simply need to show that (t1, ..., tn) also satisfies our original first
equation,

a1x1 + · · ·+ anxn = b.

Note that (t1, ..., tn) satisfies the following:

(a1 + cα1)t1 + · · ·+ (an + cαn)tn = b+ cβ.α1t1 + · · ·+ αntn = β

If we subtract c times the second equation from the the first, we have
on the left-hand side

(a1 + cα1)t1 + · · ·+ (an + cαn)tn − c (α1t1 + · · ·+ αntn)

=a1t1 + · · ·+ antn

CHAPTER 9. LINEAR ALGEBRA 141

and on the right-hand side, b + cβ − cβ = b. Hence (t1, ..., tn) is a
solution to the original system of equations; (t1, ..., tn) ∈ S and so
S ⊆ T .

Finally, there’s one last operation that we will introduce that can be
used to replace one system of equations with an equivalent one.

Theorem 9.3.
If each term (both the left- and right-hand sides) of one equation is

multipled by a nonzero constant c, then the newly obtained system is
equivalent to the original system.

Again, let’s consider what’s happening with two variables and two equa-
tions. If our original system was

a1x+ a2y = b

α1x+ α2y = β

then we claim that the following system is equivalent

ca1x+ ca2y = cb

α1x+ α2y = β

when c is any nonzero constant.
To prove this, again suppose that (s1, s2) is a system to the original

system. We can easily verify that (s1, s2) solves the modified system. Of
course, the second equation has remained the same, so (s1, s2) still satisfies
it. For the first equation we have

ca1s1 + ca2s2

=c(a1s1 + a2s2)

=cb

To prove that a solution (t1, t2) to the modified system is also a solu-
tion to the original system we can perform the exact same procedure: just
multiply through by 1

c
to get the c’s to cancel! In more variables and/or

equations, the argument is exactly the same, so we will leave that as an
exercise.

CHAPTER 9. LINEAR ALGEBRA 142

Exercise 9.3.
Prove Theorem 9.3. Suppose that we are given a system of equations

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

...

am1x1 + · · ·+ amnxn = bn

and we modify the system by replacing one of the equations with some
non-zero multiple c of itself. Without loss of generality, we may assume
this is the first equation. (If it were a different equation, we could swap
two equations to make it the first equation.)

Let S be the set of solutions to the original system, and T the set of
solutions to the modified system. Obviously if (s1, ..., sn) ∈ S satisfies

a11s1 + · · ·+ a1nsn = b1,

then in the modified system we simply have

ca11s1 + · · ·+ ca1nsn = c(a11s1 + · · ·+ a1nsn) = cb

and so S ⊆ T as we have a solution to the modified system.
Likewise, if (t1, ..., tn) satisfies the first equation in the modified

system,
ca11t1 + · · ·+ ca1ntn = cb1,

then

a11t1 + · · ·+ a1ntn ==
1

c
(ca11t1 + · · ·+ ca1ntn) =

1

c
· cb1 = b1

and thus T ⊆ S.

A Procedure for Solving Linear Systems

We now want to use the three theorems above to develop a scheme for
solving systems of linear equations, or determining that there is no solution.
As we saw in an earlier example, it would be nice if the system we wanted

CHAPTER 9. LINEAR ALGEBRA 143

to solve had the following sort of form:

ax+ by = α ax+ by + cz = α

cy = β dy + ez = β

fz = γ

In this situation it is super-easy to “work backwards,” solving for one vari-
able at a time, and then determining the others. Let’s give systems of this
form a special name so it’s easier to refer to them: we will call a system
like this is in echelon form .

To solve a system that is not in echelon, let’s try to replace the system
with an equivalent system that is in echelon form. We’ll do this by repeat-
edly applying our three theorems above, modifying the system a little bit
at a time until it is in the form we’d like.

Example 9.11.
Solve the following system of equations.

x+ 4y = 3

2x− y = 1

All we need to do to put the system in echelon form is get rid of the 2x
in the second equation. We can do this by subtracting twice the first
equation from the second. We will then replace the second equation
with

2x− y − 2(x+ 4y) = 1− 2 · 3
=⇒ −9y = −5

thus y = 5
9
, and pluggin this back into the first equation,

x+ 4 · 5

9
= 3

=⇒ x = 3− 20

9
=

7

9

and so the system has a unique solution, (x, y) = (5/9, 7/9).

CHAPTER 9. LINEAR ALGEBRA 144

Example 9.12.
Solve the following system of equations.

2x− 5y = 7

−6x+ 15y = 10

We again try to put the system into echelon form by getting rid of the
−6x in the second equation. To do this, we add three times the first
equation to the second:

− 6x+ 15 + 3(2x− 5y) = 7 + 3 · 10

=⇒ 0 = 37

Now we have a problem: zero is not equal to thirty-seven! What this
means is that there is no solution to the system.

Geometrically, the lines determined by each of the equations above
are parallel. A solution to the system would be where the two lines
intersect, but two parallel lines never intersect, hence there is no solu-
tion.

1

1

Example 9.13.

CHAPTER 9. LINEAR ALGEBRA 145

Solve the following system:

3x+ 2y − z = 3

12x− 4y + 2z = 1

15x− 2y + z = 4

To put this system into echelon form we need to first get rid of the x
terms in the second and third equations. We will replace the second
equation by subtracting four times the first equation, and we’ll replace
the third equation by subtracting five times the first equation.

The second equation then becomes,

12x− 4y + 2z − 4(3x+ 2y − z) = 1− 4 · 3
=⇒ − 12y + 6z = −11

While the thid equation becomes

15x− 2y + z − 5(3x+ 2y − z) = 4− 5 · 3
=⇒ − 12y + 6z = −11

Our system thus far is

3x+ 2y − z = 3

−12y + 6z = −11

−12y + 6z = −11

To put the system in echelon form we need to get rid of the y term in
the third equation, but doing this will of course get rid of all of the
terms in the third equation. Thus the echelon form of the system is

3x+ 2y − z = 3

−12y + 6z = −11

(If you want, there’s an equation 0x + 0y + 0z = 0 at the bottom of
this.)

Let’s notice that if we try to kill of y in the second equation by
adding six times the first equation, we would also kill of z and our

CHAPTER 9. LINEAR ALGEBRA 146

system would become

3x+ 2y − z = 3

18x = 7

So x = 7/18: no matter what y and z happen to be, x must be 7/18.
Geometrically, this means all (x, y, z) solutions to our system must live
in the plane x = 7/18.

We could rewrite the first equation as

7

6
+ 2y − z = 3

and solving for y we would have

y =
z

2
+

11

12
.

This means that each solution to our system has the form(
7

18
,
z

2
+

11

12
, z

)
and z can take on any value: our set of solutions is a line in the plane
x = 7

18
: {(

7

18
,
z

2
+

11

12
, z

) ∣∣∣∣ z ∈ R
}
.

In the previous example, z is called a free variable because it can take
on any value we wish. When we express the solution set in terms of free
variables, such as above, we have a parametrization of the solution set.

Example 9.14.
Solve the following system of equations.

x+ y − 3z = 4

x− 2y + z = 3

−3x+ y + 4z = 0

CHAPTER 9. LINEAR ALGEBRA 147

Let’s first try to kill off the x in the second equation by subtracting
the first equation from it (i.e., we we are applying Theorem 9.2 by
adding−1 times the first equation to the second equation). The second
equation is then replaced with

x− 2y + z − (x+ y − 3z) = 3− 4

=⇒ −3y + 4z = −1

Now our system looks like

x+ y − 3z = 4

−3y + 4z = −1

−3x+ y + 4z = 0

We still need to kill of the −3x in the third equation, so let’s add three
times the first equation to it. The third equation then becomes

−3x+ y + 4z + 3(x+ y − 3z) = 0 + 3 · 4
=⇒ 4y − 5z = 12

So far we have replaced our original system with the following equiv-
alent one:

x+ y − 3z = 4

−3y + 4z = −1

4y − 5z = 12

We need to perform one last step to put the system in echelon form.
Let’s get rid of the 4y in the third equation by adding 4

3
the second

equation:

4y − 5z +
4

3
(−3y + 4z) = 12 +

4

3
(−1)

=⇒ −5z + 16/3z = 12− 4

3

=⇒ 1

3
z =

32

3

CHAPTER 9. LINEAR ALGEBRA 148

We now have a system in echelon form that’s equivalent to our original
system:

x+ y − 3z = 4

−3y + 4z = −1

1

3
z =

32

3

The system is already in echelon form, but let’s kill off that 1
3

in the
third equation by using Theorem 9.3 to multiply the third equation
by three:

x+ y − 3z = 4

−3y + 4z = −1

z = 32

This is a system we can easily solve by back-substitution. Plugging in
z = 32 into the second equation gives us

−3y + 128 = −1

which tells us y = 43. Plugging z = 32 and y = 43 into the first
equation gives us

x+ 43− 96 = 4

and so x = 57.
Since this system is equivalent to our original system, the solution

to our original system is

x = 57

y = 43

z = 32

9.2 Matrices

A matrix is a rectangular table of numbers, usually written inbetween
parentheses or square brackets. The size of a matrix is a pair of numbers
telling us how many rows and columns the matrix has: if the matrix has m

CHAPTER 9. LINEAR ALGEBRA 149

rows and n columns, we say the size of the matrix is m× n, pronounced m
by n.

Example 9.15.
The following matrices have respective sizes 2× 4 and 5× 3.

(
4 −7 0 π

1.5 2 1 1

) 
0 1 0
−1 2 14
3 7 7
−2 −2 −2
5 4 2



Matrices associated to a linear system

One use of matrices is in encoding a system of linear equations. If we have
a system of linear equations, all we really need to know about the system
is what the coefficients are, and what the values on the right-hand side of
the equations are: what we call the variables (x and y versus x1 and x2,
for instance) doesn’t really matter. If we record all of the coefficients of a
system with m equations and n variables as an m× n matrix, we have the
coefficient matrix of the system.

Example 9.16.
Consider the following system of three equations in four unknowns:

6v + 3x− 2y + z = 4

4v − x+ y − 2z = 3

2x+ 4y + 4z = 9

v + z = −1

CHAPTER 9. LINEAR ALGEBRA 150

The corresponding coefficient matrix of this system is
6 3 −2 1
4 −1 1 −2
0 2 4 4
1 0 0 1



Notice that we pick up zeroes in the coefficient matrix when a variable
is missing. The reason for this is that if a variable is missing, such as the
missing v in the third equation of the system in Example 9.16, we can write
it as 0 times that variable. The system in Example 9.16, for instance, may
be written as

6v + 3x− 2y + z = 4

4v − x+ y − 2z = 3

0v + 2x+ 4y + 4z = 9

v + 0x+ 0y + z = −1

Our goal will be to solve systems of linear equations by manipulating
matrices. In doing so we of course also want to keep track of the values
on the right-hand side of the equations. We will do this by just adding an
extra column onto our coefficient matrix containing the right-hand sides.
This gives us the augmented coefficient matrix of the system.

Example 9.17.
The augmented coefficient matrix of Example 9.16 is

6 3 −2 1 4
4 −1 1 −2 3
0 2 4 4 9
1 0 0 1 −1



Remark.
Some people like to write a vertical bar in the augmented coefficient
matrix to separate the coefficients of the left-hand sides of the equa-

CHAPTER 9. LINEAR ALGEBRA 151

tions from the values on the right-hand sides of the equations, such
as 

6 3 −2 1 4
4 −1 1 −2 3
0 2 4 4 9
1 0 0 1 −1


The addition of this vertical line is purely cosmetic. Our textbook
does not use the bar, but it is fairly common. You are free to use the
vertical bar if you’d like.

Elementary row operations

Recall from before that we had three different procedures that we could
perform to a system of linear equations to obtain an equivalent system:

1. Swap two rows.

2. Replace one row with the sum of the original row and a multiple of
another row.

3. Multiply every term in a row by the same non-zero constant.

We can perform these same three operations on the augmented coefficient
matrix of a linear system and we obtain the augmented coefficient matrix
of the equivalent linear system. Usually when we’re performing these three
operations to a matrix, we refer to them as the elementary row opera-
tions . The process of using elementary row operations to turn one matrix
into another is called row reduction .

By repeatedly applying the elementary row operations to the augmented
coefficient of a matrix, we can replace the turn our system of linear equations
into an equivalent one which we can easily solve. In particular, we have a
system that is easy to solve when we have put our matrix into echelon form.
Before define the echelon form of a matrix, let’s introduce one preliminary
definition that will make the language a little easier.

The leading entry of a row in a matrix is the left-most non-zero ele-
ment in that row.

We say that a matrix is in echelon form if the following three condi-
tions are satisfied:

1. If the matrix has any rows consisting of only zeros, they occur at the
bottom of the matrix.

CHAPTER 9. LINEAR ALGEBRA 152

2. The leading entry on each row in the matrix is to the right of the
leading entry of the above rows.

3. All entries in the same column and below the leading entry in a row
are zero.

Let’s first see some examples of some things that are, and some things
that are not, in echelon form.

Example 9.18.
The following matrices are all in echelon form:3 −1 2 0

0 7 9 −1
0 0 2 1




6 2 1 4
0 1 1 3
0 0 −1 0
0 0 0 0




0 4 2 −1 3 2
0 0 0 3 2 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0


(

6 7 −4 3 2
0 0 0 0 1

)

Example 9.19.

CHAPTER 9. LINEAR ALGEBRA 153

None of the following matrices are in echelon form:0 2 4 −1
1 1 3 2
0 0 2 4




7 2 −1 2
5 6 3 3
0 0 4 0
0 0 0 0




2 3 7 1 2
0 0 0 4 5
0 0 0 0 0
0 0 0 0 2



We can always put a matrix into echelon form by applying elementary
row operations. One way to solve a system of linear equations, then, is to
write out the augmented coefficient matrix, put it into echelon form, and
then use back substitution (solving for the variables one at a time).

Example 9.20.
Put the following matrix into echelon form:1 2 4 5

2 4 5 4
4 5 4 2


The first thing we need to do is zero-out the entries below 1 in

the first column. Let’s subtract twice the first row from the second to
obtain: 1 2 4 5

0 0 −3 −6
4 5 4 2



CHAPTER 9. LINEAR ALGEBRA 154

Now subtract four times the first row from the third:1 2 4 5
0 0 −3 −6
0 −3 −12 −18


Now let’s swap the second and third rows,1 2 4 5

0 −3 −12 −18
0 0 −3 −6



Writing out what we’re doing in words is always okay to do, but it can
get tedious sometimes, so let’s introduce some notation to save ourselves
some writing. When we perform a row operation on a matrix A to obtain a
matrix A′, let’s draw an arrow from A to A′ and label the arrow to describe
which operation we are performing.

If we obtain A′ from A by swapping row i and row j, we will write

A
Ri↔Rj−−−−→ A′

For example,1 2 4 5
0 0 −3 −2
0 −3 −4 −18

 R2↔R3−−−−→

1 2 4 5
0 −3 −4 −18
0 0 −3 −2


If we add c times row j to row i, we will write

A
Ri+cRj→Ri−−−−−−−→ A′

E.g., 1 2 4 5
2 4 5 4
4 5 4 2

 R2−2R1−−−−→

1 2 4 5
0 0 −3 −2
4 5 4 2


If we multiply each element in row i by c, we will write

A
cRi→Ri−−−−→ A′.

For example, 
4 7 2
0 4 3
−1 2 2
5 −2 1

 −2R3→R3−−−−−−→


4 7 2
0 4 3
2 −4 −4
5 −2 1



CHAPTER 9. LINEAR ALGEBRA 155

Notice that the echelon form of a matrix is not unique: if you give the
same matrix to two people and ask them to put the matrix in echelon form,
each person may give you back a different (but correct!) matrix in echelon
form. The matrix in Example 9.20, for instance, could be put into echelon
form in the following way:

Example 9.21.
Put the following matrix into echelon form:1 2 4 5

2 4 5 4
4 5 4 2


1 2 4 5

2 4 5 4
4 5 4 2

 R3−2R2→R3−−−−−−−→

1 2 4 5
2 4 5 4
0 −3 −6 −6


R2−2R1→R2−−−−−−−→

1 2 4 5
0 0 −3 −6
0 −3 −6 −6


R2↔R3−−−−→

1 2 4 5
0 −3 −6 −6
0 0 −3 −6



In Example 9.20 and Example 9.21 we started with the same matrix,
but produced two different matrices in echelon form because we performed
two different sequences of elementary row operations.

Remark.
The above is something to consider if you compare answers to home-
work problems with another student. If you were both trying to put
a matrix into echelon form, you may both come up with different,
correct answers!

CHAPTER 9. LINEAR ALGEBRA 156

It would be nice if there was a way to modify echelon form so that we
would always calculate the same matrix. This can be done if we modify the
conditions of echelon form slightly to get row-reduced echelon form.

We say a matrix A is in row-reduced echelon form (abbreviated
RREF) if the following four conditions are satsified:

1. If the matrix has any rows consisting of only zeros, they occur at the
bottom of the matrix.

2. The leading entry on each row in the matrix is to the right of the
leading entry of the above rows.

3. All entries in the same column above and below the leading entry in
a row are zero.

4. Every leading entry is a one.

So RREF is very similar to echelon form, but we’ll make sure that
leading entries are always equal to one, and that everything directly above
and below a leading entry is zero.

Remark.
Some people simply say reduced echelon form where we have said row-
reduced echelon form, but this is the same thing.

Let’s take our two matrices in echelon form from Example 9.20 and
Example 9.21 and convert them to RREF.

Example 9.22.
Convert the following matrix to RREF:1 2 4 5

0 −3 −12 −18
0 0 −3 −6



CHAPTER 9. LINEAR ALGEBRA 157

1 2 4 5
0 −3 −12 −18
0 0 −3 −6

 −1
3
R2→R2−−−−−−→

1 2 4 5
0 1 4 6
0 0 −3 −6


R1−2R2→R1−−−−−−−→

1 0 −4 −7
0 1 4 6
0 0 −3 −6


− 1

3
R3→R3−−−−−−→

1 0 −4 −7
0 1 4 6
0 0 1 2


R2−4R3→R2−−−−−−−→

1 0 −4 −7
0 1 0 −2
0 0 1 2


R1+4R3→R1−−−−−−−→

1 0 0 1
0 1 0 −2
0 0 1 2



Example 9.23.
Convert the following matrix to RREF:1 2 4 5

0 −3 −6 −6
0 0 −3 −6



CHAPTER 9. LINEAR ALGEBRA 158

1 2 4 5
0 −3 −6 −6
0 0 −3 −6

 − 1
3
R2→R2−−−−−−→

1 2 4 5
0 1 2 2
0 0 −3 −6


− 1

3
R3→R3−−−−−−→

1 2 4 5
0 1 2 2
0 0 1 2


R1−2R2→R1−−−−−−−→

1 0 0 1
0 1 2 2
0 0 1 2


R2−2R3→R2−−−−−−−→

1 0 0 1
0 1 0 −2
0 0 1 2



The main thing about main reason we prefer RREF over echelon form
is that every matrix is equivalent to exactly one matrix in RREF.

Theorem 9.4.
Performing elementary row operations to put a matrix in row-reduced
echelon form produces exactly one matrix.

The proof of this fact will be easier to explain after we talk about linear
independence, so we will postpone the proof of this theorem for now.

Example 9.24.
Solve the following system of linear equations by putting the aug-
mented coefficient matrix in RREF.

x+ 2y + 4z = 5

2x+ 4y + 5z = 4

4x+ 5y + 4z = 2

We have seen that the augmented coefficient matrix of this system can

CHAPTER 9. LINEAR ALGEBRA 159

be put into the following matrix in RREF:1 0 0 1
0 1 0 −2
0 0 1 2


which is the augmented coefficient matrix of the equivalent system

x = 1

y = −2

z = 2

and so the only solution to our system of equations is (x, y, z) =
(1,−2, 2).

We are now in a position to describe an algorithm for putting a matrix
in RREF, but before presenting the algorithm we introduce one piece of
terminology.

If a matrix is in RREF, then the location of the leading entries are
called the pivot positions; the columns containing pivot positions are
called pivot columns . More generally, if A can be reduced to a matrix A′

in RREF, then the pivot positions and columns of A are defined to be the
pivot positions and columns of A′.

By performing elementary row operations, we can always put a non-zero
value in a pivot position. When we do this, the non-zero value we place in
the pivot position is called a pivot .

The algorithm for putting a matrix into RREF is as follows:

1. Starting from the top row of the matrix, the left-most position which
is not in a column of all zeros will be a pivot position.

2. Swap rows if necessary so that the entry in the pivot position is non-
zero.

3. Divide the row containing this pivot position by the new non-zero
pivot value.

4. Add multiples of the row to the other rows so that we have only zeros
above and below the pivot in the pivot column.

5. Repeat the process, but use the submatrix obtained by deleting ev-
erything to the left of and above the pivot position (including the row

CHAPTER 9. LINEAR ALGEBRA 160

and column containing the pivot position) to determine the next pivot
position.

Example 9.25.
Put the following matrix in RREF:

0 0 0 0 3 7
0 0 2 0 1 4
0 0 4 0 2 1
0 5 3 0 4 2


We need to work with our pivots one at a time, from the top left-
most pivot down to the bottom right-most pivot. We will color code
which pivot we are considering as follows: The pivot we are currently
considering will be yellow, and the pivots we have finished working
with will be pink.

We start with the top row. First finding the left-most entry which
is not in an all-zero column.

0 0 0 0 3 7
0 0 2 0 1 4
0 0 4 0 2 1
0 5 3 0 4 2


Now swap the top and bottom columns to put a 5 in the pivot

position: 
0 5 3 0 4 2
0 0 2 0 1 4
0 0 4 0 2 1
0 0 0 0 3 7


Divide the first row by 5 to put a 1 into the pivot position:

0 1 3
5

0 4
5

2
5

0 0 2 0 1 4
0 0 4 0 2 1
0 0 0 0 3 7


The matrix already has zeros below the pivot, so we move onto the
pivot.

CHAPTER 9. LINEAR ALGEBRA 161

First find the left-most entry in the second row which is to the
right of the previous pivot and not in a column of all zeros.

0 1 3
5

0 4
5

2
5

0 0 2 0 1 4
0 0 4 0 2 1
0 0 0 0 3 7


Now divide the second row by 2 to put a 1 into the next pivot position:

0 1 3
5

0 4
5

2
5

0 0 1 0 1
2

2
0 0 4 0 2 1
0 0 0 0 3 7


We need to zero out the non-zero entries in the pivot column above

and below our pivot position. First we subtract 3/5 the second row from
the first: 

0 1 0 0 1
2
−4

5

0 0 1 0 1
2

2
0 0 4 0 2 1
0 0 0 0 3 7


Now subtract four times the second row from the third row:

0 1 0 0 1
2
−4

5

0 0 1 0 1
2

2
0 0 0 0 0 −7
0 0 0 0 3 7


We move on to the third pivot. Since we have a zero in the pivot

position, we need to swap the third and fourth rows to put the 3 into
the pivot position: 

0 1 0 0 1
2
−4

5

0 0 1 0 1
2

2

0 0 0 0 3 7
0 0 0 0 0 −7



CHAPTER 9. LINEAR ALGEBRA 162

Divide the third row by 3 to put a 1 into the pivot position:
0 1 0 0 1

2
−4

5

0 0 1 0 1
2

2

0 0 0 0 1 7
3

0 0 0 0 0 −7


Now zero out the entries above the third pivot. First subtract one-half
the third row from the first:

0 1 0 0 0 −59
30

0 0 1 0 1
2

2

0 0 0 0 1 7
3

0 0 0 0 0 −7


Finally subtract one-half the third row from the second:

0 1 0 0 0 −59
30

0 0 1 0 0 5
6

0 0 0 0 1 7
3

0 0 0 0 0 −7


For the very last pivot we will simply divide by −7 to make the pivot
a 1, and then zero out the entries above the pivot. Finally subtract
one-half the third row from the second:

0 1 0 0 0 −59
30

0 0 1 0 0 5
6

0 0 0 0 1 7
3

0 0 0 0 0 1


We now have the RREF of our original matrix:

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Once we put an augmented coefficient matrix into RREF, it is then very
easy to solve the corresponding system of linear equations.

CHAPTER 9. LINEAR ALGEBRA 163

Example 9.26.
Determine all solutions to the following system of equations:

3x5 = 7

2x3 + x5 = 4

4x3 + 2x5 = 1

5x2 + 3x3 + 4x5 = 2

The augmented coefficient matrix of this system is precisely our matrix
from before, so the RREF of that matrix tells us the following system
is equivalent:

x2 = 0

x3 = 0

x5 = 0

0 = 1

Because of this last equation, the system has no solutions!

Example 9.27.
Solve the following system of linear equations.

3x+ 7y + 17z = 21

2y + 4z = 6

4x+ 10y + 24z = 30

To solve the system, let’s put the augmented coefficient matrix, which
is 3 7 17 21

0 2 4 6
4 10 24 30

 ,

CHAPTER 9. LINEAR ALGEBRA 164

into RREF:3 7 17 21
0 2 4 6
4 10 24 30

 1
3
R1→R1−−−−−→

1 7
3

17
3

7
0 2 4 6
4 10 24 30


R3−4R1→R3−−−−−−−→

1 7
3

17
3

7
0 2 4 6
0 2

3
4
3

2


1
2
R2→R2−−−−−→

1 7
3

17
3

7
0 1 2 3
0 2

3
4
3

2


R1− 7

3
R2→R1−−−−−−−−→

1 0 1 0
0 1 2 3
0 2

3
4
3

2


R3− 2

3
R2→R3−−−−−−−−→

1 0 1 0
0 1 2 3
0 0 0 0



The last matrix above is in RREF. This tells us that our original
system of equations is equivalent to

x+ z = 0

y + 2z = 3

Notice that we could solve both of these equations to express x and y
in terms of z:

x = −z
y = 3− 2z

That is, if we know what z is, then we instantly know what x and y
must be. However, z could be anything! There are infinitely-many
different choices for z, and each one gives us a different solution to our
system. Thus there are infinitely-many solutions to the system, all of
which have the form

(−z, 3− 2z, z)

where z can be any real number.

CHAPTER 9. LINEAR ALGEBRA 165

Notice that in Example 9.27, not only did we determine that there
were infinitely-many solutions to the system, but we said explicitly what
the solutions had to look like. In such a situation, where we describe all
of the solutions in terms of some variable, we say that we have given a
parametrization of the solution set and call the variable that is allowed
to change a free variable .

Example 9.28.
Solve the following system of linear equations:

5x1 + 3x2 − 8x3 − 2x4 = 5

2x1 + 4x2 − 6x3 + 2x4 = 2

2x1 + 1x2 − 3x3 − x4 = 2

4x1 + 3x2 − 7x3 − x4 = 4

We again put the augmented coefficient matrix into RREF to get an

CHAPTER 9. LINEAR ALGEBRA 166

equivalent, easier-to-solve system:
5 3 −8 −2 5
2 4 −6 2 2
2 1 −3 −1 2
4 3 −7 −1 4

 1
5
R1→R1−−−−−→


1 3/5 −8/5 −2/5 1
2 4 −6 2 2
2 1 −3 −1 2
4 3 −7 −1 4


R2−2R1→R2−−−−−−−→


1 3/5 −8/5 −2/5 1
0 14/5 −14/5 14/5 0
2 1 −3 −1 2
4 3 −7 −1 4


R3−2R1→R3−−−−−−−→


1 3/5 −8/5 −2/5 1
0 14/5 −14/5 14/5 0
0 −1/5 1/5 −1/5 0
4 3 −7 −1 4


R4−4R1→R4−−−−−−−→


1 3/5 −8/5 −2/5 1
0 14/5 −14/5 14/5 0
0 −1/5 1/5 −1/5 0
0 3/5 −3/5 3/5 0


5
14
R2→R2−−−−−−→


1 3/5 −8/5 −2/5 1
0 1 −1 1 0
0 −1/5 1/5 −1/5 0
0 3/5 −3/5 3/5 0


R1− 3

5
R2→R1−−−−−−−−→


1 0 −1 −1 1
0 1 −1 1 0
0 −1/5 1/5 −1/5 0
0 3/5 −3/5 3/5 0


R3+ 1

5
R2→R3−−−−−−−−→


1 0 −1 −1 1
0 1 −1 1 0
0 0 0 0 0
0 3/5 −3/5 3/5 0


R4− 3

5
R2→R4−−−−−−−−→


1 0 −1 −1 1
0 1 −1 1 0
0 0 0 0 0
0 0 0 0 0


We now know that our original system of equations is equivalent to

CHAPTER 9. LINEAR ALGEBRA 167

the following system:

x1 − x3 − x4 = 1

x2 − x3 + x4 = 0

Solving the first two equations for x1 and x2, respectively, tells us that

x1 = 1 + x3 + x4

x2 = x3 − x4

Here there are no restrictions on either x3 or x4, each of these can be
any real number, and so we have two free variables. A parametrization
of the solution set is

(1 + x3 + x4, x3 − x4, x3, x4).

Consistency and Inconsistency in Terms of RREF

After we put the augmented coefficient matrix of a system into RREF, we
can quickly determine whether the system is consistent or not, and if it is
consistent whether it has a unique solution or infinitely-many solutions. If
the matrix in RREF has a row of the form(

0 0 0 · · · 0 0 b
)

where b 6= 0, then the system is inconsistent. The existence of such a row
tells us that the system is equivalent to a system that has an equation of
the form

0x1 + 0x2 + 0x3 + · · ·+ 0xn−1 + 0xn = b

It doesn’t matter what the other equations (or rows in the matrix) look
like: there is no way to solve this one, so the system has no solutions.

If the matrix in RREF has the form

1 0 0 0 · · · 0 0 0 b1

0 1 0 0 · · · 0 0 0 b2

0 0 1 0 · · · 0 0 0 b3

. . .

0 0 0 0 · · · 0 1 0 bn−1

0 0 0 0 · · · 0 0 1 bn



CHAPTER 9. LINEAR ALGEBRA 168

then the system has a single unique solution, (b1, b2, ..., bn).
Notice that if we took the previous matrix in RREF and added rows

of zeros to the bottom, then this doesn’t change the solutions. When this
happens some of the equations in the original system were “redundant.”

Example 9.29.
Consider the following system:

x+ y = 1

x− y = 2

3x+ y = 4

The augmented coefficient matrix of the system is1 1 1
1 −1 2
3 1 4


The RREF of this matrix is1 0 3/2

0 1 −1/2
0 0 0


The system thus has a unique solution of (3/2,−1/2). The third equa-
tion of the original system doesn’t give us any additional information
about the system because it is twice the first equation plus the sec-
ond: once you know what the solution to the two equations are, you
instantly know what the solution to the third equation is as well, so
there’s no real need to have the third equation.

