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Introduction to the Course
Being a student is easy. Learning requires
actual work.

William Crawford

Welcome to Math 320, the Ordinary Differential Equations course at
Western Carolina University. In this course we will introduce the basic
theory and computational methods associated with solving special types
of equations which involve derivatives. As we will see throughout the
course, differential equations have numerous applications within mathe-
matics, engineering, and the sciences. Unlike many other types of equa-
tions, however, there isn’t one simple technique or algorithm which ap-
plies to all differential equations. In fact there are some equations which
we (meaning mankind) do not yet know how to solve and we are forced
to resort to numerical approximations of the solutions. The types of equa-
tions we can solve are broken up into various “families,” each of which
has its own solution techniques and associated theory. A large part of our
class will be devoted to learning about these various families, where they
arise in applications, and how to solve equations from those families. As
we will see, these families are not mutually exclusive and certain equa-
tions belong to multiple families and can be solved in multiple different
ways.

We will also see computers can be used to help us solve (or at least
approximate solutions to) various differential equations. In using a com-
puter we have to make a choice of what software to use, and here there
are several possibilities: Maple, Mathematica, Matlab, Octave, and many
other pieces of software could be used for our class. For simplicity we will
use a piece of software called Sage, not because it is inherently “better”
than the other possibilities, but because we can jump into using it min-
imal prerequisites. In particular, we will run Sage in our web browsers
and don’t need to worry about installing any additional software on your
own computer. (You could even use Sage like this on a phone or tablet.)

One caution about the course is in order: we have a lot of material to
cover, and relatively little time to cover it. As a consequence our course
will move quickly, generally spending only one day (sometimes two days)
on a given topic. This means that it can be very easy to become over-
whelmed and very difficult to catch up if you start to fall behind. For
that reason it is important that students understand at the beginning of
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INTRODUCTION TO THE COURSE v

the semester that they will need to work hard in this course to keep pace
with the material and need to get into the habit of studying for this course
on a regular basis (ideally daily).

There is no denying that this course is difficult, and students will need
to work hard to do well in this course. I firmly believe, however, that all
students are capable of succeeding in this course if they are willing to study
regularly, start on assignments early, and take the course seriously from the very
beginning. You should be reading these lecture notes and the correspond-
ing sections of the textbook before coming to class, and come to class with
questions. No question is too simple or basic, and you should feel free to
ask questions anytime you have them. You can ask questions during class
time, or before or after class, or during office hours, or through email.
I will always do my best to try to give you a complete answer to your
question that you can understand. I also encourage you to work outside
of class with other students. Sometimes simply bouncing an idea off of
someone else can help you see how to start on a problem, and explaining
a concept to someone else can help solidify your own understanding. You
are strongly encouraged to work on out-of-class assignments with other people!

The lecture notes
The notes you are reading are in their fourth incarnation, having evolved
from the handwritten examples I used when I first taught a version of
this course as a postdoc at Indiana University, Bloomington. This is the
second time I have made these notes available to students, and as a con-
sequence the notes are likely “rough around the edges” in some places
and likely contain typos and mistakes (though hopefully those are all
minor). If you see something in the notes you think is a mistake, it may
very well be, and it would be greatly appreciated if you would email me
(cjohnson@wcu.edu) to let me know about any mistakes. While these
notes are my primary resource for the examples I use in the lecture videos,
they should not be a substitute for the textbook. Besides the fact that your
textbook has fewer mistakes than these notes (probably not mistake-free,
but relatively few and minor mistakes) since it was professionally edited,
the textbook also has lots of exercises and practice problems, which these
notes do not. I hope these notes are helpful to you, but you should not
use them as your only source of study material.

Chris Johnson
Fall 2022



1Introduction
In order to put his system into mathematical
form at all, Newton had to devise the concept of
differential quotients and propound the laws of
motion in the form of total differential equations
– perhaps the greatest advance in thought that a
single individual was ever privileged to make.

Albert Einstein
The World As I See It

1.1 What are differential equations and why
should I care?

This course is a first introduction to the field of “differential equations,”
which is both a very old and developed, but also a very contemporary and
active, area of mathematics. Our basic goal in this course is to solve equa-
tions which involve derivatives, study the solutions to these equations,
and see how these types of equations can be used to develop mathemati-
cal models.

There are many reasons why we may be interested in differential equa-
tions, and we will give just a few sample applications to illustrate where
differential equations arise.

Remark.
You don’t need to have a complete understanding of the examples
below, they only serve to illustrate that knowledge of differential
equations is useful in many different disciplines.

• The basic laws of physics are often stated as differential equations.
For example, Newton’s second law that force is equal to mass times
acceleration, F = ma, is really a differential equation since acceler-
ation is the derivative of velocity:

F = ma = m
dv

dt
.

1



CHAPTER 1. INTRODUCTION 2

A less trivial example concerns the motion of a wave. It can be
shown that the height of a one-dimensional wave (e.g., the kind of
wave that occurs by whipping one end of a rope up and down) sat-
isfies the equation

∂2u

∂t2
= c2

∂2u

∂x2

where u(t, x) represents the height of the rope at a position x units
after t seconds.

• The size of populations of two species, predators are prey, may be
modeled using a system of differential equations,

dx

dt
= αx− βxy

dy

dt
= δxy − γy

where x represents the size of population of predator, y is the size of
prey population, and the Greek letters are parameters that describe
how the populations interact (e.g., how abundance or scarcity of
prey influences the size of the predators’ population).

• Rates of chemical reactions are modeled by differential equations in
chemistry. For example, nitrogen dioxide, NO2, decomposes into
nitric oxide, NO, and dioxygen, O2, according to

2NO2 → 2NO +O2.

The rate at which the concentration of NO2 changes is proportional
to the square of the current concentration,

d[NO2]

dt
= −k[NO2]

2.

• Mathematicians interested in complex analysis often focus on spe-
cial types of functions referred to as holomorphic (also called confor-
mal or complex analytic) and a complex-valued function of the com-
plex plane will be holomorphic precisely when its real and imagi-
nary parts satisfy the following system of partial differential equa-
tions,

∂u

∂x
=
∂v

∂y
∂u

∂y
= −∂v

∂x
.
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• Electrical engineers use differential equations to model voltage and
current in circuits. For example, the charge q(t) of a capacitor in an
RLC circuit at time t can be shown to satisfy the differential equation

L
d2q

dt2
+R

dq

dt
+

1

C
q = 0

where L, R, and C represent the inductance, resistance, and capac-
itance of the elements of the circuit.

There are many, many other applications of differential equations, not
just to the hard sciences, but also to social sciences, economics, and other
areas of mathematics. We won’t jump into all of the applications right
away, but it’s good to know that some interesting applications exist.

In this course we will start at the beginning and work our way up to
more interesting material. And though our focus will be on the concep-
tual and theoretical underpinnings of the theory of differential equations,
we will make repeated detours into the applications to help us keep in
mind the utility of all theory we’re building up.

But what is a differential equation?
Let’s begin by first being a little bit more careful about defining exactly
what a “differential equation” is. A differential equation is simply an
equation which involves a derivative. For example, the equation

dy

dx
= x2 + 3x

is a particularly simple kind of differential equation. Often we will abbre-
viate differential equations as diff. eq. or simply DE.

A solution to a differential equation is a function that satisfies the
equation. In the case of our differential equation above,

dy

dx
= x2 + 3x,

a solution would be a function of x, which we’ll denote y, whose deriva-
tive is x2 + 3x. By integrating we see that for any constant C the function

y(x) =
x3

3
+ 3x2 + C

is such a solution. In the simplest possible situations we can solve the
differential equation (i.e., compute the solution) by simply integrating.
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Example 1.1.
Find a function f(x) so that y = f(x) satisfies the differential equa-
tion

dy

dx
= x sin(x2).

We want to find a function whose derivative is x sin(x2). That is,
we want to find the antiderivative of x sin(x2):

f(x) =

ˆ
x sin(x2) dx.

Performing the substitution u = x2, du = 2x dx, we may compute
the antiderivative asˆ

x sin(x2) dx =
1

2

ˆ
sin(u) du

=
−1
2

cos(u) + C

=
−1
2

cos(x2) + C.

So, for any choice of the constant C, the function

y =
−1
2

cos(x2) + C

satisfies the differential equation dy
dx

= x sin(x2).

This is only the simplest possible scenario, however. In general the
derivative dy

dx
may also depend on y. For example, we may have a differ-

ential equation such as
dy

dx
= xy2.

That is, a solution to this differential equation is a function whose deriva-
tive is equal to x times the function squared. Can a function with such a
property even exist? If it does exist, how can we go about finding it? In
general these are hard questions to answer, although let’s notice that if we
have a putative solution to a differential equation, we can always easily
check to see if our function satisfies the differential equation or not.
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Example 1.2.
Check that for any value of C the function

y =
−2

x2 + C
= −2(x2 + C)−1

satisfies the differential equation

dy

dx
= xy2.

We simply compute dy
dx

by differentiating the function above, and
see if we can rewrite it as xy2. Notice that the derivative of y =
−2(x2 + C)−1 can easily be computed as

dy

dx
= −2 · (−1) · (x2 + C)−2 · 2x.

We can simplify this a little bit to write it as

4x(x2 + C)2 =
4x

(x2 + C)2
.

Let’s rewrite this a little bit more by factoring an x off to the side and
noticing 4 = (−2)2:

4x

(x2 + C)2
= x · (−2)2

(x2 + C)2
= x ·

(
−2
x+ C

)2

.

Notice, though, the factor being square is exactly the original func-
tion. Writing this as y we see our expression is xy2, and so dy

dx
= xy2

and the differential equation is satisfied.

How do you solve a differential equation?
It’s easy to see if a supposed solution really is a solution or not, but how
do we go about actually finding the solution to begin with? This is usually
rather difficult, so we’ll begin by restricting ourselves to situations where
we can build up some theory and techniques for solving these equations.
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Sometimes it’s helpful to have a graphical representation of solutions
to a differential equation. Even if we can’t analytically solve the equation,
these graphical representations can provide some valuable insights. One
way to visualize solutions to a differential equation is with a “slope field,”
as we’ll now describe.

Given a differential equation, let’s say dy
dx

= y−x just to have a concrete
example in mind, any solution y = f(x) gives us a graph in the plane. Can
we figure out what such a graph looks like without first knowing what
f(x) is? If we somehow knew a particular point (a, b) was on the graph,
then that would mean we would also know the slope of the line tangent
to y = f(x) at that point (a, b). In particular, it must be b − a since our
equation tells us f ′(x) = y − x for each point (x, y) on the graph.

For example, if we somehow knew the curve passed through the point
(1, 3), then the slope of the tangent line would have to be 2 at that point;
if the graph passed through the (−2, 4), then the slope would have to be
6 at that point; and so on.

The association of a slope to each point (x, y) in the plane gives us a
slope field, and we visualize a slope field by drawing a small line segment
with the corresponding slope at each point in the plane (really we can
only draw these line segments for some finite collection of point). The
slope field determined by y − x is visualized by Figure 1.1.

Figure 1.1: The slope field determined by y − x.

Making pictures of slope fields is extremely tedious to do by hand, but
very easy to do with a computer, and so this is a good time to introduce
the mathematical software Sage which can draw these kinds of pictures
for us.
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Sage
Sage is a free, open source collection of mathematical software that can
be used to do lots of interesting things. One of the nice things about
Sage is that you can run it in your browser without having to down-
load and install any additional software, simply by visiting the website
http://sagecell.sagemath.org, entering commands in the textbox, and
then hitting Shift-Enter on your keyboard.

In this course we will introduce Sage gradually as we need it. For now
we just want to see how to plot a slope field in Sage. To do this you would
simply enter the commands

x, y = var(’x, y’)

plot_slope_field(y - x, (x, -5, 5), (y, -5, 5))

into the textbox that appears on http://sagecell.sagemath.org and hold-
ing down the Shift key on your keyboard while hitting Enter. (Or you
can click on the ’Evaluate’ button that appears on the webpage.) You
should then see something similar to Figure 1.2.

The first command entered into Sage above, the x, y = var(’x,y’),
tells Sage that x and y are mathematical variables. The second line tells
Sage to plot the slope field determined by y - x in a window where the
x-values range from −5 to 5, and the y-values range from −5 to 5.

What does a slope field tell us?
Even without solving a differential the differential equation dy

dx
= y − x,

the slope field of Figure 1.1 tells us a few things about the solutions of the
equation, whatever they happen to be. For example, the slope field tells us
that if y = f(x) is a solution to dy

dx
= y − x, then we can see that lim

x→∞
f(x)

diverges to either positive or negative infinity, and these two cases are
separated by whether y = f(x) is above or below the line y = x+ 1.

In general if a differential equation has one solution then it has infinitely-
many solutions (this basically corresponds to the infinitely-many choices
of the “+C” that appears when performing an integration). In terms of
slope fields, these correspond to the different curves y = f(x) which are
tangent to the line segments of the slope field at every point on the curve.
That is, the slope fields tell us what graphs of solutions to a differential

http://sagecell.sagemath.org
http://sagecell.sagemath.org
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Figure 1.2: Plotting the slope field for y − x in Sage.

equation may look like. In Figure 1.3, for example, we have three differ-
ent curves which are plotted and which stay tangent to the slope field at
every point. That is, each of those curves represents the graph of some
solution of the underlying differential equation.

The curves which stay tangent to the slope field at each point of the
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Figure 1.3: Some integral curves of the slope field which corresponds to
the differential equation dy

dx
= y − x.

curve (i.e., the graphs of solutions of the differential equation) are called
the integral curves of the slope field.

Though there are infinitely-many solutions to a differential equation,
for a given application we may only care about one particular solution.
We can single out a particular solution by giving an extra piece of infor-
mation called an initial condition. A differential equation together with
an initial conditional is called an initial value problem or IVP. You have
actually already solved some initial value problems before in calculus:
any time you found an antiderivative and a particular choice of +C, you
solved an initial value problem.

Example 1.3.
Find a function y = f(x) which solves the differential equation

dy

dx
= x ln(x)
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and which also satisfies f(1) = 1/2.
We of course just integrate x ln(x). Performing integration by

parts with

u = ln(x) dv = x dx

du =
1

x
dx v =

x2

2

we have
ˆ
x ln(x) dx =

x2 ln(x)

2
−
ˆ
x2

2
· 1
x
dx

=
x2 ln(x)

2
− 1

2

ˆ
x dx

=
x2 ln(x)

2
− x2

4
+ C.

So, for any of the infinitely-many choices of C, the function

y = f(x) =
x2 ln(x)

2
− x2

4
+ C

satisfies dy
dx

= x ln(x). Only one choice of C will give us a function
that satisfies f(1) = 1/2, though, and we can determine that C with
some simple algebra:

f(1) =
1

2

=⇒ 12 · ln(1)
2

− 12

4
+ C =

1

2

=⇒ −1
4

+ C =
1

2

=⇒ C =
1

2
+

1

4
=

3

4
.

Thus the function

f(x) =
x2 ln(x)

2
− x2

4
+

3

4

solves our initial value problem.
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Mathematical modeling
One of the main applications of differential equations comes from mathe-
matical modeling. That is, the discipline of developing the mathematical
systems that model the situations we may care about in problems that
arise in physics, engineering, or other fields.

It’s a bit hard to imagine when first learning about this topic, but some-
times it can be difficult to “directly” find a function which models some
phenomenon we are interested in, but we may be able to more easily write
down a differential equation which represents how that quantity changes.
One simple example of this is given below where use the fact that evap-
oration occurs at the surface of a liquid to determine how the volume of
the liquid changes.

Example 1.4.
Suppose a spherical raindrop evaporates at a rate proportional to
its surface area. Find a differential equation whose solution is the
volume of the raindrop as a function of time.

Ultimately what we’d like is a function V (t) which gives the vol-
ume of the raindrop as a function of time. It’s not immediately clear
what such a function would be, but we do know something about
the function’s rate of change. Letting S denote the surface are of the
rain drop, we are told

dV

dt
= −kS.

That is, as the raindrop evaporates its volume decreases, so its deriva-
tive is negative. This rate of change is proportional to the surface area
of the rain drop since evaporation occurs at the surface of a liquid.
(The constant k depends on various factors that influence the rate at
which the liquid evaporates, such as the temperature and humidity
of the surrounding air.)

Even though this differential equation models the situation we’re
interested in, it isn’t something we can very easily solve right now.
For one thing, let’s notice that the left-hand side of the equation is
in terms of V and t, not S. We can fix this, though, by writing S in
terms of V .
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If the radius of our raindrop was r, then let’s notice that

S = 4πr2

V =
4

3
πr3.

We can now perform a little bit of algebra to obtain the following:

V =
4

3
πr3

=⇒ 3V

4π
= r3

=⇒
(
3V

4π

)1/3

= r

=⇒ 4π

(
3V

4π

)2/3

= 4πr2 = S.

Performing just a touch of of arithmetic to simplify this we have

S = (6V )2/3π1/3,

and we can use this to rewrite our earlier differential equation as

dV

dt
= −k62/3π1/3V 2/3.

This is a differential equation that we will learn how to solve later,
but for now let’s notice that it’s easy to verify that the differential
equation is solved by

V =

(
−k62/3π1/3

3
t+ C

)3

.

To see that this really does solve our differential equation, we just
compute the derivative dV

dt
of the functionV above and perform some
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simple algebra to see that it can be written as −k62/3π1/3V 2/3:

dV

dt
= 3

(
−k62/3π1/3

3
t+ C

)2

· −k6
2/3π1/3

3

= −k62/3π1/3 ·
(
−k62/3π1/3

3
t+ C

)2

= −k62/3π1/3 ·

[(
−k62/3π1/3

3
t+ C

)3
]2/3

= −k62/3π1/3V 2/3.

Case study: free fall with air resistance
Let’s now put everything we’ve discussed together in one “case study,”
and let’s also see how to solve the differential equation that we’ll derive
in that example.

Suppose an object is dropped from a height near the surface of the
Earth. Assuming drag due to air resistance is proportional to the object’s
velocity, find the velocity of the object t seconds after being dropped.

How are we going to get a differential equation out of this? Let’s first
recall that Newton’s second law tells us

F = ma = m
dv

dt
.

So if we know what the force F is, we will have a differential equation.
There are actually two different forces which are acting on our object:

the weight W of the object is pulling the object down, but the drag D is
resisting the direction of motion.

D

W



CHAPTER 1. INTRODUCTION 14

Thus the total force on our object is the sum of these two forces: F =
W +D.

If the object has mass m measured in kilograms, then its weight will
beW = −9.8m. (This−9.8 is coming from the acceleration due to gravity
and is measured in kilograms per second squared.)

The drag D is proportional to the velocity v, but is in the opposite
direction of the motion. This means D has the form D = −γv for some
positive constant γ that depends on the shape of our object, the density
of the surrounding air, and other various parameters.

Putting this all together we have F = ma = mdv
dt

from Newton, but we
also have F = w +D = −9.8m− γv. These both equal our force, though,
and so they equal one another, and this gives us our differential equation,

m
dv

dt
= −9.8m− γv

=⇒ dv

dt
= −9.8− γ

m
v.

For example, if we had a spherical object near sea level, from experi-
mental evidence we know that γ is about 0.47. If that object had a mass
of five kilograms, then our differential equation would become

dv

dt
= −9.8− 0.47

5
v = −9.8− 0.094v.

We will analytically solve this differential equation n a moment, but
first let’s consider the slope field in the (t, v) plane corresponding to our
differential equation, dv

dt
= −9.8 − 0.094v. We can plot this slope field in

Sage using

t,v = var(’t,v’)

plot_slope_field(-9.8 - 0.094 * v, (t, 0, 60), (v, -200, 0))

This produces the following figure:
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Of the infinitely-many possible solutions to our differential equations
(i.e., the infinitely-many integral curves which are tangent to this slope
field), the one that we care about is the one which passes through the
origin. We care about this particular solution because the object is dropped,
meaning its initial velocity at time t = 0 is v = 0.

From the slope field we see that our velocity is going to level off some-
where around−105m

s . This corresponds to the “terminal velocity,” where
the drag D balances out the weight W and the net force is zero; once the
force is zero, Newton’s second law tells us there is no acceleration, and so
the object continues to move at the same velocity.

Now the question becomes whether or not we can find an exact for-
mula for the velocity of our falling object; i.e., can we solve the differential
equation

dv

dt
= −9.8− γ

m
v.

(The tricks we are about to use may feel a little bit out of the blue, but don’t
worry about that too much right now. Later on we’ll see more precise,
formulaic procedures for solving differential equations.)

Let’s first just do some algebra to rewrite our differential equation by
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factoring − γ
m

out of the right-hand side, leaving us with

dv

dt
=
−γ
m

(
9.8m

γ
+ v

)
.

Now we can divide both sides of the equation by 9.8m
γ

+ v to obtain
dv
dt

9.8m
γ

+ v
=
−γ
m
,

or simply
1

9.8m
γ

+ v
· dv
dt

=
−γ
m
.

Our goal is to find v and we have an equation involving its derivative, so
it seems like integrating both sides of the equation would be a reasonable
thing to do. Since both sides of the equation above are equal (that’s the
definition of an equation, after all), their integrals must be equal, and so
we have the following equation:

ˆ
1

9.8m
γ

+ v
· dv
dt
dt =

ˆ
−γ
m

dt.

The right-hand side of this equation is easy to integrate:
ˆ
−γ
m

dt =
−γ
m
t+ C.