If the matrix in RREF has rows of zeros, but there is not a unique
solution to the system, then the system has infinitely-many solutions. The
number of free variables is determined by the number of rows of zeros.
Each non-zero row gives us an equation relating the variables, and each
zero row (up to the number of variables) gives us a free variable. Notice
that the number of variables is one less than the number of columns in the
augmented coefficient matrix: each variable gives us one column, plus we
have one more column for the right-hand sides. This means that the number

CHAPTER 9. LINEAR ALGEBRA 169

of free variables in our solution to a system is determined by the number
of non-pivot columns (ignoring the right-most column corresponding to the
right-hand sides of equations in our system).

In Example 9.27 we had one non-pivot column (ignoring the column
corresponding to the RHS) and so one free variable; in Example 9.28 we
had two non-pivot columns, so two free variables.

Example 9.30.
Determine the set of solutions to the following system by putting the
augmented coefficient matrix into RREF. How many free variables are
there?

5x1 + 3x2 − 8x3 − 2x4 = 5

2x1 + 4x2 − 6x3 + 2x4 = 2

2x1 + 1x2 − 3x3 − x4 = 2

4x1 + 3x2 − 7x3 − x4 = 4

−6x1 − 3x2 + 9x3 + 3x4 = −6

In RREF this matrix becomes
1 0 −1 −1 1
0 1 −1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Since the system is consistent and there are two non-pivot columns,
any parametrization of the set of solutions to the system must contain
two free variables.

9.3 Vectors

Vectors appear in many different areas of mathematics and sciences, and you
have seen vectors before if you’ve taken a course in physics of multivariable
calculus. In these classes vectors are usually described as quantities that
have both a magnitude and a direction. We will see later in the course
that many different types of quantities can be thought of as vectors, even

CHAPTER 9. LINEAR ALGEBRA 170

things that don’t obviously have a magnitude or direction (for exmaple,
polynomials can be thought of as vectors). In this section we start with
the basics though, first defining vectors as “arrows” in R2 and R3, and then
generalizing vectors to Rn for any dimension n. We also see that some of
the questions we are naturally lead to about vectors are really questions
about systems of linear equations in disguise.

Vectors in R2 and R3

We will see that vectors can be defined in any number of dimensions, but
to get started we will consider vectors in two and three dimensions which
will be familiar to anyone that has taken an introductory course in physics
or multivariable calculus.

A vector is often described as a quantity which has both a direction and
a magnitude. One physical example is force: every force has a direction
(where the force is pushing from or pulling towards) and a magnitude (how
strong the force is). Consider the gravitational force between the Earth
and an object near the surface of the Earth. The object is being pulled
“down” towards the Earth (this is the direction) and that object has some
weight (this is the magnitude). If the object has more mass, then it will
have a greater weight and gravity is pulling more strongly on the object.
(Consider trying to hold a one kilogram object over your head versus a
fifteen kilogram object. Gravity is pulling harder on the 15 kg object which
is why that object feels heavier and harder to hold up.)

In two or three dimensions we represent these “direction together with
a magnitude” quantities as arrows where the direction of the arrow is the
direction of the vector, and the length of the vector represents the magni-
tude. We will focus on the two-dimensional case at first simply because it’s
slightly easier to draw pictures representing these quantities.

Two-dimensional vectors

A vector in R2 is simply an arrow in the plane: a line segment from some
point (x0, y0) to another point (x1, y1) with an arrowhead at (x1, y1), as in
Figure 9.3

One thing about vectors that may seem a little strange is that we only
care about the direction the vector points in and its magnitude, and we
do not care about where that vector is drawn in space. That is, given any
vector we can move it around the plane or 3-space as much as we’d like and
provided we don’t stretch the vector (which would change its magnitude) or

CHAPTER 9. LINEAR ALGEBRA 171

x

y

Figure 9.3: Vectors in R2.

rotate it (which would change its direction) we still have the same vector.
See Figure 9.4.

x

y

Figure 9.4: Each arrow in this picture represents the same vector since the
direction and magnitude (length) is the same for each arrow.

We usually give vectors a name, just like any other mathematical quan-

CHAPTER 9. LINEAR ALGEBRA 172

tity, to make it easier to describe. Instead of just calling a vector v, however,
it is common to write the letter in bold, v, or to write an arrow over the
letter, ~v, to denote that this quantity is a vector. Almost everyone writes
the arrow when they are writing vectors by hand on paper or a blackboard,
and only some books (including our textbook) use the bold letters to denote
vectors.

We will sometimes call the beginning point of the arrow represent a
vector (the part without an arrowhead) the tail of the vector, and the
other point (the part with an arrowhead) the tip of the vector.

Given two vectors, ~v1 and ~v2, we can add the two vectors together to
get a new vector, ~v1 + ~v2. There are a few ways we can describe this new
vector. One way to describe ~v1 +~v2 is to slide ~v1 and ~v2 around so that the
tip of ~v1 is at the tail of ~v2. We then draw in an arrow from the tail of ~v1

to the tip of ~v2, and this new vector we’ve drawn is ~v1 + ~v2. This is called
the triangle law for vector addition and is illustrated in Figure 9.5.

~v1

~v2

~v1 + ~v2

Figure 9.5: We can add two vectors by sliding them tip-to-tail and then
completing the triangle.

Another, equivalent way to describe vector addition is with the paral-
lelogram law . Here we make copies of ~v1 and ~v2 and slide them around to
make a parallelogram, and then draw in the diagonal of this parallelogram
connecting the corner that has two tails to the corner that has two tips.
This diagonal vector is the sum ~v1 + ~v2. See Figure 9.6

Remark.
It is important that the diagonal vector drawn in the parallelogram
law starts at the corner where two tails meet and goes to the corner
where two tips meet. If you connect the corners in the wrong way, you

CHAPTER 9. LINEAR ALGEBRA 173

~v1

~v2

~v1 + ~v2

~v1

~v2

Figure 9.6: Vector addition can also be described by drawing in the diagonal
of a parallelogram.

will have the wrong vector.

If you’ve never seen vector addition before, it may seem a little bit like
an odd thing to do, but let’s consider one physical application. Suppose that
two different forces act on an object: e.g., you and a friend are rearranging
furniture in your dorm with one of you pushing a bed in one direction, and
the other pushing the bed in another direction. Say you push the bed to the
East and your friend pushes the bed to the North. Though you’re applying
two different forces, the net effect is the same as if you were to push the
bed to the North-East. This is exactly what’s happening when you add the
two forces: the sum of two individual forces acting on an object is the net
force that acts on that object.

There’s another operation we can perform on vectors. Given a real
number λ and a vector ~v, we can define a new vector λ~v by stretching the
vector out by a factor of λ. For example, 2~v points in the same direction as
~v but is twice as long; 1

3
~v points in the same direction as ~v but is one third

as long.

1
2
~v

~v
2~v

3~v

Figure 9.7: Multiplying a vector by a positive number stretches the vector.

CHAPTER 9. LINEAR ALGEBRA 174

If we multiply a vector ~v by a negative λ, then we stretch the vector out
by a factor of |λ|, but make the vector point in the opposite direction.

−~v ~v
−2~v

Figure 9.8: Multiplying a vector by a negative number stretches the vector
and flips the vector’s direction.

To distinguish “regular” numbers from vectors we sometimes call the
numbers scalars because they scale vectors. The operation of multiplying
a scalar and a vector is called scalar multiplication .

Notice that we could describe a vector in the plane by saying how much
the x and y coordinates change when you walk from the tail of the vector
to the tip. That is, if we’ve positioned the vector so that its tail is at the
point (x0, y0) and its tip is at the point (x1, y1), then all we really need to
know is the change in the x-coordinates, x1 − x0, and the change in the y-
coordinates, y1−y0. Regardless of where we’ve drawn the vector, if we don’t
stretch it or rotate it, we have the same change in x- and y-coordinates.

Example 9.31.
Suppose ~v is a vector which we’ve drawn in the plane so that its tail
is at the point (3, 1) and its tip is at the point (5, 2). The change in
the x-coordinates is 5 − 3 = 2 and the change in the y-coordinates is
2− 1 = 1.

If we were to have moved the vector around so that its tail was
instead at (−2, 2), then its tip would be at (0, 3). Again we have
the change in the x-coordinates is 0 − (−2) = 2 and the change in
y-coordinates is 3− 2 = 1.

If we placed the tail of the vector at (−1, 1), then the tip would be
at (1, 2), and once again the change in x- and y-coordinates is 2 and
1, respectively.

CHAPTER 9. LINEAR ALGEBRA 175

x

y

(−2, 2)

(0, 3)

(3, 1)

(5, 2)

(−1, 1)

(1, 2)

So we could describe the vector simply by recording this change in x-
and y-coordinates. There are several different ways we could record this,
but two common ways would be to make a 2× 1 matrix listing the change
in x- and y-, or a 1× 2 matrix:(

x
y

)
or

(
x y

)
In the first situation, with the 2 × 1 matrix we say we have a column
vector , and the 1× 2 matrix is called a row vector . We will usually, but
not always, use column vectors in this class. There’s nothing magical about
why we choose column vectors instead of row vectors, it’s just a choice.

Notice that vector addition and scalar multiplication are very easy to
express once we have coordinates like this:(

x1

y1

)
+

(
x2

y2

)
=

(
x1 + x2

y1 + y2

)

λ

(
x
y

)
=

(
λx
λy

)

Three-dimensional vectors

Vectors in R3 are completely analogous to vectors in R2: we they are arrows
connecting a point at the tail of the vector to the tip, the direction of the
vector is the direction of this arrow, and the length of the arrows is the
magnitude. Adding three-dimensional vectors or doing scalar multiplica-
tion is exactly the same as adding two-dimensional vectors or doing scalar

CHAPTER 9. LINEAR ALGEBRA 176

multiplication: we can use the parallelogram or triangle laws and stretch a
vector out by a given amount. It’s slightly harder to draw the pictures on a
two-dimensional screen or piece of paper, but everything is defined exactly
the same.

Just as we can represent a two-dimensional vector using two pieces of
information, telling us the displacement in the x- and y-coordinates be-
tween the vector’s tail and tip, we can do precisely the same thing in three
dimensions and we simply have one more piece of information to deal with:
the change in the z-coordinates.

Just as in the two-dimensional vectors can be represented as column or
row vectors, so can three-dimensional vectors: A 3× 1 matrix is a column
vector in three dimensions, and a 1 × 3 matrix is a row vector in three
dimensions. xy

z

 or
(
x y z

)
and again, vector addition and scalar multiplication are easily expressed:x1

y1

z1

+

x2

y2

z2

 =

x1 + x2

y1 + y2

z1 + z2



λ

xy
z

 =

λxλy
λz


Vectors in Rn

We can define vectors in Rn completely analogously to how we defined row
vectors (or column) vectors in R2 and R3. If we’re in Rn for n ≥ 4 we can’t
really visualize the vectors as arrows anymore, but we can still define them
algebraically.

A column vector in Rn is a n×1 matrix, and a row vector is a 1×n
matrix. We will typically use column vectors and just say vector to mean
column vectors – but this is just a convenient choice.

Given two vectors in Rn, say

~x =


x1

x2
...
xn

 and ~y =


y1

y2
...
yn



CHAPTER 9. LINEAR ALGEBRA 177

then we define their sum, ~x + ~y by adding the components of the vectors
together,

~x+ ~y =


x1

x2
...
xn

+


y1

y2
...
yn

 =


x1 + y1

x2 + y2
...

xn + yn

 .

We define scalar multiplication by multiplying each component of the vector
by the same scalar,

λ~x = λ


x1

x2
...
xn

 =


λx1

λx2
...

λxn


We will usually denote the vector −1 · ~v as just −~v, and define “vector

subtraction” to be vector addition, but with −1 times one of the vectors:

~v − ~u = ~v + (−~u).

By ~0 we always mean the vector of all zeros:
0
0
...
0


Two vectors, ~v and ~u, are equal precisely when their components are

equal:

~v =


v1

v2
...
vn

 =


u1

u2
...
un

 = ~u

really means

v1 = u1

v2 = u2

...

vn = un

CHAPTER 9. LINEAR ALGEBRA 178

Properties of Vectors

Vector addition and scalar multiplication satisfy some of the basic algebraic
properties that you would expect:

Proposition 9.5.
Let ~u, ~v, and ~w all be vectors in Rn (resp., Cn) and let λ, µ be scalars
in R (resp. C). Then vector addition and scalar multiplication satisfy
the following properties:

1. (~u+ ~v) + ~w = ~u+ (~v + ~w)

2. ~u+ ~v = ~v + ~u

3. λ (µ~v) = (λµ)~v

4. ~v +~0 = ~v

5. ~v + (−~v) = ~0

6. (λ+ µ)~v = λ~v + µ~v

7. λ(~u+ ~v) = λ~u+ λ~v

8. λ(µ~v) = (λµ)~v

9. 1 · ~v = ~v

Vector Equations

Just we have equations involving numbers, we can have equations involving
scalars. For example, consider the vectors

~v1 =

(
1
1

)
~v2 =

(
1
2

)
Now consider the equation

x~v1 + y~v2 =

(
4
3

)
.

CHAPTER 9. LINEAR ALGEBRA 179

A solution to this vector equation would be a choice of scalars x and y
making the equation hold.

Let’s think about what would happen if we write out all of the details
in the above vector equation

x~v1 + y~v2 =

(
4
3

)
=⇒ x

(
1
1

)
+ y

(
1
2

)
=

(
4
3

)
=⇒

(
x
x

)
+

(
y
2y

)
=

(
4
3

)
=⇒

(
x+ y
x+ 2y

)
=

(
4
3

)
Since two vectors are equal only when their components are equal, this
means we really want to find x and y solving the system

x+ y = 4

x+ 2y = 3.

So vector equations are really systems of equations in disguise! Further-
more, notice that the columns of the coefficient matrix for this system are
exactly the original vectors in our vector equation!

Linear Combinations

We have two algebraic operations we can perform to vectors: scalar mul-
tiplication and vector addition. If we’re given some vectors ~v1, ~v2, ..., ~vm
and we multiply each one by a some scalar – say we multiply ~vi by λi –
and then sum these vectors, we say that the resulting vector is a linear
combination of the vectors ~v1, ~v2, ..., ~vm.

That is, a linear combination of ~v1, ~v2, ..., ~vm is a vector that may be
written as

λ1~v1 + λ2~v2 + · · ·+ λm~vm

for any choice of scalars λ1, λ2, ..., λm.

Example 9.32.

CHAPTER 9. LINEAR ALGEBRA 180

Consider the following two vectors in three-space:

~v1 =

 1
−1
2

 ~v2 =

3
3
0


One possible linear combination of these vectors is

7~v1 − 4~v2 =

 7
−7
14

+

−12
−12

0

 =

 −5
−19
14



Given ~v1, ..., ~vm – all vectors of the same dimension, say n – the collection
of all possible linear combinations of the vectors is called the span of the
vectors and is denoted

span{~v1, ~v2, ..., ~vm}.

In set-builder notation,

span{~v1, ~v2, ..., ~vm} =
{
λ1~v1 + · · ·+ λm~vm

∣∣λ1, λ2, ..., λm ∈ R
}

Notice that in both R2 and R3, the span of a single, non-zero vector is a
line through the origin. The span of two vectors could be plane (in R2 this
would give us all possible vectors – the only plane sitting inside of R2 is
the entire xy-plane), or it could be line. This second situation occurs when
one vector is a multiple of another. That is, if our two vectors ~v1 and ~v2

have the property that ~v2 = µ~v1, then any linear combination of ~v1 and ~v2

is really just a multiple of ~v1:

λ1~v1 + λ2~v2 = λ1~v1 + λ2µ~v1 = (λ1 + λ2µ)~v1.

In a situation like we say the vectors ~v1 and ~v2 are linearly dependent :
meaning that one vector is a linear combination of another.

More generally, we say that a set of vectors {~v1, ..., ~vm} is linearly
dependent if it’s possible to write one vector as a linear combination of
the others. If this can’t be done – no vector is a linear combination of the
others – then we say the set is linearly independent .

Proposition 9.6.
A set of vectors {~v1, ~v2, ..., ~vm} is linearly independent if and only if

CHAPTER 9. LINEAR ALGEBRA 181

the only scalars λ1, λ2, ..., λm making the following equation hold,

λ1~v1 + λ2~v2 + · · ·+ λm~vm = 0

are λ1 = λ2 = · · · = λm = 0.

Proof of Proposition 9.6.
If we could write

λ1~v1 + λ2~v2 + · · ·+ λm~vm = 0

for some non-zero choice of the λi, then we could pick one of the
vectors ~vi where λi 6= 0 and move it to the other side of the equation
and divide by −λi to write

λ1

−λi
~v1 + · · ·+ λi−1

−λi−1

~vi−1 +
λi+1

−λi+1

~vi+1 + · · ·+ λm
−λi

~vm = ~vi.

Thus if it is impossible to write one of the ~vi as a linear combination
of the other vectors (i.e., the vectors are linearly independent), then
the only way to write λ1~v1 + λ2~v2 + · · ·+ λm~vm = 0 is if every λj was
zero.

Conversely, if one of the vectors was a linear combination of the
others,

µi~v1 + · · ·+ µi−1~vi−1 + µi+1~vi+1 + · · ·+ µm~vm = ~vi.

Then we can write

µi~v1 + · · ·+ µi−1~vi−1 − ~viµi+1~vi+1 + · · ·+ µm~vm = 0.

Thus if we can not write λ1~v1 + · · ·+λm~vm = 0, then the vectors must
be linearly independent.

The product of a matrix and a vector

We introduced vectors above and saw that there were two algebraic op-
erations that could be performed on vectors: vector addition and scalar

CHAPTER 9. LINEAR ALGEBRA 182

multiplication. In general we can not multiply two vectors, but we can
actually define the product of a matrix and a vector – at least if the sizes
of the matrix and vector agree in a particular way. We will also see that
this gives us a very concise way of expressing a system of a linear equations
which will pave the way to later showing that properties of a linear system’s
coefficient matrix are directly related to the solutions of the system.

Suppose that ~a1, ~a2, ..., ~an are vectors in Rm. In the last section we
considered linear combinations of vectors which were scalar multiples of the
vectors added together:

x1~v1 + x2~v2 + · · ·+ xn~vn.

Notice that these scalars, x1, x2, ..., xn, that we multiply each vector by
could be regarded as the components of some n-dimensional vector which
we might call ~x:

~x =


x1

x2
...
xn

 .

We could also think of each vector ~a1, ..., ~an, as forming the columns of
some matrix A:

A =

~a1 ~a2 · · · ~an



Example 9.33.
Suppose we have four three-dimensional vectors,

~a1 =

2
1
0

 ~a2 =

−1
0
3

 ~a3 =

1
1
1

 ~a4 =

 4
2
−7


and we considered the linear combination

5~a1 − 3~a2 + 2~a3 + 2~a4.

CHAPTER 9. LINEAR ALGEBRA 183

Then our vector ~x would be

~x =


5
−3
2
2


and our matrix A would be

A =

2 −1 1 4
1 0 1 2
0 3 1 −7

 .

In general, we will define the product of an m × n matrix A with an
n-dimensional vectors ~x as the linear combination of the columns of A with
scalars given by the components of ~x.

Example 9.34.
If A is the matrix

A =

 3 4 0
2 1 −1
−5 7 2


and ~x is the vector

~x =

−1
2
3


then the product A~x is the the linear combination

−

 3
2
−5

+ 2

4
1
7

+ 3

 0
−1
2

 =

−3 + 8 + 0
−2 + 2− 3
5 + 14 + 6

 =

 5
−3
25



Example 9.35.

CHAPTER 9. LINEAR ALGEBRA 184

If A is the matrix

A =

(
4 6 −5 3
0 2 1 4

)
and ~x is the matrix

~x =


8
−3
5
2


then the product A~x is the linear combination

8

(
4
0

)
− 3

(
6
2

)
+ 5

(
−5
1

)
+ 2

(
3
4

)
=

(
32− 18− 25 + 6

0− 6 + 5 + 8

)
=

(
−5
7

)

Remark.
In order for this definition of the product of a matrix and a vector to
make sense, it is absolutely essential that the number of columns of
the matrix equals the number of rows in the vector (the dimension of
the vector).

Example 9.36.

CHAPTER 9. LINEAR ALGEBRA 185


3 2 4
1 −2 3
0 4 4
1 1 −1


2

0
3

 =


6 + 0 + 12
2 + 0 + 9
0 + 0 + 12
2 + 0− 3



=


18
11
12
−1



9.4 The Matrix Equation A~x = ~b

If ~b is some particular vector n-dimensional vector, we may want to know
if there is a solution to the vector equation

x1~a1 + x2~a2 + · · ·+ xn~an = ~b

which can be more easily concisely written as

A~x = ~b

where A is the matrix whose columns are given by ~a1, ..., ~an, and ~x is the
vector containing the variables x1, ..., xn.

Example 9.37.
Asking for x1, x2, and x3 solving the vector equation

x1

 1
−1
2

+ x2

2
3
0

+ x3

4
7
7

 =

3
1
2


is the same as asking if there is a vector

~x =

x1

x2

x3



CHAPTER 9. LINEAR ALGEBRA 186

such that  1 2 4
−1 3 7
2 0 7

x1

x2

x3

 =

3
1
2



Notice that this is really just a system of linear equations with variables
x1, x2, x3 with coefficient matrix A and augmented coefficient matrix A ~b


Thus solving systems of linear equations and solving the matrix equation
A~x = ~b are two sides of the same coin.

Example 9.38.
If A and ~b are

A =

 1 2 4
−1 3 7
2 0 7

 ~b =

3
1
2


Then finding a vector ~x solving A~x = b is the same as finding a solution
(x1, x2, x3) to the system

x1 + 2x2 + 4x3 = 3

−x1 + 3x2 + 7x3 = 1

2x1 + x3 = 2

That solving systems of linear equations and solving matrix equations
A~x = b are really the same thing leads to the following theorem.

Proposition 9.7.
Let A be an m× n matrix. Then the system of linear equations with

augmented coefficient matrix
(
A ~b

)
has a solution if and only if ~b is

in the span of the columns of A: ~a1, ~a2, ..., ~an.

CHAPTER 9. LINEAR ALGEBRA 187

Proof.
Suppose first that the system A~x = ~b has a solution. Then, by the
definition of the product A~x, ~b is a linear combination of the columns
of A. In particular, if the components of ~x are x1, x2, ..., xn, then we
have

~b = x1~a1 + x2~a2 + · · ·+ xn~an.

Now suppose that~b is in the span of the columns of A, again, by the
definition of the product A~x, this precisely means the system A~x = ~b
has a solution. In particular, if

~b = λ1~a1 + λ2~a2 + · · ·+ λn~an,

then a solution to A~x = ~b is given by

~x =


λ1

λ2
...
λn



Notice that nothing deep is going on in this proposition: we’re just
translating the language of systems of linear equations to the language of
matrix equations.

Remark.
Sometimes the hardest part of solving a mathematical problem is de-
termining the right way to express it: some problems seem easier or
more difficult depending on the language you use to describe them.
We are in the process of taking the ideas we described at the start of
the semester (systems of linear equations) and converting them into
another language (matrices and vectors) because, as we will see, it is
actually a lot easier to think about many problems in terms of matri-
ces and vectors. This may sound strange at first, especially if you’re
learning about matrices and vectors for the first time, but using the
language matrices will actually make many problems much easier to

CHAPTER 9. LINEAR ALGEBRA 188

think about and ultimately solve.

Example 9.39.
Is there a solution to the following matrix equation?2 3 4

6 18 24
2 3 9

x1

x2

x3

 =

 2
−12
−13


By the definition of the product of a matrix and a vector, this really
means we want to find x1, x2, and x3 such that

x1

2
6
2

+ x2

 3
18
3

+ x3

 4
24
9

 =

 2
−12
−13


But if we do the scalar multiplication and vector addition we can
rewrite the left-hand side of this equation to obtain 2x1 + 3x2 + 4x3

6x1 + 18x2 + 24x3

2x1 + 3x2 + 9x3

 =

 2
−12
−13


Equating components of the vectors, this is really a system of equa-
tions,

2x1 + 3x2 + 4x3 = 2

6x1 + 18x2 + 24x3 = −12

2x1 + 3x2 + 9x3 = −13

We know how to solve a system like this, though: we write down the
augmented coefficient matrix (which we could have easily read off from
the original matrix equation),2 3 4 2

6 18 24 −12
2 3 9 −13



CHAPTER 9. LINEAR ALGEBRA 189

then proceed to put the matrix in RREF, which gives us1 0 0 4
0 1 0 2
0 0 1 −3


This tells us the system of equations is equivalent to

x1 = 4

x2 = 2

x3 = −3

and so we have a unique solution to the system.
In terms of the vector equation, we have

4

2
6
2

+ 2

 3
18
3

− 3

 4
24
9

 =

 2
−12
−13


And so the vector solving our original matrix equation is

~x =

 4
2
−3

 .

That is, 2 3 4
6 18 24
2 3 9

 4
2
−3

 =

 2
−12
−13



9.5 Existence of Solutions

We have seen that systems of linear equations sometimes have a unique
solution, sometimes have no solution, and sometimes have infinitely-many
solutions. Whether a solution exists or not depends less on the right-hand
side of the equations of the system, and more about the coefficients of the
system. In the language of matrices and vectors, solving A~x = ~b depends
more on what A is than on what ~b is. In particular, we have the following
theorem:

CHAPTER 9. LINEAR ALGEBRA 190

Theorem 9.8.
Suppose that A is an m × n matrix and ~x and ~b are m-dimensional

vectors. Then the following are equivalent:

(a) The equation A~x = ~b has a solution for every choice of ~b.

(b) Every m-dimensional vector~b is a linear combination of the columns
of A.

(c) The columns of A span Rm.

(d) A has a pivot position in every row.

Remark.
The theorem above uses the phrase the following are equivalent. This
means that if one of the statements is true, then all of the statements
are true; if one of the statements is false, then all of the statements are
false. This is really a shorthand for several if and only if statements.
When we say “the following are equivalent: (a) ... (b) ... (c) ... (d)
...” what we really means is that statement (a) happens if and only
if statement (b) happens if and only if statement (c) happens if and
only if statement (d) happens.

We’ve seen before that “if and only if” statements are really two
statements: there’s actually two things to prove. If you want to prove
“(a) if and only if (b)” then you need to show that statement (a)
implies statement (b) and also that statement (b) implies statement
(a). Thus it might seem like for the above we need to show twelve
different things: (a) implies (b), (b) implies (a), (a) implies (c), (c)
implies (a), (a) implies (d), (d) implies (a), (b) implies (c), (c) implies
(b), and so on.

It would be completely correct to show all of these implications,
but luckily there’s an easier way. We can instead show that (a) implies
(b), (b) implies (c), (c) implies (d), and finally (d) implies (a). If we
show this then everything else can be deduced. For example, if we
show the four implications above, then the fact that (c) implies (a),
for instance comes for free: we know (c) implies (d) and also that (d)

CHAPTER 9. LINEAR ALGEBRA 191

implies (a), hence (c) implies (a) as well.
In hand-written notes, the following are equivalent is often abbre-

viated TFAE.

Proof of Theorem 9.8.

(a) =⇒ (b)
Because of the way we have defined the product of a matrix
and a vector, saying A~x = ~b means exactly that ~b is a linear
combination of the columns of A. Hence if A~x = ~b has a solution
for every ~b, then it must be the case that every ~b can be written
as a linear combination of the columns of A.

(b) =⇒ (c)
The span of a set of vectors is exactly the set of all possible linear
combinations of those vectors. So if every vector in Rm can be
written as a linear combination of the columns of A, then the
span of the columns of A is all of Rm.

(c) =⇒ (d)
We will prove the contrapositive: if (d) does not occur, then (c)
can’t occur either.

So suppose that there was some row that did not have a pivot.
This means precisely that the row-reduced echelon form of A has
a row of all zeros (otherwise we would have a leading entry of 1

which would be our pivot). We could then find choices of ~b so

that the row-reduced echelon form of
(
A ~b

)
has a row of all

zeros followed by a 1. Thus the system has no solution which
means ~b can’t be written as a linear combination of the columns
of A.

We’ve proven the contrapositive “if not (d), then not (c)” which
is logically equivalent to the original statement “if (c), then (d).”

(d) =⇒ (a)
Finally, suppose that A has a pivot position in every row. Then

CHAPTER 9. LINEAR ALGEBRA 192

the row-reduced echelon form of A has no rows of all zeros, and
we can solve any system A~x = ~b.

9.6 Properties of Ax

Algebraic properties

We have defined a new algebraic operation: multiplying an m × n matrix
A with an m-dimensional vector ~x. Anytime we introduce a new operation,
it’s natural to ask what kind of algebraic properties that operation satisfies.
The following two properties are absolutely fundamental and will form the
basis for what’s to come when we define linear transformations.

Theorem 9.9.
If A is an m× n matrix, then for every pair of n-dimensional vectors
~x and ~y, and every scalar λ ∈ R, we have the following properties:

(a) A(~x+ ~y) = A~x+ A~y

(b) A(λ · ~x) = λ · A~x

Proof.
We do a direct proof, and simply verify these properties hold for any
arbitrary m × n matrix A, arbitrary m-dimensional vectors ~x and ~y,
and arbitrary scalar λ.

We may suppose that A has the form

A =

~a1 ~a2 · · · ~an



CHAPTER 9. LINEAR ALGEBRA 193

and that

~x =


x1

x2
...
xm

 ~y =


y1

y2
...
ym

 .

(a)

A(~x+ ~y) = A



x1

x2
...
xm

+


y1

y2
...
ym




= A


x1 + y1

x2 + y2
...

xm + ym


= (x1 + y1)~a1 + (x2 + y2)~a2 + · · ·+ (xm + ym)~am

= x1~a1 + y1~a1 + x2~a2 + y2~a2 + · · ·+ xm~am + ym~am

= x1~a1 + x2~a2 + · · ·+ xm~am + y1~a1 + y2~a2 + · · ·+ ym~am

= A


x1

x2
...
xm

+ A


y1

y2
...
ym


= A~x+ A~y

(b)

A(λ · ~x) = A


λx1

λx2
...

λxm


= λx1~a1 + λx2~a2 + · · ·+ λxm~am

= λ · (x1~a1 + x2~a2 + · · ·+ xm~am)

= λ · A~x

CHAPTER 9. LINEAR ALGEBRA 194

Computational properties

There is an alternative way to think about the product A~x that is sometimes
handy. Notice that if A is an m × n matrix and ~x is an m-dimensional
vector, then the product A~x is also an n-dimensional vector: it’s a linear
combination of n-dimensional vectors (the columns of A). This vector can
be generated one element at a time by walking across each row of the
matrix A, while simultaneously going down the column vector ~x element
by element, multiplying the elements and adding them up.

Example 9.40.
Consider the product

2 0 −1 1
3 1 0 2
2 −2 1 1




1
4
−2
1


To get the first element in the product we look at the first row of the
matrix, multiplying the entry in the j-th column by the j-th entry in
the vector.

For the first entry we have

1 · 2 + 4 · 0 + (−2) · (−2) + 1 · 1 = 7.

We get the second entry,

1 · 3 + 4 · 1 + (−2) · 0 + 1 · 2 = 9.

For the third entry,

1 · 2 + 4 · (−2) + (−2) · 1 + 1 · 1 = −7.

And thus the product is  7
9
−7

 .

CHAPTER 9. LINEAR ALGEBRA 195

9.7 Matrix algebra

In this section we discuss the various types of operations that can be per-
formed on matrices, and the algebra of these operations.

Linear Transformations

Many of the operations we perform on matrices have an interpretation in
terms of functions, and understanding that interpretation helps to motivate
why some of the constructions below are things we should care about.

We will say that a map T : Rn → Rm (that is, a map that takes n-
dimensional vectors and converts them into m-dimensional vectors) is a
linear transformation if it satisfies the following two axioms:

(i) For every pair of n-dimensional vectors ~u,~v ∈ Rn, T satisfies the
following equation:

T (~u+ ~v) = T (~u) + T (~v).

(ii) For every n-dimensional vector ~v and every scalar λ ∈ R, we have

T (λ~v) = λT (~v).

Recall that there are two basic operations we can perform on vectors: vector
addition and scalar multiplication. Linear transformations are precisely the
maps that “respect” these two operations.

Example 9.41.
Consider the following which takes two-dimensional vectors and trans-
forms them into three-dimensional vectors:

T : R2 → R3

T

(
x
y

)
=

 y
−x
x+ y



CHAPTER 9. LINEAR ALGEBRA 196

This map takes

(
1
3

)
and turns it into the vector

T

(
1
3

)
=

 3
−1
4


and it takes the vector

(
−2
−6

)
and turns it into

T

(
−2
−6

)
=

−6
2
−8



Example 9.42.
The following map takes four-dimensional vectors and turns them into
two-dimensional vectors:

T : R4 → R2

T


x1

x2

x3

x4

 =

(
x1 − 2x4

4x3 + x2

)

CHAPTER 9. LINEAR ALGEBRA 197

Here are some examples of what this function does:

T


1
2
3
4

 =

(
−7
14

)

T


7
2
0
−1

 =

(
9
2

)

T


8
4
3
3

 =

(
2
16

)

Notice that these two different maps are actually given by matrices:

Example 9.43.
The map T : R2 → R3 from Example 9.41 is given by multiplying a

vector

(
x
y

)
with the matrix

A =

 0 1
−1 0
1 1


For example, 0 1

−1 0
1 1

(1
3

)
= 1

 0
−1
1

+ 3

1
0
1

 =

 3
−1
4

 .

Example 9.44.
The map T : R4 → R2 from Example 9.42 is given by multiplying a

CHAPTER 9. LINEAR ALGEBRA 198

four-dimensional vector with the matrix

A =

(
1 0 0 −2
0 1 4 0

)
For example, (

1 0 0 −2
0 1 4 0

)
1
2
3
4

 =

(
−7
14

)

In fact, every matrix determines such a map: Every m×n matrix defines
a map from Rn to Rm by matrix multiplication:

~x 7→ A~x.

By the properties of multiplication between matrices and vectors, we see
that such a map is always a linear transformation. In fact, it turns out that
every linear transformation is determined by a matrix in this way.

The Matrix of a Linear Transformation

We said above that every matrix determines a linear transformation. It
turns out, however, that every linear transformation is determined by a
matrix. That is, for every linear transformation T : Rm → Rn, there is
some m× n matrix A such that T (~v) = A~v.

To see this, let’s notice that every n-dimensional vector can be written
as a linear combination of the vectors

~e1 =



1
0
0
0
...
0
0


~e2 =



0
1
0
0
...
0
0


~e3 =



0
0
1
0
...
0
0


· · · ~en =



0
0
0
0
...
0
1


.

That is, ~ei is the vector that has all zeros except for a 1 in the i-th row.
Now suppose T : Rn → Rm is a linear transformation, and so T (~ei) is

some m-dimensional vector – let’s call it ~ai. Now consider the matrix A

CHAPTER 9. LINEAR ALGEBRA 199

whose columns are given by these vectors,

A =

~a1 ~a2 · · · ~an

 .

This matrix represents our linear transformation: if

~x =


x1

x2
...
xn


is any vector, then we have

T (~x)

=T (x1~e1 + x2~e2 + · · ·+ xn~en)

=x1T (~e1) + x2T (~e2) + · · ·+ xnT (~en)

=x1~a1 + x2~a2 + · · ·+ xn~an

But notice that

x1~a1 + x2~a2 + · · ·+ xn~an

=
(
~a1 ~a2 · · · ~an

)

x1

x2
...
xn


=A~x

Thus every linear transformation is determined by some matrix!

Matrix Addition and Scalar Multiplication

Let T : Rn → Rm and S : Rn → Rm be the corresponding linear transfor-
mations. We can produce a new linear transformation T + S : Rn → Rm

by adding vectors. That is, given a vector ~v ∈ Rn we consider the map

~v 7→ T (~v) + S(~v).

CHAPTER 9. LINEAR ALGEBRA 200

This gives us a new map which we denote T + S. It’s easy to see that if T
and S are linear transformations, then so is T + S:

(T + S)(~v + ~w) =T (~v + ~w) + S(~v + ~w)

=T (~v) + T (~w) + S(~v) + S(~w)

=T (~v) + S(~v) + T (~w) + S(~w)

=(T + S)(~v) + (T + S)(~w)

(T + S)(λ~v) =T (λ~v) + S(λ~v)

=λT (~v) + λS(~v)

=λ(T + S)(~v)

Since T + S is a linear transformation, there must be some matrix rep-
resenting it. Before we determine what this matrix must be, let’s suppose
that T is given by the matrix A with columns ~a1, ~a2, ..., ~an, and S is
determined by the matrix B with columns ~b1, ~b2, ..., ~bn.

We know that the columns of the matrix representing T+S are given by
the vectors (T + S)(~ei), where ~ei is the n-dimensional vector that consists
entirely of zero except for a 1 in the i-th component.

Notice

(T + S)(~ei) =T (~ei) + S(~ei)

=ai + bi

That is, the columns of the matrix representing T + S are determined by
adding the columns of the matrices representing T and S.

Example 9.45.
Suppose T and S are the linear transformations corresponding to the
matrices

A =


1 0 2
3 −1 4
5 2 2
1 −1 −1

 B =


−1 3 3
2 2 −2
1 1 −3
4 1 2



CHAPTER 9. LINEAR ALGEBRA 201

Then the matrix corresponding to T + S is
0 3 5
5 1 2
6 3 −1
5 0 1



The matrix we get by adding the columns of a matrix A with the columns
of a matrix B like this is denoted A+B. Notice that since we add vectors
(the columns of the matrices) component-by-component, we add matrices
component-by-component as well – this also means that addition of matrices
only makes sense if the matrices are the same size.

Example 9.46.2 3 4 2
1 0 2 −1
3 4 0 1

+

1 −1 1 0
2 2 7 13
4 2 9 1

 =

3 2 5 2
3 2 9 12
7 6 9 2



Given a linear transformation T : Rn → Rm and a scalar µ we can define
a new map by multiplying the outputs of T with µ: ~v 7→ µT (~v). This map
is denoted µT and is also a linear transformation:

µT (~v + ~w) =µ(T (~v) + T (~w))

=µT (~v) + µT (~w)

µT (λ~v) =µλT (~v)

Since µT is a linear transformation it is represented by some matrix
whose columns are µT (~ei). If T is represented by matrix A with columns
~ai = T (~ei), then µT is represented by the matrix with columns µ~ai. That is,
the matrix representing µT is simply the matrix representing T , but with
every entry multiplied by µ.

CHAPTER 9. LINEAR ALGEBRA 202

Example 9.47.
If T : R2 → R4 is given by the matrix

4 2
6 −3
7 8
2 0

 ,

then the matrix representing −5T is given by
−20 −10
−30 15
−35 −40
−10 0

 .

The matrix obtained by multiplying each entry of a matrix A by µ is
denoted µA.

Example 9.48.

3

2 7 1 0
4 2 −2 3
1 1 4 2

 =

 6 21 3 0
12 6 −6 9
3 3 12 6



So we have two operations we can perform on matrices: matrix addition
and scalar multiplication, corresponding to performing vector addition and
scalar multiplication with the corresponding linear transformations.

Anytime we introduce an algebraic operation such as this, we’d like to
know what properties the operation may satisfy; and if we have multiple
operations, we want to know how the different operations interact with one
another.

In what’s to follow we will use 0 to mean the zero matrix: the matrix
of all zeros. It will usually be clear from context when we write 0 whether
we’re referring to the scalar number zero, or the zero matrix.

CHAPTER 9. LINEAR ALGEBRA 203

Theorem 9.10.
Let A, B, and C be m × n matrices and let λ and µ be scalars.

Then matrix addition and scalar multiplication satisfy the following
properties:

(i) A+B = B + A

(ii) (A+B) + C = A+ (B + C)

(iii) A+ 0 = A

(iv) A− A = A+ (−A) = 0

(v) λ(A+B) = λA+ λB

(vi) (λ+ µ)A = λA+ µA

(vii) (λµ)A = λ(µA)

Proof.
The proofs of each of the above properties are basically identical: sim-
ply write out the left-hand and right-hand sides of each property and
verify that everything is equal. This is easy, but quite tedious, so we
will just give the proof of the first property.

Suppose that A and B are m × n matrices where the element in
the i-th row and j-th column of each matrix is aij and bij, respectively.
Then the element in the i-th row and j-th column of the sum A+B is
aij +bij. Since aij and bij are just numbers (real or complex, it doesn’t
matter), we know aij + bij = bij + aij, but this is the entry in the i-th
row and j-th column of B+A. Thus A+B and B+A have the same
entries are so are the same matrix: A+B = B + A.

Matrix Multiplication

If f : A → B and g : B → C is a map, then their composition is a map
from A to C given by

a 7→ g(f(a))

CHAPTER 9. LINEAR ALGEBRA 204

and denoted g ◦ f : A→ C.
Consider linear transformations T : Rn → Rm and S : Rm → Rp. Their

composition, S ◦ T , is a map from Rn to Rp which takes vectors in Rn and
maps them into Rp according to the rule

~v 7→ S(T (~v)).

Notice that this is a linear transformation:

(S ◦ T)(~v + ~w) =S(T (~v + ~w))

=S(T (~v) + T (~w))

=S(T (~v)) + S(T (~w))

=(S ◦ T)(~v) + (S ◦ T)(~w)

(S ◦ T)(λ~v) =S(T (λ~v))

=S(λT (~v))

=λS(T (~v))

=λ(S ◦ T)(~v).

Since S ◦ T : Rn → Rp is a linear transformation it must be represented
by some p × n matrix, the columns of which are given by S(T (~ei)). To
determine what these columns look like, suppose that T is represented by
the m× n matrix A and S is represented by the p×m matrix B. Suppose
the columns of A are ~a1, ~a2, ..., ~an and the columns of B are ~b1, ~b2, ...,
~bm. Then S(T (~ei)) = S(~ai). Applying S corresponds to multiplying by the
matrix B, however, so S(~ai) = B~ai. That is, the matrix representing S ◦ T
has the form B~a1 B~a2 · · · B~an


If we suppose that ~ai has the form

~ai =


a1,i

a2,i
...
ami


then the i-th column of the matrix above is

B~ai = a1,i
~b1 + a2,i

~b2 + · · ·+ am,i~bi

CHAPTER 9. LINEAR ALGEBRA 205

Supposing that the column ~bj has the form

~bj =


b1,j

b2,j
...
bp,j


We have

B~ai =a1,i


b1,1

b2,1
...
bp,1

+ a2,i


b1,2

b2,2
...
bp,2

+ · · ·+ am,i


b1,m

b2,m
...

bp,m


=

a1,ib1,1 + a2,ib1,2 + · · ·+ am,ib1,m

a1,ib2,1 + a2,ib2,2 + · · ·+ am,ib2,m
...a1,ibp,1 + a2,ibp,2 + · · ·+ am,ibp,m



=


b1,1a1,i + b1,2a2,i + · · ·+ b1,mam,i
b2,1a1,i + b2,2a2,i + · · ·+ b2,mam,i

...
bp,1a1,i + bp,2a2,i + · · ·+ bp,mam,i



Putting this all together, the entry in the i-th row and j-th column of our
p× n matrix is

m∑
k=1

bi,kak,j.

This matrix is called the product of the matrices B and A and is denoted
BA.

Just to reiterate: given two matrices A and B where A has size m× n
and B has size n×p, we can define the product AB which is a m×p matrix
whose entry in the i-th row and j-th column is

n∑
k=1

ai,kbk,j

This matrix corresponds to the composition of the linear transformations
determined by A and B; applying B first and then A.

CHAPTER 9. LINEAR ALGEBRA 206

Notice that if A is 1× n and B is n× 1, then this multiplication is easy
to do:

(
a1 a2 a3 · · · an

)

b1

b2

b3
...
bn

 =
(
a1b1 + a2b2 + a3b3 + · · ·+ anbn

)

Example 9.49.

(
3 7 2 1

)
2
−1
4
0

 =
(
3 · 2 + 7 · (−1) + 2 · 4 + 1 · 0

)
=
(
7
)

Since the product of a row vector and a column vector like this is always
a 1× 1 matrix it’s just a single number, and so we usually think of this as
being a scalar instead of a vector.

Remark.
If you’ve taken multivariable calculus, you might notice that multiply-
ing a row vector and a column vector like this is the same as taking
the dot product of two vectors.

The entry in the i-th row, j-th column of the product AB is obtained by
multiplying the i-th row of A with the j-th column of B. This observation
greatly simplifies the calculation of the product of two matrices.

Example 9.50.

CHAPTER 9. LINEAR ALGEBRA 207

Let A and B be the matrices below, and compute the product AB.

A =

4 6 3
0 1 −1
3 2 2

 B =

3 1
1 2
0 2


The first row, first column of AB will be the product of the first

row of A with the first column of B:

(
4 6 3

)3
1
0

 = 4 · 3 + 6 · 1 + 3 · 0 = 18

The first row, second column of AB will be the product of the first
row of A and the second column of B:

(
4 6 3

)1
2
2

 = 4 · 1 + 6 · 2 + 3 · 2 = 22

The second row, first column of AB is the product of the second row
of A and the first column of B:

(
0 1 −1

)3
1
0

 = 0 · 3 + 1 · 1 + (−1) · 0 = 1

Continuing like this we can compute each entry of AB:

AB =

18 22
1 0
11 11



Example 9.51.

CHAPTER 9. LINEAR ALGEBRA 208

Suppose T : R3 → R2 and S : R2 → R4 are given by

T

xy
z

 =

(
x+ z
y − z

)

S

(
x
y

)
=


2y
x+ y
x− y

3x

 .

What does the composition S ◦ T do? What is the corresponding
matrix?

Our map S ◦ T will take convert three-dimensional vectors into
four-dimensional vectors in the following way:

S ◦ T

xy
z

 =S

T
xy
z


=S

(
x+ z
y − z

)

=


2(y − z)

x+ z + y − z
x+ z − (y − z)

3(x+ z)



=


2y − 2z
x+ y

x− y + 2z
3x+ 3z


We could compute the matrix of S ◦ T in two different ways: by

multiplying the matrices of S and T , or by computing S ◦T (~ei). We’ll
compute the matrix both ways.

First notice that the matrix of T is

B =

(
1 0 1
0 1 −1

)
.

CHAPTER 9. LINEAR ALGEBRA 209

The matrix of S is

A =


0 2
1 1
1 −1
3 0

 .

The matrix of S ◦ T is thus

AB =


0 2
1 1
1 −1
3 0

(1 0 1
0 1 −1

)

=


0 · 1 + 2 · 0 0 · 0 + 2 · 1 0 · 1 + 2 · (−1)
1 · 1 + 1 · 0 1 · 0 + 1 · 1 1 · 1 + 1 · (−1)

1 · 1 + (−1) · 0 1 · 0 + (−1) · 1 1 · 1 + (−1) · −1
3 · 1 + 0 · 0 3 · 0 + 0 · 1 3 · 1 + 0 · (−1)



=


0 2 −2
1 1 0
1 −1 2
3 0 3


Just to confirm this is correct, notice

S ◦ T (~e1) =


0
1
1
3



S ◦ T (~e2) =


2
1
−1
0



S ◦ T (~e3) =


−2
0
2
3



CHAPTER 9. LINEAR ALGEBRA 210

Properties of Matrix Multiplication

Before mentioning some of the algebraic properties that matrix multiplica-
tion satisfies, we mention some things about matrix multiplication which are
very different when compared to the usual multiplication of real numbers
that you’re used to.

Notice that unlike multiplication of real numbers, multiplication of ma-
trices is not commutative. That is, AB 6= BA in general;

Example 9.52.
Suppose A and B are the matrices below:

A =

1 2 3
0 0 −1
4 2 1

 B =

2 −1 1
1 1 2
3 −1 −2


Then

AB =

13 −2 −1
−3 1 2
13 −3 6



BA =

 6 6 8
9 6 4
−5 2 8



Also unlike normal multiplication of numbers, we can have two non-zero
matrices that multiply to the zero matrix.

Example 9.53.

(
1 2 3
0 −1 −1

) 1 2
1 2
−1 −2

 =

(
0 0
0 0

)

CHAPTER 9. LINEAR ALGEBRA 211


1 2 0 −2 4
0 1 0 −1 1
2 1 1 1 7
0 2 0 −2 2
3 2 3 4 14




2 2
1 −1
2 6
0 −2
−1 −1

 =


0 0
0 0
0 0
0 0
0 0



In general we can’t “divide” matrices either. For example, if x, y and z
are real numbers and xy = xz, then as long as x 6= 0 we can divide out the
x’s to conclude y = z. This is not the case for matrices.

Example 9.54.
Let A, B, and C be the matrices below.

A =

1 3 5
0 2 2
2 1 5

 B =

1 2 2
3 1 −1
1 0 1

 C =

−1 0 −2
2 0 −3
2 1 3


Notice that

AB = AC =

15 5 4
8 2 0
10 5 8


even though B 6= C.

Now that we’ve seen some of the properties that matrix multiplication
doesn’t satisfy, let’s mention some of the properties that are satisfied.

Theorem 9.11.
Let A, B, and C be matrices of the appropriate sizes so that products

and sums below are defined, and let λ be a scalar.

(i) A(BC) = (AB)C

(ii) A(B + C) = AB + AC

(iii) (A+B)C = AC +BC

CHAPTER 9. LINEAR ALGEBRA 212

(iv) λ(AB) = (λA)B = A(λB)

Proof.
This is another theorem that is easy, but tedious, to verify just by
writing out what the matrices look like in components. We will give
the details for the second property, however.

Suppose that A is m × n, B is n × p, and C is n × p, so that the
sums B+C and AB+AC and the products A(B+C), AB and AC are
all defined. Let aij denote the entry in the i-th row and j-th column
of A, and likewise the entries of B and C are bij and cij.

Notice that the entry in the i-th row and j-th column of AB is

n∑
k=1

aikbkj

and similarly, the entry in the i-th row and j-th column of AC is

n∑
k=1

aikckj

Hence the corresponding entry in AB + AC is

n∑
k=1

aikbkj +
n∑
k=1

aikckj =
n∑
k=1

(aikbkj + aikckj) =
n∑
k=1

aik (bkj + ckj)

As the entry in the i-th row and j-th column of B +C is bij + cij,
the entry in the i-th row and j-th column of A(B + C) is thus

n∑
k=1

aik (bkj + ckj) .

Thus A(B+C) = AB+AC since these matrices have the same entries.

CHAPTER 9. LINEAR ALGEBRA 213

The Transpose

Given any m × n matrix A, we can define an n × m matrix called the
transpose of A and denoted AT by swapping the rows and columns of A.

Example 9.55.

A =

1 2 7 −3 2 4
4 −2 1 1 0 2
3 1 2 2 2 2



AT =


1 4 3
2 −2 1
7 1 2
−3 1 2
2 0 2
4 2 2



Notice that this operation turns row vectors into column vectors and
vice versa:

Example 9.56.

(
1 2 3 4

)T
=


1
2
3
4




5
6
7
8


T

=
(
5 6 7 8

)
.

CHAPTER 9. LINEAR ALGEBRA 214

Remark.
If ~v is a column vector (an n × 1 matrix), then the transpose ~vT is a
row vector (a 1 × n matrix). The dot product of two vectors ~u and
~v can then be written as ~uT~v where we perform matrix multiplication
on the 1× n and n× 1 vector to get a single number.

As the transpose is defined by exchanging the roles of columns and rows,
if ~ai is the i-th column of A, then ~aTi is the i-th row of AT . Similarly, if
~αj is the j-th row of A (here ~αj is a row vector), then ~αTj (now a column
vector) is the j-th column of A.

Theorem 9.12.
If A is any matrix, then (AT)T = A.

Proof.
Suppose the columns of A are ~a1, ~a2, ..., ~an:

A =

~a1 ~a2 · · · ~an


Then the transposes of those columns give the rows of AT :

AT =


~aT1
~aT2
...
~aTn

 .

If we take the transpose yet again, then we turn these rows back into
the original columns of A:

(AT)T =

~a1 ~a2 · · · ~an

 = A

CHAPTER 9. LINEAR ALGEBRA 215

Remark.
Notice that if T : Rn → Rm is any linear transformation, say with
corresponding matrix A, then the transpose of A determines a linear
transformation Rm → Rn (in the reverse order of the original trans-
formation T).

We now have four different operations we can perform on matrices:
matrix addition, scalar multiplication, matrix multiplication, and now the
transpose. It’s reasonable to ask how our new operation, transpose, gets
along with the previous operations.

Theorem 9.13.
Let A and B be matrices of the appropriate sizes so that the operations

below are defined, and let λ be a scalar. We then have the following:

(i) (A+B)T = AT +BT

(ii) (λA)T = λ(AT)

(iii) (AB)T = BTAT .

Proof of Theorem 9.13 (i).
We will only prove part (i) and leave the proofs of the other properties
as exercises.

Suppose that A and B are both m× n matrices so that their sum
is defined. Suppose that aij is the entry in the i-th row, j-th column of
A and bij is the entry in the i-th row, j-th column of B. For simplicity
let’s refer to A+B as C and say cij = aij + bij is the entry in the i-th
row, j-th column of C = A+B.

CHAPTER 9. LINEAR ALGEBRA 216

Notice that since the transpose reverses the roles of rows and
columns, the entry in the i-th row, j-th column of AT is aji (note
i and j are in the reverse order), and similarly for BT and CT . Thus
the i-th row, j-th column of C has entry cji which by definition is
aji + bji, but this is the sum of what’s in the i-th row and j-th column
of AT and BT . Thus CT = AT +BT .

Exercise 9.4.
Prove parts (ii) and (iii) of Theorem 9.13. Notice that the i-th row, j-
th column of λA is λaij, and so the entry in the i-th row, j-th column
of (λA)T is λaji, but this is exactly the entry in the i-th row, j-th
column of λ(AT), and so (λA)T = λ(AT).

Suppose A is m× n and B is n× p. The i-th row, j-th column of
(AB)T is the same as the j-th row, i-th column of AB which is

n∑
k=1

ajkbki.

The i-th row, j-th column of BTAT is

n∑
k=1

bkiajk.

Since ajkbki = bkiajk, the matrices are the same.

9.8 Inverses

If f : A→ B is a map, any map g : B → A which satisfies

g(f(a)) = a for every a ∈ A (9.1)

f(g(b)) = b for every b ∈ B (9.2)

is called an inverse of f . Two important properties of inverses are given
by the following theorems:

CHAPTER 9. LINEAR ALGEBRA 217

Theorem 9.14.
A map f : A→ B has an inverse if and only if f is a bijection.

Proof.
Suppose that f has an inverse: we suppose there is some map g : B →
A satisfying the two equations above, and we need to show that f
must be both surjective and injective. For surjectivity, let b ∈ B and
notice that there exists some element a ∈ A that f sends to b: namely,
take a = g(b). By the second equation in the definition of an inverse
we then have

f(a) = f(g(b)) = b

and so f is surjective.
For injectivity, suppose that there are elements a, a′ ∈ A such that

f(a) = f(a′). If we then apply g to f(a) and f(a′), however, we have

a = g(f(a)) = g(f(a′)) = a′,

and so f is injective.
Now we show the converse: suppose that f is bijective, and we

want to show that f has an inverse. We define a map g : B → A by
declaring that for each b ∈ B, g(b) = a where a ∈ A is the element
that f sends to b. Such an a must exist since f is surjective, and a is
unique because f is injective. So g is a well-defined map. Now we just
need to verify that f ◦ g and g ◦ f satisfy the defining properties of an
inverse, but this is almost obvious because of the way we defined g.
By definition, g(f(a)) is the element in A which f sends to f(a), but
that is simply a and so g(f(a)) = a. For the second equation, notice
that g(b) is the element of A that f sends to b, so f(g(b)) = b.

Theorem 9.15.
If f has an inverse (i.e., if f is bijective), then its inverse is unique.

CHAPTER 9. LINEAR ALGEBRA 218

That is, there is only one map g : B → A satisfying Equations (9.1)
and (9.2).

Proof.
To see this, suppose there were two different maps, say g1 and g2,
satisfying the equations. We will show that g1 and g2 must in fact be
the same map. Notice that

f(g1(b)) = b = f(g2(b)),

but f is injective so g1(b) = g2(b).

Since inverses are unique, we are justified in saying the inverse of a map
instead of an inverse of a map. We adopt the notation f−1 to denote the
inverse of f . Notice that this is not f raised to the negative first power; this
is not one over f . (In fact, since we’re just talking about sets that don’t
necessarily have a notation of any sort of “arithmetic” with their elements,
this is a non-issue.)

Notice that Equations (9.1) and (9.2) imply the following:

f(a) = b =⇒ f−1(b) = a

f−1(b) = a =⇒ f(a) = b.

To see this, simply apply f−1 to both sides of f(a) = b and then use
Equation (9.1); and similarly apply f to both sides of f−1(b) = a and use
Equation (9.2). This can be stated more simply as f(a) = b if and only if
f−1(b) = a, which we can write symbolically as f(a) = b ⇐⇒ f−1(b) = a.

We can simplify Equations (9.1) and (9.2) by introducing the identity
map. For every set A, the identity map is a function from A to itself which
fixes every element: that is, a 7→ a for every a ∈ A. The identity map is
denoted idA or id if the set A is clear from context.

Lemma 9.16.
Given any map f : A → B, composing f with the identity map does

CHAPTER 9. LINEAR ALGEBRA 219

not change f :
f ◦ idA = f = idB ◦ f.

Proof.
For every a ∈ A,

f(idA(a)) = f(a), and

idB(f(a)) = f(a)

Equations (9.1) and (9.2) can then be expressed more tersely as

f ◦ f−1 = f−1 ◦ f = id.

Inverse of a Matrix

Now suppose that T : Rn → Rn is a bijective linear map (i.e., the columns
of the corresponding n × n matrix are linearly independent and span Rn),
and so has some inverse T−1.

Lemma 9.17.
If T : Rn → Rn is a bijective linear transformation, then its inverse
T−1 is also linear.

Proof.
By definition, T−1(~v1) = ~u1 if T (~u1) = ~v1. Also consider vectors ~v2

and ~u2 with T−1(~v2) = ~u2 ⇐⇒ T (~u2) = ~v2. We need to show that
T−1(~v1 + ~v2) = ~u1 + ~u2, but notice

T (~u1 + ~u2) = T (~u1) + T (~u2) = ~v1 + ~v2.

CHAPTER 9. LINEAR ALGEBRA 220

Since T−1 is the inverse of T , T−1(~v1 + ~v2) is the element of Rn which
T takes to ~v1 + ~v2, but we have just shown that ~u1 + ~u2 is that element,
and so

T−1(~v1 + ~v2) = T−1(~v1) + T−1(~v2).

Similarly, suppose T−1(~v) = ~u. We need to show that T−1(λ~v) =
λ~u, but this must be the case as

T (λ~u) = λT (~u) = λ~v.

Thus T−1 is linear.

So if T is a linear bijection, then so is its inverse T−1. Thus there is
some matrix that corresponds to T−1. To figure out what this matrix is,
let’s consider some properties of this matrix. First we need to know about
the identity transformation and identity transformation.

The identity transformation is a map id : Rn → Rn which leaves
vectors alone. That is, id(~v) = ~v. Notice that if T : Rn → Rn is a linear
bijection, then Equations (9.1) and (9.2) can be rewritten as

T ◦ T−1 = id = T−1 ◦ T.

Since id is a composition of linear maps, id is linear. (It’s also very easy to
check that id is a linear transformation directly.)

The matrix of the identity transformation is called the identity matrix
and is denoted by I:

I =



1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0

. . .

0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1


That is, the identity matrix for Rn is a square, n × n matrix that has 1’s
on the diagonal, and zeros everywhere else.

Sometimes we will write In to mean the n × n identity matrix, and

CHAPTER 9. LINEAR ALGEBRA 221

sometimes we will just write I if the dimension is clear from context.

I2 =

(
1 0
0 1

)
I3 =

1 0 0
0 1 0
0 0 1



I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Just as composing a map with the identity map doesn’t change the map,

multiplying a matrix with the identity matrix doesn’t change the matrix:

AI = A = IA.

Say T : Rn → Rn is a bijective linear transformation with corresponding
matrix A, and let A−1 denote the matrix of T . Since T ◦ T−1 = T−1 ◦ T =
id and since matrix multiplication corresponds to composition of linear
transformations, we know

AA−1 = A−1A = I.

Our goal is to determine what A−1 is given A. To do this we introduce
elementary matrices.

Elementary Matrices

An elementary matrix is a matrix produced by performing an elementary
row operation to the identity matrix. That is, an elementary matrix is a
square matrix which is given by taking the identity matrix I and performing
one of the following operations to it:

(i) Swap two rows.

(ii) Add a multiple of one row to another.