The left-hand side is just a tiny bit more involved since we need to perform
a u-substitution. Taking u = 9.8m

γ
+ v, we would have du = dv

dt
dt. Our

integral then becomes
ˆ

1

u
du = ln |u|+ C.

Rewriting u in terms of v this becomes
ˆ

1
9.8m
γ

+ v

dv

dt
dt = ln

∣∣∣∣9.8mγ + v

∣∣∣∣+ C.

Now there’s a slightly subtle point we need to be careful of right here.
We have performed two integrations and each one gave us a “+C.” These
are not necessarily the same C, however! The “+C” is just a placeholder,
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like a variable, for any constant we might like to attach to our antideriva-
tive, and there’s nothing that magically forces these “+C” values to be the
same. So, really, the technically more correct thing we should have done
was to use different letters for these different constants. For example, we
could have said something like

ˆ
−γ
m

dt =
−γ
m
t+ C1

ˆ
1

9.8m
γ

+ v

dv

dt
dt = ln

∣∣∣∣9.8mγ + v

∣∣∣∣+ C2

to emphasize that these constants were different.
Now, after integrating both sides of our differential equation, we are

left with the equation

ln

∣∣∣∣9.8mγ + v

∣∣∣∣+ C2 =
−γ
m
t+ C1.

Now there’s a little trick that makes life a just a tiny bit easier, but it
does take some getting used to. The “+C” values, C1 and C2 above, we
just went out of our way to emphasize were different are just constants,
whatever they happen to be for the problem at hand. We could thus move
both constants to the same side of the equation, such as

ln

∣∣∣∣9.8mγ + v

∣∣∣∣ = −γm t+ C1 − C2

and then just write C for this combination of constants C1 − C2. This
would give us the (very slightly) simpler equation

ln

∣∣∣∣9.8mγ + v

∣∣∣∣ = −γm t+ C.

This kind of manipulation where we combine different constants from
different integrations into one constant might seem a little strange at first,
so don’t worry too much about it right now: we’ll see lots and lots of other
examples of this kind of manipulation later.

Anyway, now we have integrated both sides of our initial differential
equation and we are left with a new equation,

ln

∣∣∣∣9.8mγ + v

∣∣∣∣ = −γm t+ C.
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Keeping in mind our goal is to find v, let’s now just try to do the algebra
to solve for v in this expression. First we will exponentiate both sides of
the equation to obtain ∣∣∣∣9.8mγ + v

∣∣∣∣ = e
−γ
m
t+C .

(Our goal here is to get v by itself on the left-hand side of the equation,
so we’re trying to get rid of the other “stuff” around the v. Since we had a
natural log on the left-hand side, we need to remove it, which we can do
by raising e to everything on both sides of the equation since eln(x) = x.)

Let’s now notice the right-hand side could be written as

e
−γ
m
t+C = e

−γ
m
teC .

Now, again, C is just some constant. Thus eC is just some constant as well.
Our convention going forward is that whenever we have an expression
that’s “just some constant,” we’ll replace it by C. That is, we will write
eC as simply C. (Again, this probably seems weird. The idea is just that
if we have an arbitrary constant we’ll always just call it C; so, technically,
these are all different C’s that we’re writing down.) Our equation is now∣∣∣∣9.8mγ + v

∣∣∣∣ = Ce
−γ
m
t

We’re a little bit closer to getting v by itself on the left-hand side, but
there’s still more to do. In particular, we need to get rid of the absolute
values. Here we’ll use one other really minor trick. Let’s just observe that
if |x| = 2, then the only options are x = 2 or x = −2, which we might
write simply as x = ±2. In general, we can drop absolute values on one
side of an equation, but when we do so we pick up a plus/minus on the
other side. Using this, our equation above becomes

9.8m

γ
+ v = ±Ce

−γ
m
t.

Once again, C is just some constant, so±C is also just some constant, and
we’ll replace ±C by simply C to obtain

9.8m

γ
+ v = Ce

−γ
m
t.

Finally, we can easily solve for v:

v = Ce
−γ
m
t − 9.8m

γ
.
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Let’s go ahead and verify that this really does solve our original differen-
tial equation of dv

dt
= −9.8 − γ

m
v by just differentiating and rewriting as

necessary.

v = Ce
−γ
m
t − 9.8m

γ

=⇒ dv

dt
=
−γ
m
Ce

−γ
m
t

=
−γ
m
Ce

−γ
m
t + 9.8− 9.8

=
−γ
m

(
Ce

−γ
m
t − 9.8m

γ

)
− 9.8

=
−γ
m
v − 9.8

= 9.8− γ

m
v

Thus we do in fact have a solution to our differential equation.
The last thing that remains is to find the solution to our initial value

problem. I.e., the choice of C which will give us v(0) = 0. This is just
some more algebra, however. As we have determined

v(t) = Ce
−γ
m
t − 9.8m

γ

we know that
v(0) = Ce

−γ
m
·0 − 9.8m

γ
= C − 9.8m

γ

However, this is supposed to equal 0, so we have the equation

C − 9.8m

γ
= 0,

which is of course solved by C = 9.8m
γ

.
After all of that, we now know that if an object of mass m is dropped

near the surface of the Earth, and if the drag due to air resistance is pro-
portional to the object’s velocity, then the velocity t seconds after being
dropped is

v(t) =
9.8m

γ
e
−γ
m
t − 9.8m

γ
=

9.8m

γ

(
e
−γ
m
t − 1

)
.

To verify that this gives us the answer we desire, we can plot the graph of
this function together with the slope field in Sage as follows. Usingm = 5
and γ = 0.47 as before, we could plot the following:
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Notice that, as we expected, the curve approaches the limiting terminal
velocity as t increases.

The image above was plotted in Sage using the following commands:

t,v = var(’t,v’)

m = 5

gamma = 0.47

img = plot_slope_field(-9.8 - gamma / m * v, (t, 0, 60), (v, -200, 0))

img += plot(9.8 * m / gamma * (e^(-gamma / m * t) - 1), (t, 0, 60))

img.show()

You don’t need to worry about the details of all of the commands above
for right now, but they are summarized below in case you are curious.
(You can very safely avoid reading the next paragraph if you want to,
though.)

In addition to creating our slope field with plot slope field, we’ve
done a few other things here. In order to simplify our commands to come
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we introduced variables m and gamma to contain our m = 5 and γ = 0.47
values. This is a convenient thing to do because it allows us to see the
“meaning” of some of the numbers that appear in our equation. This
also allows us to very easily modify our commands if we were to change
the problem by changing, for example, the mass. Instead of immediately
plotting our slope field, we saved the plot as a variable img and then added
the plot of our integral curve computed above to this using +=. In order
to plot graphs of functions we use the command plot which takes two
arguments: the function to graph, and then a range for the independent
variable. Finally, we show the image on the screen by using the show()

method on our img variable.

Remark.
It’s worth pointing out at this point that Sage is basically just Python
with some extra packages for doing some mathematical calculations,
graphing, solving equations, etc. So, if you know Python you al-
ready know the basics of Sage. If you don’t know Python, then you
basically get to learn Python – which is a useful skill! – as a conse-
quence of learning Sage.

1.2 Manipulating “+C” and a few more
examples

What’s going on with the “+C” values?
At various points during our process of solving the differential equation
at the end of the last section, we performed manipulations of the arbitrary
constant “+C” from our integration, but left this as “+C.” It’s worth tak-
ing a moment to explain what’s going on here.

When we find an antiderivative, we always get a “+C” which is a
placeholder for any constant, because the derivative of any constant is
always zero. For instance,

ˆ
x dx =

x2

2
+ C
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and the C that appears could be 0 or 15 or −
√
17, or anything else: the C

is completely arbitrary. If we modify C by adding 3, or by dividing by 2,
or taking the sine of C, we still have an arbitrary constant. In general, we
may need to do several of these manipulations over the course of solving
a problem. Since writing things like

3C + 2

−7
− 5

gets old very quickly, and since this is still just an arbitrary constant, we
often just write “+C” instead of these more complicated expressions.

Similarly, if we have multiple arbitrary constant – different “+C” val-
ues from different integration steps – we often combine them together as
one single C.

Examples of solving some simple differential equations
Let’s now generalize the process we used to solve the differential equation
that appeared at the end of the last section.

Suppose that we have a differential equation which is written as

dy

dx
= my + b.

That is, the right-hand side is a linear function of the unknown y. If we
can get all of the y’s and the dy

dx
’s together on one side of the equation,

then we might be able to integrate that side of the equation using a u-
substitution. Mimicking what we did to solve the differential equation
in the last section, let’s factor the m out from the right-hand side of the
equation to obtain

dy

dx
= m

(
y +

b

m

)
.

Now we can divide both sides of the equation by y + b
m

, giving us

1

y + b
m

dy

dx
= m.

Since these functions are equal, their antiderivatives are equal, and so
ˆ

1

y + b
m

dy

dx
dx =

ˆ
mdx.
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Of course, the right-hand side is simply mx + C. We can integrate the
left-hand side by using the following u-substitution:

u = y +
b

m

du =
dy

dx
dx

We can thus rewrite the left-hand side of our equation above as
ˆ

1

u
du = ln |u|+ C.

Since u is really y + b
m

, we thus have
ˆ

1

y + b
m

dy

dx
dx = ln

∣∣∣∣y + b

m

∣∣∣∣+ C.

Hence after integrating both sides of our differential equation we now
have

ln

∣∣∣∣y + b

m

∣∣∣∣ = mx+ C (1.1)

where we have gone ahead and combined the arbitrary “+C” from each
integration into a single “+C” which we wrote on the right-hand side.

Our differential equation has now reduced to an algebra problem: solv-
ing for y in Equation 1.1. We can solve this algebra problem using the
same sequence of tricks we saw at the end of our example at the end of
the last section: we will exponentiate to get rid of the natural log, then
drop the absolute values for plus/minus, and finally get y by itself on one
side of the equation. Along the way we will replace expressions involving
the arbitrary constant C with a single C. This leads us to the following
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sequence of algebra:

ln

∣∣∣∣y + b

m

∣∣∣∣ = mx+ C

=⇒ eln|y+
b
m | = emx+C

=⇒
∣∣∣∣y + b

m

∣∣∣∣ = eCemx

=⇒
∣∣∣∣y + b

m

∣∣∣∣ = Cemx

=⇒ y +
b

m
= ±Cemx

=⇒ y +
b

m
= Cemx

=⇒ y = Cemx − b

m

That is, we claim the solution to the differential equation

dy

dx
= my + b

is given by
y = Cemx − b

m
.

It’s relatively easy for us to verify this really is the correct solution by dif-
ferentiating, and so we will go ahead and double-check that our solution
is correct:

y = Cemx − b

m

=⇒ dy

dx
=

d

dx

(
Cemx − b

m

)
= mCemx

Right now this doesn’t quite look like what we want: we want to see that
dy
dx

is equal to my + b, and what we have instead is mCemx. This does not
necessarily mean our answer is incorrect, it just means we need to do a
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little bit more work to rewrite our derivative:
dy

dx
= mCemx

= mCemx − b+ b

= m

(
Cemx − b

m

)
+ b

= my + b.

Thus we have verified our putative solution of y = Cemx − b
m

really does
solve our differential equation dy

dx
= my + b.

We can go a step further and determine what value ofC solves the ini-
tial condition y(x0) = y0. (I.e., what value of C will additionall guarantee
that our solution has the output of y0 when the input is x0; equivalently,
the graph of our solution goes through the point (x0, y0).)

y(x0) = y0

=⇒ Cemx0 − b

m
= y0

=⇒ Cemx0 = y0 +
b

m

=⇒ C =
y0 +

b
m

emx0

Let’s now use our formula for the solution we’ve developed to solve
two particular differential equations.

Example 1.5.
Consider a circuit containing a capacitor of capacitanceK, a resistor
of resistance R, and a battery of voltage V .

V

K

R
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By Kirchhoff’s laws,
R
dQ

dt
+
Q

K
= V

where Q(t) is the charge of the capacitor at time t. Notice that this
is a differential equation of the form described above. In particular,
by performing a minor amount of algebra to put dQ

dt
by itself on the

left-hand side, the equation becomes

dQ

dt
=
−1
KR

Q+
V

R
.

Though the letters are different, this is exactly the kind of thing we
had above. That is, this is in the form dy

dx
= my + b where y = Q,

x = t, m = −1
KR

, and b = V
R

. Thus our differential equation is solved
by

Q = Ce
−t
KR −

V/R
− 1/KR

= Ce
−t
KR +KV

If we had the initial condition that Q(0) = 0 (i.e., the capacitor
initially has zero charge), then we can compute that the constant C
equals

C =
0 +

V/R
− 1/KR

e
−1
KR
·0

= −KV.

Hence

Q(t) = −KV e
−t
KR +KV

= KV
(
1− e

−t
KR

)
.

Example 1.6.
Carbon-15 has a half-life of about 2.5 seconds. Given an initial sam-
ple of 1000 grams of Carbon-15, find a functionM(t) for the mass of
Carbon-15 remaining after t seconds.

Notice that the rate of change of the mass is proportional to the
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mass. I.e., we have the differential equation

dM

dt
= −kM

where k depends on how quickly the mass decays. Since this is a
linear differential equation (i.e., it has the form dy

dx
= my + b where

here we have y = M , x = t, m = −k and b = 0), we can solve the
equation and we see the solution has the form

M = Ce−kt.

Now, since we know that the half life is 2.5 seconds and we start with
1000 grams, we have the following two pieces of information:

M(0) = 1000

M(2.5) = 500.

That is,

Ce−k·0 = 1000

Ce−2.5k = 500

The first equation tells us that C = 1000. We can plug this into the
second equation to solve for k:

1000e−2.5k = 500

=⇒ e−2.5k =
1

2

=⇒ − 2.5k = ln

(
1

2

)
= − ln(2)

=⇒ k =
ln(2)

2.5
≈ 0.2773.

Thus the mass of Carbon-15 at time t, measured in grams, is

M = 1000e
− ln(2)

2.5
t ≈ 1000e−0.2773t.
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1.3 Some differential equations vocabulary
Let’s end our introductory discussion of differential equations by giving
some basic terminology that we will use throughout the semester.

Differential equations are usually divided into two families, “ordinary
differential equations” and “partial differential equations.” An ordinary
differential equation is a differential equation where the unknown func-
tion has only one variable and so the derivatives involved are the “ordi-
nary” derivative that you learned about in your first semester of calculus.
A partial differential equation involves functions of multiple variables
and the derivatives specified are the partial derivatives of the various vari-
ables, as you would have learned about in a third semester of calculus. In
this course we will exclusively consider ordinary differential equations
and will save partial differential equations for another course.

When solving a differential equation, we will often be concerned with
how many derivatives are specified in the equation. For example, does
the differential equation involve only first derivatives, or does it involve
second derivatives as well? The order of a differential equaton is simply
the highest order of a derivative that appears. For example, the equation

3
dy

dx
+ y = x2

is a first order differential equation since it only involves the first dirst
derivative of y. However, the equation

7x
d2y

dx2
− 2y

dy

dx
= y

is a second order differential equation because it involves the second deriva-
tive of y; and something like

d3y

dx3
= y2

is a third order differential equation as it involves a third derivative.
In general, an n-th order differential equation (i.e., a differential equa-

tion involving then-th derivative of the function, and possibly lower order
derivatives, but nothing higher) can always be written as

F

(
x, y,

dy

dx
,
d2y

dx2
, ...,

dny

dxn

)
= 0.

That is, we simply move everything to the left-hand side of the equation,
and are left with an expression involving x, y, and the derivatives of y up
to the n-th derivative.
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For example, the first-order equation

3
dy

dx
+ y = x2

could be rewritten as
−x2 + y + 3

dy

dx
= 0.

In this case our function F would be F (a, b, c) = −a2 + b + 3c where we
plug in x for a, y for b, and dy

dx
for c.

The second-order equation

7x
d2y

dx2
− 2y

dy

dx
= y

could be rewritten as
−y + 7x

d2y

dx2
− 2y

dy

dx
= 0

and our function F would be F (a, b, c, d) = −b+ 7ad− 2bc.
The first set of differential equations we will study will be the “lin-

ear” differential equations, which is might not be quite what you’d expect
based on the name. In general, we will say that a differential equation is
linear if it is linear in the unknown (e.g., the y) and its derivatives (such
as dy

dx
and d2y

dx2
). A slightly strange and subtle point is that we do not require

this equationt o be linear in the independent variable (the x).
This basically means that linear differential equations will be of the

form
f0(x)y + f1(x)

dy

dx
+ f2(x)

d2y

dx2
+ . . .+ fn(x)

dny

dxn

where we do not assume the fi(x) functions are linear! As strange as it sounds,
the short version of this is that linear differential equations can involve
non-linear functions of x – they just can’t involve non-linear functions of
y or its derivatives.

For example, the differential equations
dy

dx
= x2y − 3x and x2

dy

dx
+ exy = x

are both linear, even though they contain non-linear functions of x. How-
ever differential equations such as

dy

dx
= y2 and y

dy

dx
= x

are not linear. The differential equation dy
dx

= y2 is not linear because of
the y2, and y dy

dx
= x is not linear because of the product of y and dy

dx
.
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Remark.
The language is strange and takes some getting used to, so don’t
worry too much about it right now if this seems weird. It will grad-
ually become easier to determine which equations are linear and
which are nonlinear as we do more examples.

1.4 Practice problems
Problem 1.1. For each differential equation described below, use Sage to
plot the associated slope field. Using that slope field, describe what hap-
pens to the solution y of the differential equation as x goes to infinity.

(a) dy

dx
= −y

(b) dy

dx
= −y + 3

(c) dy

dx
= −2y + 3

(d) dy

dx
= y

(e) dy

dx
= y + 3

Problem 1.2. Based on your answers to the problems in Problem 1, deter-
mine the values ofm and b such that solutions to the differential equation
dy
dx

= my + b have the described behavior. Use Sage to plot the slope field
for your differential equation to verify if its solutions have the behavior
that is described.
(a) All solutions approach the line y = 2 as x goes to infinity.
(b) All solutions approach the line y = 3

4
as x goes to infinity.

(c) All solutions diverge away from the line y = −2
5

as x goes to infinity.
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Problem 1.3. Suppose an object in free fall near the surface of the Earth
experiences drag that is proportional to the object’s velocity. Assume the
drag coefficient will be approximately 0.47.
(a) Determine a differential equation whose solution models the velocity

of the object t seconds after it begins free fall, assuming the object’s
mass is 15 kg and the drag coefficient is 0.47.

(b) Use Sage to plot the slope field corresponding to the differential equa-
tion from part (a), and use this slope field to estimate the object’s
terminal velocity.

Problem 1.4. Determine if each differential equation below is linear or
not, and determine its order.

(a) dy

dx
= x2y + x

(b) ex
d2y

dx
+ y

dy

dx
= xy

(c) d2y

dx
+ y

dy

dx
=
d2y

dx
− x3 dy

dx

(d) sin(x)
d3y

dx
+ x2

d2y

dx
= y

(e) d2y

dx2
= y

Problem 1.5. Solve each of the differential equations below.

(a) dy

dx
= −y + 5

(b) dy

dx
= 2y − 3

(c) 3y − dy

dx
= 4y + 1



2First Order Ordinary Differential
Equations

Part of the charm in solving a differential
equation is in the feeling that we are getting
something for nothing. So little information
appears to go into the solution that there is a
sense of surprise over the extensive results that
are derived.

George Robert Stibitz

2.1 Integrating Factors
In this section we introduce the “method of integrating factors” which
will allow us to solve any first order linear ordinary differential equation.
(Or, more precisely, gives us a method of converting the differential equa-
tion into an integration problem. Whether we can actually compute the
integral is another story.)

To get started, let’s work our way through a particular example, and
then we will try to generalize the process involved.

Consider the differential equation

x2
dy

dx
+ 2xy = x3.

It may not be immediately obvious at first glance, but the left-hand side of
this equation can actually be written much more simply using the product
rule. In particular, since y is some unknown function of x, we may as well
call it f(x) for the moment and so dy

dx
is f ′(x). The left-hand side of the

equation above could then be written as

x2f ′(x) + 2xf(x).

After a moment’s thought, you should be able to convince yourself that
this expression, x2f ′(x) + 2xf(x), is equal to the derivative of x2f(x) by
the product rule. That is, the left-hand side of our differential equation

32
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above is simply d
dx
x2f(x). Keeping in mind that y is f(x), we can just as

easily call this d
dx
x2y and so our differential equation becomes

d

dx
x2y = x3.

Remark.
In problems such as this where we have a derivative dy

dx
that appears

in our differential equation, we must have that y is a function of x;
y = f(x) for some currently unknown f(x). We usually won’t bother
to explicitly point this out each time, but if you are ever confused by
some manipulation that appears in working through a differential
equation, it may be helpful to replace that y’s that appear by f(x)
and dy

dx
by f ′(x): this can help you realize where derivative rules such

as the product rule are being used.

Since we have written our differential equation as
d

dx
x2y = x3,

we now see that integrating both sides of the equation becomes very sim-
ple. In particular, integrating both sides gives us the new equation

ˆ
d

dx
x2y dx =

ˆ
x3 dx.

The right-hand side is of course very easy to integrate, but the left-hand
side is easy to integrate as well. In particular, on the left-hand side we’re
basically trying to compute the antiderivative of the derivative of x2y. Of
course these operations of “compute the antiderivative of the derivative”
cancel each other out, and so the left-hand side becomes simply x2y. That
is, we now have the equation

x2y =
x4

4
+ C.