(iii) Multiply everything in one row by a constant.

Example 9.57.

CHAPTER 9. LINEAR ALGEBRA 222

The following are some 3× 3 elementary matrices.0 0 1
0 1 0
1 0 0

 1 0 0
3 1 0
0 0 1

 −4 0 0
0 1 0
0 0 1



Theorem 9.18.
If E is an elementary matrix, then the product EA is the same as

performing the corresponding elementary row operation on A.

Before proving Theorem 9.18, let’s make an observation. Suppose that
A is any m×n matrix and B is any n×p matrix. Then the rows of AB are
linear combinations of the rows of B where the scalars each row is multiplied
by are determined by the entries in each row of A. For example, if the rows
of B are the row vectors ~r1, ~r2, ..., ~rn and the k-th row of A has the form(

λ1 λ2 · · · λn
)
,

then the k-th row of AB will be

λ1~r1 + λ2~r2 + · · ·+ λn~rn.

With this fact in hand, we can easily prove Theorem 9.18.

Proof of Theorem 9.18.
Let A be any m × n matrix whose rows we will suppose are the row
vectors ~r1, ~r2, ..., ~rm. Let E be an elementary m×m matrix.

There are three cases to consider corresponding to the three ele-
mentary row operations.

• Suppose E is obtained from Im by swapping two rows, say rows
i and j:

I
Ri↔Rj−−−−−−−→ E.

This means that the i-th row of E is ~eTj , the j-th row of E is ~eTi ,
and for any k that is not i or j, the k-th row of E is ~eTk .

CHAPTER 9. LINEAR ALGEBRA 223

If k is not i or j, then the k-th row of EA is

0 · ~r1 + 0 · ~r2 + · · ·+ 0 · ~rk−1 + 1 · ~rk + 0 · ~rk+1 + · · ·+ 0 · ~rm
=~rk

So the k-th row of A remains the same. The i-th row of EA,
however is

0 · ~r1 + 0 · ~r2 + · · ·+ 0 · ~rj−1 + 1 · ~rj + 0 · ~rj+1 + · · ·+ 0 · ~rm = ~rj

and the k-th row of EA is

0 · ~r1 + 0 · ~r2 + · · ·+ 0 · ~ri−1 + 1 · ~ri + 0 · ~ri+1 + · · ·+ 0 · ~rm = ~ri.

That is, every row of A is unchanged except for the i-th and j-th
rows which are swapped.

• Suppose E is obtained from Im by adding c times the i-th row
to the j-th row. Then all rows of E, except for the j-th row,
are all zeros except for a 1 in the k-th position of the k-th row.
Thus every row of EA, except the j-th row, is the same as the
corresponding row of A. The j-th row of E is all zeros except
for a 1 in the j-th position and a c in the i-th position. Hence
the j-th row of EA is the j-th row of A plus c times the i-th row
of A.

• Left as an exercise.

Exercise 9.5.
Suppose that E is obtained from I by multiplying the i-th row of I by
c. Show that EA is obtained from A by multiplying the i-th row of A
by c. For ` 6= i, notice that row ` of E is all zeros except for a 1 in
the `-th position, thus in row ` column j of the matrix EA we have

n∑
k=1

e`kakj = a`j

CHAPTER 9. LINEAR ALGEBRA 224

since e`k = 0 for all k except e`` = 1.
Similarly, in row i the i-th row, j-th column of EA is

n∑
k=1

eikakj = caij

since eik = 0 for all k except eii = c.

The above theorem about elementary row operations will be combined
with the following observation to obtain a method for determining inverse
matrices.

Lemma 9.19.
If T : Rn → Rn is a linear bijection, then the corresponding matrix A
becomes the identity matrix when put into RREF.

Proof.
Since T is surjective, its matrix has a pivot in every row. However,
since T is injective, it also has a pivot in every column. The only
matrix in RREF with pivots in every row and column is the identity
matrix.

This lemma tells us that there is some sequence of elementary row op-
erations that we can perform to A to get the identity matrix I. Each of
these elementary row operations corresponds to multiplication by some el-
ementary matrix. So there is some collection of elementary matrices, E1,
E2, E3, ..., Eq such that

EqEq−1 · · ·E2E1A = I

The product EqEq−1 · · ·E2E1 is thus A−1:

A−1 = EqEq−1 · · ·E2E1.

CHAPTER 9. LINEAR ALGEBRA 225

Example 9.58.
Let A be the following 2× 2 matrix(

2 4
1 6

)
We can put this matrix into RREF with the following sequence of
elementary row operations:(

2 4
1 6

)
1
2
R1→R1−−−−−→

(
1 2
1 6

)
R2−R1→R2−−−−−−−→

(
1 2
0 4

)
1
4
R2→R2−−−−−→

(
1 2
0 1

)
R1−2R2→R1−−−−−−−→

(
1 0
0 1

)
This corresponds to multiplying A by the following elementary matri-
ces:

E1 =

(
1/2 0
0 1

)
E2 =

(
1 0
−1 1

)
E3 =

(
1 0
0 1/4

)
E4 =

(
1 −2
0 1

)
Now we multiply E4E3E2E1 to get A−1:

A−1 = E4E3E2E1 =

(
3/4 −1/2
−1/8 1/4

)
.

We can easily check that this really is the inverse of A: i.e., that

CHAPTER 9. LINEAR ALGEBRA 226

A−1A = I:

A−1A =

(
3/4 −1/2
−1/8 1/4

) (
2 4
1 6

)
=

(
3/4 · 2 + (−1/2) · 1 3/4 · 4 + (−1/2) · 6
−1/8 · 2 + 1/4 · 1 −1/8 · 4 + 1/4 · 6

)
=

(
3/2− 1/2 3− 3
−1/4 + 1/4 −1/2 + 3/2

)
=

(
1 0
0 1

)

There is a little trick we can use to make obtaining A−1 slightly eas-
ier. Suppose that A is n × n and consider the n × 2n matrix obtained by
augmenting A with the n× n identity matrix:(

A I
)
.

We then start performing the elementary row operations that put A into
RREF (this is the same as multiplying by E1, then E2, then E3 and so on).
Eventually, through some sequence of elementary row operations the above
matrix becomes (

I A−1
)

Example 9.59.
We compute the inverse of the matrix

A =

(
2 4
1 6

)

CHAPTER 9. LINEAR ALGEBRA 227

from the previous example using this trick.(
A I

)
=

(
2 4 1 0
1 6 0 1

)
1
2
R1→R1−−−−−→

(
1 2 1/2 0
1 6 0 1

)
R2−R1→R2−−−−−−−→

(
1 2 1/2 0
0 4 −1/2 1

)
1
4
R2→R2−−−−−→

(
1 2 1/2 0
0 1 −1/8 1/4

)
R1−2R2→R1−−−−−−−→

(
1 0 3/4 −1/2
0 1 −1/8 1/4

)

The inverse matrix A−1 is now the right-hand side of this augmented
matrix,

A−1 =

(
3/4 −1/2
−1/8 1/4

)
,

which agrees with our previous calculation.

This trick for computing the inverse works for any square matrix which
is invertible, regardless of the size, though the work certainly gets more
tedious as we consider larger and larger matrices.

Example 9.60.
Compute the inverse of the following matrix:

A =

−2/3 1 0
1 −1 0
4 −6 1



CHAPTER 9. LINEAR ALGEBRA 228

(
A I

) R1↔R2−−−−→

 1 −1 0 0 1 0
−2/3 1 0 1 0 0

4 −6 1 0 0 1


R2+ 2

3
R1→R2−−−−−−−−→

1 −1 0 0 1 0
0 1/3 0 1 2/3 0
4 −6 1 0 0 1


R3−4R1→R3−−−−−−−→

1 −1 0 0 1 0
0 1/3 0 1 2/3 0
0 −2 1 0 −4 1


3R2→R2−−−−−→

1 −1 0 0 1 0
0 1 0 3 2 0
0 −2 1 0 −4 1


R1+R2→R1−−−−−−−→

1 0 0 3 3 0
0 1 0 3 2 0
0 −2 1 0 −4 1


R3+2R2→R3−−−−−−−→

1 0 0 3 3 0
0 1 0 3 2 0
0 0 1 6 0 1


Hence

A−1 =

3 3 0
3 2 0
6 0 1



Notice that this only tells us A−1 if the RREF of A is the identity
matrix. If the RREF of A is not the identity matrix, then A does not have
an inverse.

In the special case of 2 × 2 matrices there is a quick and easy formula
for the derivative.

Theorem 9.20.
If A is a 2× 2 matrix of the form

A =

(
a b
c d

)
,

CHAPTER 9. LINEAR ALGEBRA 229

then A is invertible if and only if ad− bc 6= 0, and the inverse of A is

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Proof.
First suppose that A is invertible, so the RREF of A is the identity
matrix. We then proceed to calculate A−1 as above:(

a b 1 0
c d 0 1

)
1
a
R1→R1−−−−−→

(
1 b/a 1/a 0
c d 0 1

)
R2−cR1→R2−−−−−−−→

(
1 b/a 1/a 0
0 (ad− bc)/a −c/a 1

)
a

ad−bc
R2→R2

−−−−−−−−→
(

1 b/a 1/a 0
0 1 −c/(ad− bc) a/(ad− bc)

)
R1− b

a
R2→R1−−−−−−−−→

(
1 0 1/a + bc/a(ad− bc) −b/(ad− bc)
0 1 −c/(ad− bc) a/(ad− bc)

)
=

(
1 0 (ad− bc+ bc)/a(ad− bc) −b/a
0 1 −c/(ad− c) a/(ad− bc)

)
=

(
1 0 d/(ad− bc) −b/a
0 1 −c/(ad− bc) a/(ad− bc)

)

Thus

A−1 =

(
d/(ad− bc) −b/a
−c/(ad− bc) a/(ad− bc)

)
=

1

ad− bc

(
d −b
−c a

)
This of course implies that ad − bc 6= 0 since if it were the above
expression for A−1 would be undefined.

Now suppose that ad − bc 6= 0. The calculation above shows us
that the RREF of A is the identity, and further tells us what A−1 is,
so A must be invertible.

CHAPTER 9. LINEAR ALGEBRA 230

Properties of Inverses

Now that we know how to compute the inverse of a matrix, we turn our
attention to some properties that inverses satisfy.

Lemma 9.21.
If A is an invertible matrix and if B and C are matrices satisfying

that AB = AC, then B = C.

Proof.

AB = AC

=⇒ A−1AB = A−1AC

=⇒ IB = IC

=⇒ B = C

As we saw in the last section, the above lemma is false if A is not
invertible.

Lemma 9.22.
If A and B are invertible n× n matrices and if AB = BA = I, then
A−1 = B and B−1 = A.

Proof.
We are assuming AB = I. Multiplying both sides on the right by B−1

gives ABB−1 = IB−1 but since BB−1 = I this simplifies to A = B−1.

CHAPTER 9. LINEAR ALGEBRA 231

Similarly if we were to multiply both sides on the left by A−1 we have
A−1AB = A−1I which simplifies to B = A−1.

Theorem 9.23.

(i) If A is an invertible matrix, then so is A−1 and (A−1)
−1

= A.

(ii) If A and B are both invertible matrices of the same size, then
their product AB is invertible and (AB)−1 = B−1A−1.

(iii) If A is an invertible matrix, then so is AT and
(
AT
)−1

= (A−1)
T

.

Proof.

(i) For the moment let C denote the matrix (A−1)
−1

. Then A−1C =
CA−1 = I. But we know that A−1A = AA−1 = I and so by
Lemma 9.22, C = A.

(ii) Simply notice that

B−1A−1AB = B−1(A−1A)B

= B−1IB

= B−1B

= I

(iii) Recall that (AB)T = BTAT and notice that IT = I

AA−1 = I

=⇒
(
AA−1

)T
= IT = I

=⇒
(
A−1

)T
AT = I

CHAPTER 9. LINEAR ALGEBRA 232

but this implies that the inverse of AT is (A−1)
T

.

The following theorem tells us there are several different ways to think
about invertible matrices. Some of the items in the theorem we have already
seen, but we list them in this theorem so that we will have a single theorem
to refer to that characterizes invertible matrices.

Theorem 9.24.
Let A be an n× n square matrix. The following are equivalent:

(a) A is an invertible matrix.

(b) The RREF of A is the identity matrix.

(c) A has n pivots.

(d) A has a pivot in every row.

(e) A has a pivot in every column.

(f) The only solution to the homogeneous equation A~x = ~0 is the
trivial solution.

(g) The columns of A are linearly independent.

(h) The columns of A span Rn.

(i) The equation A~x = ~b has one solution for every b ∈ Rn.

(j) The linear transformation ~x 7→ A~x is injective.

(k) The linear transformation ~x 7→ A~x is surjective.

(l) There is an n× n matrix B so that AB = I.

(m) There is an n× n matrix B so that BA = I.

(n) AT is invertible.

10Linear Algebra in Matlab

Mathematics is not about numbers,
equations, computations, or algorithms: it is
about understanding.

William Thurston

Matlab has built-in commands for all of the basic operations of linear
algebra making it very easy to perform linear algebra in Matlab.

10.1 Vectors and matrices

We have already seen how to create vectors in Matlab: we simply have a
pair of square brackets with a comma-delimited list of numbers inbetween
the brackets, corresponding to the components of the vector. This actually
creates a row vector , but sometimes it is necessary or helpful to have a
column vector . In Matlab this is created in the same way as the row
vectors we have seen before, except our components are separated by semi-
colons instead of commas.

>> rowVector = [1, 2, 3, 4]

rowVector =

1 2 3 4

>> columnVector = [1; 2; 3; 4]

columnVector =

1

2

3

4

233

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 234

Recall that elements of a vector in Matlab are accessed by giving the
index of the element in parentheses:

>> v = [-2, 4, 7, -15];

>> v(3)

ans =

7

The same convention applies for column vectors:

>> u = [9; 3; 14; 2];

>> u(3)

ans =

14

Matrices are created in Matlab by combining these two conventions.
That is, we create a matrix in Matlab by using a pair of square brackets,
and inbetween the square brackets we list the entries of the matrix along
the rows, with rows separated by semicolons. For example, the 3×4 matrix
M below,

M =

1 2 3 4
5 6 7 8
9 10 11 12


is created in Matlab with the following command:

>> M = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12]

M =

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 235

1 2 3 4

5 6 7 8

9 10 11 12

We access individual elements of a matrix by giving the row and column
of the element in parenthesis after the matrix. For example, in the matrix
M above, M(2, 1) refers to the element in the second row and first column.

>> M(2, 1)

ans =

5

We can also retrieve an entire row or column of a matrix as a row
or column vector. We do this by specifying the row (or column) we are
interested in, and placing a : in the column (or row) index. For instance,
the third row of matrix M is accessed by M(3,:) whereas the second column
is accessed by M(:,2).

>> M(3,:)

ans =

9 10 11 12

>> M(:,2)

ans =

2

6

10

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 236

There are times when we may wish to create a matrix of all zeros or all
ones. In some problems, for example, we may know we will ultimately need
a matrix of some given size m × n but may not know what the entries of
the matrix will be when we create the matrix. In such a situation we can
easily create a matrix of all zeros, or all ones, by using the zeros or ones

functions. These both take the number of rows and columns as arguments
and return a matrix of all zeros or all ones of the specified size. For example,
the two commands below create a 3×5 matrix of all zeros and a 7×3 matrix
of all ones.

>> zeros(3, 5)

ans =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

>> ones(7, 3)

ans =

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

As an example of where this might be useful, suppose we needed to
create a matrix where each entry was the product of the row and column
of that entry. For example, the entry in row 4 column 3 would be 12 and
the matrix in row 2 column 2 would be 4. Writing out the entries of this
matrix by hand when we create it will be very tedious for matrices with
several rows and several columns, so what we could do is have Matlab create
a matrix of all zeros (or all ones) of the right size, then have a loop that
walks along the rows and columns of the matrix and updates each entry to

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 237

the appropriate value. The code below, for instance, does this for a 7 × 5
matrix.

>> numrows = 7;

>> numcols = 5;

>> M = zeros(numrows, numcols);

>> for i = 1:numrows

for j=1:numcols

M(i, j) = i*j;

end

end

>> disp(M)

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

6 12 18 24 30

7 14 21 28 35

The n×n identity matrix is by definition the n×n where every entry
is zero, except for the entries on the diagonal of the matrix which are ones.
This matrix, often denoted In or simpl I, is generated in Matlab by calling
eye(n):

>> eye(5)

ans =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 238

For some operations it is necessary to know the size of a matrix: the
number of rows or columns. These can be computed by passing the matrix
to the size function which returns two values. The first value is the number
of rows, and the second is the number of columns of the given matrix.
To save both of these values we can assign them to a vector of variables:

>> M = [4, 7, 2, 3; 1, 2, 9, 9];

>> [numrows, numcols] = size(M);

>> disp(numrows)

2

>> disp(numcols)

4

10.2 Arithmetic of matrices and vectors

Matrices and vectors can be added, subtracted, multiplied, or multiplied
by scalars, in the ways you would probably guess. Both matrices and vec-
tors can be added together with +, provided both operands have the same
dimensions.

>> M = [1, 2, 3, 4; 2, 4, 8, 6; 3, 6, 9, 12]

M =

1 2 3 4

2 4 8 6

3 6 9 12

>> N = [1, -2, 3, -5; 7, -11, 13, -17; 19, -23, 29, -31]

N =

1 -2 3 -5

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 239

7 -11 13 -17

19 -23 29 -31

>> M + N

ans =

2 0 6 -1

9 -7 21 -11

22 -17 38 -19

>> u = [1; 2; 3]

u =

1

2

3

>> v = [4; 5; 6]

v =

4

5

6

>> u + v

ans =

5

7

9

Scalar multiplication is accomplished by using the operator * where
operand is a scalar (a number) and the other is any matrix or vector.

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 240

>> 3 * M

ans =

3 6 9 12

6 12 24 18

9 18 27 36

>> 2 * v

ans =

8

10

12

Using * computes the product of two matrices, or of a matrix and a
vector:

>> M = [4, 3, 7, 2; 0, 1, -1, 3; 1, 2, 3, 4]

M =

4 3 7 2

0 1 -1 3

1 2 3 4

>> N = [-2, 9; 1, 1; 5, -4; 2, 6]

N =

-2 9

1 1

5 -4

2 6

>> M * N

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 241

ans =

34 23

2 23

23 23

>> v = [1; 2; 3; 4]

v =

1

2

3

4

>> M * v

ans =

39

11

30

Note that Matlab is picky about the dimensions of the matrices/vectors
you are trying to multiply. Above we multiplied the 3 × 4 matrix with
the 4-dimensional column vector v, but Matlab will complain if we try to
multiply M by a 4-dimensional row vector:

>> u = [1, 2, 3, 4]

u =

1 2 3 4

>> M*u

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 242

Error using *

Inner matrix dimensions must agree.

Notice that we can interpret an m-dimensional row vector as a 1 ×m
matrix, and similarly an m-dimensional column vector as an m× 1 matrix.
The product of two such things should be a 1 × 1 matrix, which is simply
a number.

>> u = [4, 7, 1];

>> v = [1; 2; 3];

>> u * v

ans =

21

Remark.
If you’ve taken multivariable calculus, you may recognize that this is
the same as the dot product of u and v.

Notice too that the product of an m-dimensional column vector (aka,
m×1 matrix) and n-dimensional row vector (aka, 1×n matrix) is an m×n
matrix:

>> u = [1; 3; 2];

>> v = [4, 3, 2, 1];

>> u * v

ans =

4 3 2 1

12 9 6 3

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 243

8 6 4 2

Notice, however, there is no sense in which squaring a vector (i.e., mul-
tiplying a vector with itself) makes sense. If you were to try to multiply
a row vector with itself, then you’d be trying to multiply a 1 ×m matrix
with a 1 ×m matrix, but this isn’t defined; likewise for multiplying a col-
umn vector with itself. We can make the dimensions agree by taking the
transpose of one of the factors to convert it from a row vector to a column
vector, or vice versa. This is accomplished in Matlab with the transpose

function.

>> v = [1; 2; 3]

v =

1

2

3

>> transpose(v)

ans =

1 2 3

>> transpose(v) * v

ans =

14

Remark.
This is an alternative way of thinking about the dot product of two
vectors: if u and v are column vectors, then their dot product can be

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 244

computed as u · v = uTv.

The transpose of a matrix is also accomplished with the transpose

function. In this case an m × n matrix is turned into an n × m matrix
where the i-th row of the original matrix becomes the i-th column of the
transpose.

>> M = [1, 2, 3, 4; 2, 4, 8, 6; 3, 6, 9, 12]

M =

1 2 3 4

2 4 8 6

3 6 9 12

>> transpose(M)

ans =

1 2 3

2 4 6

3 8 9

4 6 12

The transpose function can also be used by putting a single apostrophe
after the matrix or vector you wish to tranpose:

>> v = [1, 2, 3]

v =

1 2 3

>> v’

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 245

ans =

1

2

3

>> M = [1, 2, 3; 4, 5, 6]

M =

1 2 3

4 5 6

>> M’

ans =

1 4

2 5

3 6

10.3 Submatrices

In some types of problems it is helpful to consider a submatrix of a given
matrix. That is, we take a matrix and remove some of its rows and/or
columns to obtain a new matrix. For example, consider the matrix1 1 0

2 3 1
3 4 2


Now imagine that we deleted the third row and the second column from
this matrix, leaving only the entries in the first and second rows from the
first and third columns. This would give us the matrix(

1 0
2 1

)
Creating this submatrix is extremely easy in Matlab. Recall that we can
access elements of a matrix M with M(row, col). We can access a submatrix

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 246

consisting of the entries in rows row1, row2, ..., rowm and columns col1,
col2, ..., coln by giving a vector of these rows and a vector of these columns:

M([row1, row2, ..., rowm], [col1, col2, ..., coln])

For example, the submatrix consisting of rows one and two and columns
one and three is given by M([1, 2], [1, 3]):

>> M = [1, 1, 0; 2, 3, 1; 3, 4, 2]

M =

1 1 0

2 3 1

3 4 2

>> M([1, 2], [1, 3])

ans =

1 0

2 1

If we want to include all rows or all columns we can use the colon in place
of the vector of rows or columns. The submatrices consisting of rows one
and two (and all columns), or of columns one and three (and all rows),
for instance, are given by M([1, 2], :) and M(:, [1, 3]), respectively:

>> M([1, 2], :)

ans =

1 1 0

2 3 1

>> M(:, [1, 3])

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 247

ans =

1 0

2 1

3 2

Though this syntax might seem a little strange at first, it can be extremely
useful. In particular, it makes the elementary row operations very easy to
write in Matlab, as we will see soon.

10.4 Systems, elementary row operations,

and inverses

Recall that we introduced matrices as a tool of helping us systematically
solve systems of linear equations. We did this by associating to any linear
system its augmented coefficient matrix, which contained the coefficient
matrix of the system augmented by a vector of “right-hand side” values.

In Matlab we can augment a matrix by a vector by placing the matrix
and the vector inside a pair of square brackets separated by a space. For
example, if M and v are matrix and vector

M =

1 1 0
2 3 1
3 4 2

 v =

1
2
3


and we want to create the augmented matrix1 1 0 1

2 3 1 2
3 4 2 3


in Matlab we would use [M v]:

>> M = [1, 1, 0; 2, 3, 1; 3, 4, 2]

M =

1 1 0

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 248

2 3 1

3 4 2

>> v = [1; 2; 3]

v =

1

2

3

>> [M v]

ans =

1 1 0 1

2 3 1 2

3 4 2 3

Recall that there are three elementary row operations we described in
the last chapter:

1. Swapping two rows.

2. Replacing one row by a constant multiple of that row.

3. Replacing one row by that row plus a constant multiple of another
row.

In Matlab we can easily accomplish each operation by accessing a row or
updating a row with M(row, :).

For example, in the matrix M created above, we could swap the first and
second rows with

M([1, 2], :) = M([2, 1], :)

This might seem like a strange command, so let’s slowly decipher what’s
happening. On the right-hand side we access the elements in the second
and first rows of the matrix. Because we place 2 before 1 in [2, 1], the
second row is listed before the first row. Recall the colon, :, simply means
we should access all columns.

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 249

>> M = [1, 1, 0; 2, 3, 1; 3, 4, 2]

M =

1 1 0

2 3 1

3 4 2

>> M([2, 1], :)

ans =

2 3 1

1 1 0

Similarly, M([1, 2], :) refers to the first two rows of the matrix. We
are changing the values of rows 1 and 2 to the values of rows 2 and 1 when
we execute M([1, 2], :) = M([2, 1], :).

>> M = [1, 1, 0; 2, 3, 1; 3, 4, 2]

M =

1 1 0

2 3 1

3 4 2

>> M([1, 2], :) = M([2, 1], :);

>> disp(M)

2 3 1

1 1 0

3 4 2

In general, rows i and j of matrix M are swapped by M([i, j], :) =

M([j, i], :).
Similarly, we can multiply all elements in row i by some constant c with

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 250

M(i, :) = c * M(i, :)

The lines of code below, for instance, replace the second row of a matrix M

by −3 times that row.

>> M = [1, 1, 0; 2, 3, 1; 3, 4, 2]

M =

1 1 0

2 3 1

3 4 2

>> M(2, :) = -3 * M(2, :);

>> disp(M)

1 1 0

-6 -9 -3

3 4 2

Finally, we can add c times row i to row j with

M(j, :) = M(j, :) + c * M(i, :)

The example below adds −2 times the first row to the second row of M :

>> M = [1, 1, 0; 2, 3, 1; 3, 4, 2]

M =

1 1 0

2 3 1

3 4 2

>> M(2, :) = M(2, :) + (-2) * M(1, :);

>> M

M =

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 251

1 1 0

0 1 1

3 4 2

We can now combine all of the operations above to solve systems of
equations in Matlab by entering the agumented coefficient system of the
matrix, and performing the necessary elementary row operations to put the
matrix into an echelon form.

For example, let’s solve the system

x+ 2y + 4z = 5

2x+ 4y + 5z = 4

4x+ 5y + 4z = 2

First we enter the augmented coefficient matrix:

>> M = [1, 2, 4, 5;

2, 4, 5, 4;

4, 5, 4, 2]

M =

1 2 4 5

2 4 5 4

4 5 4 2

Now we subtract two times the second row from the third row:

>> M(3, :) = M(3, :) - 2 * M(2, :)

M =

1 2 4 5

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 252

2 4 5 4

0 -3 -6 -6

Next, we subtract twice the first row from the second:

>> M(2, :) = M(2, :) - 2 * M(1, :)

M =

1 2 4 5

0 0 -3 -6

0 -3 -6 -6

Finally, we can swap the second and third rows:

>> M([2, 3], :) = M([3, 2], :)

M =

1 2 4 5

0 -3 -6 -6

0 0 -3 -6

This new matrix is in an echelon form, and so the system we started
with is equivalent to the system

x+ 2y + 4z = 5

−3y − 6z = −6

−3z = −6

Of course, puting a matrix into an echelon form is such a common
procedure that Matlab has a built-in function for putting a matrix into
echelon form.

In general, an echelon form of a matrix is not unique: two different
people could start with the same matrix, perform different sequences of

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 253

elementary row operations and arrive at two different matrices in echelon
form. To fix this we can ask fo the row-reduced echelon form of a matrix,
which is an echelon form with two additional properties:

• All entries in the matrix above and below the left-most non-zero entry
in each row are zero.

• The left-most non-zero entry in each row is one.

The row reduced echelon form (or rref) of a matrix is unique. We can
compute the rref of a matrx in Matlab with the rref function.

>> M = [1, 1, 0; 2, 3, 1; 3, 4, 1]

M =

1 1 0

2 3 1

3 4 1

>> rref(M)

ans =

1 0 -1

0 1 1

0 0 0

This makes it extremely easy to solve a system of linear equations in
Matlab. For example, our system from before,

x+ 2y + 4z = 5

2x+ 4y + 5z = 4

4x+ 5y + 4z = 2

is now extremely easy to solve:

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 254

>> M = [1, 2, 4, 5;

2, 4, 5, 4;

4, 5, 4, 2];

>> rref(M)

ans =

1 0 0 1

0 1 0 -2

0 0 1 2

This tells us the original system is equivalent to the trivial system

x = 1

y = −2

z = 2

Of course, we can determine this from the (non-row-reduced) echelon form
we had before, but using the rref makes life a little bit easier since we don’t
have to do any “back-substitution” to determine the variables; the rref has
essentially already performed the back-substitution for us.

When a system has a unique solution the coefficient matrix of the sys-
tem is invertible. Writing the system as the vector equation A~x = ~b, we
can compute the solution ~v as A−1~b, assuming A−1 exists. In Matlab we
compute the inverse of a matrix using the inv function. Letting A be the
coefficient matrix of our system from before, the inverse is computed in
Matlab as

>> A = [1, 2, 4; 2, 4, 5; 4, 5, 4];

>> inv(A)

ans =

1.0000 -1.3333 0.6667

-1.3333 1.3333 -0.3333

0.6667 -0.3333 0

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 255

We can then compute the solution to the system as follows:

>> A = [1, 2, 4; 2, 4, 5; 4, 5, 4];

>> b = [5; 4; 2];

>> inv(A) * b

ans =

1.0000

-2.0000

2.0000

This multiplication of a vector by the inverse of a matrix is also an extremely
common operation, and so there’s a minor shortcut in Matlab: inv(A) *

b is equivalent to A \b. (The idea behind this syntax is that multiplying
b by the inverse of A is kind of like dividing b by A. This isn’t the usual
division operation though, so the backslash \ is used instead of the forward
slash, /.)

>> A = [1, 2, 4; 2, 4, 5; 4, 5, 4];

>> b = [5; 4; 2];

>> A \ b

ans =

1.0000

-2.0000

2.0000

Recalling that matrix multiplication is very much not commutative, you
have to be extremely careful with this notation. If you reverse the order of
A and b in the command above, you will not calculate the solution to the
system:

CHAPTER 10. LINEAR ALGEBRA IN MATLAB 256

>> b \ A

ans =

0.4667 0.8000 1.0667

11Taylor Polynomials

Wahrlich es ist nicht das Wissen, sondern
das Lernen, nicht das Besitzen sondern das
Erwerben, nicht das Da-Seyn, sondern das
Hinkommen, was den grössten Genuss
gewährt.
It is not knowledge, but the act of learning,
not possession but the act of getting there,
which grants the greatest enjoyment.

Carl Friedrich Gauß

11.1 Deriving the formula for a Taylor

polynomial

“Most” mathematical functions can not be evaluted exactly. For example,
functions like ln(x), 3

√
x, or sin(x) can not, for a generic choice of x, be

evaluated directly. If we want to have a numeric value after evaluating such
a function, we must instead find some way to approximate the function
with another function which we can actually evaluate.

There are different types of functions we may wish to use in differ-
ent types of contexts, but one simple family of functions which we can in
principle actually evaluate are polynomials. Thus we may want to find a
way of approximating a general function f(x) with a polynomial. In this
chapter we will discuss Taylor polynomials , which are one particularly
easy-to-define type of polynomial which we can use to approximate a func-
tion. Furthermore, we will see how to place bounds on the accuracy of our
approximation with Taylor’s theorem.

We will see how to define the Taylor polynomial of degree n approxi-
mating a function f(x) near a chosen value x = a, but we start off with the
simplest possible case: when n = 1.

The Taylor polynomial of f(x) of degree 1 centered at x = a is
the unique degree one polynomial (i.e., a polynomial of the form b1x + b0

for some constants b1 and b0), which we will denote p1(x), such that p1(a)

257

CHAPTER 11. TAYLOR POLYNOMIALS 258

and p′1(a) equal f(a) and f ′(a):

p1(a) = f(a)

p′1(a) = f ′(a).

Writing p1(x) = b1x+ b0, this becomes

b1a+ b0 = f(a)

b1 = f ′(a).

This is a system of linear equations where the unknowns are the coefficients
b0 and b1. Writing this system in matrix notation gives(

a 1
1 0

)(
b1

b0

)
=

(
f(a)
f ′(a)

)
Of course, we instantly see b1 = f ′(a), and plugging this into the first
equation we determine b0 = f(a)− f ′(a) · a. Thus our polynomial is

p1(x) = f ′(a) · x+ f(a)− f ′(a) · a.

Rewriting this as
p1(x) = f ′(a) · (x− a) + f(a)

we see this is the function whose graph is the tangent line of y = f(x) at
x = a. Note also this is precisely the linearization of f(x) at x = a that
you learned in a first-semester calculus course.

We can use p1(x) as a reasonable approxmation to f(x), at least for
values of x that are close to a.

Example 11.1.
Find the Taylor polynomial of degree 1 which approximates f(x) =

√
x

centered at x = 4, and use this to approximate
√

4.03.
Notice in our formula for p1(x) above we will need to evalute f(4)

and f ′(4), but this is easy to do:

f(x) =
√
x =⇒ f(4) = 2

f ′(x) =
1

2
√
x

=⇒ f ′(4) =
1

4

CHAPTER 11. TAYLOR POLYNOMIALS 259

Thus our polynomial is

p1(x) = f ′(4) · (x− 4) + f(4)

=
1

4
(x− 4) + 2

We can now approximate
√

4.03 using the Taylor polynomial:

√
4.03 ≈p1(4.03)

=
1

4
(4.03− 4) + 2

=
1

4
· 0.03 + 2

=0.0075 + 2

=2.0075

In the example above we used the Taylor polynomial of degree one to
approximate

√
4.03 and computed this to be approximately 2.0075. If you

were to enter
√

4.03 into a calculator or computer, however, it would instead
given you something like

√
4.03 ≈ 2.00748598999

which is close to, but not quite the same as, our approximation.
To improve our approximation we may ask for our polynomial to agree

not only with f(a) and f ′(a), but also f ′′(a). In order for the second
derivative to be non-zero, however, notice we will require a degree two
polynomial. We thus define the second degree Taylor polynomial of f(x)
centered at x = a to be the polynomial

p2(x) = b2x
2 + b1x+ b0

satisfying the following three conditions:

p2(a) = f(a)

p′2(a) = f ′(a)

p′′2(a) = f ′′(a)

Computing our derivatives, p′2(x) = 2b2x + b1 and p′′2(x) = 2b2, and plug-
ging into the above we again have a system of linear equations where the

CHAPTER 11. TAYLOR POLYNOMIALS 260

coefficients of the polynomial are the unknowns:

b2a
2 + b1a+ b0 = f(a)

2b2a+ b1 = f ′(a)

2b2 = f ′′(a)

Or, in matrix notation,a2 a 1
2a 1 0
2 0 0

b2

b1

b0

 =

 f(a)
f ′(a)
f ′′(a)


We can of course easily see that b2 = f ′′(a)/2 from the third equation. The
second equation then becomes

f ′′(a) · a+ b1 = f ′(a)

=⇒ b1 = f ′(a)− f ′′(a) · a

and finally the first equation becomes

(f ′′(a)/2) a2 + (f ′(a)− f ′′(a) · a) · a+ b0 = f(a)

=⇒ b0 = f(a)− f ′′(a)

2
a2 − f ′(a) · a+ f ′′(a) · a2

We can simplify this last expression to

b0 = f(a)− f ′(a) · a+
f ′′(a)

2
· a2

Plugging all of this back into the b0, b1, and b2 of p2(x) above gives us

p2(x) =
f ′′(a)

2
x2 + (f ′(a)− f ′′(a) · a)x+

f ′′(a)

2
· a2 − f ′(a) · a+ f(a)

We can rearrange this a little bit to get

p2(x) =
f ′′(a)

2
x2 − f ′′(a)ax+ f ′′(a)a2 + f ′(x)x− f ′(a)a+ f(a)

Which we may further simplify to

p2(x) =
f ′′(a)

2
(x− a)2 + f ′(a)(x− a) + f(a)

CHAPTER 11. TAYLOR POLYNOMIALS 261

Example 11.2.
Approximate

√
4.03 using the second degree Taylor polynomial of

f(x) =
√
x centered at x = 4.

We simply need to evaluate function and its first and second deriva-
tives at 4 and plug them into the expression we obtained above:

f(x) =
√
x =⇒ f(4) = 2

f ′(x) =
1

2
√
x

=⇒ f ′(4) =
1

4

f ′′(x) =
−1

4
√
x3

=⇒ f ′′(4) =
−1

32

Hence our Taylor polynomial is

p2(x) =
−1

64
(x− 4)2 +

1

4
(x− 4) + 2

and so we approximate

√
4.03 ≈p2(4.03)

=
−1

64
(0.03)2 +

1

4
· 0.03 + 2

=− 0.000140625 + 0.0075 + 2

=2.007485937

We could of course repeat this process asking for polynomials to agree
with f(a), f ′(a), f ′′(a), f ′′′(a), f ′′′′(a), and so on. In general, to agree with
the first n derivatives of the function we will require a polynomial of degree
n which has n+ 1 unknown coefficients (n+ 1 because we have b0 through
bn). We equate the values of the polynomial’s derviatves with those of f to
obtain a system of n + 1 linear equations in n + 1 unkowns, which we can
then solve to determine the coefficients of the polynomial. This gives us the
degree n Taylor polynomial of f(x) centered at x = a, denoted

pn(x) = bnx
n + bn−1x

n−1 + · · ·+ b2x
2 + b1x+ b0

CHAPTER 11. TAYLOR POLYNOMIALS 262

where the coefficients are chosen to satisfy

pn(a) = f(a)

p′n(a) = f ′(a)

p′′n(a) = f ′′(a)

...

p(n−1)
n (a) = f (n−1)(a)

p(n)
n (a) = f (n)(a)

Writing out the left-hand sides of the equations above gives us

bna
n + bn−1a

n−1 + · · ·+ b2a
2 + b1a+ b0 = f(a)

nbna
n−1 + (n− 1)bn−1a

n−2 + · · ·+ 2b2a+ b1 = f ′(a)

n(n− 1)bna
n−2 + (n− 1)(n− 2)bn−1a

n−3 + · · ·+ 2b2 = f ′′(a)

n(n− 1)(n− 2)bna
n−2 + (n− 1)(n− 2)(n− 3)bn−1a

n−4 + · · ·+ 3 · 2b3 = f ′′(a)

...

n(n− 1)(n− 2) · · · 3bna2 + (n− 1)(n− 2) · · · 2bn−1a+ (n− 2)(n− 3) · · · 2 · 1bn−2 = f (n−2)(a)

n(n− 1)(n− 2) · · · 2bna+ (n− 1)(n− 2) · · · 2 · 1bn−1 = f (n−1)(a)

n(n− 1)(n− 2) · · · 2 · 1bn = f (n)(a)

We can simplify our notation a little bit by using factorials,

n! = n(n− 1)(n− 2) · · · 2 · 1.

The last three equations above, for example, become

n!

2!
bna

2 +
(n− 1)!

1!
bn−1a+ (n− 2)!bn−2 = f (n−2)(a)

n!

1!
bna+ (n− 1)!bn−1 = f (n−1)(a)

n!bn = f (n)(a)

CHAPTER 11. TAYLOR POLYNOMIALS 263

Extending the pattern, the entire system of may be written as

n!

n!
bna

n +
(n− 1)!

(n− 1)!
bn−1a

n−1 + · · · 2!

2!
b2a

2 +
1!

1!
b1a+ 0!b0 = f(a)

n!

(n− 1)!
bna

n−1 +
(n− 1)!

(n− 2)!
bn−1a

n−2 + · · ·+ 2!

1!
b2a+ 1!b1 = f ′(a)

n!

(n− 2)!
bna

n−2 +
(n− 1)!

(n− 3)!
bn−1a

n−3 + · · ·+ 2!b2 = f ′′(a)

n!

(n− 3)!
bna

n−2 +
(n− 1)!

(n− 4)!
bn−1a

n−4 + · · ·+ 3!b3 = f ′′′(a)

...

n!

2!
bna

2 +
(n− 1)!

1!
bn−1a+ (n− 2)!bn−2 = f (n−2)(a)

n!

1!
bna+ (n− 1)!bn−1 = f (n−1)(a)

n!bn = f (n)(a)

Though slightly tedious to do by hand, we now see how to easily compute
the solution to our system of equations. The last equation instantly tells

us bn = f (n)(a)
n!

, plugging this into the next-to-last equation gives us

n!

1!
bna+ (n− 1)!bn−1 = f (n−1)(a)

=⇒ n!

1!

f (n)(a)

n!
a+ (n− 1)!bn−1 = f (n−1)(a)

=⇒ f (n)(a)a+ (n− 1)!bn−1 = f (n−1)(a)

=⇒ bn−1 =
1

(n− 1)!

(
f (n−1)(a)− f (n)(a)a

)
While we can solve this system by hand, or on a computer, it turns out if
we do a little bit of algebra we can rewrite our resulting polynomial so that
each term has a very simple format. The idea here is very simple. If a = 0
in the above, “most” terms in our expression for the bk coefficients cancel
out to give us

bk =
fk)(0)

k!
.

and so, if a = 0, the polynomial would become

pn(x) =
f (n)(0)

n!
xn +

f (n−1)(0)

(n− 1)!
xn−1 + · · ·+ f ′′(0)

2!
x2 + f ′(0)x+ f(0)

CHAPTER 11. TAYLOR POLYNOMIALS 264

So, what should we do if a is not equal to zero? We can just perform a
change of variables: if we let u = x− a and find the Taylor polynomial for
f(u) at u = 0, we would have

pn(u) =
f (n)(u = 0)

n!
un+

f (n−1)(u = 0)

(n− 1)!
un−1+· · ·+f

′′(u = 0)

2!
u2+f ′(u = 0)u+f(0)

where the “u = 0” above is to remind us that u is zero above, not x. Now
to rewrite this in terms of x, notice that since u = x− a, x = u+ a. Hence
when u = 0, x = a. Thus our 0’s above become a’s, and the u’s are replaced
by x− a to give us

pn(x) =
f (n)(a)

n!
(x−a)n+

f (n−1)(a)

(n− 1)!
(x−a)n−1+· · ·+f

′′(a)

2!
(x−a)2+f ′(a)(x−a)+f(a)

Remark.
If you don’t like this change of variable stuff, an alternative way to
think about this is that we’ll find the Taylor polynomial of g(x) =
f(x − a) centered at 0, then rewrite the terms in that polynomial in
terms of f instead of g.

We have thus derived the following formula for the n-th degree Taylor
polynomial of f(x) centered at x = a:

pn(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k

One nice thing about the formula for the Taylor polynomials above is
that they have a recursive definition:

pn(x) =
f (n)

n!
(x− a)n + pn−1(x).

Thus if you already know one Taylor polynomial for your function, you can
easily modify it to get the next degree.

CHAPTER 11. TAYLOR POLYNOMIALS 265

Example 11.3.
Approximate

√
4.03 using the third degree Taylor polynomial of f(x) =√

x centered at x = 4.
By our recursive formula, we may write

p3(x) =
f ′′′(4)

3!
(x− 4)3 + p2(x)

We easily compute

f ′′′(x) =
3

8
√
x5

f ′′′(4) =
3

256

and so

√
4.03 ≈ p3(4.03)

=
3

256
(4− 4.03)3 + p2(4.03)

= 0.00000031640625 + 2.007485937

= 2.00748625390625

11.2 The error in Taylor polynomial

approximation

We have claimed that the Taylor polynomial is a “good” approximation for
a function near the center, x = a, of the approximation. But what does
this mean? Our next goal is to quantify the error in a Taylor polynomial
approximation to understand “how good” the approximation is.

First let’s recall some notation. We say that a function is Cn on an
interval [α, β] if the function is continuous on [α, β], n-times differentiable
on (α, β), and the n-th derivative is also continuous on this interval. The
set of all such functions is denoted Cn([α, β]). The set of all continuous
functions (differentiable or not) on [α, β] is denoted C0([α, β]).

CHAPTER 11. TAYLOR POLYNOMIALS 266

Example 11.4.
The following function,

f(x) =

{
x2 sin

(
1
x

)
if x 6= 0

0 if x = 0

is in C0([−1, 1]), but not C1([−1, 1]). It is easy to verify this function
is continuous at each point in [−1, 1] using the limit definition of con-
tinuity, and in fact the function is differentiable at each point as well.
However the derivative f ′(x) is not continuous at x = 0. Applying
the fundamental theorem of calculus to construct an antiderivative of
f(x), call it F (x), then gives a function that is C1 but not C2; the
antiderivative of that is a function which is C2 but not C3, and so on.

Taylor’s theorem will tell us what the error in our approximation of f(x)
by the n-th degree Taylor polynomial, pn(x), looks like, and once we have
that information we can try to determine what the degree n should bemake
pn(x) as close to f(x) as we would like.

Theorem 11.1 (Taylor’s theorem).
Suppose f ∈ Cn+1([α, β]). Let pn(x) denote the n-th degree Taylor
polynomial of f(x) centered at x = a, and let Rn(x) denote the error
in this approximation. That is, Rn(x) = f(x) − pn(x). For each
x ∈ (α, β), there exists a value cx ∈ (α, β) such that

Rn(x) =
(x− a)n+1

(n+ 1)!
f (n+1)(cx).

The prove Taylor’s theorem we will use a version of the mean value
theorem for higher-order derivatives, but first let’s recall the basic situation
of the mean value theorem and Rolle’s theorem for first derivatives.

Theorem 11.2 (Rolle’s theorem).
Suppose f ∈ C1([α, β]) and f(α) = f(β). Then there exists a c ∈

CHAPTER 11. TAYLOR POLYNOMIALS 267

(α, β) such that f ′(c) = 0.

Proof.
Suppose instead that no such c existed: f ′(x) 6= 0 for each x ∈ (α, β).
Then by the intermediate value theorem, f ′(x) > 0 for every x, or
f ′(x) < 0 for every x. If f ′(x) > 0 for each x, then f is a strictly in-
creasing function on (α, β) and this contradicts the assumption f(α) =
f(β). Similarly, if f ′(x) < 0 for every x, then f is a strictly decreasing
function and this also contradicts the assumption f(α) = f(β). Hence
the only way to avoid a contradiction is to have f ′(c) = 0 for some c.

Once we know Rolle’s theorem, we can easily prove the mean value
theorem.

Theorem 11.3 (The mean value theorem).
Suppose f ∈ C1([α, β]). Then there exists a c ∈ (α, β) such that

f ′(c) =
f(β)− f(α)

β − α

Proof.
We reduce this to Rolle’s theorem by considering the functin g :
[α, β]→ R defined by

g(x) = f(x)− f(α)− (x− α) · f(β)− f(α)

β − α
.

This function g is obviously in C1([α, β]) since f is. Furthermore, we

CHAPTER 11. TAYLOR POLYNOMIALS 268

can easily compute that g satisfies the hypotheses of Rolle’s theorem:

g(α) = f(α)− f(α)− (α− α) · f(β)− f(α)

β − α
= 0

g(β) = f(β)− f(α)− (β − α) · f(β)− f(α)

β − α
= f(β)− f(α)− (f(β)− f(α))

= 0

Thus by Rolle’s theorem there exists some value of c in (α, β) such
that g′(c) = 0. Notice, however,

g′(x) = f ′(x)− f(β)− f(α)

β − α

and so

g′(c) = 0

=⇒ f ′(c)− f(β)− f(α)

β − α
= 0

=⇒ f ′(c) =
f(β)− f(α)

β − α

Though we haven’t proven Taylor’s theorem yet, notice that if you
were to apply Taylor’s theorem in the space case of a zero degree poly-
nomial, p0(x) is the constant function p0(x) = f(a), then we would have
the mean value theorem. That is, approximating f(x) by the constant
function p0(x) = f(a), Taylor’s theorem claims the existence of a cx such
that

R0(x) = f(x)− f(a) = f ′(cx) · (x− a)

and solving for f ′(cx) gives

f ′(cx) =
f(x)− f(a)

x− a
,

and this is precisely what the mean value theorem tells us when applied to
the interval [a, x].

CHAPTER 11. TAYLOR POLYNOMIALS 269

To prove Taylor’s theorem ing eneral, we take our cues from the proof
of the mean value theorem: Taylor’s theorem is just a version of the mean
value theorem for higher-order derivatives, and since the mean value threom
is just Rolle’s theorem, it makes sense that we should look for a higher-order
version of Rolle’s theorem.

Theorem 11.4 (Higher-order Rolle’s theorem).
Suppose f ∈ Cn+1([α, β]) for some integer n ≥ 0, and further assume

(fα) = f ′(α) = f ′′(α) = ... = f (n)(α) = f(β) = 0.

Then there exists a c ∈ [α, β] such that f (n+1)(c) = 0.

Proof.
By the “normal” Rolle’s theorem, there exists a c1 ∈ [α, β] such that
f ′(c1) = 0. Now apply the usual Rolle’s theorem again to f ′(x) on the
interval [α, c1] to see there exists a c2 ∈ [α, c1] such that f ′′(c2) = 0.
Apply Rolle’s theorem to f ′′(x) on [α, c2] to determine the existence
of a c3 ∈ [α, c2] such that f ′′′(c3) = 0. Continuing this process we
generate a sequence of numbers ck ∈ [α, ck−1] such that f (k+1)(ck) = 0.
Taking c to be the element cn in this sequence proves the theorem.

We can now prove a higher-order version of the mean value theorem,
aka Taylor’s theorem.

Proof of Taylor’s theorem.
Suppose f ∈ Cn+1([α, β]) and let pn(x) be the n-th order Taylor poly-

CHAPTER 11. TAYLOR POLYNOMIALS 270

nomial of f centered at some a ∈ (α, β). Recall that this means

pn(a) = f(a)

p′n(a) = f ′(a)

p′′n(a) = f ′′(a)

...

p(n)
n (a) = f (n)(a)

Fix any numberb ∈ [α, β] and consider the function

g(x) = f(x)− pn(x)− (x− a)n+1

(b− a)n+1
(f(b)− pn(b)).

Notice

g′(x) = f ′(x)− p′n(x)− (n+ 1)(x− a)n

(b− a)n+1
(f(b)− pn(b))

g′′(x) = f ′′(x)− p′′n(x)− (n+ 1)n(x− a)n−1

(b− a)n+1
(f(b)− pn(b))

g′′′(x) = f ′′′(x)− p′′′n (x)− (n+ 1)n(n− 1)(x− a)n−2

(b− a)n+1
(f(b)− pn(b))

...

g(n)(x) = f (n)(x)− p(n)
n (x)− (n+ 1)!(x− a)

(b− a)n+1
(f(b)− pn(b))

It’s now easy to see that g satisfies the hypotheses of the higher-order
version of Rolle’s theorem, and so there exists a c ∈ [a, b] such that
g(n+1)(c) = 0. But since

g(n+1)(x) = f (n+1)(x)− p(n+1)
n (x)− (n+ 1)!

(b− a)n+1
(f(b)− pn(b))

We must have

f (n+1)(c) =
(n+ 1)!

(b− a)n+1
(f(b)− pn(b))

=⇒ f(b)− pn(b) =
(b− a)n+1

(n+ 1)!
f (n+1)(c).

CHAPTER 11. TAYLOR POLYNOMIALS 271

Replacing b with the variable x, we have the conclusion of Taylor’s
theorem:

Rn(x) = f(x)− pn(x) =
(x− a)n+1

(n+ 1)!
f (n+1)(cx)

where the choice of c above depends on the x.

Notice that as

Rn(x) = f(x)− pn(x) =
(x− a)n+1

(n+ 1)!
f (n+1)(cx)

we can write

f(x) = pn(x) +Rn(x)

=
n∑
k=0

(x− a)k

k!
f (k)(a) +

(x− a)n+1

(n+ 1)!
f (n+1)(cx)

and this is an equality, not simply an approximation. The “hard part” of
the abvoe expression – the thing that might cause you some concern if you
were to try to use the above to compute the exact value of f(x) for a given
x – is that it doesn’t tell us how to find cx. Taylor’s theorem promises us
such a cx must exist, but it doesn’t give us any clue as to how ot go about
computing cx.

Despite this, we can still sometimes use Taylor’s theorem to put bounds
on the remainder Rn9x). I.e., even if pn(x) is only an approximation to
f(x), we may be able to give a quantitative answer to the question “how
good of an approximation is pn(x)?”.

Example 11.5.
For x in (−π/2, π/2), what is the maximum amount of error in approxi-
mating sin(x) with the Taylor polynomial pn(x) centered at a = 0 for
n = 1, n = 2, and n = 3?

In the case of n = 1 the Taylor polynomial is

p1(x) =
(x− 0)0

0!

d0

dx0

∣∣∣∣
x=0

sin(x) +
(x− 1)1

1!

d1

dx1

∣∣∣∣
x=0

sin(x)

= sin(0) + x cos(0)

= x

CHAPTER 11. TAYLOR POLYNOMIALS 272

The error in this approximation is

R1(x) =
(x− 0)2

2!

d2

dx2

∣∣∣∣
x=cx

sin(x)

=
−x2

2
cos(cx).

Now, we don’t know what cx is, so we don’t know exactly what R1(x)
is. However, we do know |x| < π/2 (because we are explicitly assuming
x ∈ (−π/2, π/2) in this problem), and | cos(x)| ≤ 1 for all x. Thus for
|x| < π/2 we know

|R1(x)| =
∣∣∣∣−x2

2
cos(cx)

∣∣∣∣
=

∣∣∣∣−x2

2

∣∣∣∣ |cos(cx)|

=
1

2
|x|2|cos(cx)|

<
1

2
·
(π

2

)2

· 1

=
π2

4
≈ 2.4674

and so for x’s between −π/2 and π/2, the approximation p1(x) = x is
always within π2/4 ≈ 2.4764 of the true value of sin(x).

For n = 2 we have

p2(x) = x+
x2

2
sin(0) = x

and

R2(x) =
(x− 0)3

3!
sin(cx).

CHAPTER 11. TAYLOR POLYNOMIALS 273

Thus

|R2(x)| =
∣∣∣∣x3

6
sin(cx)

∣∣∣∣
<

1

6

∣∣∣π
2

∣∣∣3
=
π3

48
≈ 0.645

Finally, for n = 3 we have

p3(x) = x− x3

6

and

|R3(x)| =
∣∣∣∣x4

4!
cos(cx)

∣∣∣∣
<

1

24

∣∣∣π
2

∣∣∣4
=

π4

384
≈ 0.25367

Notice that in the above example, we can compute the upper bound for
|Rn(x)|. So suppose we wanted to find the n that made this error small. If
we express an upper bound for |Rn(x)| as a function of n, we can determine
how big n must be for pn(x) to be as good of an approximation as we like.

Example 11.6.
For what values of n is the n-th order Taylor polynomial of sin(x)
centered at a = 0 within one one-millionth of the true value of sin(x)
for all x ∈ (−π/2, π/2)?

We’re trying to find the n that guarantees

|Rn(x)| < 10−6 = 0.000001

for all x ∈ (−π/2, π/2).

CHAPTER 11. TAYLOR POLYNOMIALS 274

Notice that

|Rn(x)| =
∣∣∣∣(x− 0)n+1

(n+ 1)!

dn+1

dxn+1

∣∣∣∣
x=cx

sin(x)

∣∣∣∣
But as each derivative of sin(x) is ± sin(x) or ±cos(x), we know these
derivatives are always less than or equal to 1 in absolute value. That
is,

|Rn(x)| ≤ 1

(n+ 1)!
|x|n+1

But since −π/2 < x < π/2, |x| < π/2 and so

|Rn(x)| < 1

(n+ 1)!

πn+1

2n+1
.

Let’s notice that π ≈ 3.14159..., so π < 4 meaning πn+1 < 4n+1 =
(22)

n+1
= 22n+2 and so we have

|Rn(x)| < 1

(n+ 1)!

22n+2

2n+1
=

1

(n+ 1)!
2n+1.

So, to find the n making |Rn(x)| < 10−6, it suffices to find an n making

2n+1

(n+ 1)!
< 10−6

A very quick calculation on a computer, for instance a loop in Matlab
which starts at n = 1 and computes 2n+1

(n+1)!
until this is less than 10−6,

shows this inequality is satisfied for n ≥ 13.
So if we are performing some numerical calculation where we need

to approximate sine to within one one-millionth of the true value on
a computer for all x in (−π/2, π/2), it suffices for us to use the 13-th
degree Taylor polynomial.

Part IV

Numerical Algorithms

275

12
Root finding revisited, and fixed
point iteration

I keep the subject constantly before me, and
wait ’till the first dawnings open slowly, by
little and little, into a full and clear light.

Isaac Newton
Comment about how he made scientific
discoveries, in Biographia Britannica.

12.1 Newton’s method, part 2

We described Newton’s method previously and then made an excursion to
review some linear algebra and calculus. We are now ready to apply that
knowledge to study Newton’s method more thoroughly. Recall that we have
a continuously differentiable function f and we are trying to find a root of
f , i.e. a value of x so that f(x) = 0. In Newton’s method we begin with
some initial approximation to the root of the function, call it x0, and then
we iteratively build a sequence of better approximations using

xn+1 = xn −
f(xn)

f ′(xn)
.

We had seen that another root finding method, the bisection algorithm,
will always produce approximations which approach a root of the func-
tion (assuming a root exists within the initial region given to the bisection
algorithm), however we had seen (just via one hand-wavy example) that
Newton’s method converges to the root much faster. However, Newton’s
method has a few problems which we will illustrate with examples.

Example 12.1.
Suppose f(x) = −11

3
x3 − 3x2 + 5x+ 5 and we use x0 = 0 as our initial

approximation. First notice this function does in fact have a root:

276

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 277

−1 −0.5 0.5 1

2

4

6

Using f ′(x) = −11x2−6x+5, it’s easy for us to compute the sequence
of approximations xn generated by Newton’s method:

x1 = x0 −
f(x0)

f ′(x0)

= 0− 5

5
= −1

x2 = −1− f(−1)

f ′(−1)

= −1−
2/3

0

Of course, now we have a problem since we can’t divide by zero. At this
point we’re forced to stop Newton’s method since we can’t continue
the calcuation.

Example 12.2.
Consider f(x) = x3 − 2x + 2. Apply Newton’s method with x0 = 0.

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 278

Since f ′(x) = 3x2 − 2 we easily compute

x1 = 0− f(0)

f ′(0)

= 0− 2

−2

= 0− (−1)

= 1

x2 = 1− f(1)

f ′(1)

= 1− 1

1
= 0

Of course, at this point we see the iterates will just bounce back and
forth between 0 and 1:

x3 = 1

x4 = 0

x5 = 1

x6 = 0

...

That is, we keep oscillating between 0 and 1, never converging to the
root of our polynomial.

Example 12.3.
Consider f(x) = 3

√
x = x1/3. Newton’s method will give us sequences

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 279

generated by

xn+1 = xn −
f(xn)

f ′(xn)

= xn −
x1/3

1
3
x−2/3

= xn − 3x
1/3x

2/3

= xn − 3xn

= −2xn

Thus, starting from x0 = 1, the sequence of our approximations given
by Newton’s method is

x0 = 1

x1 = −2

x2 = 4

x3 = −8

x4 = 16

...

Now, you might argue the above function is cheating a little bit since
x1/3 is not continuously differentiable everywhere (since f ′(0) is unde-
fined), but we can easily modify this to get a smooth function with the
same sort of behavior by replacing our function with an appropriately
chosen polynomial in a neighborhood of x = 0, such as

f(x) =

{
3
√
x if x ≤ −1 or x ≥ 1

−1
3
x3 + 4

3
x if − 1 < x < 1

In all three examples above the function we were trying to find the root of
did in fact have a root, but Newton’s method did not give us approximations
converging to the root. So, is there any way we can guarantee Newton’s
method will produce approximations converging to the root of a function?

To answer this, recall that we found the formula for Newton’s method
by computing the equation of the line tangent to y = f(x) at xn and then
determining where that line intersected the x-axis. The equation of this

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 280

tangent line is
y = f(xn) + f ′(xn) · (x− xn).

Notice that this is simply the first-order Taylor polynomial approximating
f(x) centered at xn,

p1(x) = f(xn)− f ′(xn) · (x− xn).

Now let R1(x) be the error in this approximation,

R1(x) = f(x)− p1(x).

By Taylor’s theorem there exists some c, depending on x, such that

R1(x) =
f ′′(c)

2
(x− xn)2.

In particular, if we let z denote the true root of the function, then

R1(z) =
f ′′(c)

2
· (z − xn)2.

I.e.,

f(z)− p1(z) =
f ′′(c)

2
(z − xn)2

=⇒ f(z) = p1(z) +
f ′′(c)

2
(z − xn)2

= f(xn) + f ′(xn)(z − xn) +
f ′′(c)

2
(z − xn)2.