Our ultimate goal is to solve for y, but at this point that is very simple and
we have

y =
x2

4
+
C

x2
.
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That is, we are claiming that y = x2/4 + Cx−2 solve our initial differential
equation, x2 dy

dx
+ 2xy = x3. Let’s now verify our y is a solution to the

differential equation.
Differentiating y = x2/4 + Cx−2 tells us

dy

dx
=

2x

4
− 2Cx−3 =

x

2
− 2C

x3
.

Now we will plug this expression for dy
dx

and our expression for x into the
left-hand side of our differential equation, and see if we can simplify it
down to the right-hand side:

x2
dy

dx
+ 2xy

=x2
(
x

2
− 2C

x3

)
+ 2x

(
x2

4
+
C

x2

)
=
x3

2
− 2C

x
+

2x2

4
+

2C

x

=
x3

2
+
x3

2
=x3

and so the differential equation is satisfied.
Let’s work through one more similar example before describing the

process in general. Consider the differential equation

sin(x)
dy

dx
+ y cos(x) = 0.

Using the product rule, we may rewrite the left-hand side of this equation
to obtain the following:

d

dx
y sin(x) = 0.

Now we can integrate both sides of the equation to obtainˆ
d

dx
y sin(x) dx =

ˆ
0 dx

=⇒ y sin(x) = C.

And of course we can easily solve this for y:

y =
C

sin(x)
= C csc(x).
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Exercise 2.1.
Verify that y = C csc(x) solves the differential equation

sin(x)
dy

dx
+ y cos(x) = 0.

Notice that
dy

dx
= − csc(x) cot(x).

Now we simply plug our expressions for y and dy
dx

into the original
differential equation and see if this becomes zero or not.

sin(x)
dy

dx
+ y cos(x)

= sin(x) (− csc(x) cot(x)) + C csc(x) cos(x)

=− C sin(x) csc(x) cot(x) + C csc(x) cos(x)

=− C sin(x)
1

sin(x)

cos(x)

sin(x)
+ C

1

sin(x)
cos(x)

=− C cos(x)

sin(x)
+ C

cos(x)

sin(x)

=0.

You may notice in the two examples described above that we got “lucky”
in that the left-hand side of the equation happened to be a product rule.
What would happen if we were not so lucky? For example, consider the
differential equation

dy

dx
+ 3y = x.

Here it’s not so clear that the left-hand side can be written as a product
rule: in fact, the left-hand side can not be written as a product rule. But
perhaps we can fix that if we’re clever.

Notice that that for any function g(x), multiplying both sides of our
earlier differential equation by g(x) would give us the equation

g(x)
dy

dx
+ 3g(x)y = xg(x).
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Can we make a clever choice of g(x) so that the left-hand side of this new
differential equation is a product rule? That is, can we choose g(x) so that

d

dx
yg(x) = g(x)

dy

dx
+ 3g(x)y?

The product rule tells us that d
dx
yg(x) must equal g(x) dy

dx
+yg′(x). So, if we

were to have d
dx
yg(x) = g(x) dy

dx
+3g(x)y, we would need that g′(x) = 3g(x).

There is a choice of g(x) that would have this property, namely g(x) = e3x.
Just to summarize what we’ve said thus far, if we start off with the

equation
dy

dx
+ 3y = x

and multiply both sides of the equation by e3x, we have a new differential
equation,

e3x
dy

dx
+ 3e3xy = e3xx.

Even though the left-hand side of our original equation can not be rewrit-
ten as a product rule, the left-hand side of this new differential equation
can be. This gives us

d

dx
e3xy = e3xx.

Integrating both sides of the equation would give us a new equation,
ˆ

d

dx
e3xy dx =

ˆ
e3xx dx.

The right-hand side of this equation is trivial: it is simply e3xy. To com-
pute the right-hand side of the equation we need to use integration by
parts with

u = x dv = e3x

du = dx v =
1

3
e3x.

This gives us
ˆ
xe3x dx =

1

3
xe3x − 1

3

ˆ
e3x dx

=
1

3
xe3x − 1

9

ˆ
e3x + C.
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Thus, after integrating, our differential equation has become

e3xy =
1

3
xe3x − 1

9

ˆ
e3x + C

which we can easily solve for y:

y =
x

3
− 1

9
+ Ce−3x.

Let’s now verify this truly does solve our initial differential equation:

dy

dx
+ 3y =

1

3
− 3Ce−3x + 3

(
x

3
− 1

9
+ Ce−3x

)
= x.

We may generalize the procedure of the last example to solve any lin-
ear first order ordinary differential equation. To see this, let’s first notice
that a linear first order ODE may be written in the form

f(x) + g(x)y + h(x)
dy

dx
= 0.

Using simple arithmetic we may write this as

dy

dx
+
g(x)

h(x)
y = −f(x).

Now for notation convenience, let us write p(x) for g(x)
h(x)

and q(x) = −f(x)
so the equation above becomes

dy

dx
+ p(x)y = q(x).

We would like it if the left-hand side could be rewritten as a product rule,
but there’s no reason this should necessarily be the case. However, as
in the last example above, we may be able to multiply through by some
currently unknown function which will allow us to turn the left-hand side
into a product rule. Calling this unknown function µ(x), this leads us to
the differential equation

µ(x)
dy

dx
+ µ(x)p(x)y = µ(x)q(x).
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We would like to choose µ(x) so that the left-hand side of the equation
becomes the d

dx
µ(x)y. That is, we want µ(x) to have the property that

d

dx
µ(x)y = µ(x)

dy

dx
+ µ(x)p(x)y.

However, the product rule tells us that we must have
d

dx
µ(x)y = µ(x)

dy

dx
+
dµ

dx
y.

So, what we really require is that dµ
dx

equal µ(x)p(x). Notice that finding
such a µ(x) is really an integration problem:

dµ

dx
= µ(x)p(x)

=⇒ 1

µ(x)

dµ

dx
= p(x)

=⇒
ˆ

1

µ(x)

dµ

dx
dx =

ˆ
p(x) dx.

Now letting u = µ(x) so du = dµ
dx
dx, we have

ˆ
1

u
du =

ˆ
p(x) dx

=⇒ ln |u|+ C =

ˆ
p(x) dx

=⇒ eln |u|+C = e
´
p(x) dx

=⇒ Celn |u| = e
´
p(x) dx

=⇒ |u| = Ce
´
p(x) dx

=⇒ u = Ce
´
p(x) dx.

Sinceu = µ(x), we have that for any choiceC the functionµ(x) = Ce
´
p(x) dx

has our desired derivative, dµ
dx

= µ(x)p(x). As any choice of C suffices, we
will always just choose C to be 1 to simplify our notation slightly.

Exercise 2.2.
Verify that µ(x) = e

´
p(x) dx satisfies the equation

dµ

dx
= µ(x)p(x).
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µ(x) = e
´
p(x) dx

=⇒ dµ

dx
= e

´
p(x) dx d

dx

ˆ
p(x) dx (By the chain rule)

= e
´
p(x) dxp(x)

= µ(x)p(x).

To summarize what we have said thus far, if we are given a first order
linear ODE of the form

dy

dx
+ p(x)y = q(x),

then we can multiply both sides of the equation by e
´
p(x) dx to obtain

e
´
p(x) dx dy

dx
+ e

´
p(x) dxp(x)y = e

´
p(x) dxq(x)

The left-hand side of this equation may be rewritten using the product
rule to turn the equation into

d

dx
e
´
p(x) dxy = e

´
p(x) dxq(x).

Integrating both sides of the equation gives us

e
´
p(x) dxy =

ˆ
e
´
p(x) dxq(x) dx,

and solving for y tells us

y = e−
´
p(x) dx

ˆ
e
´
p(x) dxq(x) dx.

Remark.
Though this looks very ugly written in this general form, the actual
quantities that will appear in problems won’t be so bad.
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The functionµ(x) = e
´
p(x) dx that we multiplied through above is called

an integrating factor, and this procedure for solving linear first order dif-
ferential equations is called the method of integrating factors.

Let’s end our discussion of integrating factors by seeing some concrete
examples.

Example 2.1.
Solve the differential equation

dy

dx
+ xy = 2x.

In this example we have p(x) = x and q(x) = sin(x), and so we
will multiply through by the integrating factor

µ(x) = e
´
x dx = ex

2/2

to obtain
ex

2/2 dy

dx
+ xex

2/2y = 2xex
2/2

which we may write as

d

dx
ex

2/2y = 2xex
2/2.

Integrating both sides of the equation gives us
ˆ

d

dx
ex

2/2y dx =

ˆ
2xex

2/2 dx

=⇒ ex
2/2y =

ˆ
2xex

2/2 dx.

To perform the integration on the right-hand side we will use the
substitution

u =
x2

2
du = x dx
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to obtain ˆ
2xex

2/2 dx = 2

ˆ
eu du = 2eu + C = 2ex

2/2 + C.

That is, integrating both sides of the differential equation gives us

ex
2/2y = 2ex

2/2 + C

which we may easily solve for y:

y =
2ex

2/2 + C

ex
2/2

= 2 + Ce−x
2/2.

Let’s verify this really solves our differential equation:

dy

dx
+ xy

=
d

dx

(
2 + Ce−x

2/2
)
+ x

(
2 + Ce−x

2/2
)

=− Cxe−x2/2 + 2x+ 2Cxe−x
2/2

=2x.

Example 2.2.
Solve the differential equation

dy

dx
+

2

x
y = x3.

We will multiply through by our integrating factor which is

µ(x) = e
´

2
x
dx

= e2
´
dx
x

= e2 ln |x|

= eln |x|
2

= eln(x
2)

= x2.
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and so our differential equation becomes

x2
dy

dx
+ x2

2

x
y = x3x2

or simply
x2
dy

dx
+ 2xy = x5.

We may write this as
d

dx
x2y = x5

and integrating both sides gives us
ˆ

d

dx
x2y dx =

ˆ
x5 dx

=⇒ x2y =
x6

6
+ C

=⇒ y =
1

x2

(
x6

6
+ C

)
=
x4

6
+
C

x2
=
x6 + C

6x2
.

Exercise 2.3.
Verify that y = x6+C

6x2
solves the differential equation

dy

dx
+

2

x
y = x3.
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dy

dx
+

2

x
y

=
d

dx

(
x6 + C

6x2

)
+

2

x

(
x6 + C

6x2

)
=
6x2 · 6x5 − 12x(x6 + C)

(6x2)2
+

2x6 + 2C

6x3

=
36x7 − 12x7 − 12Cx

36x4
+

2x6 + 2C

6x3

=
24x7 − 12Cx

36x4
+

12x7 + 12Cx

36x4

=
36x7

36x4

=x3.

2.2 Separable equations
At this point we are able to solve any first order linear ordinary differen-
tial equation – at least up to performing some integration coming from
the integrating factor. But how can we deal with non-linear equations?
Integrating factors are completely useless for a differential equation such
as

y
dy

dx
= x.

In general there is no procedure that works for all non-linear differential equa-
tions. However, there are different procedures for different “families” of
non-linear differential equations. The simplest family consists of the “sep-
arable differential equations.”

A differential equation is called separable if it can be written in the
form

p(y)
dy

dx
= q(x).

In the equation above, for example, we have p(y) = y and q(x) = x. That
is, for a separable differential equation we can “separate” the y-part of the
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equation on one side from the x-part of the equation on the other side. Be-
fore describing the general procedure for separable differential equations,
let’s see if we can solve the separable equation mentioned above.

Starting from
y
dy

dx
= x,

let’s keep in mind that y is really some function of x, so we could replace
the y’s that appear with f(x) and replace dy

dx
with f ′(x). The equation

above would then become
f(x) · f ′(x) = x.

Since these functions of x (the left-hand side is the function f(x) · f ′(x)
and the right-hand side is simply the function x), their antiderivatives
must be equal, leading us to the equationˆ

f(x) · f ′(x) dx =

ˆ
x dx.

Of course, the right-hand side is simply x2

2
+ C, but what about the left-

hand side? Notice we could actually integrate the left-hand side by ap-
plying the substitution

u = f(x), du = f ′(x) dx.

This allows us to to replace ´ f(x)f ′(x) dx with
ˆ
u du =

u2

2
+ C

which we can rewrite in terms of f(x) to obtainˆ
f(x)f ′(x) dx =

f(x)2

2
+ C.

(Notice we can easily double-check that f(x)2

2
+C really is the antideriva-

tive of f(x)f ′(x).)
After performing this integration, our earlier differential equation be-

comes
f(x)2

2
=
x2

2
+ C

which we can now attempt to solve for f(x):
f(x)2

2
=
x2

2
+ C =⇒ f(x)2 = x2 + C

=⇒ f(x) = ±
√
x2 + C.
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That is, we claim that y = ±
√
x2 + C solves the differential equation y dy

dx
=

x. Notice first that we’re really claiming there are two solutions: y =√
x2 + C is one solution and y = −

√
x2 + C is the other solution. We will

only verify the positive square root solution here and leave the verification
of the negative square root solution as an exercise.

y =
√
x2 + C = (x2 + C)1/2

=⇒ y · dy
dx

= (x2 + C)1/2 · d
dx

(x2 + C)1/2

= (x2 + C)1/2 · 1
2
(x2 + C)−1/2 · 2x

=

√
x2 + C

2
√
x2 + C

· 2x

= x.

We can “streamline” the procedure above a little bit by noticing if y =
f(x), then the differential dy is given by dy = f ′(x) dx = dy

dx
dx. That is,

the integral that we had above,ˆ
f(x) f ′(x) dx

can be written more succinctly asˆ
y dy.

Our procedure for solving the differential equation would then become

y
dy

dx
= x

=⇒
ˆ
y
dy

dx
dx =

ˆ
x dx

=⇒
ˆ
y dy =

ˆ
x dx.

Once written like this, we can integrate each side and solve for y, giving
us ˆ

y dy =

ˆ
x dx

=⇒ y2

2
=
x2

2
+ C

=⇒ y2 = x2 + C

=⇒ y = ±
√
x2 + C.
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Notice this gives us the same solution we had above.
Let’s see another example of solving a separable differential equation

in this “streamlined” form. Consider the equation

3y2
dy

dx
= x cos(x2).

Integrating both sides of the equation with respect to x yields
ˆ

3y2
dy

dx
dx =

ˆ
x cos(x2) dx.

On the left-hand side, let’s again notice dy = dy
dx
dx and so our equation

becomes ˆ
3y2dy =

ˆ
x cos(x2) dx.

Performing the described integration on each side leads us to

y3 =
1

2
sin(x2) + C

(The substitution u = x2, du = 2x dx was used on the right-hand side.)
We can now solve easily solve this for y:

y =

(
1

2
sin(x2) + C

)1/3

.

Let’s quickly verify this really solves our differential equation:

3y2
dy

dx

=3

(
1

2
sin(x2) + C

)2/3

· d
dx

(
1

2
sin(x2) + C

)1/3

=3

(
1

2
sin(x2 + C)

)2/3

· 1
3

(
1

2
sin(x2) + C

)−2/3
· 1
2
· cos(x2) · 2x

=x cos(x2).

In general, when we have a separable equation

p(y)
dy

dx
= q(x)

and integrate both sides with respect to x giving us
ˆ
p(y)

dy

dx
dx =

ˆ
q(x) dx
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we can use the fact that y is some (currently unknown) function of x to
replace dy

dx
dx with the differential dy. This turns our equation into

ˆ
p(y) dy =

ˆ
q(x) dx

and we then simply integrate the left-hand side of the equation with re-
spect to y, integrate the right-hand side with respect to x, then do the
algebra to solve for y.

Remark.
The procedure just described is the “short cut” version of what’s
happening. What’s really going on is that we’re performing a u-
substitution. In particular, since y is some function of x – say y =
f(x) – our equation can really be written as

ˆ
p(f(x))f ′(x) dx =

ˆ
q(x) dx.

Performing the substitution u = f(x), du = f ′(x) dx the right-hand
side becomes ˆ

p(u) du.

If we momentarily let P (u) denote the antiderivative of p(u), our
integration would then give us P (u), but since u is f(x) we’d have
P (f(x)) and the equation becomes

P (f(x)) =

ˆ
q(x) dx.

Solving for f(x) then really means we are applying the inverse func-
tion P−1 to both sides of the equation to obtain

f(x) = P−1
(ˆ

q(x) dx

)
.

Notice this procedure can be tricky: computing inverses can be hard,
and not every function is invertible! For now we won’t worry too
much about this and will resign ourselves to problems where these
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inverses are “easy,” but we will eventually have to deal with this is-
sue when we talk about explicit and implicit solutions to differential
equations later.

Our “streamlined” version of the solution above is really just us-
ing the variable y instead of u in our substitution: Given

ˆ
p(f(x))f ′(x) dx =

ˆ
q(x) dx.

we substitute y = f(x), dy = f ′(x) dx to obtain
ˆ
p(y) dy =

ˆ
q(x) dx.

And the “solve for y” we had mentioned above is really applying the
inverse of the antiderivative of the integrand on the left-hand side.

Let’s consider a few more examples of solving separable equations.

Example 2.3.
Solve the differential equation

1

1 + y

dy

dx
= ln(x).

Integrating both sides of the equation gives us
ˆ

1

1 + y

dy

dx
dx =

ˆ
ln(x) dx,

which we may rewrite as
ˆ

1

1 + y
dy =

ˆ
ln(x) dx.

To integrate the left-hand side we’ll perform the substitution u =
1 + y, du = dy so the left-hand side becomes

ˆ
1

u
du = ln |u|+ C
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and so we know ´ dy
1+y

= ln |1 + y|+ C.
For the right-hand side of our earlier equation we will need to

use integration by parts with

u = ln(x) dv = dx

du =
1

x
v = x

we then have ˆ
ln(x) dx = x ln(x)−

ˆ
x · 1

x
dx

= x ln(x)−
ˆ

dx

= x ln(x)− x+ C.

Thus
ln |1 + y| = x ln(x)− x+ C.

Now we just have to solve for y. Exponentiating both sides gives us

|1 + y| = ex ln(x)−x+C = Cex ln(x)−x.

We can drop the absolute values on the left-hand side by picking pu
± on the right-hand side, giving us

1 + y = ±Cex ln(x)−x = Cex ln(x)−x

and so y = −1 + Cex ln(x)−x.

Exercise 2.4.
Verify that y = −1 + Cex ln(x)−x solves the differential equation de-
scribed in Example 2.3.
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Example 2.4.
Solve the following initial value problem:

dy

dx
=

3x2 + 4x− 4

2y − 4

where y(1) = −1.
First we rewrite our equation as

(2y − 4)
dy

dx
= 3x2 + 4x− 4.

Now we integrate both sides to obtain
ˆ

(2y − 4)dy =

ˆ
(3x2 + 4x− 4) dx

=⇒ y2 − 4y = x3 + 2x2 − 4x+ C

We now need to solve for y. We can do this by first completing the
square which will give us

y2 − 4y = x3 + 2x2 − 4x+ C

=⇒ y2 − 4y + 4 = x3 + 2x2 − 4x+ C + 4

=⇒ (y − 2)2 = x3 + 2x2 − 4x+ C

=⇒ y − 2 = ±
√
x3 + 2x2 − 4x+ C =⇒ y = 2±

√
x3 + 2x2 − 4x+ C.

Notice that in the third step above the “+4” which we had attached to
the right-hand side in the previous equation was incorporated into
the “+C”.

At this point we have two different functions which solve our dif-
ferential equation, since we have a ± that appears because of the
square root. Let’s notice, though, that we also have the initial con-
dition y(1) = −1. This means we must use the negative square root
in order to acheive the negative value. Now to determine our choice
of C we simply need to do the algebra. Our initial condition may be
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written as

2−
√
13 + 2 · 12 − 4 · 1 + C = −1

=⇒ 2−
√
1 + 2− 4 + C = −1

=⇒ 3 =
√
C − 1

=⇒ 9 = C − 1

=⇒ C = 10.

Thus we claim our initial value problem is solved by

y = 2−
√
x3 + 2x2 − 4x+ 10.

We will verify this truly does solve our IVP:

y = 2−
√
x3 + 2x2 − 4x+ 10 =⇒ dy

dx
=

d

dx

(
2−
√
x3 + 2x2 − 4x+ 10

)
=

−1
2
√
x3 + 2x2 − 4x+ 10

·
(
3x2 + 4x− 4

)
=

−(3x2 + 4x− 4)

2
√
x3 + 2x2 − 4x+ 10− 4 + 4

=
−(3x2 + 4x− 4)

−2(−
√
x3 + 2x2 − 4x+ 10 + 2) + 4

=
−(3x2 + 4x− 4)

−2(2−
√
x3 + 2x2 − 4x+ 10) + 4

=
−(3x2 + 4x− 4)

−2y + 4

=
3x2 + 4x− 4

2y − 4

And so the differential equation is solved, and the initial condition
is very easy to check:

2−
√
13 + 2 · 12 − 4 · 1 + 10 = 2−

√
9 = 2− 3 = −1.

Our next example will require us to use partial fractions, so let’s first
spend some time quickly reviewing how partial fractions work.

Recall that when you add two fractions together, you have to get a
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common denominator. One way of doing this is to multiply eac term by
the denominator of the other term over itself. For example, consider

7

x− 1
+

2

x+ 3

=
7

x− 1
· 1 + 2

x+ 3
· 1

=
7

x− 1
· x+ 3

x+ 3
+

2

x+ 3
· x− 1

x− 1

=
7(x+ 3)

(x− 1)(x+ 3)
+

2(x− 1)

(x+ 3)(x− 1)

=
7x+ 21

x2 + 2x− 3
+

2x− 2

x2 + 2x− 3

=
9x+ 19

x2 + 2x− 3
.