However, z is a root of f and so

0 = f(xn) + f ′(xn)(z − xn) +
f ′′(c)

2
(z − xn)2

=⇒ 0 =
f(xn)

f ′(xn)
+ z − xn +

f ′′(c)

2f ′(xn)
(z − xn)2

= −
[
xn −

f(xn)

f ′(xn)

]
+ z +

f ′′(c)

2f ′(xn)
(z − xn)2

=⇒ 0 = z − xn+1 +
f ′′(c)

2f ′(xn)
· (z − xn)2

=⇒ z − xn+1 = (z − xn)2 ·
(
−f ′′(c)
2f ′(xn)

)

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 281

That is, at least for xn “sufficiently close” to z, the error in approximating
z by xn+1 is some constant times the square of the error in approximating
z by xn,

z − xn+1 = K(z − xn)2

Notice that when z−xn < 1, (z−xn)2 is even smaller: the error essentially
squares at each step.

The K above technically depends on xn, so the K for z − xn+1 and the
K for z − xn+2 are different. To be more precise, we should write

z − xn+1 = Kn(z − xn)2.

If f ′ and f ′′ are continuous, however, then for xn’s “close” to the true root
z, f ′(xn) ≈ f ′(z) and similarly f ′′(c) ≈ f ′′(z), since c ∈ [z, xn]. Thus, if we
define

M =
−f ′′(z)

2f ′(z)

then each Kn ≈M (for xn sufficiently close to z).
Thus we can write

z − xn+1 ≈M(z − xn)2,

but the same sort of analysis shows that

z − xn ≈M(z − xn−1)2

and
z − xn−1 ≈M(z − xn−2)2.

Continuing this process we can say

z − xn+1 ≈M(z − xn)2

≈M(M(z − xn−1)2)2 = M3(z − xn−1)4

≈M3(M(z − xn−2)2)4 = M7(z − xn−2)2

≈ · · ·
≈M2n−1(z − x0)2n

Now if we multiply both sides of our approximation

z − xn+1 ≈M2n−1(z − x0)2n

by M we obtain

M(z − xn+1) ≈M ·M2n−1(z − x0)2n

= M2n(z − x0)2n

= [M(z − x0)]2
n

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 282

If xn+1 → z, then |z − xn+1| → 0 which means

M |z − xn+1| → 0

=⇒ |M(z − xn+1)|2n → 0

But if r is a positive number and rn → 0, then r < 1. That is, if xn → z,
we must have

|M(z − x0)| < 1

=⇒ |z − x0| < 1/|M |

=⇒ |z − x0| <
∣∣∣∣−f ′(z)

2f ′′(z)

∣∣∣∣
This tells us that Newton’s method converges provided we choose an initial
x0 satisfifying the about inequality. I.e., if x0 is “sufficiently close” to the
true root z, then Newton’s method started from x0 will converge to z. As
we have seen, however, with a poor choice of x0, Newton’s method may
very well not converge.

In principle Newton’s method generates an infinite sequence of approx-
imations which approach the true root of the function, provided our initial
approximation x0 is “sufficiently close” to this true root. Of course, when
we actually implement Newton’s method on a computer we can’t gener-
ate an infinite sequence of approximations; our process must stop at some
point. So, when should we stop iterating Newton’s method? In the case of
the bisection method we iterated until our approximation was within some
ε distance of the true solution, and we determined this requires⌈

log2

(
b− a
ε

)⌉
if our initial interval is [a, b]. How long should we iterate Newton’s method
if we likewise want our approximation to be within ε of the true root?

A simple mean value theorem calculation shows that if xn is our sequence
of approximations from Newton’s method, and if z is the true root of the
function f(x), then for each n there exists some c ∈ [xn, z] (c depends on
xn, so really this is a sequence of c values) such that

f ′(c) =
f(xn)− f(z)

xn − z
=⇒ f ′(c)(xn − z) = f(xn)− f(z)

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 283

Keeping in mind f(z) = 0, though, this becomes

f ′(c)(xn − z) = f(xn)

=⇒ xn − z =
f(xn)

f ′(c)

≈ f(xn)

f ′(xn)

=⇒ z − xn ≈ −
f(xn)

f ′(xn)

= xn − xn −
f(xn)

f ′(xn)

= xn −
f(xn)

f ′(xn)
− xn

= xn+1 − xn

That is, for “sufficiently close” xn, the difference between xn and the true
root z is roughly equal to the difference between successive approximations.
So, if we want to estimate z to within ε of the true value, we are justified
in iterating Newton’s method until successive approximations are within ε
of one another.

12.2 Fixed point iteration

Notice that in Newton’s method we have a sequence of points xn+1 given
by the recurrence relation

xn+1 = xn −
f(xn)

f ′(xn)
.

If we write the right-hand side as g(x) = x−f(x)/f ′(x), then Newton’s method
can be written as

xn+1 = g(xn).

Notice that if z is a root of the original function, so f(z) = 0, then

g(z) = z − f(z)

f ′(z)
= z.

I.e., finding a solution to f(x) = 0 is equivalent to finding a solution to
g(x) = x.

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 284

In general, if g is a function and x is a point such that g(x) = x, then
we call x a fixed point of g. There are many theorems in mathematics
which guarantee the existence of fixed points of functions under very general
conditions, as well as many applications that rely on computing the fixed
points of a given function.

For example, one general theorem is the Brouwer fixed point the-
orem which states that every continuous function from a closed ball to
itself has a fixed point. This has some fun and surprising applications, and
also some more useful applications. One fun application is the following:
if you were to take a cup of coffee, take a snapshot of every single particle
in that coffee, stir the coffee, and then take another snapshot, there would
be at least one particle that was in the same place in both snapshots. An
important application is the fundamental theorem of algebra, which states
all polynomials with complex coefficients have a root.

Another important application is Google’s Page Rank algorithm, which
is how Google decides to rank the search results you see when you use
Google. This algorithm essentially revolves around creating a special func-
tion which encodes how web pages containing the phrase you search for link
to one another, and the fixed points of this function tell you which pages
are the most “popular.” Google then sorts the pages you see by their popu-
larity as determined by this fixed point. (If you’ve taken a course where you
learned about Markov chains and stationary distributions, this is essentially
the same thing as finding the stationary distribution of some giant Markov
chain where the vertices represent web pages and the edges represent links
between web pages.)

Just for fun, we’ll mention one more interesting application of fixed
points in economics. In game theory, a Nash equilibrium is where no
player of the game can benefit from changing their strategy if no other
player changes their strategy. This is essentially a fixed point problem,
figuring this out won John Nash the Nobel prize in economics in 1994.
(Nash’s original proof used the Brouwer fixed point theorem, by the way,
to show that such equilibria exist.)

Anyway, suppose we have a function g : R → R which we want to
find a fixed point of. If we know some basic information about g, we can
actually find fixed points by simply iterating the function. That is, pick any
starting point x0, and then construct a sequence of points xn by defining
xn+1 = g(xn). If we make a few assumptions about g, it can be shown
such a sequence always converges to the true fixed point of the function.
(This, by the way, is what’s going on when you try to find the stationary
distribution of a Markov chain by simply raising the transition matrix to
higher and higher powers.) This process is called fixed point iteration .

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 285

Let’s first start building up some theory about fixed points that will
justify when a a sequence produced in this way converges to a fixed point.

First let’s make a really simple geometric observation: if g(x) has a fixed
point, then that fixed point occurs when the graph y = g(x) crosses the line
y = x. That is, if y = g(x) and if y = x, then we must have x = g(x), which
is exactly what it means to have a fixed point. Though this is a very simple
observation, it can helpful to keep it in mind while reading Lemma 12.1
and Theorem 12.2 below.

From our geometric observation above it’s clear that not every function
has a fixed point. For example, the function g(x) = x2 +1 can’t have a fixed
point since the line y = x never intersects the parabola y = x2 + 1. This
is clear if you graph the line and parabola, but is also easy to determine
algebraically. If g(x) = x2 + 1 had a fixed point, then there would be a
(real) solution to x2 + 1 = x, or equivalently x2 − x+ 1 = 0. But plugging
into the quadratic formula shows there are no real solutions:

x =
1±
√

1− 4

2
=

1±
√
−3

2
.

In the simplest situations finding a fixed point is just solving such an alge-
braic equation, but “most” of the time we won’t be able to do this algebra
and so we must estimate the fixed point numerically. Before doing that, it
might be good to know for sure that a fixed point does in fact exist. The
following lemma gives us a sufficient condition guaranteeing the existence
of a fixed point.

Lemma 12.1.
If g(x) is a continuous function on an interval [a, b] where g(a) ≥ a

and g(b) ≤ b, then g has a fixed point in [a, b]. That is, there exists
some x ∈ [a, b] so that g(x) = x.

Proof.
Consider the function G(x) = g(x) − x. Notice that G has a root if
and only if g has a fixed point: G(x) = 0 if and only if g(x) = x.
However, G(a) = g(a) − a ≥ 0 and G(b) = g(b) − b ≤ 0. Since g is

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 286

continuous, G is as well, and by the intermediate value theorem there
must exist a point in [a, b] where G(x) = 0, meaning g(x) = x.

Lemma 12.1 tells us a fixed point must exist, but it doesn’t tell us how
to find it. Of course, our goal right now is to approximate the fixed point
using fixed point iteration (constructing the sequence xn+1 = g(xn)). The
next theorem goes a step further and tells us that under some some stronger
hypothesis not only will a fixed point exist, but fixed point iteration will
give us a sequence converging to the fixed point from any starting point.

Theorem 12.2.
Suppose g is a continuously differentiable function defined on [a, b]

whose range is also contained in [a, b] and which has the property that
if λ is the largest absolute value of g′(x) on [a, b],

λ = max
a≤x≤b

|g′(x)|

and λ < 1, then

1. g has a unique fixed point in [a, b].

2. Given any x0 ∈ [a, b] the sequence of xn values generated by
xn = g(xn−1) converges to the unique fixed point.

3. Letting z denote the unique fixed point,

|z − xn| ≤
λn

1− λ
|x1 − x0|

4. The derivative g′(z) equals

g′(z) = lim
n→∞

z − xn+1

z − xn

and as a consequence if xn is “sufficiently close” to z,

z − xn+1 ≈ g′(z) · (z − xn).

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 287

Proof.

1. By assumption g(a) ≥ a and g(b) ≤ b, so we know there exists
at least one fixed point by Lemma 12.1.

Now suppose there were two distinct fixed points α, β ∈ [a, b],
and suppose without loss of generality that α < β. Note that
the mean value theorem promises there exists a c ∈ [α, β] such
that

g′(c) =
g(β)− g(α)

β − α
=⇒ g(β)− g(α) = g′(c) · (β − α)

=⇒ |g(β)− g(α)| = |g′(c)| · |β − α|

But we know |g′(x) ≤ 1, and so

|g(β)− g(α)| < |β − α|.

But α and β were assumed to be fixed points, meaning g(β) = β
and g(α) = α, and the above inequality thus becomes

|β − α| < |β − α|

and this is impossible. Hence it is impossible that g has two
distinct fixed points in [a, b].

2. Let xn = g(xn−1). For the fixed point z, notice

|z − xn| = |g(z)− g(xn−1)| = g′(c)|z − xn−1|

by the mean value theorem, for some c between xn−1 and z.
However, we assumed g′(c) < 1 for all c and so

|z − xn| < |z − xn−1|.

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 288

In particular, because the maximum absolute value of the deriva-
tive is λ, the g′(c) above is at most λ and so

|z − xn| ≤ λ|z − xn−1|
≤ λ · λ|z − xn−2| = λ2|z − xn−2|
≤ λ · λ2|z − xn−3| = λ3|z − xn−3|

...

≤ λn|z − x0|.

But λ < 1, so λn → 0 and hence |z − xn| → 0, and so z → xn.

3. For any n, let cn be the x-value guaranteed by the mean value
theorem to satisfy

g′(cn) =
g(z)− g(xn)

z − xn
=
z − xn+1

z − xn
.

Notice, though, that cn is in the interval between xn and zn and
xn converges to z. Hence cn must also converge to z and since
g′(x) is continuous we must have

g′(z) = lim
n→∞

g′(cn) = lim
n→∞

z − xn+1

z − xn
.

4. This is an immediate consequence of part (3) of the theorem.
Since z−xn+1

z−xn → g′(z) and xn → z, for large values of n we have

z − xn+1

z − xn
≈ g′(z)

=⇒ z − xn+1 ≈ g′(z)(z − xn).

The take-away of this theorem is that it gives us a sufficient condition
for guaranteeing the existence of a fixed point, as well as telling us how
to approximate the fixed point. Moreover, it tells us (approximately) how
quickly the approximations xn converge to the fixed point z.

In general, if a sequence xn converges to z and if

|z − xn+1| ≤ c|z − xn|

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 289

for some constant c, we say the sequence converges linearly . If instead

|z − xn+1| ≤ c|z − xn|2,

then we say the sequence converges quadratically . In general, we say the
convergence is of order p if

|z − xn+1| ≤ c|z − xn|p.

So, for instance, Newton’s method converges quadratically, and fixed point
iteration converges linearly.

Using our preious theorem requires that we have an interval [a, b] where
the function is defined, and which also contains the image of [a, b] after
applying the function. This can be hard to check in practice, but we do
have the following.

Theorem 12.3.
If g is continuously differentiable on [c, d] and if g has a fixed point z
in [c, d] with |g′(z)| < 1, then there exists an interval [a, b] contained
in [c, d] around z which satisfies the hypotheses of Theorem 12.2.

By our earlier theorem, we thus have that if g is continuously differen-
tialbe, and assuming |g′(z)| < 1 at the fixed point, there is some interval
around z such that iterates of g converge to z. In particular,

z − xn+1 ≈ g′(z) · (z − xn).

Let’s write µ = g′(z). Then, supposing xn−1 is “sufficiently close” to z,
we also have

z − xn ≈ µ(z − xn−1)

or

z ≈ xn + µ(z − xn−1)

=⇒ z − µz ≈ xn − µxn−1

=⇒ (1− µ)z ≈ xn − µxn−1

=⇒ z ≈ xn − µxn−1

1− µ
,

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 290

and this last approximation can be rewritten as

z ≈ xn − µxn−1

1− µ

=
xn − µxn + µxn − µxn−1

1− µ

=
xn(1− µ) + µ(xn − xn−1)

1− µ
= xn +

µ

1− µ
(xn − xn−1).

Note, however, we don’t know what µ is since µ = g′(z) and we don’t know
what z is. We can estimate µ, however: by the mean value theorem there
eists a cn ∈ [xn−2, xn−1] such that

g′(cn) =
g(xn−1)− g(xn−2)

xn−1 − xn−2

=
xn − xn−1

xn−1 − xn−2

and since xn → z, g′(cn)→ µ. Thus we have a sequence of approximations
to µ,

µn =
xn − xn−1

xn−1 − xn−2

.

Hence
z ≈ xn +

µn
1− µn

(xn − xn−1).

This formula for approximationg z is known as Aitken’s extrapolation
formula .

Let’s notice that by plugging in the definition of µn, we can rewrite the
above formula as

z ≈ xn +
µn

1− µn
(xn − xn−1)

= xn +

(
xn−xn−1

xn−1−xn−2

)
1− xn−xn−1

xn−1−xn−2

(xn − xn−1)

= xn +

(
xn−xn−1

xn−1−xn−2

)
(
xn−1−xn−2−xn+xn−1

xn−1−xn−2

)(xn − xn−1)

= xn +
xn − xn−1

xn−1 − xn−2 − xn + xn−1

(xn − xn−1)

= xn +
(xn − xn−1)2

−xn + 2xn−1 − xn−2

= xn −
(xn − xn−1)2

xn − 2xn−1 − xn−2

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 291

If we introduce the notation ∆ to mean the difference between two succes-
sive elements in a sequence, e.g.,

∆xn = xn − xn−1

∆xn−1 = xn−1 − xn−2

and let ∆2 mean the idfference in the differences,

∆2xn = ∆(∆xn)

= ∆xn −∆xn−1

= (xn − xn−1)− (xn−1 − xn−2)

= xn − 2xn−1 + xn−2

then the above approximation to z becomes

z ≈ xn −
(∆xn)2

∆2xn
.

Notice that we can use this to construct a new method for comput-
ing a sequence which converges to a fixed point, known as Steffensen’s
method . Given x0, compute x1 and x2 as before:

x1 = g(x0)

x2 = g(x1).

But now that we have three previous approximations, let’s use Aitken’s
formula above to compute x3:

x3 = x2 −
(∆x2)2

∆2x2

= x2 −
(x2 − x1)2

x2 − 2x1 + x0

.

In general, we compute two iterates of g and then compute the next iterate
using Aitken’s formula:

x4 = g(x3)

x5 = g(x4)

x6 = x5 −
(∆x5)2

∆2x5

= x5 −
x5 − x4

x5 − 2x4 + x3

x7 = g(x6)

x8 = g(x7)

x9 = x8 −
(∆x8)2

∆2x8

= x8 −
x8 − x7

x8 − 2x7 + x6

...

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 292

This procedure has the effect of accelerating the rate of convergence of the
sequence towards the fixed point.

Consider for example approximating the fixed point of e−x – i.e., finding
the x solving x = e−x – using fixed point iteration and Steffensen’s method.

FPI Steffensen
x0 1 1
x1 0.36787 0.36787
x2 0.69220 0.69220
x3 0.50047 0.58222
x4 0.60624 0.55865
x5 0.54539 0.57197
x6 0.57961 0.567166
x7 0.56011 0.567130
...

...
...

x10 0.56843 0.5671432904
x11 0.566414 0.5671432904
...

...
...

x40 0.567143905 0.5671432904
x41 0.5671432904 0.5671432904

The approximations calculated using Steffensen’s method stabilized af-
ter about ten iterations, but using fixed point iterations required forty!

The above values can easily be computed both ways in Matlab using a
loop as follows:

g = @(x) exp(-x);

% Compute using fixed point iteration

x0 = 1;

for j = 1:45

fprintf("x%d = %1.10f\n", j, x0);

x0 = g(x0);

end

% Compute using Steffensen’s method

x0 = 1;

for j = 1:15

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 293

x1 = g(x0);

x2 = g(x1);

x3 = x2 - (x2 - x1)^2 / (x2 - 2*x1 + x0);

fprintf("x%d = %1.10f\n", 3*(j-1)+1, x1);

fprintf("x%d = %1.10f\n", 3*(j-1)+2, x2);

fprintf("x%d = %1.10f\n", 3*(j-1)+3, x3);

x0 = x3;

end

This almost seems like magic – we’re doing almost exactly the same
thing as before, except modifying every third element of the sequence in
some odd way that came from playing around with the derivative of our
g(x) function, yet the sequence seems to converge much faster. Why does
this happen?

To explain this, let’s think geometrically. Consider the secant line of
y = g(x) through the points on the graph with x = xn−2 and x = xn−1. The
points on our line are (xn−2, g(xn−2)) and (xn−1, g(xn−1)). But g(xn−2) =
xn−1 and g(xn−1) = xn. So the points on our line are really just (xn−2, xn−1)
and (xn−1, xn). Notice the slope of this line is

xn − xn−1

xn−1 − xn−2

which is exactly our µn from before. Now, we’re trying to approximate
g(x) = x, which occurs when y = g(x) intersects the line y = x. So, let’s
take the secant line above and solve for its point of intersection with y = x.
To do this we just write down the equation of our secant line in point-slope
form using (xn−1, xn) are the point and µn as the slope, and then set y = x:

x− xn = µn(x− xn−1)

=⇒ x− xn = µnx− µnxn−1

=⇒ x− µnx = xn − µnxn−1

=⇒ (1− µn)x = xn − µnxn−1

=⇒ x =
xn − µnxn−1

1− µn

CHAPTER 12. ROOT FINDING REVISITED, AND FIXED POINT
ITERATION 294

We now rewrite the right-hand side as follows:

x =
xn − µnxn−1

1− µn
=
xn − µnxn + µnxn + µnxn−1

1− µn

=
(1− µn)xn + µn(xn − xn−1)

1− µn
= xn +

µn
1− µn

(xn − xn−1)

Of course, now we can perform the same manipulations as appeared before
to obtain

x = xn −
(∆xn)2

∆2xn
.

That is, the third iterate we construct is simply where the secant line
through the last two iterates intersects the line y = x.

13Interpolation

I think it is a relatively good approximation
to the truth – which is much too complicated
to allow anything but approximations – that
mathematical ideas originate in empirics.

John von Neumann
The Mathematician

Often we are interested in finding a function which passes through a
given set of points. For instance, the function we care about may model
some sort of behavior we’re interested in, but isn’t known exactly. How-
ever, there may be some “partial” information which is known – i.e., we
may know the exact value of the function at a few special points and want
to approximate the remaining unknown values of the function. This pro-
cess is called interpolation and there are several different interpolation
techniques, but we will start off with the simplest: polynomial interpola-
tion, building our way up from the basics. We will ultimately show, via
construction, that given any n-points in the xy-plane,

(x1, y1), (x2, y2), ..., (xn, yn)

where the xi are distinct, there exists a unique polynomial of degree at most
n− 1 which passes through all n points.

13.1 Polynomial interpolation

The simplest case is when there are two points, and in that situation we are
just looking for the line which passes through the two points. If our points
are (x1, y1) and (x2, y2), then the slope of the line is

y2 − y1

x2 − x1

and so the equation of the line in point-slope form is

y − y1 =
y2 − y1

x2 − x1

(x− x1),

and so our polynomial is

y2 − y1

x2 − x1

· (x− x1) + y1.

295

CHAPTER 13. INTERPOLATION 296

Now suppose there were three points,

(x1, y1), (x2, y2), (x3, y3).

The claim is that there is some polynomial of degree at most two whose
graph passes through all of these points. If so, what would this polynomial
be?

Suppose the polynomial were

Ax2 +Bx+ C.

Then our three points above give us three equations:

Ax2
1 +Bx1 + C = y1

Ax2
2 +Bx2 + C = y2

Ax2
3 +Bx3 + C = y3

Thus we have a system of linear equations whose solution will tell us what
the coefficients A, B, and C are.

Example 13.1.
Find the polynomial of degree two which passes through the points

(1, 7), (2, 5), and (3, 29).

If our polynomial is Ax2 +Bx+ C, then we must have

A · 12 +B · 1 + C = 7

A · 22 +B · 2 + C = 15

A · 32 +B · 3 + C = 29

This is a system of linear equations, and so we can easily solve the
system with some simple linear algebra. Notice that written in terms
of matrices the system becomes1 1 1

4 2 1
9 3 1

AB
C

 =

 7
15
29


We take the augmented coefficient matrix of this system and can easily

CHAPTER 13. INTERPOLATION 297

put it into an echelon form1 1 1 7
4 2 1 15
9 3 1 29

 R2−4R1→R2−−−−−−−→

1 1 1 7
0 −2 −3 −13
9 3 1 29


R3−9R1→R3−−−−−−−→

1 1 1 7
0 −2 −3 −13
0 −6 −8 −34


R3−3R2→R3−−−−−−−→

1 1 1 7
0 −2 −3 −13
0 0 1 5


That is, our original system is equivalent to the system

A+B + C = 7

−2B − 3C = −13

C = 5

As C = 5, we can substitute into −2B−3C = −13 to see that B = −1,
and then plug both of these values into A + B + C = 7 to determine
A = 3.

Thus our desired polynomial is

3x2 − x+ 5

and we can easily check the graph of this polynomial does in fact go
through the three points listed above.

13.2 Lagrange basis polynomials

In principle we can always find our interpolating polynomial by writing
down a system of equations whose solution gives the coefficients of the
polynomial and then solve the system, however this can be very tedious to
do. Luckily, there’s a clever trick due to the 18th century French mathe-
matician Joseph Louis Lagrange.

Let’s suppose, as in the example above, we want to find a quadratic poly-
nomial which passes through the points (1, 7), (2, 15), and (3, 29). Suppose,
though, that we were able to find three simple quadratic polynomials, call

CHAPTER 13. INTERPOLATION 298

them L1, L2, and L3 which had the following properties:

L1(1) = 1 L2(1) = 0 L3(1) = 0

L1(2) = 0 L2(2) = 1 L3(2) = 0

L1(3) = 0 L2(3) = 0 L3(3) = 1

Notice that if we had three such quadratic polynomials, then the expression

7 · L1(x) + 15 · L2(x) + 29 · L3(x)

would also be a quadratic polynomial, and because of the properties of the
Li’s listed above, the graph of this polynomial would necessarily go through
the points (1, 7), (2, 15), and (3, 29). For example, plugging 1 in for x the
expression above gives

7 · L1(1) + 15 · L2(1) + 29 · L3(1) = 7 · 1 + 15 · 0 + 29 · 0 = 7

and similarly for x = 2 and x = 3.
Now, how could we go about finding such Li polynomials? Notice that

in the case of L1, we explicitly want L1(2) = 0 and L1(3) = 0. That is, we
want 2 and 3 to be roots of the polynomial. This means x − 2 and x − 3
must be factors of L1, and since L1 has degree 2, L1 must of the form

L1(x) = k(x− 2)(x− 3)

for some constant k. We can easily determine what k needs to be in order
for L1(1) to equal 1 as desired, however:

L1(1) = 1

=⇒ k(1− 2)(1− 3) = 1

=⇒ k =
1

(1− 2)(1− 3)

=⇒ k =
1

(−1)(−2)

=⇒ k =
1

2

Thus we claim L1(x) = 1
2
(x−2)(x−3) has the desired properties: L1(1) = 1

while L1(2) = L1(3) = 0.
Similar computations show us that L2(x) and L3(x) must be

L2(x) = −1(x− 1)(x− 3)

L3(x) =
1

2
(x− 1)(x− 2)

CHAPTER 13. INTERPOLATION 299

We thus arrive at the polynomial

7

2
(x− 2)(x− 3)− 15(x− 1)(x− 3) +

29

2
(x− 1)(x− 2)

without having to solve any systems of equations: we instantly know what
each Li looks like because of its degree and roots, and then we do some very
simple arithmetic to find the required constant.

Expanding the expression above and combining like terms, by the way,
does show us that our polynomial is precisely 3x2 − x + 5, just as we had
computed earlier.

Generalizing the process above proves the following theorem:

Theorem 13.1.
Let (x1, y1), (x2, y2), ..., (xn, yn) be n points with distinct x-values.
Then there exists a polynomial p(x) of degree at most n − 1 which
satisfies p(xi) = yi and the polynomial is given by

p(x) = y1L1(x) + y2L2(x) + · · ·+ ynLn(x)

where

Li(x) =
(x− x1)(x− x2) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x2)(xi − x3) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

The Li polynomials which appear above are called the Lagrange basis
polynomials .

Written more concisely, the polynomial p(x) whose graph passes through
the points (x1, y1), ..., (xn, yn), where no two xi are equal, is given by

p(x) =
n∑
i=1

yiLi(x)

where the Lagrange polynomials may be written as

Li(x) =

∏i−1
k=1(x− xk) ·

∏n
k=i+1(x− xk)∏i−1

k=1(xi − xk) ·
∏n

k=i+1(xi − xk)

CHAPTER 13. INTERPOLATION 300

Example 13.2.
Find a polynomial of degree at most 4 whose graph passes through
the points

(−2, 3), (−1, 7), (3,−2), (4, 0) (9, 2)

Plugging into the formula above we have

3
(x+ 1)(x− 3)(x− 4)(x− 9)

(−2 + 1)(−2− 3)(−2− 4)(−2− 9)

+7
(x+ 2)(x− 3)(x− 4)(x− 9)

(−1 + 2)(−1− 3)(−1− 4)(−1− 9)

−2
(x+ 2)(x+ 1)(x− 4)(x− 9)

(3 + 2)(3 + 1)(3− 4)(3− 9)

+0
(x+ 2)(x+ 1)(x− 3)(x− 9)

(4 + 2)(4 + 1)(4− 3)(4− 9)

+2
(x+ 2)(x+ 1)(x− 3)(x− 4)

(9 + 2)(9 + 1)(9− 3)(9− 4)

Exercise 13.1.
What happens if we try to construct a polynomial given only its roots
using the Lagrange basis polynomials above? For example, what will
the above formula give us for a polynomial which passes through the
points (1, 0), (2, 0), and (3, 0)? Why does this not contradict the the-
orem above?

13.3 Divided differences

Consider the following problem: suppose you had n data points (x1, y1),
..., (xn, yn) and wanted a function which passed through each point, so you
computed the interpolating polynomial wit the Lagrange basis polynomials
as above. Later, however, you discovered there was another data point,
(xn+1, yn+1), which your function also needed to pass through. Is there an
easy way to modify our polynomial so that it passes through this new point

CHAPTER 13. INTERPOLATION 301

in addition to the previous points? Of course, we could add an extra factor
to each term of the polynomial written down in terms of the Lagrange basis
polynomials, though this is very tedious. What we’d like instead is a way
to write down the “old” interpolating polynomial with one more termto get
the “new” interpolating polynomial. This is easy to do using the divided
differences of the function.

We will define the divided differences of a function f of numbers x1,
x2, ..., xn as a number denoted

f [x1, x2, ..., xn]

and we will see that the interpolating polynomial for (x1, y1), ..., (xn, yn),
(xn+1, yn+1) can be written in terms of the interpolating polynomial of
(x1, y1), ..., (xn, yn), plus one more term which incorporates the divided
difference f [x1, x2, ..., xn+1].

Divided differences are defined recursively: first we define the divided
difference of x1 and x2 as

f [x1, x2] =
f(x2)− f(x1)

x2 − x1

.

Notice this is simply the slope of the secant line through two points on the
graph y = f(x).

Now, supposing f [x1, ..., xn−1] has been defined, we define

f [x1, ..., xn] =
f [x2, ..., xn]− f [x1, ..., xn−1]

xn − x1

.

For example, consider f(x) = x2. Then the divided difference of f at 1
and 2 is

f [1, 2] =
22 − 12

2− 1
=

3

1
= 3.

The divided difference at 1, 2, and 3 is

f [1, 2, 3] =
f [2, 3]− f [1, 2]

3− 1

=

(
32−22

3−2
− 22−12

2−1

)
3− 1

=
9− 4− 4 + 1

2
= 1

CHAPTER 13. INTERPOLATION 302

The divided difference of 1, 2, 3, and 4 is

f [1, 2, 3, 4] =
f [2, 3, 4]− f [1, 2, 3]

4− 1

=

(
f [3,4]−f [2,3]

4−2
− f [2,3]−f [1,2]

3−1

)
3

=
1
2

[(42 − 32)− (32 − 22)]− 1

3

=
1
2

[16− 9− 9 + 4]− 1

3

=
5

3

The next theorem, due to Newton, relates divided differences to inter-
polating polynomials.

Theorem 13.2 (Newton’s divided difference formula).
Given a list of n x-values, x1 through xn, where f(x1) through f(xn)
are known, let pi(x) be the interpolating polynomial for (x1, f(x1)),
(x2, f(x2)), ..., (xi+1, f(xi+1)). Then the interpolating polynomials are
related by the following recurrence relation: p1(x) is equal to

p1(x) = f(x1) + (x− x1)f [x1, x2]

and for each 1 < i ≤ n, we have

pi(x) = pi−1(x) + (x− x1)(x− x2) · . . . · (x− xi)f [x1, x2, ..., xi+1].

Example 13.3.
Find the interpolating polynomials for the following lists of points:

(a) (0, 2), (3, 1)

(b) (0, 2), (3, 1), (−1, 4).

CHAPTER 13. INTERPOLATION 303

(a) We compute p1(x) as described in the theorem:

p1(x) = f(x1) + (x− x1)f [x1, x2]

= f(0) + (x− 0)f [0, 3] = 2 + x · f [0, 3]

= 2 + x · f(3)− f(0)

3− 0

= 2 + x · 1− 2

3

= 2− 1

3
x

(b) Now that p1(x) is known, we can compute p2(x) by adding on one
more term:

p2(x) = 2− 1

3
x+ (x− 0)(x− 3) · f [0, 3,−1]

= 2− 1

3
x+ x(x− 3) ·

(
f [3,−1]− f [0, 3]

−1− 0

)
= 2− 1

3
x+ x(x− 3) ·

(
4−1

3−(−1)
−
(−1

3

)
−1

)

= 2− 1

3
x− x(x− 3) ·

(
3

4
+

1

3

)
= 2− 1

3
x− 13

12
x(x− 3)

13.4 Error in polynomial interpolation

Once we have our interpolating polynomial p(x) which approximates f(x)
and agrees with f(x) at x1, x2, ..., xn,

p(x1) = f(x1)

p(x2) = f(x2)

...

p(x3) = f(x3)

CHAPTER 13. INTERPOLATION 304

a reasonable question to ask is how good of an approximation is p(x)? This
is answered by the following theorem which gives a formula for the error in
our approximation, f(x)− p(x).

Theorem 13.3.
Suppose p(x) is an interpolating polynomial for f(x) which agrees

with f(x) at the points x1, x2, ..., xn. Suppose also that all points x1

through xn are contained in some interval [a, b] with f ∈ Cn([a, b]).
Then for each x ∈ [a, b] there exists a value of c in [a, b] such that

f(x)− p(x) =

∏n
k=1(x− xk)

n!
f (n)(c).

(Notice this c depends on x.)

Proof.
For notational simplicity, write

Ψ(x) =
n∏
k=1

(x− xk).

The claim is then that there exists some c ∈ [a, b] such that

f(x)− p(x) =
Ψ(x)

n!
f (n)(c).

Note this is obviously true if x is one of x1, x2, ..., xn as both sides
of the equation simply become zero. For any other x ∈ [a, b], consider
the function

ϕx(t) = f(t)− p(t)− f(x)− p(x)

Ψ(x)
Ψ(t)

Note ϕx is an n-times continuously differentiable function since f(t),
p(t), and Ψ(t) are n-times continuously differentiable.

By the above, ϕx(t) is zero if t is one of x1, x2, ..., xn. Additionally,
ϕx(x) is zero. So, ϕx has n+ 1 distinct zeros. By Rolle’s theorem (or
the mean value theorem), ϕ′x has at least n zeros, ϕ′′x has at least n−1

CHAPTER 13. INTERPOLATION 305

zeros, ϕ′′′x has at least n − 2 distinct zeros, and so on. In particular,

ϕ
(n)
x has at least one zero. Now consider

ϕ(n)
x (t) =

dn

dtn

(
f(t)− p(t)− f(x)− p(x)

Ψ(x)
Ψ(t)

)
= f (n)(t)− p(n)(t)− f(x)− p(x)

Ψ(x)
Ψ(n)(t).

As p is a polynomial of degree at most n− 1, p(n)(t) = 0. Notice that
Ψ(t) is a monic polynomial of degree n:

Ψ(t) =
n∏
k=1

(t− xk) = tn + some other terms of degree less than n

and so Ψ
(n)
x (t) = n!. That is,

ϕ(n)
x (t) = f (n)(t)− f(x)− p(x)

Ψ(x)
n!.

But this function has some root c, and so

ϕ(n)
x (c) = f (n)(c)− f(x)− p(x)

Φ(x)
n!

=⇒ 0 = f (n)(c)− f(x)− p(x)

Φ(x)
n!

=⇒ f(x)− p(x)

Ψ(x)
n! = f (n)(c)

=⇒ f(x)− p(x) =
Ψ(x)

n!
f (n)(c) =

∏n
k=1(x− xk)

n!
f (n)(c).

Example 13.4.
What is the maximum error that occurs when approximating sin(πx)
over the interval [0, 2] with the interpolating polynomial through the
points (0, 0), (1/2, 1), (1, 0), (3/2,−1)?

First note our approximating polynomial, using the Lagrange basis

CHAPTER 13. INTERPOLATION 306

polynomials, is

p(x) = 0 · L1(x) + 1 · L2(x) + 0 · L3(x)− 1 · L4(x)

=
(x− 0)(x− 1)(x− 3/2)

(1/2− 0)(1/2− 1)(1/2− 3/2)
− (x− 0)(x− 1/2)(x− 1)

(3/2− 0)(3/2− 1/2)(3/2− 1)

By Theorem 13.3,

|sin(x)− p(x)| =
∣∣∣∣(x− 0)(x− 1/2)(x− 1)(x− 3/2)

4!

d4

dx4

∣∣∣∣
x=c

sin(πx)

∣∣∣∣
for some c ∈ [0, 2]. Notice, however,∣∣∣∣ d4

dx4

∣∣∣∣
x=c

sin(πx)

∣∣∣∣ ≤ π4

for each c. Also notice that for each factor appearing in the numerator,

(x− 0)(x− 1/2)(x− 1)(x− 3/2),

we have that each factor is at most 2, and so

|(x− 0)(x− 1/2)(x− 1)(x− 3/2)| ≤ 24 = 16

Hence our error is bounded above by

16

24
π4 =

2π4

3

The above thus gives us an upper bound on the error – it tells us the
worst-case scenario for the error in approximating sin(πx) by an interpo-
lating polynomial. It may very well be that the actual error is less than
this, but in many problems simply having an upper bound on the error is
desirable. In fact, since the x-coordinates of our points above are evenly
spaced, we can do much better. Because of this even distribution, it’s easy
to see that for each x ∈ [0, 2] one of the factors in

(x− 0)(x− 1/2)(x− 1)(x− 3/2),

will be at most 1/2, one factor will be at most 1, one factor will be at most
3/2, and one factor will be at most 2, and so we can actually determine

|(x− 0)(x− 1/2)(x− 1)(x− 3/2)| ≤ 1

2
· 1 · 3

2
· 2 =

3

2

CHAPTER 13. INTERPOLATION 307

and so we can replace the upper bound in the calculation above with

| sin(x)− p(x)| ≤
3/2π4

24

13.5 Splines

In general, we expect that more sample points (x1, y1), ..., (xn, yn) will give
us a more accurate inteprolating polynomial. However, the more points
we use the higher the degree of the polynomial, and the higher the degree
of the polynomial, the more it can “wiggle,” especially at the ends of our
list of sample points. For example, consider the function f(x) = 1

1+x2
on

[−5, 5].

Interpolating using sixteen equally-spaced points on [−5, 5] gives a poly-
nomial of degree fifteen which, as we see from the graph below, is a very
poor approximation of the original f(x) near the endpoints of the interval.

CHAPTER 13. INTERPOLATION 308

We’d like an interpolation method where something like this doesn’t
happen, and the trick is to use piecewise polynomial functions, each piece
interpolating the function on a small interval. It is easy to construct
such piecewise interpolating polynomials which have undersirable proper-
ties, such as discontinuities or places where the function is not differentiable.
Usually we want our functions to be smooth, and so we will impose some
extra conditions on our piecewise interpolating polynomial to make sure the
result is continuous and the derivatives agree where two pieces fit together.
The result of this is a function called a spline

While we can define splines of any degree, we will only consider cubic
splines, i.e., functions which are piecewise cubic polynomials. To be precise,
a cubic spline on an interval [a, b] is a function

S : [a, b]→ R

together with a partition of [a, b],

a = t0 < t1 < t2 < · · · < tn−1 < tn = b,

such that S is a piecewise function,

S(x) =


S1(x) if t0 ≤ x ≤ t1

S2(x) if t1 ≤ x ≤ t2
...

Sn(x) if tn−1 ≤ x ≤ tn

where

• each Si(x) is a cubic polynomial,

• Si(ti) = Si+1(ti) for 1 ≤ i ≤ n− 1,

• S ′i(ti) = S ′i+1(ti) for 1 ≤ i ≤ n− 1, and

• S ′′i (ti) = S ′′i+1(ti) for 1 ≤ i ≤ n− 1,

In particular, if we wish to interpolate (x0, y0), (x1, y1), ..., (xn, yn), then
we want a spline defined on the interval [x0, xn] where our partition is

x0 < x1 < · · · < xn−1 < xn

and we make the additional requirement that S(xi) = yi for 0 ≤ i ≤ n.
(Notice this means Si(xi) = yi = Si+1(xi) for 1 ≤ i ≤ n − 1). Writing all

CHAPTER 13. INTERPOLATION 309

of this out explicitly will give us a system of linear equations with 4n − 2
equations and 4n variables. Since we have two more variables than we
have equations, there are two degrees of freedom in choosing a solution to
the system. In order to have a unique solution we will impose two more
conditions on S(x). Making the assumption S ′′(x0) = 0 and S ′′(xn) = 0
gives us additional equations, and a spline satisfying all of these additional
conditions is called a natural cubic spline .

Example 13.5.
Find the natural cubic spline interpolating the following five points:

(1, 0), (2, 2), (3, 1), (4, 10), (5, 0).

Our partition here is 1 < 2 < 3 < 4 < 5, and so we want a piecewise
cubic polynomial defined on the intervals [1, 2], [2, 3], [3, 4], and [4, 5].
Such a function has the form

S(x) =


Ax3 +Bx2 + Cx+D if 1 ≤ x ≤ 2

Ex3 + Fx2 +Gx+H if 2 ≤ x ≤ 3

Ix3 + Jx2 +Kx+ L if 3 ≤ x ≤ 4

Mx3 +Nx2 + Px+Q if 4 ≤ x ≤ 5

But these polynomials must agree with the points provided, and this
gives us eight equations:

A · 13 +B · 12 + C · 1 +D = 0

A · 23 +B · 22 + C · 2 +D = 2

E · 23 + F · 22 +G · 2 +H = 2

E · 33 + F · 32 +G · 3 +H = 1

I · 33 + J · 32 +K · 3 + L = 1

I · 43 + J · 42 +K · 4 + L = 10

M · 43 +N · 42 + P · 4 +Q = 10

M · 53 +N · 52 + P · 5 +Q = 0

We also require that the derivatives of the different pieces agree at the

CHAPTER 13. INTERPOLATION 310

endpoints. Notice the derivative of S(x) is

S ′(x) =


3Ax2 + 2Bx+ C if 1 ≤ x ≤ 2

3Ex2 + 2Fx+G if 2 ≤ x ≤ 3

3Ix2 + 2Jx+K if 3 ≤ x ≤ 4

3Mx2 + 2Nx+ P if 4 ≤ x ≤ 5

Asking that the derivatives agree at the endpoints gives us three more
equations,

3A · 22 + 2B · 2 + C = 3E · 22 + 2F · 2 +G

3E · 32 + 2F · 3 +G = 3I · 32 + 2J · 3 +K

3I · 42 + 2J · 4 +K = 3M · 42 + 2n · 4 + P

Of course, we can rewrite these equations as

3A · 22 + 2B · 2 + C − 3E · 22 − 2F · 2−G = 0

3E · 32 + 2F · 3 +G− 3I · 32 − 2J · 3−K = 0

3I · 42 + 2J · 4 +K − 3M · 42 − 2n · 4− P = 0

We also require that the second derivatives of the pieces agree at the
endpoints. Notice the second derivative of S(x) is

S ′′(x) =


6Ax+ 2B if 1 ≤ x ≤ 2

6Ex+ 2F if 2 ≤ x ≤ 3

6Ix+ 2J if 3 ≤ x ≤ 4

6Mx+ 2N if 4 ≤ x ≤ 5

Requiring these functions to agree when two subintervals meet gives
us three more equations,

6A · 2 + 2B = 6E · 2 + 2F

6E · 3 + 2F = 6I · 3 + 2J

6I · 4 + 2J = 6M · 4 + 2N

CHAPTER 13. INTERPOLATION 311

These may be rewritten as

6A · 2 + 2B − 6E · 2− 2F = 0

6E · 3 + 2F − 6I · 3− 2J = 0

6I · 4 + 2J − 6M · 4− 2N = 0

Finally, to be a natural cubic spline require S ′′(1) = 0 and S ′′(5) = 0,
and this gives us two more equations,

6A · 1 + 2B = 0

6M · 5 + 2N = 0

All together we have a system of sixteen equations in sixteen un-
knowns. While tedious to do by hand, in principle this is a system
we can solve by writing out the corresponding augmented coefficient
matrix and putting that matrix into RREF. Doing this will tell us that
the system is solved by

A =
−1

2
B =

3

2
C = 1 D = −2

E =
−1

2
F =

3

2
G = 1 H = −2

I =
−1

2
J =

3

2
K = 17 L = −50

M =
−769

2
N =

11535

2
P = −28463 Q = 46190

We can now explicitly write down our spline:

S(x) =


−1
2
x3 + 3

2
x2 + x− 2 if 1 ≤ x ≤ 2

−1
2
x3 + 3

2
x2 + x− 2 if 2 ≤ x ≤ 3

−1
2
x3 + 3

2
x2 + 17x− 50 if 3 ≤ x ≤ 4

−769
2
x3 + 11535

2
x2 − 28463x+ 46190 if 4 ≤ x ≤ 5

Evaluating this spline at x = 2.5, for example, gives us 33/16 = 2.0625.

14Least Squares Approximation

All exact science is dominated by the idea of
approximation.

Bertrand Russell

14.1 Motivation

We have discussed two different interpolation techniques: polynomial inter-
polation (which we saw three different ways to compute) and interpolation
with cubic splines. Both techniques try to approximate a given function
f(x) by building polynomials (or piecewise polynomials) which pass through
some given set of points representing known values of f . Notice this does
not necessarily mean the resulting approximation is “good” away from these
special interpolation points. We now turn our attention towards a similar
problem: what is the “best” approximation to a given function?

To make this more precise, given a function f(x) defined on an interval
[a, b] and a fixed integer n, which polynomial p(x) of degree at most n is
the “best” approximation to the function f(x) in the interval [a, b]? To
answer this question we first need some way of measuring how good an ap-
proximation is. Of course, we can consider the error in our approximation,
f(x)− p(x); notice this a function of x.

What should it mean for p(x) to be a good approximation to f(x)? Of
course we want the error to be small, but since the error is a function of x
we have to ask where do we want that error to be small? It could be, for
instance, the error is very small – maybe even zero! – at one point x0, but
then very large at x1. Since the error can vary from point to point, perhaps
what we should try to do is minimize the average error.

Recall that given a continuous function g(x) defined on an interval [a, b],
the average value of g on the interval is

1

b− a

∫ b

a

g(x) dx.

So, the average value of the error in approximating f(x) by p(x) is

1

b− a

∫ b

a

(f(x)− p(x)) dx.

312

CHAPTER 14. LEAST SQUARES APPROXIMATION 313

Intuitively, we want to make this average error small, but there’s one issue
we have to contend with. Since f(x)−p(x) might be positive sometimes and
negative sometimes, it could be that these positives and negatives cancel
out to give us an “average error of zero” even when our function is not a
particularly good approximation. As a silly example, suppose f(x) was the
constant function 1 on the interval [−1, 1], and suppose p(x) was 2x + 1.
This is a pretty terrible approximation to the function 1, but the average
value on [−1, 1] is easily seen to be zero:

1

1− (−1)

∫ 1

−1

(1− (2x+ 1)) dx =
1

2

∫ 1

−1

−2x dx =
−1

2
x2

∣∣∣∣1
−1

=
−1

2

(
12 − (−1)2

)
= 0.

To fix this issue of having positives and negatives cancel out, we’ll just
square the error to be certain everything is positive.

That is, given a continuous function f(x), we want to find the polyno-
mial p(x) of degree at most n which minimizes the average square of the
error over an interval [a, b],

1

b− a

∫ b

a

(f(x)− p(x))2 dx.

A function minimizing this average square of the error is often called a least
squares approximation .

14.2 Minimizing the average square of the

error with calculus

We now have a minimization problem, and so the most obvious route to
solving that problem would be to use calculus. That is, given a function
f(x) we could explicitly compute the quantity

1

b− a

∫ b

a

(f(x)− p(x))2 dx.

as a function of the coefficients of the p(x), differentiate that quantity and
set it equal to zero to find critical points (candidates for our minima),
then determine which of these candidates actually gives the smallest value.
We’ll see there’s actually another way to solve this minimization problem,
but we’ll work through one example using calculus to illustrate the idea.

CHAPTER 14. LEAST SQUARES APPROXIMATION 314

Example 14.1.
What polynomial of degree at most one minimizes the average square

of the error in approximating f(x) =
√
x on the interval [0, 1]?

We are looking for the polynomial p(x) = Ax + B which makes∫ 1

0
(f(x)− p(x))2 dx as small as possible. First we compute this inte-

gral in terms of the unknown A and B:∫ 1

0

(f(x)− p(x))2 dx =

∫ 1

0

(√
x− (Ax+B)

)2
dx

=

∫ 1

0

(
x− 2

√
x(Ax+B) + (Ax+B)2

)
dx

=

∫ 1

0

(
x− 2Ax

3/2 − 2Bx
1/2 + A2x2 + 2ABx+B2

)
dx

=

(
x2

2
− 4a

5
x

3/2 − 4b

3
x

3/2 +
A2

3
x3 + ABx2 +B2x

)∣∣∣∣1
0

=
1

2
− 4A

5
− 4B

3
+
A2

3
+ AB +B2

=
15− 24A− 40B + 10A2 + 30AB + 30B2

30

Our goal now is to find the choice of A and B which make this quantity
as small as possible. Since the denominator is a constant, obviously
it suffices to minimize the numerator. Let’s write G(A,B) for the
numerator in the expression above. Notice this is a function of two
variables which we need to minimize. We can do this by first finding
candidates for the minima by seeing where the partial derivatives of
G with respect to both A and B are equal to zero:

∂G

∂A
= 0

∂G

∂B
= 0

This gives us a system of equations which we might be able to solve.
Computing ∂G

∂A
= −24 + 20A+ 30B and ∂G

∂B
= −40 + 30A+ 60B. Our

system of equations, after moving constants to the right-hand sides, is

CHAPTER 14. LEAST SQUARES APPROXIMATION 315

thus

20A+ 30B = 24

30A+ 60B = 40

and solving this system will tell us A = 4/5 and B = 4/15. Thus we
claim the polynomial of degree one which minimizes the square of the
error in approximating

√
x on [0, 1] is

p(x) =
4

5
x+

4

15
.

Remark.
Technically in the example we’ve just found a critical point, but haven’t
justified that it’s a global minimum. We can do this however, by veri-
fying the surface z = G(A,B) has positive curvature at every point. If
the surface has positive curvature everywhere and the function has one
critical point, that critical point must be a global maximum or a global
minimum. The curvature of this surface is given by the determinant
of the Hessian matrix of G,

det

(
GAA GAB

GBA GBB

)
= det

(
20 30
30 60

)
= 300.

The surface thus has constant positive curvature at every point, so
our critical point is either a global maximum or a global minimum.
To see which case we are in we simply compute GAA = 20. Since this
is positive the surface is “opening upwards.”

14.3 Minimizing using inner products

The calculus-based procedure described above certainly works for minimiz-
ing the average square of the error, but it gets very laborious very quickly.
Consider, for example, repeating Example 14.1 but for degree two or degree
three polynomials.

CHAPTER 14. LEAST SQUARES APPROXIMATION 316

Luckily there is another way to solve our minimization problem which
is computationally much simpler, although it does require some setup.

First, some notation. Given two continuous functions f and g on an
interval [a, b], let 〈f, g〉 denote the real number which is computed as

〈f, g〉 =

∫ b

a

f(x) · g(x) dx.

That is, we have a way of pairing two functions together to get a real num-
ber. Let’s notice a few simple properties of this pairing we have introduced.

Lemma 14.1.
Let f , g, and h be continuous functions defined on an interval [a, b]

and let λ be any real number. The pairing described above then satisfies
the following six conditions:

1. 〈f, g〉 = 〈g, f〉

2. 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉

3. 〈λf, g〉 = λ 〈f, g〉

4. 〈f, f〉 ≥ 0

5. 〈f, f〉 = 0 if and only if f is the constant zero function.

Proving these six properties is really just an exercise in “unwinding” the
definition of the pairing above and then using basic properties of integrals
from calculus, so we won’t bother to prove the lemma here.

In general, pairings satisfying the six properties above are called inner
products and apply to much more general settings than just continuous
functions. In multivariable calculus, for example, you learn about another
inner product on the space of vectors in Rn: the dot product. In statistics
you learn about an inner product on the space of random variables defined
on a sample space: the covariance1.

While inner products may seem strange or abstract when you first learn
about them, they’re very handy to have. When you have an inner product

1Technically we need to restrict ourselves to the space of random variables with finite
second moment because we want our pairings to always give us finite values.

CHAPTER 14. LEAST SQUARES APPROXIMATION 317

you basically give your space (the space of continuous functions, the space of
vectors in Euclidean space, the space of random variables, etc.) a geometry,
and you can use that geometry to help you solve problems.

In particular, once you have an inner product you get a notion of length,
which is often called a norm . The norm of a continuous function f defined
on [a, b], is defined to be the square root of the inner product of f with
itself and is denoted ‖f‖:

‖f‖ =
√
〈f, f〉 =

√∫ b

a

f(x)2 dx.

You also get a notion of angle. The angle between two functions f and g is
defined to be the value of θ satisfying

cos θ =
〈f, g〉
‖f‖ ‖g‖

.

We say that two functions are orthogonal if the angle between them is π/2
(aka 90◦). Notice when this happens cos θ is zero, hence the numerator in
the fraction above is zero and so we have proven the following simple (but
very useful) lemma:

Lemma 14.2.
Two functions f and g are orthogonal if and only if

〈f, g〉 =

∫ b

a

f(x) · g(x) dx = 0.

Maybe it seems weird to talk about the length of a function or the angle
between two functions, but all that’s going on is that we’re generalizing
the notion of length and angle from normal Euclidean geometry. The dot
product between two 2-dimensional vectors ~u = (u1, u2) and ~v = (v1, v2) is
defined to be

~u · ~v = u1v1 + u2v2,

and it’s not hard (but it is a little tedious) to show this pairing which
associates a real number to two vectors is an inner product: it satisfies the
six properties described in the lemma above. Then some basic geometry
shows the length of a vector ~u is equal to

√
u2

1 + u2
2 which is equal to

√
~u · ~u,

CHAPTER 14. LEAST SQUARES APPROXIMATION 318

and ‖~u‖ is just short-hand for that quantity. The angle between two vectors
~u and ~v can be computed using the law of cosines (placing the tails of the
vectors together then filling in the triangle with ~u − ~v), and some simple
manipulations will show that angle θ satisfies cos θ = ~u·~v

‖~u‖ ‖~v‖ . Given these
nice geometric interprations of dot products in the Euclidean plane, we
define length and angle in more general contexts using the same formulas
for whatever inner product we have. (This, by the way, is how you can do
geometry in spaces of more than three dimensions: even though you can’t
visualize in more dimensions, you can still define geometric notions and
compute them.)

Anyway, the idea is that we’re going to use this geometry of the space
of functions to help us solve our minimization problem. Before going any
further, though, let’s make a simple observation: we can always transform
our problem to assume our interval is [−1, 1] – we’ll see why we want to do
this in a minute.

In particular, suppose we perform the following change of coordinates
(aka u-substitution) in our integral defining 〈f, g〉:

u =
2

b− a
· x− 2a

b− a
− 1

du =
2

b− a
dx

and so

x =
b− a

2
(u+ 1) + a

dx =
b− a

2
du.

Thus our integral ∫ b

a

(f(x)− p(x))2 dx

above can be rewritten as

b− a
2

∫ 1

−1

[
f

(
b− a

2
(u+ 1) + a

)
− p

(
b− a

2
(u+ 1) + a

)]
du

and, even though it looks ugly,

p

(
b− a

2
(u+ 1) + a

)
is just a polynomial: it’s just a polynomial in u instead of x, but it does
have the same degree as our polynomial in x. So there’s no loss of generality

CHAPTER 14. LEAST SQUARES APPROXIMATION 319

in assuming our interval is [−1, 1] since we can always transform back and
forth between this and any other interval [a, b].

The advantage of supposing the interval is [−1, 1], though, is we can use
a nice “standard” set of polynomials which can generate all other polyno-
mials and have some nice properties.

We define the n-th Legendre polynomial Pn(x) for n = 0, 1, 2, 3, ...
to be the following:

Pn(x) =
1

2n · n!

dn

dxn
(
x2 − 1

)n
.

For example,

P0(x) =
1

20 · 0!

d0

dx0

(
x2 − 1

)0

= 1

P1(x) =
1

21 · 1!

d

dx

(
x2 − 1

)
= x

P2(x) =
1

22 · 2!

d2

dx2

(
x2 − 1

)2

=
1

2

(
3x2 − 1

)
If you don’t like this definition, we can also do some algebra to show Pn(x)
is also given by

Pn(x) =
n∑
k=0

(
n

k

)(
n+ k

k

)(
x− 1

2

)k
.

There are three very important properties of these Legendre polynomi-
als:

1. If m 6= n, then

〈Pm, Pn〉 =

∫ 1

−1

Pm(x)Pn(x) dx = 0.

2. For each n,

〈Pn, Pn〉 =
2

2n+ 1

CHAPTER 14. LEAST SQUARES APPROXIMATION 320

3. Every polynomial of degree n can be written as a linear combination
of P0(x), P1(x), ..., Pn(x). That is, for any polynomial p(x) of degree
n, there exist constants λ0, λ1, ..., λn such that

p(x) = λ0P0(x) + λ1P1(x) + · · ·+ λnPn(x).

These properties are actually pretty hard to prove “by hand” from the
definitions of the Legendre polynomials above; usually these are proven
by showing the Legendre polynomials are solutions to a certain system of
differential equations and using some theory about differential equations.
We will take these properties for granted, and mention that these properties
actually give us a very simple way to solve our minimization problem.

The idea behind what we’re about to do is actually very geometric.
Imagine that you have a plane in three-dimensional space and some point
not on that plane. Of all the points on the plane, which one is closest
to the given point? To answer this, imagine drawing a line segment from
each point on the plane to the given point in space. Which line segment is
shortest? It’s pretty easy to convince yourself the shortest line segment will
be the one that orthogonally meets the plane. This means we can find our
closest point on the plane by doing orthogonal projection. This is basically
what we’re about to do.

Instead of three-dimensional space, we instead have the space of all
continuous functions defined on the interval [−1, 1]. Instead of a plane, we
have the the space of all polynomials of degree at most n. What we will do,
then, is use our inner product 〈f, g〉 on the space of continuous functions to
orthogonally project the function f onto the space of polynomials of degree
at most n.

More precisely, there is some polynomial p(x) which minimizes 〈f, p〉.
Since every polynomial of degree at most n can be written as a linear
combination of the Legendre polynomials, there is some choice λ0, λ1, ...,
λn such that

p(x) =
n∑
i=0

λiPi(x).

Our goal is to minimize ∫ 1

−1

(f(x)− p(x))2 dx

which we can write as
〈f − p, f − p〉 .

CHAPTER 14. LEAST SQUARES APPROXIMATION 321

However we may rewrite p(x) as the linear combination above to obtain〈
f −

n∑
j=0

λjPj, f −
n∑
i=0

λiPi

〉
.

We have used different indices in the sums above because we will manipulate
this expression and in doing so these sums will get combined and it’s helpful
to keep track of which terms come from which summation.

We now use the properties of inner products from Lemma 14.1 to con-
tinue rewriting the above as〈

f, f −
∑
i

λiPi

〉
−

〈∑
j

Pj, f −
∑
i

λiPi

〉

= 〈f, f〉 −

〈
f,
∑
i

λiPi

〉
−

(〈∑
j

λjPj, f

〉
−

〈∑
j

λjPj,
∑
i

λiPi

〉)

= 〈f, f〉 −

〈
f,
∑
i

λiPi

〉
−

〈∑
j

λjPj, f

〉
+

〈∑
j

λjPj,
∑
i

λiPi

〉

= 〈f, f〉
∑
i

λi 〈f, Pi〉 −
∑
j

λj 〈Pj, f〉+
∑
j

λj

〈
Pj,
∑
i

λiPi

〉
= 〈f, f〉 −

∑
i

λi 〈f, Pi〉 −
∑
j

λj 〈f, Pj〉+
∑
j

∑
i

λjλi 〈Pj, Pi〉

= 〈f, f〉 − 2
∑
i

〈f, Pi〉+
∑
i

λ2
i 〈Pi, Pi〉

= 〈f, f〉+
∑
i

(
λ2
i 〈Pi, Pi〉 − 2λi 〈f, Pi〉

)
= 〈f, f〉+

∑
i

〈Pi, Pi〉
(
λ2
i −

2λi 〈f, Pi〉
〈Pi, Pi〉

)

= 〈f, f〉+
∑
i

〈Pi, Pi〉

(
λ2
i −

2λi 〈f, Pi〉
〈Pi, Pi〉

+

[
〈f, Pi〉
〈Pi, Pi〉

]2

−
[
〈f, Pi〉
〈Pi, Pi〉

]2
)

= 〈f, f〉+
∑
i

〈Pi, Pi〉

(
λ2
i −

2λi 〈f, Pi〉
〈Pi, Pi〉

+

[
〈f, Pi〉
〈Pi, Pi〉

]2
)
−
∑
i

〈Pi, Pi〉
[
〈f, Pi〉
〈Pi, Pi〉

]2

= 〈f, f〉+
∑
i

〈Pi, Pi〉
(
λi −

〈f, Pi〉
〈Pi, Pi〉

)2

−
∑
i

〈Pi, Pi〉
〈f, Pi〉2

〈Pi, Pi〉2

= 〈f, f〉 −
∑
i

〈f, Pi〉2

〈Pi, Pi〉
+
∑
i

〈Pi, Pi〉
(
λi −

〈f, Pi〉
〈Pi, Pi〉

)2

CHAPTER 14. LEAST SQUARES APPROXIMATION 322

Notice that 〈f, f〉 −
∑

i
〈f,Pi〉2
〈Pi,Pi〉 is just some constant that doesn’t depending

on p(x) and so doesn’t change. To this we add on

∑
i

〈Pi, Pi〉
(
λi −

〈f, Pi〉
〈Pi, Pi〉

)2

which is non-negative and is minimized when each term is zero, meaning

λi =
〈f, Pi〉
〈Pi, Pi〉

.