“Partial fractions” is just doing this process in reverse. That is, if we
started with 9x+19

x2+2x−3 , then our goal would be to break it up into the sum
of simpler fractions 7

x−1 + 2
x+3

. The point of doing this is to try to make
integrating that function easier:

ˆ
9x+ 19

x2 + 2x− 3
dx =

ˆ (
7

x− 1
+

2

x+ 3

)
dx

= 7

ˆ
dx

x− 1
+ 2

ˆ
dx

x+ 3

= 7 ln |x− 1|+ 2 ln |x+ 3|+ C.

Of course, this example is “cheating” a little bit since we started off with
the sum of simpler fractions and then added them together to get the more
complicated fraction. So, the question now becomes how do we perform
this reverse procedure in general. For example, how could we take the
fraction

x+ 5

x2 + 5x+ 6

and write it as a sum of simpler fractions? Let’s first notice that if we can
factor the denominator, its factors should tell us the denominators of the
simpler fractions that appear in our sum. This is simply because when
we add the fractions with those denominators together we’ll multiply de-
nominators, and this will give us back the denominator of the original
fraction we started with. In the case of the fraction above, the denomina-
tor factors as

x2 + 5x+ 6 = (x+ 2)(x+ 3).
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The claim is that this means we should be able to write our original frac-
tion as the sum of “something” over x + 2 plus “something else” over
x+ 3.

x+ 5

x2 + 5x+ 6
=

x+ 5

(x+ 2)(x+ 3)
=

?

x+ 2
+

?

x+ 3
.

Now we need to determine what those “somethings” are. Let’s treat this
as an algebra problem where there are two unknowns (the numerators
of our simpler fractions) that we need to solve for; let’s just call those
numerstors a and b to obtain

x+ 5

x2 + 5x+ 6
=

a

x+ 1
+

b

x+ 3
.

Now let’s just see what happens when we add a
x+1

and b
x+3

together, and
compare that to the original fraction we started with. This would lead us
to the following bit of arithmetic:

a

x+ 1
+

b

x+ 3

=
a

x+ 1
· x+ 3

x+ 3
+

b

x+ 3
· x+ 1

x+ 1

=
ax+ 3a

x2 + 5x+ 6
+

bx+ b

x2 + 5x+ 6

=
(a+ b)x+ 3a+ b

x2 + 5x+ 6
.

But we want this fraction to equal our earlier fraction:
x+ 5

x2 + 5x+ 6
=

(a+ b)x+ 3a+ b

x2 + 5x+ 6
.

That is, we want a+ b to be equal to 1, and 3a+ b to be equal to 5, and this
gives us a system of equations:

a+ b = 1

3a+ b = 5

All we have to do now is solve this system of equations. Subtracting the
first equation from the second gives us

3a+ b− (a+ b) = 5− 1

=⇒ 2a = 4

=⇒ a = 4.
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Now that we know a = 4 we can plug this into a+ b = 1 to obtain b = −3.
Thus we have the partial fraction decomposition we were after

x+ 5

x2 + 5x+ 6
=

4

x+ 1
+
−3
x+ 3

We will need partial fractions to solve the differential equation in the next
example.

Example 2.5.
Solve

2y
dy

dx
=

3x+ 1

x2 + 3x+ 2
.

Integrating both sides of the equation gives us
ˆ

2y dy =

ˆ
3x+ 1

x2 + 3x+ 2
dx

=⇒ y2 =

ˆ
3x+ 1

x2 + 3x+ 2
dx.

To compute the integral on the right we will need the partial fraction
decomposition, and the first step is to factor the denominator. It only
takes a moment’s thought to realize the factorization is

x2 + 3x+ 2 = (x+ 1)(x+ 2).

Thus we will write our fraction as a sum of two simpler fractions
with these denominators, treating the numerators as unknowns we
can solve for.

3x+ 1

x2 + 3x+ 2
=

a

x+ 1
+

b

x+ 2

=
a(x+ 2) + b(x+ 1)

(x+ 1)(x+ 2)

=
(a+ b)x+ 2a+ b

x2 + 3x+ 2

Thus we are lead to the system of equations

a+ b = 3

2a+ b = 1.
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Subtracting the first equation from the second to get rid of the b’s
tells us

2a+ b− (a+ b) = 1− 3

=⇒ a = −2.

The first equation then becomes −2 + b = 3 and so b = 5. That is,
3x+ 1

x2 + 3x+ 2
=
−2
x+ 1

+
5

x+ 2
.

The right-hand side of our integral equation earlier is now much sim-
pler:

ˆ
3x+ 1

x2 + 3x+ 2
dx =

ˆ (
−2
x+ 1

+
5

x+ 2

)
dx

= −2 ln |x+ 1|+ 5 ln |x+ 2|+ C.

Hence we have

y2 = −2 ln |x+ 1|+ 5 ln |x+ 2|+ C

=⇒ y = ±
√
−2 ln |x+ 1|+ 5 ln |x+ 2|+ C.

It is easy to check this solves our differential equation:

2y
dy

dx

=2
(
±
√
−2 ln |x+ 1|+ 5 ln |x+ 2|+ C

)
· 1

±2
√
−2 ln |x+ 1|+ 5 ln |x+ 2|+ C

·(
−2
x+ 1

+
5

x+ 2

)
=

3x+ 1

x2 + 3x+ 2

In the examples we’ve seen so far, we’ve basically always been able to
easily, algebraically solve for y. This does not always happen, however, as
the next example illustrates.
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Example 2.6.
Consider the following initial value problem:

dy

dx
=

1 + 3x2

3y2 − 6y
y(0) = 1.

Since this equation is separable, we have
ˆ (

3y2 − 6y
)
dy =

ˆ (
1 + 3x2

)
dx

=⇒ y3 − 3y2 = x+ x3 + C

Let’s go ahead and find theC which will satisfy our initial condition.
If y = 1when x = 0 (i.e., y(0) = 1), then the equation above becomes
1− 3 = C, and so C = −2 and our initial value problem is solved by

y3 − 3y2 = x+ x3 − 2.

In Example 2.6, notice that we can not solve for y. That is, we may
not be able to do the algebra to get a single y by itself on one side of the
equation; y3− 3y2 = x+ x3− 2 for example has this property. The reason
for this is that if we could solve for y in this expression, writing y = f(x),
that would mean that y is a function of x. However, if we were to graph
the set of (x, y)-points which satisfy y3−3y2 = x+x3−2, we see something
as in Figure 2.1. Notice that this is not the graph of a function, however.
Thus we should not expect that we could solve this expression for y.

Notice, though, that even when we have a curve which fails the ver-
tical line test and so is not the graph of a function, such as in Figure 2.1,
we can imagine breaking the graph up into pieces where each piece does
satisfy the vertical line test, such as the red, blue, and purple portions of
Figure 2.2.

That is, there are three functions whose graphs together give us these
three pieces. Call the red portion of the curve the graph of f1(x), the blue
portion the graph of f2(x), and the purple portion f3(x). We see that the
piece we really care about is f2(x) since this is the only one that can satisfy
our initial condition, as it is the only function whose domain contains 0
which is the x-coordinate of our initial condition, y(0) = 1.

We will often have to leave the solution to a differential equation in an
implicit form, such as in Example 2.6. That is, instead of writing y as a
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Figure 2.1: The (x, y) points satisfying y3 − 3y2 = x+ x3 − 2.

Figure 2.2: We can break a up a curve failing the vertical line test into
individual pieces which pass the vertical line test, and so are graphs of
functions.

function of x, we give an equation representing a relationship the x and
y must satisfy. (If we can explicitly write y as a function of x, we say the
solution is explicit.) There may be several such functions satisfying this
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relationship (in the case of Example 2.6, we see from Figure 2.2 that there
are three functions satisfying the relation y3 − 3y2 = x + x3 − 2), so we
must give an initial condition or the domain of the function we care about
in order to single out one particular function.

In the case of the solution to the initial value problem of Example 2.6,
we see the domain of the function we care about (the f2(x) whose graph
was in blue in Figure 2.2) is (−1, 1). In general, the domain of the function
defined implicitly like this is an open interval (a, b), where we may pos-
sibly have a = −∞ and b = ∞. If a and b are finite, however, the tangent
lines to the graph will become vertical as x approaches a from the right
or b from the left.

Remark.
The above discussion is a bit hand-wavy, but can be made precise us-
ing an important theorem called The Implicit Function Theorem. The
implicit function theorem is a bit technical to state precisely, so we’re
glossing over the details here. If you want to see all the nitty-gritty
details of the implicit function theorem, though, perhaps the best
place to look is in the book Vector calculus, linear algebra, and differen-
tial forms by Hubbard and Hubbard.

2.3 Modeling using first-order differential
equations

We now turn our attention away from solution techniques of first-order
differential equations to discuss one of the main applications of differen-
tial equations: mathematical modeling.

Many real-world problems are too complex to analyze directly, and so
it is often desirable to have a simpler model of the problem which can
be studied. Though mathematical models not necessarily always involve
differential equations, diff. eq.’s are often one of the primary tools used
in modeling.

Every problem is different, and there isn’t one set “algorithm” for com-
ing up with a model, so we will consider a few special examples. First,
though, let’s note some general ideas which may be helpful to consider
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in constructing a model. Some general guidelines for constructing math-
ematical models are the following:

• Identify independent and dependent variables.
• Choose convenient units of measurement.
• Determine any underlying principles related to the problem at hand

(e.g., Newton’s laws of motion).
• Express the underlying principle mathematically in terms of the

variables and units above.
• Check that the resulting units make sense.

After determining the model, we wish to analyze it. For us, this usually
means solving the resultant differential equation, or perhaps estimating
the behavior of a solution from a slope field if the differential equation
can not be solved analytically. Finally, we may wish to compare estimates
made from our model to observed data. If the observations agree with
what our model predicted, then we may feel confident the model is cor-
rect. If our predictions do not agree with the observations, then we should
revise the model.

Example 2.7.
Suppose a five-hundred gallon reservoir of water contains a fertilizer
mixed into the water at a concentration of half-a-pound of fertilizer
per gallon of water. If clean water is pumped into the tank at a rate
of ten gallons per minute, and fertilized water is pumped out of the
tank at a rate of ten gallons per minute as well, what is the concen-
tration of the fertilizer in the water after thirty minutes?

Let’s let C denote the concentration of the fertilizer in the water,
measured in pounds per gallon. Notice this is a function of time.
Let’s let t denote the time, measured in minutes, after clean water is
pumped in and fertilized water is pumped out. So, our goal will be
to find C(30) given that C(0) = 1/2.

Assuming the fertilizer is well-mixed into the water, how is the
concentration changing? Note that the concentration is decreasing:
we’re losing ten gallons of fertilized water with concentration C ev-
ery minute. This means the rate of change in the amount of fertilizer
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is
−10 gal

min · C
lb
gal .

The concentration is obtained by dividing this by the total number
of gallons, giving us

−10 gal
min · C

lb
gal

500gal =
−10C
500

(lb/gal)
min .

That is,
dC

dt
=
−C
50

.

This is a differential equation we can solve in a few different ways.
For the sake of recalling some of the solution techniques we’ve seen
thus far, let’s mention three different ways to solve this differential
equation. In what follows we’ll use k to represent the arbitrary con-
stant of integration, since we’re using C to represent the concentra-
tion of fertilizer in this problem.
Recognizing the form dy

dx
= my + b Using our general formula we

developed for solving differential equations of this form we see

dC

dt
=
−C
50

=⇒ C = ke−
t/50

Using an integrating factor Treating this as a linear differential equa-
tion we can use an integrating factor to obtain the following:

dC

dt
=
−C
50

=⇒ dC

dt
+

1

50
C = 0

=⇒ e
t/50dC

dt
+ e

t/50 · 1
50
C = 0

=⇒ d

dt
e
t/50C = 0

=⇒ e
t/50C = k

=⇒ C = ke−
t/50
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As a separable equation We can also think of this differential equa-
tion as a separable equation: it’s just that the right-hand side
is a constant function. We then have

dC

dt
=
−C
50

=⇒ 50

C

dC

dt
= −1

=⇒
ˆ

50

C
dC =

ˆ
(−1) dt

=⇒ 50 ln |C| = −t+ k

=⇒ ln |C| = −t
50

+ k

=⇒ |C| = e−
t/50+k = e−

t/50ek = ke−
t/50

=⇒ C = ±ke−t/50 = ke−
t/50

Regardless of which solution technique we choose, we see that the
concentration of fertilizer at time t is given by C = ke−t/50 for some
constant k. To solve for k we simply use our initial condition of
C(0) = 1/2 to obtain

1

2
= C(0) = ke−

0/50 = k,

and so the concentration of fertilizer is

C(t) =
1

2
e−

t/50.

After thirty minutes, the concentration will thus be

C(30) =
1

2
e−

30/50 ≈ 0.2744
lb
gal .

One thing to point out about the solution to modeling problem above
is that as t goes to infinity, C(t) goes to zero, though for each finite value
of t there is still some small amount of fertilizer which remains.

For the next example we want to see how radiocarbon dating can be
used to determine how old a piece of organic material may be. Before
jumping into the differential equation, though, let’s first spend just a minute
discussing the idea behind radiocarbon dating.
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Carbon-14 is a radioactive isotope of carbon with a half-life of 5730
years, and is naturally produced in the atmosphere when cosmic rays
from the sun interact with Carbon-12. This has been going on since the
beginning of the Earth, and the ratio of Carbon-14 to Carbon-12 is known
and is considered to be relatively stable.

When plants breathe in carbon dioxide, they take in both Carbon-12
and Carbon-14 indiscriminately, and so the proportion of 14C to 12C is the
same in the plant as it is in the atmosphere. Similarly when animals eat
plants, or other animals that have eaten plants, they take in both Carbon-
14 and Carbon-12.

While a plant or animal is alive, then, its proportion of Carbon-14 to
Carbon-12 is about the same as the proportion in the atmosphere, which
can be measured. When the organism dies, however, it stops taking in
carbon. The Carbon-12 it took in while alive is stable, but the Carbon-14 is
radioactive and so it decays. This means that the proportion of Carbon-14
to Carbon-12 changes over time. By measuring the amount of Carbon-14
and Carbon-12 in a sample of organic material, we can thus determine
what this ratio is and deduce how long ago the corresponding organism
died, as the next example illustrates.

Example 2.8.
Suppose a sample of wooly mammoth fur recovered from frozen arc-
tic tundra is sent to a lab which determines that only 30% of the fur’s
original Carbon-14 remains. Given that Carbon-14 has a half-life of
5730 years, how old is the sample of fur?

Letting M(t) denote the mass of Carbon-14 in the sample t years
after the mammoth’s death, we know from a previous problem about
exponential decay (see Example 1.6 on page 26) that the mass satis-
fies the differential equation

dM

dt
= −rM

since the rate of change of the mass of Carbon-14 is proportional to
the current amount of Carbon-14. Since the half-life is 5730 years,
we can determine that the constant of proportionality r is

r =
ln(2)

5730
.
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That is,
M(t) =M0e

−t ln(2)
5730

whereM0 is the initial mass of Carbon-14 in the sample of mammoth
fur. If the sample is T years old, then we would have

M0e
−T ln(2)

5730 = 0.3M0

since only 30% of the Carbon-14 remains. From this we can simply
solve for the age T :

M0e
−T ln(2)

5730 = 0.3M0

=⇒ e−T
ln(2)
5730 = 0.3

=⇒ − T ln(2)

5730
= ln(0.3)

=⇒ T = −5730ln(0.3)
ln(2)

≈ 9952.81

And so the fur sample is a little less than 10,000 years old.

We’ll finish up our examples of modeling applications with one more
involved example about compute escape velocity. It should be noted this
example is longer and more involved than the previous examples, and
you shouldn’t worry too much about trying to internalize every detail of
the example. It’s mainly included as a fun example of something inter-
esting we can calculate based on what we’ve done thus far.

Example 2.9.
Suppose a rocket of massm is launched straight up from the surface
of the Earth at sea level. Recalling that the force of gravity satisfies
an inverse square law (the force of gravity between two objects is
inversely proportional to the square of the distance between the ob-
jects), what initial velocity v0 would be required to reach a maximum
height of ξ above the Earth? What velocity insures the object never
falls back down to Earth? (This last quantity is sometimes called
escape velocity.)

Here the only force acting on the rocket is its weight (i.e., gravity
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between the rocket and the Earth). At sea level this is −mg where
m is the mass measured in kilograms and g is the familiar accelera-
tion due to gravity near the surface of the Earth, 9.8m

s2
. This weight

changes, however, as we get higher and higher above the Earth. (I.e.,
we approach “weightlessness” the higher the rocket gets.) In gen-
eral, the weight is inversely proportional to the square of the distance
between the height of the rocket above the Earth and the center of
the planet. If the radius of the Earth is R and our height above the
surface is x, the total distance between the rocket and the center of
the Earth is R + x, and so the weight of the rocket has the form

W (x) =
−k

(R + x)2

where k is some constant of proportionality we can compute.
When x = 0 (the rocket is at sea level on the surface of the planet),

we know W (0) = −mg, and so we have

W (0) =
−k

(R + 0)2
= −mg

=⇒ − k = −mgR2.

Thus the rocket’s weight, once it’s x meters above the Earth, is

W (x) =
−mgR2

(R + x)2
.

This weight is a force, and Newton’s second tells us force is mass
times acceleration (the derivative of velocity). Equating that with
our expression for the weight above, we have the following differen-
tial equation:

m
dv

dt
=
−mgR2

(R + x)2
.

Since m is a factor on both sides of the equation we can cancel it out
and write the differential equation as simply

dv

dt
=
−gR2

(R + x)2
.

Notice that the problem we’re considering concerns velocity and
position, not time. That is, we would like to remove the t from the
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equation above and be left with v and x. Since our rocket is launched
straight up with some initial velocity, we can interpret the velocity
as a function of the rocket’s position. Since the rocket’s position is a
function of time since launch, this means we can think of the velocity
as v(x(t)). Differentiating this gives us

dv

dt
=

d

dt
v(x(t)) = v′(x(t))x′(t) =

dv

dx
· dx
dt
.

Notice, though, that dx
dt

is the velocity v, and so we have

dv

dt
= v

dv

dx
.

Plugging this into our earlier equation we have

dv

dt
=
−gR2

(R + x)2

=⇒ v
dv

dx
=
−gR2

(R + x)2

which is a separable differential equation. Integrating both sides
gives us ˆ

v dv = −gR2

ˆ
1

(R + x)2
dx.

Of course, the left-hand side is simply v2

2
. For the right-hand side we

can do the substitution u = R + x, du = dx so the integral becomes

−gR2

ˆ
u−2 du = gR2u−1 + C

which in terms of x tells us

−gR2

ˆ
1

(R + x)2
dx =

gR2

R + x
+ C.

So, after integrating both sides of our differential equation we have

v2

2
=

gR2

R + x
+ C.
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Now, if we have an initial velocity v0 > 0 at position x = 0 (i.e.,
when the rocket first launches from the ground), then our equation
becomes

v20
2

=
gR2

R + 0
+ C = gR + C

and so C = v20/2− gR. Plugging this into the above and solving for v
gives us

v2

2
=

gR2

R + x
+
v20
2
− gR

=⇒ v = ±
√

2gR

R + x
+ v20 − 2gR.

This tells us that if our rocket has an initial velocity of v0 at take-
off, then at the moment the rocket is x meters above the ground its
velocity is given by

v = ±
√

2gR

R + x
+ v20 − 2gR.

(The physical interpretation of the plus/minus sign is that the rocket
passes through a position twice: once going up, and once coming
down. The speed of the rocket at each point will be the same, but
the direction flips.)

The maximum altitude the rocket reaches, let’s call that ξ, occurs
when the velocity is zero (i.e., at the apex of the rocket’s trajectory).
Plugging in x = ξ and v = 0, we can solve for ξ to see what this
maximum altitude is:

0 =
2gR2

R + ξ
+ v20 − 2gR

=⇒ 2gR− v20 =
2gR2

R + ξ

=⇒ R + ξ =
2gR2

2gR− v20

=⇒ ξ =
2gR2

2gR− v20
−R =

v20R

2gR− v20
.

This tells us the maximum height we will achieve with an initial ve-
locity of v0. We could instead have solved for v0 to determine the
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initial velocity required to reach a maximum altitude of ξ:

0 =
2gR2

R + ξ
+ v20 − 2gR

=⇒ v20 = 2gR− 2gR2

R + ξ

=
2gR(R + ξ)− 2gR2

R + ξ

=
2gRξ

R + ξ
.

Thus if the initial velocity is v0 ≥
√

2gRξ
R+ξ

, the rocket will reach a
height of at least ξ.

Now, to determine the escape velocity, we want to see what will
happen as the rocket gets higher and higher and higher before com-
ing back down. I.e., we want to consider what happens as ξ goes to
infinity:

lim
ξ→∞

√
2gRξ

R + ξ
=

√
lim
ξ→∞

2gRξ

R + ξ

=

√
lim
ξ→∞

2gRξ

R + ξ
·
1/ξ
1/ξ

=

√
lim
ξ→∞

2gR
R/ξ + 1

=
√

2gR.

That is, if we want our rocket to go down and never come back up,
we need its initial velocity to be at least√2gRwhere g is acceleration
due to gravity at the surface of the Earth and R is the radius of the
Earth. These two values can easily be looked up:

g = 9.8
m
s2 , and R = 6.371× 106m.
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The escape velocity is thus√
2 · 9.8m

s2 · 6.371× 106m

≈
√

124.8716× 106
m2

s2
≈11.175× 103

m
s

=11.175
km
s .

And so a rocket needs to have an initial velocity of a little more than
eleven kilometers (about 7 miles) per second to escape the Earth and
never come back down.

Remark.
It’s worth noting that in the example above we were assuming that
no force other than the gravity of the Earth was affecting the rocket.
This means, in particular, the rocket does not continue to burn fuel
to accelerate in our example. Rockets in the real world don’t work
like this, of course. (If they did, you’d basically have one giant ex-
plosion when the rocket first took off, and then let all of that initial
velocity do all of the work.) In reality, rockets continually burn fuel,
and many space-bound rockets burn fuel in stages, dumping booster
rockets as they get higher into the air to make the rocket lighter so
that less fuel is needed. This fact will be familiar to anyone who has
played Kerbal Space Program.

2.4 Existence and uniqueness of solutions
We now discuss some theoretical issues that we have side-stepped regard-
ing the existence and uniqueness of solutions of initial value problems.
Along the way we’ll have to make a short excursion into multivariable
calculus in order to define partial derivatives, which are needed to pre-
cisely state some of our theorems.
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We begin, though, by stating a theorem which we have essentially al-
ready seen how to prove, just to set the stage for what’s to come.

Theorem 2.1.
Suppose p and q are continuous functions defined in an open interval (a, b),
and let x0 be any value in (a, b). Then for any first-order linear differential
equation

dy

dx
+ p(x)y = q(x)

any number x0 in (a, b), and any real number y0 there exists a unique func-
tion f(x) defined on (a, b) such that y = f(x) solves the differential equa-
tion above as well as the initial condition f(x0) = y0.

Proof.
We have already seen that a solution exists and can be computed
using an integrating factor. For uniqueness of the solution, suppose
there were two different solutions, say f(x) and g(x). We would then
have

f ′(x) + p(x)f(x) = q(x), and
g′(x) + p(x)g(x) = q(x).

Since the left-hand sides of both equations equal q(x), they must
equal one another and so we have

f ′(x) + p(x)f(x) = g′(x) + p(x)g(x).

Now let µ(x) be the integrating factor, µ(x) = e
´
p(x) dx. Multiplying

both sides of the equation by the integrating factor gives us

µ(x)f ′(x) + p(x)µ(x)f(x) = µ(x)g′(x) + p(x)µ(x)g(x)

which we may rewrite as

d

dx
µ(x)f(x) =

d

dx
µ(x)g(x).
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Integrating both sides gives us that

µ(x)f(x) = µ(x)g(x) + C

for all x and some choice of C. Notice, though, since both f(x) and
g(x) solve our initial value problem we must have

µ(x0)f(x0) = µ(x0)g(x0) + C

which becomes
µ(x0)y0 = µ(x0)y0 + C

and so we must have C = 0. Thus µ(x)f(x) = µ(x)g(x) and since
µ(x) is never equal to zero (since it’s defined as e

´
p(x) dx), we can

divide through by µ(x) and we have that f(x) = g(x).

So, we can always solve linear, first order initial value problems, and
we can do this explicitly. We have seen that for non-linear differential
equations we can sometimes solve the equations implicitly (e.g., this oc-
curs in the case of separable equations), but we may not be able to find an
explicit solution. Still, the question remains whether solutions are even
guaranteed to exist or not. Is there a theorem analogous to Theorem 2.1
for non-linear equations? To answer this we need to know a little bit about
partial derivatives.

Recall that for a function of one variable f(x), the derivative of f at x0
is defined as

f ′(x0) = lim
x→x0

f(x)− f(x0)
x− x0

= lim
h→0

f(x0 + h)− f(x0)
h

.

For a function of two variables, f(x, y), the partial derivative of f at
(x0, y0) with respect to x is defined similarly to the derivative of a func-
tion of one variable, except we leave the y-value in the function alone.
This quantity we are about to describe is often denoted as fx(x0, y0) or
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∂f
∂x

∣∣∣∣
(x0,y0)

,

fx(x0, y0) =
∂f

∂x

∣∣∣∣
(x0,y0)

= lim
x→x0

f(x, y0)− f(x0, y0)
x− x0

= lim
h→0

f(x0 + h, y0)− f(x0, y0)
h

.

The partial derivative with respect to y is defined similarly:

fy(x0, y0) =
∂f

∂y

∣∣∣∣
(x0,y0)

= lim
y→y0

f(x0, y)− f(x0, y0)
x− x0

= lim
h→0

f(x0, y0 + h)− f(x0, y0)
h

.

We can compute these partial derivatives using our “usual” calculus
rules, but we keep the other variable constant. That is, when differentiat-
ing with respect to x, we treat y as a constant; when differentiating with re-
spect to y, we treat x as a constant. For example, if f(x, y) = xy2+x3 sin(y),
then

∂f

∂x
= y2 + 3x2 sin(y)

∂f

∂y
= 2xy + x3 cos(y)

With partial derivatives at our disposal, we can now state a general
theorem concerning the existence and uniqueness of solutions of initial
value problems.

Theorem 2.2.
Suppose g(x, y) is a function of two variables defined on the open rectangle
(a, b)×(c, d) in the plane, and suppose also that both g(x, y) and its partial
derivative with respect to y, ∂g

∂y
, are continuous on this rectangle. Then for

any (x0, y0) ∈ (a, b)×(c, d) there exists a function f(x) defined on an open
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interval (x0 − δ, x0 + δ) solving the first-order differential equation

dy

dx
= g(x, y)

and satisfying the initial condition f(x0) = y0.

The proof of this theorem is considerably more complicated than the
proof of Theorem 2.1 above. The idea behind the proof is to show that any
putative solution to the differential equation must satisfy a certain type of
integral equation, and then construct a sequence of functions solving that
integral equation in such a way that their limit also solves the differential
equation. This is a rather technical process, so we won’t say any more
about the details of the proof in this class, though we will certainly rely
on Theorem 2.2.

Remark.
Details of the proof can easily be looked up online, however, if you’re
curious; just Google for proof of the Picard-Lindelöf theorem.

Though the theorem (and its proof) do not describe an effective way of
computing the solution of a general first-order initial value problem, they
do at least promise us the existence of such a solution. The theorem tells
us that for some interval around our x0-coordinate in the initial condition,
a solution to the initial value problem will exist as long as g and ∂g

∂y
are both

continuous “near” the point (x0, y0). Exactly what that interval where a
solution is defined is depends heavily on the differential equation and its
initial condition. For non-linear differential equations there’s no simple
formula for even determining the size of this interval in general.

For linear differential equations, on the other hand, we see that a so-
lution to

dy

dx
+ p(x)y = q(x), y(x0) = y0

exists in largest interval around x0 where both p and q are continuous.
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Example 2.10.
For what interval does the initial value problem

(x− 3)
dy

dx
+ ln(x)y = 2x, y(1) = 2

have a solution?
Writing this as

dy

dx
+

ln(x)

x− 3
y = 2x

we see we need the interval around 1 where ln(x)
x−3 are both continu-

ous. Since 2x is a polynomial it is continuous everywhere, whereas
the function ln(x)

x−3 is continuous in (0, 3) ∪ (3,∞). Hence the initial
value problem will be solved in the interval (0, 3). Notice we did not
need to actually solve the differential equation in order to determine
where the solution would be defined.

2.5 Autonomous equations, the logistic
equation, and equilibria

Autonomous equations
We now consider another family of first-order differential equations that
arise in many applications: the “autonomous” equations. We say a dif-
ferential equation of the form

dy

dx
= p(y)

where p is a function only of y, not of x, an autonomous differential equa-
tion. For example, a differential equation such as

dy

dx
= ry

which appeared when we discussed half-life and radioactive decay is au-
tonomous. Using one of the techniques discussed earlier, such as how to
solve separable equations, we see that the solution to dy

dx
= ry is given by

y = y0e
rt
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where y0 is the value of y(0). This equation, y = y0e
rt models “exponential

growth” or “exponential decay,” depending on whether r is positive or
negative.

One application of such equations occurs in population dynamics. For
example, many populations (animals, plants, fungi, bacteria, ...) experi-
ence exponential growth under ideal conditions.

As an example, consider the number of yeast cells that are in a batch
of fermenting beer. These number of yeast cells grows at a rate that’s
proportional to the current number of yeast cells. E.g., if the yeast cells
reproduce asexually by “budding” (where one yeast cell creates a “bud”
that becomes another yeast cell), then how quickly the number of yeast
cells grows depends on how many yeast cells we currently have, and this
is exactly the kind of situation described above.

To be particular, let’s suppose that after pitching yeast into our “wort”
(the unfermented sugary liquid that will eventually become beer) we
have 100,000 yeast cells. If our strain of yeast is known to triple every
day, how many yeast cells will there be after t days?

Letting y denote the number of yeast cells in our fermenting beer, we
are told in the statement of the problem that y(0) = 100, 000 and since the
cells triple each day, we have y(1) = 300, 000. Now, since the growth rate
of the number of yeast cells is proportional to the current number of cells,
the population size y satisfies an equation of the form

dy

dt
= ry.

This equation is solved by

y = 100, 000ert.

Since we know that y(1) = 300, 000, we can perform some simple algebra
to determine r:

y(1) = 300, 000

=⇒ 100, 000er = 300, 000

=⇒ er = 3

=⇒ r = ln(3).

Thus the total number of yeast cells after t days is

y = 1000, 000eln(3)t = 100, 000 · 3t.
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After 36 hours (1.5 days), for example, the number of yeast cells is

y(1.5) = 100, 000 · 31.5 ≈ 519, 615.

Of course, in the above we were assuming our yeast cells could con-
tinue to reproduce at this rate forever, which isn’t realistic. Eventually the
yeast will devour all of the sugar in our wort, and without sugar to me-
tabolize the yeast will not be able to continue reproducing. (On this plus
side this means fermentation is over and our beer is ready!)

More generally, as the amount of unconsummed sugar in our ferment-
ing beer starts to dwindle, less yeast will be able to find sugar to consume
and fewer yeast cells will be able to reproduce. That is, the rate at which
the yeast reproduces will slow down over time.

The logistic equation
We can modify our earlier differential equation to account for this. In
particular, we may ask that the constant of proportionality – the r in dy

dt
=

ry – be a function of y, and so our earlier equation becomes replaced by
an equation of the form

dy

dx
= h(y) · y.

In our situation we may want our functionh(y) to satisfy a few reasonable-
sounding properties:

• When the population of yeast is as small as possible there are maxi-
mum resources available, and so we may ask that h(0) = r for some
constant r.

• For some maximum number of yeast cells, let’s call this maximum
number K, the population size can’t grown any more and we may
want h(K) = 0.

• As long as we have not yet reached our maximum possible size, the
number of yeast cells should continue to grow, even if the growth is
slow. That is, we may want h(y) > 0 for 0 < y < K.

Let’s notice that the three conditions above are basically just saying that
that the rate of growth of our yeast cells is the fastest when there are
very few yeast cells (as there are more resources available for the cells to
consume), and then the rate of growth decreases as the population size
grows, and finally stops once we reach some maximum population size.
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There are several possible functions for what the h(y) could be, but
perhaps the simplest possibility is the function whose graph is a line seg-
ment through (0, r) and (K, 0).

y

h

K

r

The slope of this line is simply
0− r
K − 0

=
−r
K

and so the function h(y) is

h(y) =
−r
K
y + r

= r

(
−y
K

+ 1

)
= r

(
1− y

K

)
.

Our differential equation is then

dy

dt
= r

(
1− y

K

)
y.

This particular autonomous differential equation is an example of what’s
known as a logistic equation which is often used to model the growth in a
population that can’t grow indefinitely. The value K is sometimes called
the carrying capacity and represents the largest possible population that
can be sustained, while r is called the intrinsic growth rate and represents
the fastest possible growth rate.

In our yeast example, let’s again suppose the intrinsic growth rate is
ln(3), corresponding to the yeast tripling every day under ideal condi-
tions, and the carrying capacity is two million yeast cells. Starting off
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with 100,000 yeast cells initially we would have the following initial value
problem:

dy

dt
= ln(3) ·

(
1− y

2× 106

)
y, y(0) = 1× 105.

This is a separable differential equation, and in principle is something
we can solve. We’ll see how to solve these logistic equations shortly, but
for the purposes of our example let’s just go ahead and mention that the
solution will be

y =
100, 000 · 2, 000, 000

100, 000 + (2, 000, 000− 100, 000)e− ln(3)t

=
2× 1011

1× 105 + 1.9× 106 · 3−t
.

After 1.5 days (36 hours), the total number of yeast cells in our fermenting
beer would then be about

y(1.5) ≈ 4.295× 105

so a little less than half a million cells. (Notice this is fewer cells than the
number we had in our earlier example since the growth rate of cells slows
over time.)

Let’s now make some general observations about solutions to our gen-
eral logistic equation,

dy

dt
= r

(
1− y

K

)
y.

Notice that certain values of y will make dy
dt

= 0. Just from our obser-
vations before, we see that y = 0 and y = K will both make dy

dt
= 0.

The “intuitive” reason for this is that our population size can’t grow if
the population size is zero (e.g., if there are no yeast cells to begin with
we don’t magically suddenly have more yeast cells); and by construction
we’re setting things up so that the population does not grow if we reach
our carrying capacity of K. Notice that these are exactly the roots of the
polynomial on the right-hand side of the equation,

r
(
1− y

K

)
y.

If it happened to be that our initial condition was y(0) = 0 or y(0) =
K, then the solution to the initial value problem would be the constant
function y(t) = 0 or y(t) = K (depending on which initial condition
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we had), since the derivative is zero. Solutions such as this which are
constant for all time are called equilibrium solutions of the differential
equation.

Notice also that if y > K, then dy
dt

would be negative since y
K
> 1. (At

least, assuming r is positive which it should be for problems where we
model population growth since r represents the intrinsic growth rate).
This means that if we start with a population that’s higher than the carry-
ing capacity, our population will shrink since the environment can’t sup-
port more individuals than the carrying capacity. (E.g., our yeast cells
would die off if we put too many into our beer and they couldn’t all find
sugar to consume.) For any y(0) between 0 andK, however, we will have
dy
dt
> 0 and so the population will continue to increase until it approaches

the carrying capcity.
If we were to graph solutions y = f(t) to our logistic equation for

various initial values, what would we see? Put another way, what do the
integral curves of the slope field associated to the differential equation
look like? Plotting several different solutions for different initial values
y(0) would give us Figure 2.3.

Figure 2.3: Solutions to the logistic equation dy
dt

= r(1− y/K)y.

In Figure 2.3 we have plotted integral curves to solutions of the logis-
tic equation for various choices of the initial condition y(0). The solutions
corresponding to initial conditions y(0) = K and y(0) = 0 are plotted
in thick blue; notice these solutions remain constant, since as we noted
above for these initial conditions we would have dy

dt
= 0. All of the other

solutions, however, converge towards the solution y = K and away from
the solution y = 0. The intuitive reason for this is that for any other pop-
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ulation size, the population either grows towards K (if y(0) < K), or
shrinks towards K (if y(0) > K)

Solving the logistic equation
Now we turn our attention to seeing how to solve the logistic equation,

dy

dt
= r

(
1− y

K

)
y.

Notice this is a separable equation, which we may rewrite as
1(

1− y
K

)
y

dy

dt
= r.

We then integrate both sides,
ˆ

1(
1− y

K

)
y
dy =

ˆ
r dt.

The right hand side is of course very easy:
ˆ
r dt = rt+ C.

The left hand side, however, requires partial fractions:
1(

1− y
K

)
y
=

a

1− y
K

+
b

y

=
ay + b

(
1− y

K

)(
1− y

K

)
y

=

(
a− b

K

)
+ b(

1− y
K

)
y
.

This leads us to the system of equations

a− b

K
= 0

b = 1.

Of course since b = 1, we see a = 1
K

and we can now compute the integral
by rewriting it as

ˆ
1(

1− y
K

)
y
dy =

ˆ
1/K

1− y
K

dy +

ˆ
1

y
dy.
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The second term is simply ´ 1
y
dy = ln |y|. For the first term, we perform

the substitution
u = 1− y

K
, du =

−1
K

dy.

The integral then becomes − ´ 1
u
du = − ln |u|, and so

ˆ
1/K

1− y
K

dy = − ln
∣∣∣1− y

K

∣∣∣ .
Putting all of this together we have

− ln
∣∣∣1− y

K

∣∣∣+ ln |y| = rt+ C.

Taking advantage of properties of logarithms we may write this as

ln

∣∣∣∣ y

1− y
K

∣∣∣∣ = rt+ C.

Exponentiating each side yields∣∣∣∣ y

1− y
K

∣∣∣∣ = ert+C = Cert.

We can now easily drop the absolute values to pick up a ± which is ab-
sorbed into the C,

y

1− y
K

= Cert.

Now we can solve for y without too much trouble:
y

1− y
K

= Cert

=⇒ y = Cert
(
1− y

K

)
= Cert − Cert

K
y

=⇒ y +
Cert

K
y = Cert

=⇒ y

(
1 +

Cert

K

)
= Cert

=⇒ y =
Cert

1 + Cert

K

=
KCert

K + Cert
=

CK

Ke−rt + C
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Now, given an initial population size y(0) = y0, we still need to find the
corresponding value of C, but of course this is just algebra:

y0 =
CK

K + C

=⇒ CK = y0K + y0C

=⇒ CK − y0C = y0K

=⇒ C(K − y0) = y0K

=⇒ C =
y0K

K − y0
.

Thus for an initial population size of y0, the size of the population at time
t will be

y =
CK

Ke−rt + C

=

(
y0K
K
− y0

)
·K

Ke−rt + y0K
K−y0

=

(
y0K
K−y0

)
·K(

K(K−y0)e−rt+y0K
K−y0

)
=

y0K

(K − y0)e−rt + y0
.

Notice that, provided y0 is not zero, the limit as t goes to infinity is

lim
t→∞

y0K

(K − y0)e−rt + y0
= K.

So, any solution, except the equilibrium solution y = 0, gets attracted
to the solution y = K, as we had noticed in the picture of integral curves
above. For this reason, y = K is called the asymptotically stable solution.
Conversely, every solution exception y = 0 is repelled away from y = 0,
and so we call y = 0 the unstable equilibrium solution.

A very simple change to our differential equation can reverse the roles
of stable and unstable equilibria. If we negate the right-hand side of our
earlier logistic equation to obtain

dy

dt
= −r

(
1− y

T

)
y

(we also changed the K to a T for reasons that will be explained in a
moment) then our integral curves appear as in Figure 2.4.
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Figure 2.4: The modified logistic equation has has the roles of asymptoti-
cally stable and unstable equilibria reversed.

In terms of populations, in this system we have some threshhold level
T below which no growth is possible and the population size shrinks to
zero. Above the threshhold level, however, the population size grows
exponentially.

The same sort of separation of varaiables and integration from before
can be used to solve our modified logistic equation, and an initial popu-
lation size of y0 will yield the solution

y =
y0T

y0 + (T − y0)ert
.

We see here that as t goes to infinity, the long term, asymptotic behavior
again depends on y0), and y = T and y = 0 as the equilibria solutions.

Notice that, in fact, the population blows up yo infinity in a finite
amount of time, since the denominator can become zero in our solution
to the differential equation. If we wish to disallow this from happening,
we can combine our original and modified logistic equations to obtain a
model for population size where no growth occurs below the threshhold
T (e.g., if there are too few organisms to reproduce quickly enough, the
population size may shrink), but where we also have a maximum carry-
ing capactiy of K:

dy

dt
= −r

(
1− y

T

)(
1− y

K

)
y

where we assume r > 0 and 0 < T < K. Notice here there weill be three
equilibrium solutions, y = 0, y = T , and y = K (these three values will
make dy

dt
= 0).
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Plotting dy
dt

we have the following:

Notice that our graph is below the horizontal axis, meaning dy
dt
< 0, when

y is between 0 and T . This means that our derivative will be negative,
and so y is shrinking. If T < y < K, however, we have dy

dt
is positive and

so the population size is growing. Notice that the population size will
change and move away from T if it not equal to T , and so y = T is an
asymptotically unstable equilibrium. However, y = 0 and y = K are both
asymptotically stable equilibria, since the population size will converge
to those values.

2.6 Exact equations
At this point we really only know how to solve two types of first-order
ordinary differential equatinos: the linear and separable equations. We
now begin extending our repertoire of “solvable” differential equations
by considering a special family of differential equations which are neither
linear nor separable. To do this, though, we’ll need to know a little bit of
multivariable calculus.

Some multivariable calculus
Recall that if f(x, y) is a function of two variables, then the partial deriva-
tives of f with respect to x, denoted ∂f

∂x
or fx, is obtained by treating y as a

constant in our derivative rules. Similarly, the partial derivative of f with
respect to y, denoted ∂f

∂y
or fy, is obtained by treating x as a constant and

then applying the dervative rules.
For example, if

f(x, y) = x2y +
√
y − xy,
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then
∂f

∂x
= 2xy − yxy−1

∂f

∂y
= x2 +

1

2
√
y
− xy ln(x)

We can likewise reverse the process of partial differentiation by inte-
grating, keeping the “other” variable (the one we’re not integrating) con-
stant. Recall that when we integrate a function of one variable we pick
up a “+C” as a constant of integration. The reason for this “+C” is that
the derivative of a constant is zero. When we perform partial differen-
tiation on a function of two variables, any expression involving only the
“other” variable (the one we are not differentiating with respect to) will
go to zero. For example, when differentiating f(x, y) = x2y +

√
y − xy

with respect to x above, the√y term had derivative zero since it depends
only on y which we are treating as a constant. Thus when we integrate
with respect to x, we should pick up an arbitrary function of y instead of
a constant; and when we integrate with respect to y, we should pick up
an arbitrary function of x.