So, to summarize what the above is telling us: the polynomial of degree at
most n which minimizes the average square of the error in approximating
f(x) over [−1, 1] is

p(x) = λoP0(x) + λ1P1(x) + · · ·+ λnPn(x)

where Pi is the i-th Legendre polynomial and

λi =
〈f, Pi〉
〈Pi, Pi〉

=

∫ 1

−1
f(x)Pi(x)dx

2/2i+ 1
=

2i+ 1

2

∫ 1

−1

f(x)Pi(x)dx.

Example 14.2.
Find the quadratic polynomial minimizing the average square of the
error in approximating cos(πx) on the interval [−1, 1].

By the above calculation we only need to compute λ0, λ1 and λ2.
Since P0(x) = 1, we have

λ0 =
〈cos(πx), 1〉
〈1, 1〉

=
1

2

∫ 1

−1

cos(πx)dx

=
1

2

sin(πx)

π

∣∣∣∣1
−1

=
1

2

(
sin(π)− sin(−π)

π

)
= 0.

CHAPTER 14. LEAST SQUARES APPROXIMATION 323

Recalling P1(x) = x we now compute

λ1 =
〈cos(πx), x〉
〈x, x〉

=
2

3

∫ 1

−1

x cos(πx) dx.

Performing integrating by parts with

u = x dv = cos(πx)dx

du = dx v =
sin(πx)

x

we compute

λ1 =
2

3

(
x sin(πx)

π

∣∣∣∣1
−1

−
∫ 1

−1

sin(πx)

π
dx

)

=
2

3

(
sin(π)− sin(−π)

π
+

cos(πx)

π2

∣∣∣∣1
−1

)

=
2

3

(
0 +

cos(π)− cos(−π)

π2

)
= 0.

Finally, we compute λ2:

λ2 =

〈
cos(πx), 1

2
(3x2 − 1)

〉〈
1
2
(3x2 − 1), 1

2
(3x2 − 1)

〉
=

5

2

∫ 1

−1

cos(πx) · 1

2
(3x2 − 1)dx

=
5

2
·
(

3

2

∫ 1

−1

x2 cos(πx)dx− 1

2

∫ 1

−1

cos(πx)dx

)
=

15

4

∫ 1

−1

x2 cos(πx)dx.

The second integral appearing in the next-to-last step above we already
know is zero from our λ0 calculation.

CHAPTER 14. LEAST SQUARES APPROXIMATION 324

To calculate this remaining integral we perform integration by parts
with

u = x2 dv = cos(πx)dx

du = 2xdx v =
sin(πx)

π

this becomes

λ2 =
15

4

(
x2 sin(πx)

π

∣∣∣∣1
−1

− 2

π

∫ 1

−1

x sin(πx)dx

)
.

Notice
x2 sin(πx)

π

∣∣∣∣1
−1

=
sin(π)− sin(−π)

π
= 0.

To compute
∫ 1

−1
x sin(πx)dx we perform yet another integration by

parts with

u = x dv = sin(πx)dx

du = dx v =
− cos(πx)

π

Then ∫ 1

−1

x sin(πx)dx =
−x cos(πx)

π

∣∣∣∣1
−1

+
1

π

∫ 1

−1

cos(πx)dx

=
− cos(π)− cos(−π)

π
+

sin(πx)

π2

∣∣∣∣1
−1

=
−(−1)− (−1)

π
+

sin(π)− sin(−π)

π2

=
2

π

Hence λ2 = −15
π2 and so our approximating polynomial is

p(x) = 0 · P0(x) + 0 · P1(x)− 15

π2
· P2(x)

=
−15

2π2

(
3x2 − 1

)

15Numerical Integration

Michael: Homer, this is Floyd. He’s an idiot
savant; give him any two numbers and he
can multiply them in his head, just like that!
Homer: Okay, five times nine!
Floyd: Forty-five.
Homer: Wow...

The Simpsons
Season 3, Episode 1

15.1 Motivation

In the last chapter we saw that in order to determine a least squares ap-
proximation to a function we had to compute certain integrals. The way we
usually like to calculate integrals “by hand” is by finding an antiderivative
and evaluating it at the endpoints of the interval we are integrating over.
However, there are two main problems we have to contend with: sometimes
finding an antiderivative is hard, and sometimes it’s impossible.

More precisely, the fundamental theorem of calculus tells us that every
continuous function has an antiderivative. However, this antiderivative is
defined in terms of definite integrals. In particular, if f(x) is a continuous
function on an interval [a, b], then the antiderivative of f(x) is the function

F (x) =

∫ x

a

f(t)dt.

When we’re lucky the function f(x) is simple enough that we can essen-
tially apply our rules for differentiation in reverse to find a simpler way of
expressing this quantity. However, there are continuous functions where the
antiderivative has no simpler form than the integral above. For example,
the function f(x) = e−x2/2 is a perfectly reasonable continuous function, so
the fundamental theorem of calculus says it must have an antiderivative,
but we can’t write that antiderivative as anything simpler than

F (x) =

∫ x

−∞
e−t2/2dt.

This means if we want to actually evaluate the integral of e−x2/2 we are going
to have to resort to numerically computing the integral using something like
a limit of Riemann sums.

325

CHAPTER 15. NUMERICAL INTEGRATION 326

It’s worth mentioning this is actually a pretty big deal: the function
mentioned above is (essentially) the probability density function for the
standard normal distribution, and the standard normal is extremely im-
portant in probability and statistics. The central limit theorem says that
the average of a sequence of independent, identically distributed random
variables (normalized in a certain way) converges to the standard normal.
This is the cornerstone of all of statistics, so we actually do want to evaluate
integrals like the above in many practical applications.

15.2 Riemann sums and Riemann

integration

Recall from your first semester calculus class that the definite integral of a
function f(x) over an interval [a, b] is defined as a limit of a quantity called
a Riemann sum. A Riemann sum for a function f(x) on an interval
[a, b] is a number that’s computed in the following way. First we select a
partition of the interval, say

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

This chops the interval [a, b] into n subintervals, [x0, x1], [x1, x2], ..., [xn−1, xn].
We let ∆xi denote the length of the i-th subinterval, ∆xi = xi − xi−1. We
now select some point in each interval, letting x∗i denote the point from the
interval [xi−1, xi]. Finally, we calculate the following quantity,

n∑
i=1

f (x∗i) ∆xi.

There are several choices we made in computing this quantity: we chose
a partition, and we chose a point in each subinterval determined by our
partition. If I made one set of choices and you made a different set of
choices, we may very well compute different numbers. However, if f(x) is a
continuous function, then regardless of the choices we make, in the limit our
calculations we converge to the same value. To make this precise we have
to be a little bit careful about exactly how we take the limit. In particular,
it’s not good enough to just take partitions with more elements and let the
number of elements go off to infinity.

Given any partition, let’s use P to denote the set of points:

P = {x0, x1, x2, ..., xn}.

CHAPTER 15. NUMERICAL INTEGRATION 327

We then define the norm of P , denoted |P|, to be the maximum of the
∆xi values:

|P| = max {∆x1,∆x2, ...,∆xn} .
The definite Riemann integral of f over [a, b] is then the limit of
Riemann sums as the norm goes to zero,∫ b

a

f(x) dx = lim
|P|→0

n∑
i=1

f(x∗i)∆xi.

Since this is a limit, our first question should be whether this limit exists
or not. It is a theorem that we will not try to prove that provided f is
continuous on the interval [a, b] this limit will exist, and furthermore any
sequence of partitions and points x∗i whose norm goes to zero will give
Riemann sums that converge to the Riemann integral.

Since we can use any choice of partitions and x∗i points to compute the
Riemann sums in our limit, we may as well make a convenient choice. For
example, we could choose to consider partitions of n intervals of the same
width, and use the right-hand endpoints of our intervals as our x∗i points.
In this case we would have each

∆xi =
b− a
n

x∗i = a+ i

(
b− a
n

)
.

The Riemann integral is then equal to∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f

(
a+ i

(
b− a
n

))
· b− a

n
.

It is possible, but very tedious, to evaluate these types of limits “by hand,”
but that’s not what we want to do in this class anyway. Instead, we want
to use a computer to numerically approximate the integral by computing a
Riemann sum (or something similar) for large values of n.

For example, we may approximate∫ 1

−1

1√
2π
e−x2/2dx

using n = 10 subintervals above to estimate this integral is approximately

10∑
i=1

1√
2π
e
− (
−1 + 2i

10

)2/2 2

10
.

CHAPTER 15. NUMERICAL INTEGRATION 328

This type of sum is extremely easy for us to evaluate with a loop in Matlab.
We could easily create a function integralapprox which takes one argu-
ment, the number of subintervals n, and then computes the corresponding
Riemann sum for

∫ 1

−1
1√
2π
e−x2/2dx.

function rs = integralapprox(n)

rs = 0;

for i=1:n

xi = -1 + 2 * i / 10;

deltax = 2 / n;

rs = rs + 1 / sqrt(2 * pi) * exp(-xi^2 / 2) * deltax;

end

end

Evaluating integralapprox(10) will tell us∫ 1

−1

1√
2π
e−x2/2dx ≈ 0.6811.

using the Riemann sum with ten subintervals. (Interpreting the integrand
above as the density of the standard normal, this means about 68.11%
of random samples from a standard normal distribution fall within one
standard deviation of the mean.)

15.3 Trapezoidal Riemann sums

To get better approximations to our integrals, we can either increase the
number of subintervals we use, or we can find a way to getter more accurate
approximations with the same number of subintervals. One way to do this
would be to replace the rectangles that appear in the usual Riemann sum
calculation with trapezoids.

First we recall that if a trapezoid has base B and sides with heights
H1 and H2, then the area of the trapezoid is B

(
H1+H2

2

)
. Then, if we

approximate the integral using trapezoids where the left- and right-hand
sides of the trapezoids are xi−1 and xi, so the heights are f(xi−1) and f(xi),
the area of that trapezoid is then

(xi − xi−1) · f(xi−1) + f(xi)

2
=
f(xi−1) + f(xi)

2
∆xi

CHAPTER 15. NUMERICAL INTEGRATION 329

and so our Riemann sum is
n∑
i=1

f(xi−1) + f(xi)

2
∆xi.

Let’s notice that if the intervals all have the same width ∆xi, then we can
we write out the terms of this sum to obtain

f(x0) + f(x1)

2
∆x+

f(x1) + f(x2)

2
∆x+

f(x2) + f(x3)

2
∆x+ · · · f(xn−1) + f(xn)

2
∆x

=∆x

(
f(x0) + f(xn)

2
+

n−1∑
i=1

f(xi)

)
.

Recalling that

∆xi =
b− a
n

xi = a+ i

(
b− a
n

)
we can write more specifically:∫ b

a

f(x) dx ≈ b− a
n

(
f(a) + f(b)

2
+

n−1∑
i=1

f

(
a+ i · b− a

n

))
for large n. This, of course, is easy to translate into Matlab.

Just for the sake of comparing our typical “rectangular” Riemann sum
with this new-and-improved trapezoidal Riemann sum, we note that the
integral ∫ 1

0

(
x2 + 2x+ 2

)
dx

has a true value of 4
3

= 3.3333.... When approximated with ten rectangles
of equal width, we compute 3.4849, but when approximated with ten trape-
zoids of equal width we get 3.3350. This have relative errors of −0.0435
and−0.0005, respectively. I.e., the trapezoidal sum produced a much better
approximation than the rectangular sum.

15.4 Quadratic approximations / Simpson’s

rule

Notice that the trapezoidal Riemann sum we computed above is exactly the
same as the integral of the piecewise linear function interpolating f(x) at

CHAPTER 15. NUMERICAL INTEGRATION 330

the points (x0, f(x0)), (x1, f(x1)), (x2, f(x2)), ..., (xn, f(xn)). To get better
approximations, then, it seems reasonable to consider higher-order piecewise
polynomials interpolating these points. The next thing to consider, then,
is piecewise quadratic approximations.

To be precise, once we have picked our partition

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

we want to find a piecewise quadratic function, where the domain of each
quadratic is one of our subintervals [xi−1, xi], whose graph passes through
(xi−1, f(xi−1)) and (xi, f(xi)). Of course, there are infinitely-many quadrat-
ics that pass through two given points, so we need an additional point in
each of our intervals to single out a nice choice of quadratic. (I.e., three
points determine a quadratic, just like two points determine a line.)

To single out our quadratic we will ask that on the interval [xi−1, xi] we
pass through not only (xi−1, f(xi−1)) and (xi, f(xi)), but also a third point
which we will denote (mi, f(mi)). This mi will be the midpoint between
xi−1 and xi,

mi =
f(xi−1) + f(xi)

2
.

That is, on the interval [xi−1, xi] we approximate our function with the
following interpolating polynomial, written using the Lagrange basis poly-
nomials:

(x−mi)(x− xi)
(xi−1 −mi)(xi−1 − xi)

f(xi−1)+
(x− xi−1)(x− xi)

(mi − xi−1)(xi−1 − xi)
f(mi)+

(x− xi)(x−mi)

(xi − xi−1)(xi −mi)
f(xi)

We then approximate the integral of f(x) over this interval by the integral
of this quadratic, ∫ xi

xi−1

(
(x−mi)(x− xi)

(xi−1 −mi)(xi−1 − xi)
f(xi−1)+

(x− xi−1)(x− xi)
(mi − xi−1)(xi−1 − xi)

f(mi)+

(x− xi)(x−mi)

(xi − xi−1)(xi −mi)
f(xi)

)
dx.

This is of course a simple integral to calculate, but we will introduce some
notation to make it a little bit easier.

CHAPTER 15. NUMERICAL INTEGRATION 331

First we relabel our x- and y-coordinates of our interpolating points as
follows:

a = xi−1 A = f(a)

b = mi B = f(b)

c = xi C = f(c)

Notice with this notation b = a+c
2

.
We now have∫ c

a

(
(x− b)(x− c)
(a− b)(a− c)

A+
(x− a)(x− c)
(b− a)(b− c)

B +
(x− a)(x− b)
(c− a)(c− b)

C

)
dx

=
A

(a− b)(a− c)

∫ c

a

(x− b)(x− c)dx+

B

(b− a)(b− c)

∫ c

a

(x− a)(x− c)dx+

C

(c− a)(c− b)

∫ c

a

(x− a)(x− b)dx.

Each of these integrals is then very easy to compute:

A

(a− b)(a− c)

∫ c

a

(x− b)(x− c)dx

=
A

(a− b)(a− c)

∫ c

a

(
x2 − (b+ c)x+ bc

)
dx

=
A

(a− b)(a− c)

(
x3

3
− (b+ c)x2

2
+ bcx

)∣∣∣∣c
a

=
A

(a− b)(a− c)

(
c3

3
− (b+ c)c2

2
+ bc2 − a3

3
+

(b+ c)a2

2
− abc

)
=

A

(a− b)(a− c)

(
c3 − a3

3
+ (b+ c)

(
a2 − c2

)
+ bc(c− a)

)
.

Using the fact b = a+c
2

, this all simplifies down to

A(c− a)

6
.

We similarly compute

C

(c− a)(c− b)

∫ c

a

(x− a)(x− b)dx =
C(c− a)

6

CHAPTER 15. NUMERICAL INTEGRATION 332

The middle term is similar,

B

(b− a)(b− c)

∫ c

a

(x− a)(x− c)dx =
2B(c− a)

3
.

Putting all of this together, our integral above is

A(c− a)

6
+

2B(c− a)

3
+
C(b− a)

6
=
c− a

6
(A+ 4B + C) .

Or, in terms of our xi coordinates,

xi − xi−1

6

(
f(xi−1) + 4f

(
xi−1 + xi

2

)
+ f(xi)

)
Adding these integrals of quadratic pieces together to approximate the orig-
inal integral gives∫ b

a

f(x)dx ≈
n∑
i=1

b− a
6n

(
f

(
a+

(b− a)(i− 1)

n

)
+

4f

(
a+

(b− a)(i− 1)

2n

)
+

f

(
a+

(b− a)i

n

))

Remark.
The approximation to the integral above has a division by 6n where n
is one less than the number of points. This is assuming we introduce
new points mi inbetween our existing xi points, and so the n in this
expression equals the number of subintervals over which we have found
a quadratic interpolating polynomial.

Using Matlab to evaluate this sum to approximate the integral∫ 1

0

(
x2 + 2x+ 2

)
dx

with ten subintervals of equal width is accomplished with

CHAPTER 15. NUMERICAL INTEGRATION 333

>> sum = 0;

>> f = @(x) x^2 + 2*x + 2;

>> for i=1:10

sum = sum + f((i-1)/10) + 4 * f((2*i-1)/20) + f(i/10);

end;

>> sum = 1/60 * sum;

>> disp(sum);

3.3333

We can simplify our formula for the sum slightly by adopting the con-
vention that the endpoints of our interpolation intervals are the points with
an even index. I.e., our intervals for the quadratic interpolations are

[x0, x2], [x2, x4], [x4, x6], ...

and then take the points with an odd index to be the midpoints of our
intervals. That is, x1 = x0+x2

2
is the midpoint for [x0, x2]; x3 = x2+x4

2
is the

midpoint for [x2, x4]; and so on. In doing this we will suppose that n is an
even number. The number of subintervals is then n

2
, and the sum of our

integrals of the quadratic approximations then becomes

b− a
6n

2

(f(x0) + 4f(x1) + f(x2))

+
b− a
6n

2

(f(x2) + 4f(x3) + f(x4))

+
b− a
6n

2

(f(x4) + 4f(x5) + f(x6))

+ · · ·

+
b− a
6n

2

(f(xn−2) + 4f(xn−1) + f(xn))

Combining like-terms we may write this as

b− a
3n

(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn))

=
b− a
3n

f(x0) + f(xn) +

n/2∑
i=i

4f(x2i−1) +

n/2−1∑
i=1

2f(x2i)


This expression is sometimes referred to as Simpson’s rule .

CHAPTER 15. NUMERICAL INTEGRATION 334

Remark.
Notice in the expression above the n that appears still refers to the
highest index which appears, xn, which is one less than the number
of points. However, because we have half as many subintervals as did
compared to our earlier expression (which had denominator 6n) the
denominator is half as large.

15.5 Error in numerical approximations

As always, once we have an algorithm for producing approximations of
quantities we care about, we want some way to understand how “good” our
approximations are. That is, we want to know the error in the approxima-
tion.

Let’s begin by analyzing the error in approximating an integral by our
trapezoidal Riemann sums. For notation convenience, let’s denote the
trapezoidal sum in approximating

∫ b
a
f(x)dx with n trapezoids all of which

have the same width as Tn(f ; a, b). That is,

Tn(f ; a, b) =
b− a
n

(
f(a) + f(b)

2
+

n−1∑
i=1

f

(
a+

i(b− a)

n

))
.

Theorem 15.1.
If f is a twice continuously differentiable function defined on the in-
terval [a, b], then there exists some c in [a, b] such that∫ b

a

f(x)dx− Tn(f ; a, b) =
−(b− a)3

12n2
f ′′(c).

Even though we don’t know what c is and so can’t compute the above
quantity directly, we can use this to get a bound on the error by bounding
f ′′(x) on the interval [a, b].

CHAPTER 15. NUMERICAL INTEGRATION 335

Example 15.1.
What is an upper bound for the largest possible absolute value of the
error in approximating

∫ 1

0
e−x

2
dx using n trapezoids of equal width.

Here, our f(x) is e−x
2
, a = 0, and b = 1. We’re trying to find an

upper bound for ∣∣∣∣∫ 1

0

e−x
2

dx− Tn
(
e−x

2

; 0, 1
)∣∣∣∣

By our theorem we know there exists some 0 ≤ c ≤ 1 such that this
quantity equals ∣∣∣∣−(1− 0)3

12n2
f ′′(c)

∣∣∣∣ =
1

12n2
|f ′′(c)|,

so we need to try to find an upper bound for |f ′′(c)|. Notice

f(x) = e−x
2

f ′(x) = −2xe−x
2

f ′′(x) = 4x2e−x
2 − 2e−x

2

= 2e−x
2 (

2x2 − 1
)

We need to find the extrema of f ′′(x) on [0, 1]. First we find the critical
points of this function:

d

dx
2e−x

2 (
2x2 − 1

)
= 0

=⇒ 2(−2x)e−x
2

(2x2 − 1) + 2e−x
2 · 4x = 0

=⇒ 8xe−x
2 − 4xe−x

2

(2x2 − 1) = 0

=⇒ 4xe−x
2

(2− (2x2 − 1)) = 0

=⇒ 4xe−x
2

(3− 2x2) = 0

This is solved when either factor is zero, and we either have 4xe−x
2

= 0

which means x = 0, or when 3 − 2x2 = 0 which means x = ±
√

3
2
.

Notice, however, −
√

3
2
< 0 and 3

2/>1, so our only critical points are

x = 0 and the other endpoint, x = 1. Evaluating f ′′(x) at these

CHAPTER 15. NUMERICAL INTEGRATION 336

endpoints shows us f ′′(0) = −2 and f ′′(1) = 2e. Hence |f ′′(x)| < 2e
for all x ∈ [0, 1].

Thus the error in our trapezoidal approximation satisfies∣∣∣∣∫ 1

0

e−x
2

dx− Tn(e−x
2

; 0, 1)

∣∣∣∣ < 2e

12n2
=

e

6n2
<

3

6n2
=

1

2n2

So, for example, using n = 10 trapezoids of equal width we know
the error in our approximation is no more than

1

2 · 102
=

1

200
= 0.005.

Example 15.2.
How many trapezoids of equal width are required to approximate∫ 1

0
e−x

2
dx to within one one-billionth of the true value?

Using our error formula in the previous example, we know that for
n trapezoids the error is at most 1

2n2 . Hence we need to find the n that
guarantees 1

2n2 <
1

109
, but this is simply arithmetic:

1

2n2
<

1

109

=⇒ 109 < 2n2

=⇒ n2 >
109

2
= 5× 108

=⇒ n >
√

5× 108 ≈ 22360.6797

Thus we require at least 22361 trapezoids for the error to be less than
one one-billionth.

We have a similar theorem for the error in approximating an integral
using Simpson’s rule / quadratic interpolation. We will let Sn(f(x); a, b)

denote the approximation to
∫ b
a
f(x)dx given by Simpson’s rule

Sn(f ; a, b) =
b− a
3n

f(x0) + f(xn) +

n/2∑
i=i

4f(x2i−1 +

n/2−1∑
i=1

2f(x2i)

 .

CHAPTER 15. NUMERICAL INTEGRATION 337

Theorem 15.2.
If f is a four-times continuously differentiable function, then there
exists a constant c ∈ [a, b] such that∫ b

a

f(x)dx− Sn(f(x); a, b) =
−(b− a)5

180n4
f (4)(c).

Example 15.3.
What is an upper bound for the absolute value of the error in approx-
imating

∫ 1

0
e−x

2
by Simpson’s rule with n quadratic pieces?

The theorem above tells us∣∣∣∣∫ 1

0

e−x
2

dx− Sn(e−x
2

; 0, 1)

∣∣∣∣ =
1

180n4

∣∣f (4)(c)
∣∣

for some 0 ≤ c ≤ 1. Notice that the fourth derivative of our function
is

f (4)(x) = 16x4e−x
2 − 48x2e−x

2

+ 12e−x
2

= (16x4 − 48x2 + 12)e−x
2

.

The critical points of this function are given by setting the fifth deriva-
tive equal to zero. As the fifth derivative is

f (5)(x) = −8e−x
2

x(4x4 − 20x2 + 15),

this is zero when either x = 0 or when 4x4 − 20x2 + 15 = 0. This
second equation can be thought of as a quadratic: setting t = x2 the
equation becomes 4t2 − 20t + 15 = 0, which can be solved with the
quadratic formula to obtain

5

2
±
√

5

2
.

As x = t2, x is then the positive or negative square root of these; this

CHAPTER 15. NUMERICAL INTEGRATION 338

gives four roots: √
5

2
+

√
5

2
≈ 2.0202

−

√
5

2
+

√
5

2
≈ −2.0202√

5

2
−
√

5

2
≈ 0.9586

−

√
5

2
−
√

5

2
≈ −0.9586

Of course, all but one of these critical points is outside our inter-
val [0, 1]. This means there are three critical points (candidates for
maxima or minima) which we need to evaluate:

f (4)(0) = 12

f (4)

(√
5

2
−
√

52

)
≈ −7.4195

f (4)(1) ≈ −7.3576

Of course, |f (4)(x)|, among points in [0, 1], is then maximized at x = 0.
This means the error in our approximation is bounded above by

12

180n4
=

1

15n4
.

Example 15.4.
How large must n be to ensure the absolute value of the error in
approximating

∫ 1

0
e−x

2
dx with Simpson’s rule is less than one one-

billionth.

CHAPTER 15. NUMERICAL INTEGRATION 339

Using the upper bound obtained in the last example, we see

1

15n4
<

1

109

=⇒ 109 < 15n4

=⇒ n4 >
109

15

=⇒ n >
4

√
109

15
≈ 90.36.

Thus we reuquire that n be at least 91 to approximate
∫ 1

0
e−x

2
dx to

within one one-billionth of the true value using Simpson’s rule.

AInstalling and running Matlab
In M-371 we will be using Matlab for all of our examples and programming
exercises, so you will need to have access to Matlab to follow along in the
notes and do the required homework. In this appendix we describe how
to install Matlab on your own computer, using the information from the
UITS Knowledge Base article Download, install, or update Matlab, https:
//kb.iu.edu/d/ajmh. You will need at least 2GB to install Matlab on your
computer.

Indiana University has a site license for Matlab, meaning that all stu-
dents may download and install Matlab on their personal computer at no
expense. Matlab may be downloaded and installed on any compatible Win-
dows, Mac, or Linux computer, but first you must obtain a license code.
The first step in installing Matlab on your computer is to obtain a license
code for your operating system.

Depending on the operating system you are using, follow one the links
below to be directed to an UITS page which will request that you login,
accept the terms and conditions of the Matlab license, and then click a
button obtain a product key. This is a twenty-five digit code, broken up
by hyphens into five groups of five. You may eventually need to copy and
paste this key into Matlab, so either leave this page open or save the key
somewhere.

Windows
If you are going to install Matlab on a Windows computer, visit
https://iuware.iu.edu/Windows/Title/3528.

Mac
If you are going to install Matlab on a Mac, visit
https://iuware.iu.edu/Mac/Title/3528.

Linux
If you are going to install Matlab on a Linux machine, visit
https://iuware.iu.edu/Linux/Title/3523.

Visit the MathWorks site https://www.mathworks.com/mwaccount and
create an account using your IU email address, then visit the MathWorks
License Center, https://www.mathworks.com/licensecenter/licenses.
You will be prompted to enter the product key obtained in the step above.
After entering the product key, visit the MathWorks download page https:
//www.mathworks.com/downloads/web_downloads to download Matlab.

340

https://kb.iu.edu/d/ajmh
https://kb.iu.edu/d/ajmh
https://iuware.iu.edu/Windows/Title/3528
https://iuware.iu.edu/Mac/Title/3528
https://iuware.iu.edu/Linux/Title/3523
https://www.mathworks.com/mwaccount
https://www.mathworks.com/licensecenter/licenses
https://www.mathworks.com/downloads/web_downloads
https://www.mathworks.com/downloads/web_downloads

APPENDIX A. INSTALLING AND RUNNING MATLAB 341

In these notes we will be assuming you are using Matlab version R2018b,
but any older or newer version is probably fine.

After downloading, run the installer. For Windows and Mac users this
should be just like installing any other application. For Linux users, you will
need to move the tarball you downloaded to either /usr/local/src or /opt
depending on your distribution. Once moved to one of those directories,
open a terminal, change to the directory you’ve placed the tarball in, and
execute the following commands:

sudo tar xf matlab_linux_<release>.tgz

cd MATHWORKS_<release>

sudo ./install

where <release> depends on the version you downloaded, e.g. <release>
is probably something like R2018b.

Regardless of which operating system you’re using, once the installer
begins you will need to log into the MathWorks account you made earlier,
then select the license for Matlab.

When you start Matlab for the first time you may be asked to Activate
Matlab, but this should amount to just select a checkbox and clicking ’Next’.

	Contents
	Introduction to the Course
	Overview

	Introduction to Programming in Matlab
	Introduction to Matlab
	Getting started with Matlab
	Using Matlab as a calculator
	Variables
	Data types
	Formatting strings

	Scripts and Functions
	Scripts
	Functions

	Conditionals
	Motivating example
	Logical values, comparisons, and/or
	elseif
	if without else, and errors

	Iteration
	while loops and not-equals
	for loops

	Recursion
	The idea of recursion and induction
	The base case
	Recursive functions in Matlab
	Palindromic vectors
	Quicksort

	Basics of Numerical Analysis
	Computer Arithmetic
	The idea in base ten
	IEEE double-precision floating-point numbers
	The IEEE format
	Accuracy of floating-point representations

	Quantifying error
	Absolute and relative error
	Significant digits
	Accumulation of error
	Considerations for programming

	Rootfinding
	The bisection algorithm
	Newton's method

	Review of linear algebra and calculus
	Linear algebra
	Systems of linear equations
	Matrices
	Vectors
	The Matrix Equation A =
	Existence of Solutions
	Properties of Ax
	Matrix algebra
	Inverses

	Linear Algebra in Matlab
	Vectors and matrices
	Arithmetic of matrices and vectors
	Submatrices
	Systems, elementary row operations, and inverses

	Taylor Polynomials
	Deriving the formula for a Taylor polynomial
	The error in Taylor polynomial approximation

	Numerical Algorithms
	Root finding revisited, and fixed point iteration
	Newton's method, part 2
	Fixed point iteration

	Interpolation
	Polynomial interpolation
	Lagrange basis polynomials
	Divided differences
	Error in polynomial interpolation
	Splines

	Least Squares Approximation
	Motivation
	Minimizing the average square of the error with calculus
	Minimizing using inner products

	Numerical Integration
	Motivation
	Riemann sums and Riemann integration
	Trapezoidal Riemann sums
	Quadratic approximations / Simpson's rule
	Error in numerical approximations

	Installing and running Matlab