For example, if we integrate xy2 + cos(xy) with respect to x we obtain
ˆ (

xy2 + cos(xy)
)
dx =

x2y2

2
+

sin(xy)

y
+ g(y),

but integrating with respect to y yields
ˆ (

xy2 + cos(xy)
)
dy =

xy3

3
+

sin(xy)

x
+ h(x).

Notice that if we perform partial differentation of these expressions
with respect to the variable we just integrated, we get back the expression
we started with:

∂

∂x

(
x2y2

2
+

sin(xy)

y
+ g(y)

)
= xy2 + cos(xy)

∂

∂y

(
xy3

3
+

sin(xy)

x
+ h(x)

)
= xy2 + cos(xy)

The multivariable chain rule
If x and y are functions of some other variable t, x(t) and y(t), then any
function of x and y is also a function of t. That is, a function of two vari-
ables f(x, y) becomes a function of just t, f(x(t), y(t)). Hence it makes
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sense to discuss the (ordinary) derivative of this function with respect to
t, d
dt
f(x(t), y(t)). The multivariable chain rule says that this derivative can

be computed in terms of the partial derivatives of f with respect to x and
y. In particular, we have

d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

For example, if
f(x, y) = x2y − x sin(y)

and if
x(t) = t3, and y(t) = 2t,

then
d

dt
f(x(t), y(t)) = (2xy − sin(y)) · 3t2 +

(
x2 − x cos(y)

)
· 2

=
(
2t3 · 2t− sin(2t)

)
· 3t2 +

(
t6 − t3 cos(2t)

)
· 2.

Remark.
If you’ve taken some linear algebra, you might be interested to learn
that this formula for the multivariable chain rule is really matrix
multiplication in disguise. In particular, a function f : R2 → R has
total derivative given by the 1× 2 matrix,(

∂f
∂x

∂f
∂y

)
whereas the function x(t) and y(t) define a function g : R → R2 by
g(t) = (x(t), y(t)), and the total derivative is the 2× 1 matrix, dx

dt

dy
dt
.


The general chain rule says that the derivative of the composition
f ◦ g, which is exactly our function f(x(t), y(t)), is obtained by mul-
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tiplying these two derivatives together,

(
∂f
∂x

∂f
∂y

) dx
dt

dy
dt
.

 =
d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Notice that if y is a function of x, then f(x, y) is really a function just
of x, f(x, y(x)). By the multivariable chain rule this becomes

d

dx
f(x, y(x)) =

∂f

∂x
+
∂f

∂y
· dy
dx
.

For example, if f(x, y) = xy2 + y − x and y = sin(x), then the above
formula tells us

d

dx
f(x, y(x)) = y2 − 1 + (2xy + 1) cos(x)

= sin2(x)− 1 + (2x sin(x) + 1) cos(x)

= sin2(x)− 1 + 2x sin(x) cos(x) + cos(x)

Exact equations
With these facts from calculus in mind, let’s consider the following differ-
ential equation:

x2y + y2 +

(
x3

3
+ 2xy

)
dy

dx
= 0.

This equation is obviously not linear, and (perhaps less obviously) not
separable. So, how can we solve this equation? The next step we’ll per-
form is not immediately obvious, though we’ll see where it comes from
soon.

Let’s notice that the function

ψ(x, y) =
x3y

3
+ xy2

has the property that

ψx(x, y) = x2y + y2

ψy(x, y) =
x3

3
+ 2xy.
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With this in mind, our differential equation may be written as

ψx + ψy
dy

dx
= 0.

Since our differential equation is first order and everything is continuous,
it must have a solution. That is, y is some function of x. By the multivari-
able chain rule, this means our differential equation may be written as

d

dx
ψ(x, y) = 0,

or more explicitly,
d

dx

(
x3y

3
+ xy2

)
= 0.

Integrating both sides of this equation gives us

x3y

3
+ xy2 = C

and this implicitly defines y as a function of x solving the differential
equation.

What happened above was that we recognized that there was a func-
tion ψ with the special property that our differential equation could be
written as

ψx + ψy
dy

dx
= 0.

The multivariable chain rule then said we could write this as
d

dx
ψ = 0

and integrating both sides showed that the level curves

ψ(x, y) = C

solve the differential equation.
Of course in the example above the ψ appeared out of the blue. How

can we go about finding a ψ in general, or determining if such a ψ even
exists? The key to answering this is the following theorem from multi-
variable calculus.
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Theorem 2.3 (Clairaut’s theorem).
If ψ(x, y) is a continuous function defined in a rectangle (a, b)×(c, d) (that
is, in the set of (x, y) points satisfying a < x < b and c < y < d), and if
the second-order partial derivatives of ψ are defined and continuous in that
rectangle, then we must have ψxy = ψyx.

As a consequence of Clairaut’s theorem, if we have a differential equa-
tion of the form

M(x, y) +N(x, y)
dy

dx
= 0

and we want to find a ψ such that ψx = M and ψy = N (if such ψ exists,
then by the argument above we have that the level curvesψ(x, y) = C give
implicit solutions to our differential equation), then Clairaut’s theorem
tells us we must have

My = Nx

as this is equivalent to ψxy = ψyx.
As another example, consider the differential equation

3x2 − 2xy + 2 +
(
6y2 − x2 + 3

) dy
dx

= 0.

Is it possible to find a function ψ(x, y) such that

ψx = 3x2 − 2xy + 2

ψy = 6y2 − x2 + 3

If so, then the differential equation above could be rewritten as

ψx + ψy
dy

dx
= 0

=⇒ d

dx
ψ(x, y) = 0

Integrating both sides of the equation with respect to x tells us that the
differential equation would have implicit solutions given by

ψ(x, y) = C.

But, the question still remains if there is in fact a ψ whose partial deriva-
tives the required functions. Clairaut’s theorem would tell us that if such
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a ψ existed then we’d need ψxy = ψyx, and in this example that means we
would require

∂

∂y

(
3x2 − 2xy + 2

)
=

∂

∂x

(
6y2 − x2 + 3

)
,

and it’s easy to see that this equation holds since both partial derivatives
will equal 2x.

If it turned out these partial derivatives did not agree, then that would mean
there is no ψ with the required properties! Since the partial derivatives did
agree, there is some hope such a ψ could exist, and now we try to deter-
mine what that ψ might be.

Since that function ψ would have to satisfy ψx = 3x2− 2xy+2, we can
try to compute ψ by working backwards and integrating ψx with respect
to x, which would give us

ψ(x, y) =

ˆ
ψx dx

=

ˆ (
3x2 − 2xy + 2

)
dx

= x3 − x2y + 2x+ h(y).

We know that ψy should equal 6y2 − x2 + 3, and we can use this to try to
compute what h(y) must be. That is, if

ψ(x, y) = x3 − x2y + 2x+ h(y)

then by differentiating this expression we can compute

ψy = −x2 + h′(y),

but we ψy should be 6y2 − x2 + 3. Thus we can equate these expressions
and solve for h′(y):

− x2 + h′(y) = 6y2 − x2 + 3

=⇒ h′(y) = 6y2 + 3.

We need to compute h(y), but we know that h′(y) = 6y2+3, so we can now
integrate to compute h(y) = 2y3 + 3y + C. That is, we claim the function

ψ(x, y) = x3 − x2y + 2x+ 2y3 + 3y + C
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has our desired properties, which we can easily double-check:

ψx(x, y) =
∂

∂x

(
x3 − x2y + 2x+ 2y3 + 3y + C

)
= 3x2 − 2xy + 2

ψy(x, y) =
∂

∂y

(
x3 − x2y + 2x+ 2y3 + 3y

)
= −x2 + 6y2 + 3.

Putting all of this together, our original differential equation,

3x2 − 2xy + 2 +
(
6y2 − x2 + 3

) dy
dx

= 0

may be written as
ψx(x, y) + ψy(x, y)

dy

dx
= 0

which we can further rewrite, by the multivariable chain rule, as
d

dx
ψ(x, y) = 0.

(In fact, differentiating ψ(x, y) – thinking of y as some unknown function
of x, y(x), so we’re really differentiating ψ(x, y(x)) – gives us back the
original differential equation.) Integrating both sides of the equation tells
us the differential equation is solved implicitly by

ψ(x, y) = C.

Here let’s notice we had a C that appeared earlier in our h(y) when we
integrated, and aC in this equation above as well. These are arbitraryC’s,
so we can combine them together as one C, and our differential equation
is solved implicitly by

x3 − x2y + 2x+ 2y3 + 3y = C.

The process we’ve described through our examples above generalizes.
In general, we say that a first-order differential equation of the form

M(x, y) +N(x, y)
dy

dx
= 0

is said to be exact if there exists a function ψ such that ψx = M and ψy =
N . Exact differential equations are solved implicitly by ψ(x, y) = C. Of
course, the question that we should address now is how do we know if a
given differential equation

M(x, y) +N(x, y)
dy

dx
= 0



CHAPTER 2. FIRST ORDER ODES 91

is exact or not – i.e., how do we know that there exists a ψ with ψx = M
and ψy = N . Of course, Clairaut’s theorem provides one important piece
of the puzzle, but is it enough? That is, is knowing My = Nx enough to
conclude the equation is exact? In general, no: there do exist functions
M and N such that My = Nx, yet no ψ with ψx = M and ψy = N exist.
However, the following theorem tells us that if our functions M and N
are defined in a “nice enough” domain, such a ψ is guaranteed to exist.

Theorem 2.4.
Suppose that functionsM(x, y) andN(x, y) are continuous and have con-
tinuous partial derivatives defined in a rectangle (a, b)×(c, d). IfMy = Nx,
then the differential equation

M(x, y) +N(x, y)
dy

dx
= 0

is exact. That is, there exists a function ψ(x, y) with ψx = M and ψy =
N , so solutions to the differential equation are provided (implicitly) by
ψ(x, y) = C.

Remark.
When we mention a rectangle (a, b) × (c, d) above, this includes the
infinite rectangle, (−∞,−∞) × (∞,∞), which is the entire (x, y)-
plane.

Functions satisfying the condition that their first partial derivatives for
each variable exist and are continuous are often referred to as C1 func-
tions.

Example 2.11.
Find the implicit solution to the following initial value problem:

2xy + y2 − 2 +
(
x2 + 2xy + 3

) dy
dx

= 0, and y(2) = 3.
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Notice ouf M and N functions here are simply polynomials, and
so they are defined and continuous everywhere, and their partial
derivatives are defined and continuous everywhere as well (since
these will be polynomials too).

We first check if the partial derivatives agree in the way they are
required to for an equation to be exact:

∂

∂y

(
2xy + y2 − 2

)
= 2x+ 2y

∂

∂x

(
x2 + 2xy + 3

)
= 2x+ 2y

By Theorem 2.4 above, there must exist a ψ so that the level curves
ψ(x, y) = C represent solutions to our differential equation. To find
such a ψ we integrate its partial derivatives, which by Theorem 2.4,
we know correspond to terms of our differential equation.

ψ(x, y) =

ˆ
ψx dx

=

ˆ (
2xy + y2 − 2

)
dx

= x2y + xy2 − 2x+ h(y).

As we require ψy(x, y) = x2 + 2xy + 3, we must have the following:

∂

∂y
ψ(x, y) = x2 + 2xy + 3

=⇒ ∂

∂y

(
x2y + xy2 − 2x+ h(y)

)
= x2 + 2xy + 3

=⇒ x2 + 2xy + h′(y) = x2 + 2xy + 3

=⇒ h′(y) = 3

=⇒ h(y) = 3y.

Thus our ψ(x, y) is

ψ(x, y) = x2y + xy2 − 2x+ 3y.

Let’s quickly double check that

x2y + xy2 − 2x+ 3y = C
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would give a solution to our differential equation by differentiating
both sides of the equation with respect to x:

x2y + xy2 − 2x+ 3y = C

=⇒ d

dx

(
x2y + xy2 − 2x+ 3y

)
=

d

dx
C

=⇒ 2xy + x2
dy

dx
+ y2 + 2xy

dy

dx
− 2 + 3

dy

dx
= 0

=⇒ 2xy + y2 − 2 +
(
x2 + 2xy + 3

) dy
dx

= 0.

Our differential equation is thus (implicitly) solved. To solve the
initial value problem, we simply need to find the choice of C so that
the point (2, 3) is on the curve

x2y + xy2 − 2x+ 3y = C.

This is a simple matter of plugging in x = 2, y = 3 and computing
C:

22 · 3 + 2 · 32 − 2 · 2 + 3 · 3 = C

=⇒ C = 35.

And so the implicit solution to our initial value problem is

x2y + xy2 − 2x+ 3y = 35.

Sometimes we can take a non-exact equation and modify it to become
an exact equation. For instance, consider the differential equation

(x+ 2) sin(y) + x cos(y)
dy

dx
= 0.

Notice this equation is not exact:
∂

∂y
(x+ 2) sin(y) = (x+ 2) cos(y)

∂

∂x
x cos(y) = cos(y)

Notice, however, if we were multiply through by the function xex, the
differential equation becomes

xex(x+ 2) sin(y) + xex · x cos(y)dy
dx

= 0,
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or simply (
x2ex + 2xex

)
sin(y) + x2ex cos(y)

dy

dx
= 0,

and this equation is exact:

∂

∂y

(
x2ex + 2xex

)
sin(y) =

(
x2ex + 2xex

)
cos(y)

∂

∂x
x2ex cos(y) =

(
x2ex + 2xex

)
cos(y)

The choice to multiply by xex seems out of the blue right now, but we’ll
see where it came from soon. Let’s notice, though, that since the partial
derivatives and everything is continuous and defined everywhere, Theo-
rem 2.4 tells us there must exist a function ψ(x, y) whose partial deriva-
tives are the terms in our modified differential equation,

ψx =
(
x2ex + 2xex

)
sin(y)

ψy = x2ex cos(y).

To find such a ψ we can compute either ´ ψx dx or ´ ψy dy. Here the inte-
gral with respect to y is slightly easier:

ψ(x, y) =

ˆ
ψy dy

=

ˆ
x2ex cos(y) dy

= x2ex sin(y) + g(x).

Now we need to determine the correct choice of g(x) by noting

∂

∂x
ψ(x, y) =

(
x2ex + 2xex

)
sin(y)

=⇒ ∂

∂x

(
x2ex sin(y) + g(x)

)
=
(
x2ex + 2xex

)
sin(y)

=⇒
(
x2ex + 2xex

)
sin(y) + g′(x) =

(
x2ex + 2xex

)
sin(y)

=⇒ g′(x) = 0.

Hence g(x) is just a constant, and any constant will suffice, so we may as
well take g(x) = 0.

So, the equation
x2ex sin(y) = C
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solves our modified differential equation,
(
x2ex + 2xex

)
sin(y) + x2ex cos(y)

dy

dx
= 0,

but (perhaps surprisingly) it also solves our original differential equation
because we can cancel out the xex. That is, if we take our implicit solution
above and differentiate it, then we have

x2ex sin(y) = C

=⇒ d

dx
x2ex sin(y) =

d

dx
C

=⇒ 2xex sin(y) + x2ex sin(y) + x2ex cos(y)
dy

dx
= 0

=⇒ xex(2 + x) sin(y) + xex · x cos(y)dy
dx

= 0

Notice, though, that since each term on the left-hand side has a factor of
xex and the right-hand side is zero, by dividing by xex on both sides we
arrive at our original differential equation,

(x+ 2) sin(y) + x cos(y)
dy

dx
= 0

and so x2ex sin(y) = C also solves the original equation!
What we did above was take a non-exact equation and turn into an

exact equation by multiplying through by some function. Can we always
do this? If not always, are there special instances when we can? How do
we find the right function to multiply by?

In general, suppose we have a differential equation of the form

M(x, y) +N(x, y)
dy

dx
= 0

which is not exact. We seek a function µ(x, y) such that if we multiply
through bo µ to obtain

M(x, y)µ(x, y) +N(x, y)µ(x, y)
dy

dx
= 0,

then this new modified equation is exact. Such a function µ, if it exists, is
called an integrating factor for our differential equation.
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If an integrating factor µ exists, notice that means we must have

∂

∂y
µ(x, y)M(x, y) =

∂

∂x
µ(x, y)N(x, y).

Applying the product rule this gives us

µyM + µMy = µxN + µNx

=⇒ µyM + µMy − µxN − µNx = 0

=⇒ µyM − µxN + (My −Nx)µ = 0.

So, µ must satisfy a certain (partial) differential equation. For our pur-
poses right now this means we usually won’t be able to solve this equation
since this course is about ordinary differential equations and not partial
differential equations. There is, however, one special case when we can
find the µ.

Though in general the µ we need will be a function of both x and y,
our example above shows that it may sometimes be a function just of x
(or just of y). If that happens, our partial differential equation above

µyM − µxN + (My −Nx)µ = 0

simplifies since µy will be zero. Writing µx = dµ
dx

, we then have

− dµ

dx
N + (My −Nx)µ = 0

=⇒ dµ

dx
=
My −Nx

N
µ.

Keeping in mind that we are assuming µ is a function only of x, its deriva-
tive dµ

dx
must also be a function only of x, which means that the right-hand

side of the equation is a function only of x, and so in particular the ex-
pression

My −Nx

N

must be a function only of x. If that’s the case, then our differential equa-
tion involving µ above,

dµ

dx
=
My −Nx

N
µ

is both linear and separable, and so its something we can solve.
To summarize the above discussion, if M + n dy

dx
= 0 is not exact but

the expression My−Nx
N

depends only on x, then there exists an integrating



CHAPTER 2. FIRST ORDER ODES 97

factor µ such that µM + µN dy
dx

= 0 is exact, and we can find µ by solving
dµ
dx

= My−Nx
N

µ.
In our example from before,

(x+ 2) sin(y) + x cos(y)
dy

dx
= 0

notice we have
∂
∂y
(x+ 2) sin(y)− ∂

∂x
x cos(y)

x cos(y)

=
(x+ 2) cos(y)− cos(y)

x
cos(y)

=
x cos(y) + 2 cos(y)− cos(y)

x cos(y)

=
(x+ 1) cos(y)

x cos(y)

=
x+ 1

x
.

Thus the differential we need to solve to find µ is dµ
dx

= x+1
x
µ, but again,

this is separable and so we can solve it:

dµ

dx
=
x+ 1

x
µ

=⇒ 1

µ

dµ

dx
=
x+ 1

x
= 1 +

1

x

=⇒
ˆ

1

µ

dµ

dx
dx =

ˆ (
1 +

1

x

)
dx

=⇒
ˆ

1

µ
dµ =

ˆ (
1 +

1

x

)
dx

=⇒ ln |µ| = x+ ln |x|+ C

=⇒ |µ| = ex+ln |x|+C = exeln |x|eC

=⇒ µ = Cxex.

Since we just need a solution to dµ
dx

= x+1
x

, we can take C = 1 and use
µ = xex. This, of course, is the function we multiplied by in our earlier
example.
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Example 2.12.
Solve the differential equation

3x2y + 2xy + y3 +
(
x2 + y2

) dy
dx

= 0.

Notice this is not a differential equation as

∂

∂y

(
3x2y + 2xy + y3

)
= 3x2 + 2x+ 3y2

∂

∂x

(
x2 + y2

)
= 2x

We check to see if the corresponding My−Nx
N

expression depends only
on x:

3x2 + 2x+ 3y2 − 2x

x2 + y2
=

3x2 + 3y2

x2 + y2
= 3.

Even though this depends on x in a trivial way, it still depends only
on x (i.e., does not involve y), and so we should be able to find an
integrating factor µ to make our differential equation exact. To do
this we need to solve dµ

dx
= 3µ, but this is easily seen to be solved

by µ = e3x. Multiplying through by µ now gives us the differential
equation

e3x
(
3x2y + 2xy + y3

)
+ e3x

(
x2 + y2

) dy
dx

= 0.

We can easily check that this differential equation is in fact exact:

∂

∂y
e3x
(
3x2y + 2xy + y3

)
= e3x

(
3x2 + 2x+ 3y2

)
∂

∂x
e3x
(
x2 + y2

)
= 3e3x

(
x2 + y2

)
+ e3x · 2x

= e3x
(
3x2 + 2x+ 3y2

)



CHAPTER 2. FIRST ORDER ODES 99

We now find ψ by integrating either of its partial derivatives:

ψ =

ˆ
ψy dy

=

ˆ
e3x
(
x2 + y2

)
dy

=

ˆ (
e3xx2 + e3xy2

)
dy

= e3xx2y +
e3xy3

3

=
e3x

3

(
3x2y + y3

)
.

The claim now is that our differential equation is solved implicitly
by

e3x

3

(
3x2y + y3

)
= C

which we can double-check using implicit differentiation:

e3x

3

(
3x2y + y3

)
= C

=⇒ d

dx

e3x

3

(
3x2y + y3

)
=

d

dx
C

=⇒ e3x
(
3x2y + y3

)
+
e3x

3

(
6xy + 3x2

dy

dx
+ 3y2

dy

dx

)
= 0

=⇒ e3x
(
3x2y + y3 + 2xy

)
+ e3x

(
x2 + y2

) dy
dx

= 0

=⇒ 3x2y + y3 + 2xy +
(
x2 + y2

) dy
dx

= 0.

2.7 Practice problems
Problem 2.1. Solve each of the differential equations below.

(a) dy

dx
+ x2y = 0

(b) dy

dx
− 2y = 4− x
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Problem 2.2. Solve each of the initial value problems below. After com-
puting the solution, use Sage to create a plot of the differential equation’s
vector field together with your solution.
(a) dy

dx
= 3y, y(0) = 2

(b) dy
dx

= −y + 7, y(1) = −2

(c) dy

dx
− y = 2xe2x, y(0) = 1

Problem 2.3. Suppose that b(t) represents the number of cells of a certain
strain of bacteria in an infected individual t days after an antiobiotic is
administered changes according to the differential equation

db

dt
=
b− 900

2
.

Supposing the initial number of bacteria is 0 < b0 < 900, at what time will
there be no more bacteria in the individual?
Problem 2.4. Find the general solution to each of the differential equa-
tions below.

(a) dy
dx

= x2

y

(b) dy
dx

= 3x2−1
3+2y

(c) dy
dx

= 4−2x
3y2−5

Problem 2.5. Find the explicit solutions to each initial value problem be-
low.
(a) dy

dx
= 2xy, y(0) = 2e

(b) dy
dx
− 2y + 1 = 0, y(1) = 1

(c) dy
dx

= 6e2x−y, y(0) = 0

Problem 2.6. A tank contains 100 gallons of fresh water, and salt water
with a concentration of 1/2 lb of salt per gallon is poured into the tank
at a rate of two gallons per minute. Simultaneously, well mixed water is
drained from the tank at a rate of two gallons per minute. What is the
concentration of salt in the tank after 10 minutes?
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Problem 2.7. Determine the largest interval where each initial value prob-
lem below is solved.

(a) dy

dx
+

x√
4− x2

y = x2, y(1) = 2

(b) dy

dx
+

x√
4− x2

y =
1

x2
, y(1) = 2

(c) dy

dx
+

1√
1 + x2

y = x2, y(0) = −2

Problem 2.8. For each of the autonomous differential equations below,
create a graph with dy

dt
on the vertical axis and y on the horizontal axis.

Determine the equilibrium solutions of the differential equation (if there
are any), and classify each as either asymptotically stable or asymptoti-
cally unstable. Then use Sage to plot the slope field for the differential
equation and verify that your determination of the stable/unstable equi-
libria is correct.

(a) dy

dt
= y2 − 2y

(b) dy

dt
= y2 − 4

(c) dy

dt
= 4− y2

Problem 2.9. Compute the antiderivative of each of the functions below
with respect to both x and y.
(a) x2y − y + 3x

(b) x
y2+1

Problem 2.10. Determine if there exists a function ψ(x, y) such that ψx
and ψy are the given functions. If such a ψ exists, determine it.

(a) ψx = ex sin(y), ψy = ex cos(y)

(b) ψx = x2, ψy = y2

(c) ψx = 3x2y, ψy = 3xy2

Problem 2.11. Find implicit solutions to each of the initial value problems
below.
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(a) (y + 2x) +
(
x+ 3y2

) dy
dx

= 0 where y(2) = 3

(b) (2 + 3y2 − x sin(xy)
) dy
dx

= y sin(xy)− 2x

1 + x2
where y(0) = 0



3Second order linear differential
equations

Ours, according to Leibniz, is the best of all
possible worlds, and the laws of nature can
therefore be described in terms of extremal
principles. Thus, arising from corresponding
variational problems, the differential equations
of mechanics have invariance properties relative
to certain groups of coordinate transformations.

Carl Ludwig Siegel
Lectures on Celestial Mechanics

We now move on from first-order differential equations to second-
order differential equations – i.e., we will begin to consider differential
equations involving a second derivative. In particular, for the time being
we will concentrate on second order linear differential equations. After
giving some basic terminology, we’ll then start to investigate solutions,
working our way up from the simplest possible cases.

3.1 Homogeneous second order linear
differential equations

A second-order differential equation is just a differential equation which
may be written as

d2y

dx2
= f

(
x, y,

dy

dx

)
.

For example,

d2y

dx2
= x2y + cos(x)

dy

dx
, and d2y

dx2
= y

are both second order ODE’s. Such a second-order differential equation is
called linear if the function f(x, y, dy/dx) mentioned above may be written
as

g(x) + h(x)y + k(x)
dy

dx
,

103
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and the differential equation is called non-linear otherwise. So, a general
second-order linear differential equation may be written as

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x).

If r(x) is the zero function, then we say this differential equation is homo-
geneous, and otherwise it is nonhomogeneous.

Let’s begin by considering a particular second-order linear differential
equation,

d2y

dx2
+ 2

dy

dx
= 0.

In this particular case we can turn the differential equation into a first-
order equation by introducing a new variable. In particular, if we let v =
dy
dx

, then the above will become

dv

x
+ 2v = 0.

This is a first-order linear differential equation, so we can solve it with an
integrating factor. In particular, multiplying through by

µ(x) = e
´
2 dx = e2x

we have

e2x
dv

dx
+ 2e2xv = 0

=⇒ d

dx
e2xv = 0

=⇒ e2xv = C

=⇒ v = Ce−2x.

Of course, v = dy
dx

and so we really have

dy

dx
= Ce−2x

=⇒ y =

ˆ
Ce−2x dx = −C1

2
e−2x + C2.

Notice that we wound up getting two constants here. Intuitively, both
of the derivatives dy

dx
and d2y

dx2
will require an integration in solving the

differential equation, and so each one gives us a constant.
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Thus an initial value problem for a second-order differential equation
requires two initial conditions. Usually these are given to us as either

y(x0) = y0 and y′(x0) = v0, or
y(x0) = y0 and y(x1) = y1.

Plugging in both initial conditions, in whichever form they are given to
us, gives a system of equations whose solution will tell us the constants.

Example 3.1.
Solve the initial value problem with differential equation

d2y

dx2
+ 2

dy

dx
= 0

and initial conditions y(0) = 1 and y(ln(
√
2)) = 2.

We know that the general form of the solution is y = −C1

2
e−2x+C2.

Our first initial condition, y(0) = 1, then yields the following:

1 =
−C1

2
+ C2

the second initial condition, y(ln(
√
2)) = 2 gives us

2 = −C1 + C2.

We need to solve both of these equations simultaneously, and so we
must solve the system of equations

−1
2
C1 + C2 = 1

−C1 + C2 = 2

We can solve this by first subtracting the second equation from the
first, giving

−1
2
C1 + C2 − (−C1 + C2) = 1− 2

=⇒ 1

2
C1 = −1

=⇒ C1 = −2
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Now that we know C1 = −2, we can easily plug into either of the
equations above to determine C2. Replacing C1 by −2 in the second
equation,−C1+C2 = 2, we have 2+C2 = 2 and so C2 = 0. Thus our
initial value problem is solved by

y = e−2x.

Intuitively, the existence of these two constants that appear in the gen-
eral solution to our second-order differential equation tells us that the
space of all solutions to a given second-order ODE is two-dimensional.
We can be a little bit more precise with the following theorem:

Theorem 3.1.
If y1(x) and y2(x) are two solutions to a second-order linear homogeneous
differential equation, and if λ is any real number, then y1(x) + y2(x) and
λy1(x) are also solutions.

Proof.
Consider the differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0.

By assumption we have

d2y1
dx2

+ p(x)
dy1
dx

+ q(x)y1 = 0

d2y2
dx2

+ p(x)
dy2
dx

+ q(x)y2 = 0



CHAPTER 3. SECOND ORDER EQUATIONS 107

We simply note now that

d2

dx2
(y1 + y2) + p(x)

d

dx
(y1 + y2) + q(x)(y1 + y2)

=
d2y1
dx2

+ p(x)
dy1
dx

+ q(x)y1 +
d2y2
dx2

+ p(x)
dy2
dx

+ q(x)y2

=0 + 0

=0

Similarly we can compute

d2

dx2
λy1 + p(x)

d

dx
λy1 + q(x)λy1

=λ

(
d2y1
dx2

+ p(x)
dy1
dx

+ q(x)y1

)
=λ · 0
=0.

Remark.
Theorem 3.1 together with the fact that y = 0 is obviously a solution
to a second-order linear homogeneous differential equation shows
that the set of solutions is a vector space.

An important corollary of the above theorem is the “principle of su-
perposition:”

Corollary 3.2 (The principle of superposition).
If y1(x), y2(x), ..., yn(x) are all solutions to

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0,
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then for any collection of real numbers λ1, λ2, ..., λn, the linear combination

λ1y1(x) + λ2y2(x) + · · ·+ λnyn(x)

is also a solution.

Of course, the above theorems assume the existence of solutions to
our second-order linear homogeneous differential equation, and we may
want to know whether solutions are actually guaranteed to exist or not.
Conveniently, the following theorem answers this for us.

Theorem 3.3.
Suppose a < x0 < b and p(x), q(x), r(x) are all defined and continuous

on (a, b). Then, for any y0 and v0, there exists a unique solution to the
second-order linear differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x)

with initial conditions y(x0) = y0, y′(x0) = v0, defined on (a, b).

This theorem as stated doesn’t tell us how to find a solution to the dif-
ferential equation, it only promises us that a solution exists. So, our next
goal is to actually find solutions to some of these second-order differential
equations, now that we know (at least, if we’re willing to take the above
theorem on faith) the solutions exist.

To get started, we consider a special case where the functions p(x) and
q(x) appearing in our homogeneous differential equation are just con-
stants,

d2y

dx2
+ b

dy

dx
+ cy = 0.

By Theorem 3.3, the solution to this differential equation exists for any
choice of initial conditions y(x0) = y0, y′(x0) = v0, and the solution is
unique and defined on the entire real line (since the constant functions
p(x) = b and q(x) = c are defined and continuous on the entire real line).
Furthermore, we have two degrees of freedom in choosing solutions be-
cause we have two parameters, x0 and v0, which describe the space of
solutions. So, how do we go about finding these solutions?
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Let’s first notice that if there was a solution of the form y = erx for
some constant r, we would then have

d2

dx2
erx + b

d

dx
erx + cerx = 0

=⇒ r2erx + brerx + cerx = 0

=⇒
(
r2 + br + c

)
erx = 0.

But since erx is never equal to zero for any x, we must have that r2 + br +
c = 0, and so the r appearing in y = erx must be a root of this quadratic
polynomial. Furthermore, if r is a root of this polynomial, then y = erx is
a solution to this differential equation. Unwinding all of this essentially
proves the following proposition.

Proposition 3.4.
The function y = erx is a solution to

a
d2y

dx2
+ b

dy

dx
+ cy = 0

if and only if r is a root of the polynomial ar2 + br + c.

As an example, consider
d2y

dx2
− dy

dx
− 2y = 0.

A solution of the form y = erx is given only for r’s that satisfy
r2 − r − 2 = 0.

This quadratic factors as
(r + 1)(r − 2) = 0,

and hence y = e−x and y = e2x are solutions, which we can easily verify:
d2

dx2
e−x − d

dx
e−x − 2e−x

=e−x −
(
−e−x

)
− 2e−x

=2e−x − 2e−x

=0.
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d2

dx2
e2x − d

dx
e2x − 2e2x

=4e2x − 2e2x − 2e−x

=0.

Notice that not all of the solutions to the differential equation above
have the form y = erx; by the principle of superposition, any linear com-
bination of our two solutions above is also a solution. For example, y =
3e−x + 7e2x is also a solution to

d2y

dx2
− dy

dx
− 2y = 0

which is easy to check:
d2

dx2
(
3e−x + 7e2x

)
− d

dx

(
3e−x + 7e2x

)
− 2

(
3e−x + 7e2x

)
=3e−x + 28e2x −

(
−3e−x + 14e2x

)
− 6e−x − 14e2x

=0.

Given a second-order homogeneous linear differential equation with
constant coefficients,

a
d2y

dx2
+ b

dy

dx
+ cy = 0,

the quadratic equation
ar2 + br + c = 0

is called the characteristic equation of the differential equation, and gen-
eralizing the discussion above, we see if r1 and r2 are two (real) roots of
this quadratic, then every function of the form

y = λ1e
r1x + λ2e

r2x

for any choice of (real) λ1, λ2 is a solution to the differential equation.

Example 3.2.
Solve the initial value problem

2
d2y

dx2
+ 8

dy

dx
+ 6y = 0

y(0) = 2, y′(0) = −1

Our goal is to first find the values of r1 and r2 such that y = er1x
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and y = er2x solve the differential equation without regard to the ini-
tial conditions. If we can do that, then for every choice of constants
c1 and c2 we will have that

y = c1e
r1x + c2e

r2x

also solves the differential equation, and we can try to see if there is
a choice of c1 and c2 that will satisfy our initial conditions.

To find r1 and r2, we solve the characteristic equation which in
this case is 2r2 + 8r + 6 = 0. We can divide through by 2 to obtain
r2+4r+3 = 0, and now factor the left-hand side to obtain (r+3)(r+
1) = 0, meaning y = e−3x and y = e−x are solutions to the differential
equation, as are all choices of

y = c1e
−3x + c2e

−x.

Now we want to determine a c1 and c2 so that our initial conditions
are satisfied. To do this, notice

dy

dx
=

d

dx

(
c1e
−3x + c2e

−x) = −3c1e−3x − c2e−x.
Our initial conditions then give us the equations

c1 + c2 = 2

−3c1 − c2 = 1

Adding the equations together tells us −2c1 = 3 and so c1 = −− 2/3.
Plugging this into the second equation gives us 2− c2 = 1, or c2 = 1.
Thus our initial value problem is solved by

y =
−2
3
e−3x + e−x.

Of course, there’s are some obvious questions that comes to mind with
the process described above: What if the characteristic only has one root
(this happens, for example, with r2−2r+1 = 0), or if it only has complex
roots (such as r2 + 4x + 13 = 0)? We will address both of these issues
soon, but first we will discuss some generalities about second-order linear
differential equations which will be helpful.

First, let’s introduce some notation. Given an interval I , let C2(I) be
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the set of all twice continuously differentiable functions defined on I .
Sometimes we’ll just write C2 if the I is understood from context. Given
any two functions p, q ∈ C2, we can define a function L : C2 → C2 as
follows:

L(ϕ) = ϕ′′ + pϕ′ + qϕ.

Notice that for any two ϕ, ψ ∈ C2 and any constant λ ∈ R we have

L(λϕ) = (λϕ)′′ + p · (λϕ)′ + q · (λϕ)
= λϕ′′ + λpϕ′ + λqϕ

= λL(ϕ)

L(ϕ+ ψ) = (ϕ+ ψ)′′ + p · (ϕ+ ψ)′ + q(ϕ+ ψ)

= ϕ′′ + pϕ′ + qϕ+ ψ′′ + pψ′ + qψ

= L(ϕ) + L(ψ).

This means that L is a linear transformation of C2. Note too that L(ϕ) = 0
if and only if ϕ is a solution to the differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0.

That is, the set of solutions to the homogeneous second-order linear dif-
ferential equation is exactly the kernel of L.

Now, we had seen previously that if y1 and y2 were two solutions to

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0.

then so are c1y1 + c2y2. Now consider the following question: suppose
two solutions y1 and y2 to the differential equation are known. Can every
solution be written as c1y1 + c2y2 for some choice of c1 and c2?

If this were true, then that would mean every initial condition

y(x0) = y0, y
′(x0) = v0

could be satisfied by c1y1 + c2y2 for some choice of c1 and c2. Notice,
though, that this gives us a system of linear equations,

c1y1(x0) + c2y2(x0) = y0

c2y
′
1(x0) + c2y

′
2(x0) = v0
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Or, written in terms of matrices,(
y1(x0) y2(x0)
y′1(x0) y′2(x0)

)(
c1
c2

)
=

(
y0
v0

)
.

For a given x0, we want to solve this system for all choices of y0 and v0.
The algebra for seeing exactly how to do this isn’t too bad in terms of
elementary row operations of matrices, though it looks ugly. Putting the
augmented coefficient matrix of the above system,(

y1(x0) y2(x0) y0
y′1(x0) y′2(x0) v0

)
into row-reduced echelon form gives us(

1 0
y0y′2(x0)−v0y2(x0)

y1(x0)y′2(x0)−y′1(x0)y2(x0)

0 1
y1(x0)v0−y′1(x0)y0

y′2(x0)y1(x0)−y′1(x0)y2(x0)

)
This tells us the solution to

c1y1(x0) + c2y2(x0) = y0

c2y
′
1(x0) + c2y

′
2(x0) = v0

is given by

c1 =
y0y
′
2(x0)− v0y2(x0)

y1(x0)y′2(x0)− y′1(x0)y2(x0)

c2 =
y1(x0)v0 − y′1(x0)y0

y′2(x0)y1(x0)− y′1(x0)y2(x0)
Of course, this only makes sense if the denominator in the fractions above
is non-zero:

y1(x0)y
′
2(x0)− y′1(x0)y2(x0) 6= 0.

I.e., if the determinant of the coefficient matrix,(
y1(x0) y2(x0)
y′1(x0) y′2(x0)

)
is non-zero. This quantity, the determinant above, is called the Wron-
skian of the solutions y1 and y2, and is often denoted by W (y1, y2)(x0),
W (x0), or simply W :

W (x0) = det

(
y1(x0) y2(x0)
y′1(x0) y′2(x0)

)
= y1(x0)y

′
2(x0)− y′1(x0)y2(x0).
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Proposition 3.5.
Given two functions y1, y2, solving our linear second-order homogeneous
differential equation above (i.e., L(y1) = L(y2) = 0), every solution to the
differential equation may be written as

y = c1y1(x) + c2y2(x)

for some choice of c1 and c2 if and only if the Wronskian of y1 and y2 is
non-zero for some choice of point x.

In particular, if x0 is a point such that W (x0) 6= 0, then any initial
condition

y(x0) = y0, y
′(x0) = v0

is solved by y = c1y1(x) + c2y2(x) where

c1 =
y0y
′
2(x0)− v0y2(x0)

y1(x0)y′2(x0)− y′1(x0)y2(x0)

c2 =
y1(x0)v0 − y′1(x0)y0

y′2(x0)y1(x0)− y′1(x0)y2(x0)

Remark.
The above proposition shows that the space of solutions to the differ-
ential equation L(y) = 0 is a two-dimensional real vector space with
basis {y1, y2}, provided the corresponding Wronskian is not identi-
cally zero.

Example 3.3.
Consider the differential equation

x2
d2y

dx2
− 2y = 0.

Show that every solution to this differential equation on (0,∞) may
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be written as
y = c1x

2 + c2
1

x
,

and find the solution which satisfies

y(1) = 2 and y′(1) = 3.

First we note that y1(x) = x2 and y2(x) = 1
x

are in fact solutions:

x2
d2y1
dx2
− 2y1(x) = x2 · 2− 2 · x2 = 0

x2
d2y2
dx2
− 2y2(x) = x2 · 2x−3 − 2x−1 = 0.

To see that every solution may be written as a linear combinaton of
our two solutions y1(x) = x2 and y2(x) = x−1, we need to verify that
the Wronskian is non-zero:

W (x) = det

(
y1 y2
y′1 y′2

)
= det

(
x2 x−1

2x −x−2
)

= x2 · (−x−2)− x−1 · 2x
= −1− 2

= −3

As the Wronskian is non-zero at every x0 6= 0, we may solve any
initial value problem involving our given differential equation using
the two solutions above. In particular, for the initial conditions given
in the example we have

c1y1(1) + c2y2(1) = 2

c1y
′
1(1) + c2y

′
2(1) = 3

That is,

c1 + c2 = 2

2c1 − c2 = 3

We can solve this system by adding the two equations together to
obtain 3c1 = 5, so c1 = 5/3. Plugging this back into the first equation
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tells us 5/3 + c2 = 2, and so c2 = 2 − 5/3 = 1/3. Thus the solution to
our initial value problem is

y =
5

3
x2 +

1

3x
.

If all solutions to our differential equation L(y) = 0 may be written as
linear combinations of y1(x) and y2(x) (which, again, occurs if and only
if the Wronskian is not identically zero), we say that y1 and y2 form a
fundamental set of solutions of the differential equation. This justifies
our earlier claim that if r1 and r2 are distinct real roots of the characteristic
equation ar2 + br + c = 0, then every solution to

a
d2y

dx2
+ b

dy

dx
+ cy = 0

may be written as y = c1e
r1x + c2e

r2x for some cohice of c1 and c2; we just
need to verify that the Wronskian of er1x and er2x is non-zero, but this is
easy to check:

det

(
er1x er2x

r1e
r1x r2e

r2x

)
= r2e

r1xer2x − r1er1xer2x

= (r2 − r1)e(r1+r2)x

And so the Wronskian is non-zero provided r1 and r2 are distinct.
The obvious question to consider now is: Does every second-order

homogeneous linear differential equation actually have a fundamental set
of solutions? This is easy to answer with the theory we have developed.

Proposition 3.6.
Suppose p(x) and q(x) are defined and continuous in an interval I . Then
the second-order homogeneous linear differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0

has a fundamental set of solutions.
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Proof.
Pick any point x0 in I . By the theorem on the existence and unique-
ness of second-order linear differential equations, there must ex-
ist a solution of the differential equation satisfying y1(x0) = 1 and
y′1(x0) = 0, and a second solution which satisfies y2(x0) = 0 and
y′2(x0) = 1. We claim these form a fundamental set of solutions, and
this is easy to verify by computing the Wronskian of these two solu-
tions at x0:

W (x0) = det

(
y1(x0) y2(x0)
y′1(x0) y′2(x0)

)
= y1(x0)y

′
2(x0)− y′1(x0)y2(x0)

= 1 · 1− 0 · 1
= 1.

Previously we said the values c1 and c2 for finding a solution to our
second-order linear homogeneous differential equation can be found given
the initial conditions

y(x0) = y0 and y′(x0) = v0

provided the Wronskian of two fundamental solutions was non-zero at
x0. Could it happen that the Wronskian of these solutions, though not
zero everywhere, is zero for some choices of x0? That is, are there “bad”
choices of x0 where we can’t fin d the c1 and c2? We can easily answer this
question by appealing to the following theorem, named after Norwegian
mathematician Niels Henrik Abel (the same mathematician whose name
is associated with the abelian groups of abstract algebra).

Theorem 3.7 (Abel’s theorem).
If y1(x) and y2(x) are any two solutions to

d2y

dx2
+ p(x)

dy

dx
+ q(x) = 0

where p(x) and q(x) are continuous in an interval I , then their Wronskian
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is equal to
W (x) = ce−

´
p(x) dx

for some constant c.

Proof.
Consider the system of equations

y′′1(x) + p(x)y′1(x) + q(x)y1(x) = 0

y′′2(x) + p(x)y′2(x) + q(x)y2(x) = 0

We obtain a new equation by consider −y2 times the first equation
plus y1 times the second equation. This then gives us

−y2(y′′1(x)+p(x)y′1(x)+q(x)y1(x))+y1(x)(y′′2(x)p(x)y′2(x)+q(x)y2(x)) = 0.

After expanding and simplifying this becomes

y1(x)y
′′
2(x)− y′′1(x)y2(x) + (y1(x)y

′
2(x)− y′1(x)y2(x)) p(x) = 0.

Notice that the second term contains the Wronskian, and so we may
write this equation as

y1(x)y
′′
2(x)− y′′1(x)y2(x) +W (x)p(x) = 0.

Furthermore, as W (x) = y1(x)y
′
2(x)− y′1(x)y2(x), we have

dW

dx
= y1(x)y

′′
2(x) + y′1(x)y

′
2(x)− (y′1(x)y

′
2(x) + y′′1(x)y2(x))

= y1(x)y
′′
2(x) + y′′1(x)y2(x).

Hence our equation above can be written as

dW

dx
+W (x)p(x) = 0.

This is a first-order linear differential equation which can be solved
by an integrating factor, and the result is W (x) = Ce−

´
p(x) dx.
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Let’s notice that this meansW (x) is either zero everywhere (if C = 0),
or it’s zero nowhere (since ex is never zero). It also means for any two
different fundamental sets of solutions, their Wronskians differ only by a
constant multiple. We can also take advantage of this alternate version of
the Wronskian to solve certain differential equations.

Example 3.4.
Find the solution to

d2y

dx2
− 4

dy

dx
+ 4 = 0

satisfying y(0) = 3 and y′(0) = 1.
First we look for solutions of the form erx by considering roots of

the characteristic equation,

r2 − 4r + r = 0.

Notice this factors as (r − 2)2 = 0, and so there is only one root, r =
2. Thus y1 = e2x solves the differential equation, but not the initial
conditions since y1(0) = 1 and y′1(0) = 2. So, we need to determine
a second solution to our differential equation. If we had a y2 such
that y1 = e2x and y1 formed a fundamental set of solutions, we could
then do the algebra to find c1 and c2 so that c1y1 + c2y2 solved our
initial value problem.

To find the second solution, we take advantage of Abel’s theorem
which tells us the Wronskian of any fundamental solution is

W (x) = Ce−
´
(−4) dx = Ce4x.

That is, our y2 must satisfy

det

(
e2x y2
2e2x y′2

)
= Ce4x.

Computing the determinant, this means

y′2e
2x − 2y2e

2x = Ce4x.

Dividng both sides of the equation by e2x we then have

y′2 − 2y2 = Ce2x.
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This is a first-order linear differential equation which we can easily
solve. We first multiply through by the integrating factor of µ =
e
´
−2 dx = e−2x to obtain the following:

e−2xy′2 − 2e−2xy2 = C

=⇒ d

dx
e−2xy2 = C

=⇒ e−2xy2 = Cx

=⇒ y2 = Cxe2x.

Hence for any non-zero numberC, y2 = Cxe2x will provide our other
fundamental solution. It’s easy to double-check that y2 = Cxe2x is
in fact a solution to the differential equation:

d2y2
dx2
− 4

dy2
dx

+ 4y2

=2Ce2x + 2C
(
e2x + 2xe2x

)
− 4C

(
e2x + 2xe2x

)
+ 4Cxe2x

=2Ce2x + 2Ce2x + 4Cxe2x − 4Ce2x − 8Cxe2x + 4Cxe2x

=0

So, the general solution to our differential equation is given by

y = c1e
2x + c2xe

2x.

The first derivative is then

y′(x) = 2c1e
2x + c2

(
e2x + 2xe2x

)
.

Thus, if y(0) = 3 and y′(0) = 1, we have the following system of
equations:

c1 = 3

2c1 + c2 = 1

Of course, the first equation instantly tells us c1 = 3, and the second
equation then becomes 6 + c2 = 1, so c2 = −5 and our initial value
problem is solved by

y = 3e2x − 5xe2x.
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3.2 Complex numbers and Taylor series
Before going any further in our discussion of differential equations, we
should recall a few facts about complex numbers and Taylor series which
will be necessary for what’s to come.

Recall that a complex number is an expression which may be written
as a + ib where a and b are real numbers and i2 = −1. We may denote a
complex number by z = a+ ib and refer to a as the real part of z, written
Re(z), and b is the imaginary part of z, written as Im(z).

To every complex number z = a+ ib there is another complex number
obtained by changing the sign of the imaginary part, called the complex
conjugate of z and written z,

z = a− ib.

We can add complex numbers by adding their real and imaginary
parts separately. That is, if z1 and z2 are two complex numbers with
z1 = a1 + ib1 and z2 = a2 + ib2, then

z1 + z2 = (a1 + ib1) + (a2 + ib2) = a1 + a2 + i(b1 + b2).

We multiply complex numbers by distributing the real and imaginary
parts, and then simplifying with i2 = −1:

z1z2 = (a1 + ib1)(a2 + ib2)

= a1a2 + ia1b2 + ia2b1 + i2b1b2

= (a1a2 − b1b2) + i(a1b2 + a2b1).

Notice that complex numbers can be the roots of polynomials with real
coefficients. For example, 2± 3i are the roots of x2 − 4x+ 13. This is easy
to check plugging each number, 2 + 3i and 2 − 3i into the polynomial.
Plugging in 2 + 3i, for example, gives us

(2 + 3i)2 − 4(2 + 3i) + 13

=4 + 12i+ 9i2 − 8− 12i+ 13

=4 + 12i− 9− 8− 12i+ 13

=0.

Notice too that these two roots are complex conjugates of one another.
This is not a fluke: in general every polynomial has complex roots (which
occassionally are real – i.e., have zero imaginary parts).
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Theorem 3.8 (Fundamental theorem of algebra).
Every polynomial of degree n with real or complex coefficients has n roots
counted by multiplicity. Furthermore, if the polynomial has only real coef-
ficients, then the complex roots come in complex conjugate pairs.

Let’s also recall that for each point a in the domain of an infinitely
differentiable function f(x), there exists an interval around a where f(x)
equals its Taylor series centered at a1,:

f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k.

The Taylor series for ex, sin(x), and cos(x), centered at a = 0, for example
are the following:

ex =
∞∑
k=0

1

k!
xk

sin(x) =
∞∑
k=0

(−1)k

(2k + 1)!
x2k+1

cos(x) =
∞∑
k=0

(−1)k

(2k)!
x2k

Notice that these expressions for ex, sin(x), and cos(x) make sense even
1There is a technical point here: the width of the interval may be zero! This is gener-

ally not the situation we care about. Functions which can be represented as a convergent
Taylor series with positive radius of convergence around each point are called analytic.
All of the functions we typically care about are analytic, but non-analytic functions do
exist!
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when x is a complex number! For example, we can compute ei by

ei =
∞∑
k=0

1

k!
ik

= 1 + i− 1

2
− i

6
+

1

24
+

i

120
− 1

720
+ · · ·

=

(
1− 1

2
+

1

24
− 1

720
+ · · ·

)
+ i

(
1− 1

6
+

1

120
+ · · ·

)
=
∞∑
k=0

(−1)k

(2k)!
+ i

∞∑
k=0

(−1)k

(2k + 1)!

= cos(1) + i sin(1).

In general, writing down the Taylor series for eiθ, where θ is any real
number, and separating the odd-order and even-order terms shows

eiθ =
∞∑
k=0

1

k!
(iθ)k

=
∞∑
k=0

1

k!
ikθk

=
∞∑
k=0

(−1)k

(2k)!
θk + i

∞∑
k=0

(−1)k

(2k + 1)!
θ2k+1

= cos(θ) + i sin(θ).

We can use this to easily exponentiate any complex number z = a+ ib:

ez = ea+ib

= eaeib

= ea (cos(b) + i sin(b))

Note too that
e−iθ = cos(θ)− i sin(θ).

From these expressions we can write

cos(θ) =
eiθ + e−iθ

2
sin(θ) =

eiθ − e−iθ

2i
.

(This, by the way, gives one easy way or proving certain trig identities like
the double-angle identities: convert to exponentials and then use simple
algebraic properties.)
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3.3 Characteristic polynomials with complex
roots

What does all of this have to do with solving differential equations? Sup-
pose we had a second-order homogeneous linear differential equation
whose characteristic polynomial only had complex conjugate roots. For
example,

d2y

dx2
+ y = 0.

The characteristic equation is then
r1 + 1 = 0

which has roots r = ±i. Do y = e±ix solve the differential equation? Let’s
check in the case of y = eix

d2

dx2
eix + eix

=
d

dx
ieix + eix

=i2eix + eix

=− eix + eix

=0

That y = e−ix case is very similar.
Since these solve two complex-valued functions solve our differential

equation, so do any linear combination of these functions, such as
1

2
eix +

1

2
e−ix = cos(x), and

1

2
eix − 1

2
e−ix = sin(x),

which is easy to directly verify:
d2

dx2
cos(x) + cos(x) =

d

dx
(− sin(x)) + cos(x)

= − cos(x) + cos(x)

= 0

d2

dx2
sin(x) + sin(x) =

d

dx
cos(x) + sin(x)

= − sin(x) + sin(x)

= 0
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More generally, each complex-valued solution of a second-order homoge-
neous linear differential equation gives us two real valued solutions: its
real and imaginary parts.

Theorem 3.9.
Suppose u(x) and v(x) are real-valued functions such that the complex-
valued function u(x) + iv(x) solves the differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0

where p(x) and q(x) are continuous. Then u(x) and v(x) also solve the
differential equation.

Proof.
By assumption we have

d2

dx2
(u(x) + iv(x)) + p(x)

d

dx
(u(x) + iv(x)) + q(x) (u(x) + iv(x)) = 0

But writing out the left-hand side and combining the real and imag-
inary parts this becomes

u′′(x) + p(x)u′(x) + q(x)u(x) + i (v′′(x) + p(x)v′(x) + q(x)v(x)) = 0.

This is a complex number that equals zero, so its real and imaginary
parts must be zero which means

u′′(x) + p(x)u′(x) + q(x)u(x) = 0, and
v′′(x) + p(x)v′(x) + q(x)v(x) = 0.

So, to summarize, if we have a differential equation of the form

a
d2y

dx2
+ b

dy

dx
+ cy = 0
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where ar2 + br + c has only complex conjugate roots, say r = u ± iv,
then we see that e(u+iv)x and e(u−iv)x are complex-valued solutions of the
differential equation:

a
d2

dx2
e(u±iv)x + b

d

dx
e(u±iv)x + ce(u±iv)x

=a(u± iv)2e(u±iv)x + b(u± iv)e(u±iv)x + ce(u±iv)x

=
(
a(u± iv)2 + b(u± iv) + c

)
e(u±iv)x

=0

But then so are the real and imaginary parts of these solutions, since we
can write the real and imaginary parts as linear combinations of our initial
complex-valued solutions. Notice that

e(u±iv)x = euxe±ivx = eux (cos(vx)± i sin(vx))

and so we have the following two real-valued solutions to the differential
equation,

y1 = eux cos(vx), and
y2 = eux sin(vx).

Notice the Wronskian of these solutions is non-zero:

W (x) = det

(
eux cos(vx) eux sin(vx)

ueux cos(vx0− veux sin(vx) ueux sin(vx) + veux cos(vx)

)
= eux (ueux sin(vx) + veux cos(vx))− eux sin(vx) (ueux cos(vx)− veux sin(vx))
= ve2ux.

We have thus proven the following proposition:

Proposition 3.10.
If the roots of ar2 + br + c are complex conjugates u± iv, then the general
real-valued solution to

a
d2y

dx2
+ b

dy

dx
+ cy = 0

is given by
y = c1e

ux cos(vx) + c2e
ux sin(vx).
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Example 3.5.
Find the solution to the initial value problem

d2y

dx2
− 4

dy

dx
+ 13y = 0

where y(0) = −2 and y′(0) = 5.
The characteristic equation is r2 − 4r + 13 = 0, and this does

not factor in any obvious way, so we compute the roots with the
quadratic formula:

r =
4±
√
16− 4 · 1 · 13
2 · 1

=
4±
√
16− 52

2

=
4±
√
−36

2

=
4± 6i

2
= 2± 3i

Thus a complex-valued solution to the differential equation would
be

e(2+3i)x = e2x+3ix = e2xe3ix = e2x (cos(3x) + i sin(3x)) .

Taking the real and imaginary parts of this, we see that

y1 = e2x cos(3x) and y2 = e2x sin(3x)

for a fundamental set of real solutions, so every real-valued solution
may be written as

y = c1e
2x cos(3x) + c2e

2x sin(3x)

for some choice of c1 and c2. We need to find these choices so our
solution satisfies the initial conditions, y(0) = −2 and y′(0) = 5. This
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will revolve around solving a system of linear equations, but first we
go ahead and compute the derivative of our putative solution:

y′ = 2c1e
2x cos(3x)− 3c1e

2x sin(3x) + 2c2e
2x sin(3x) + 3c2e

2x cos(3x).

Now our initial conditions give us the following system of linear
equations:

c1 = −2
2c1 + 3c2 = 5

Of course, we instantly have c1 = −2 and can then easily compute,
using the second equation, that c2 = 3.

The solution to our initial value problem is thus

y = −2e2x cos(3x) + 3e2x sin(3x)

3.4 The method of undetermined coefficients
Though we have developed some general theory at this point, the only
second order differential equations we have seen how to solve are the
homogeneous equations with constant coefficients. We now begin to de-
velop the methods to solve general non-homogeneous linear second order
differential equations. I.e., general differential equations of the form

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x)

where p, q, and r are continuous functions – not necessarily constants.
We begin by relating the solutions to non-homogeneous equations to

the corresponding homogeneous equation.

Lemma 3.11.
If y1(x) and y2(x) are two solutions to the non-homogeneous equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x),

then their difference, y1(x)− y2(x), is a solution to the homogeneous equa-
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tion
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0.

Proof.
(Easy) Exercise.

Recall that we letL : C2(I)→ C2(I) represent the differential operator
L(ϕ) = ϕ′′(x) + p(x)ϕ′(x) + q(x)ϕ(x)

to simplify our notation. That is, the differential equation
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x),

can be written more simply as L(y) = r(x) using this operator.

Lemma 3.12.
If y1(x) and y2(x) form a fundamental set of solutions to the homogeneous
equation L(y) = 0, and if ϕ(x) is some function satisfying L(ϕ) = r(x),
then every solution so L(y) = r(x) may be written as

y = c1y1(x) + c2y2(x) + ϕ(x).

Proof.
Simply observer that L(y − ϕ) equals zero:

L(y − ϕ) = L(c1y1 + c2y2 + ϕ− ϕ)
= L(c1y1 + c2y2) + L(ϕ)− L(ϕ)
= 0 + r(x)− r(x)
= 0

But, by linearity, L(y − ϕ) = L(y)− L(ϕ). Thus L(y) = L(ϕ) = r(x).
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This lemma tells us that if we know how to solve the corresponding ho-
mogeneous equation and can find just one solution to the non-homogeneous
equation, then we can combine these to get all of the solutions. That is, to
solve

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x),

the very first we must do is find a pair of fundamental solutions to the
corresponding homogeneous equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0.

For example, to solve

d2y

dx2
+ 2

dy

dx
+ y = 2x,

we first solve
d2y

dx2
+ 2

dy

dx
+ y = 0,

which is easily done by considering the characteristic equation,

r2 + 2r + 1 = 0

which factors as (r + 1)2 = 0, and so the homogeneous equation has the
general solution

c1e
−x + c2xe

−x.

Now we have to find some solution to the non-homogeneous equation

d2y

dx2
+ 2

dy

dx
+ y = 2x.

Noticing that the right-hand side is a polynomial, it seems reasonable to
expect that there should be a polynomial solution. So, let’s suppose y
was some polynomial, let’s say of degree three just for the sake of being
concrete. Then y would have the form

y = α3x
3 + α2x

2 + α1x+ α0
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and we can easily compute its derivatives,

y′ = 3α3x
2 + 2α2x+ α1, and

y′′ = 6α3x+ 2α2.

We can plug this into our differential equation to obtain

y′′ + 2y′ + y = 2x

=⇒ (6α3x+ 2α2) + 2
(
3α3x

2 + 2α2x+ α1

)
+
(
α3x

3 + α2x
2 + α1x+ α0

)
= 2x

=⇒ α3x
3 + (6α3 + α2)x

2 + (6α3 + 4α2 + α1)x+ (2α2 + 2α1 + α0) = 2x.

From this we obtain a system of linear equations,

2α2 + 2α1 + α0 = 0

6α3 + 4α2 + α1 = 2

6α3 + α2 = 0

α3 = 0

This system can be solved easily with back substitution to determine

α0 = −4
α1 = 2

α2 = 0

α3 = 0

Hence we claim
y = 2x− 4

is one particular solution to our non-homogeneous equation, which is
easy to check:

d2

dx2
(2x− 4) + 2

d

dx
(2x− 4) + 2x− 4

= 0 + 4 + 2x− 4

= 2x.

By our lemma above, this means that every solution to
d2y

dx2
+ 2

dy

dx
+ y = 2x

can be written as
y = c1e

−x + c2xe
−x + 2x− 4.
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To find the c1 and c2 for a given solution we of course need some initial
conditions. So suppose we wanted the solution with y(0) = 3 and y′(0) =
5. To get our system of equations to find c1 and c2 we will need to compute
the derivative

y′ = −c1e−x + c2e
−x − c2xe−x + 2

The initial conditions then give us

c1 − 4 = 3

−c1 + c2 + 2 = 5

This is easily solved by c1 = 7 and c2 = 10, and so our initial value problem
is solved by

y = 7e−x + 10xe−x + 2x− 4

In the previous example we assumed our solution to the non-homogeneous
equation had the form

α3x
3 + α2x

2 + α1x+ α0

and found α3 = α2 = 0; notice the polynomial solution had the same
degree as the right-hand of the differential equation, which was 2x. Was
this a fluke, or does this always happen? Before answering this in general,
let’s consider another example, say

d2y

dx2
− dy

dx
= 2x.

Could there be a degree one solution to this differential equation? I.e.,
something of the form y = α1x + α0? If there was such a solution, then
we would have

0− α1 = 2x.

This has no solution! So, can we find a degree two solution? If y = α2x
2+

α1x+ α0, then y′ = 2α2x+ α and y′′ = 2α2, thus we have

2α2 − (2α2x+ α1) = 2x

=⇒ − 2α2x+ (2α2 − α1) = 2x

This gives us the system of equations

−2α2 = 2

2α2 − α1 = 0
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which is solved by α1 = −2, α2 = −1. Thus we claim that −x2 − 2x is a
solution to our differential equation, which is easy to verify.

to understand what’s going on, suppose we’re trying to solve

a
d2y

dx2
+ b

dy

dx
+ cy = r(x)

where r is a polynomial of degree n. Notice that if y is a polynomial of
degree m, then dy

dx
is a polynomial of degree m − 1, and d2y

dx2
has degree

m− 2. If c = 0 above, then

a
d2y

dx2
+ b

dy

dx

has degreem−1, and so we would requirem = n+1 so that the degrees of
the left-hand and right-hand sides (which equals r(x) in the differential
equation above) are equal. If both b and c were equal to zero, however,
then a d2y

dx2
would have degree m− 2, and we would need m = n+ 2. This

tells us what the degree or our solution to the differential equation should
be.

Example 3.6.
Solve the initial value problem

2
d2y

dx2
− 6

dy

dx
= x3 − 6x+ 4

where y(0) = 2 and y′(0) = 3.
We first solve the complementary homogeneous equation,

2
d2y

dx2
− 6

dy

dx
= 0.

The characteristic polynomial is 2r2 − 64 which has roots r1 = 0 and
r2 = 3 and so the homogeneous equation is solved by

y = c1e
0x + c2e

3x = c1 + c2e
3x.

Now we need to also find some solution to the non-homogeneous
equation. As the right-hand side of the equation is degree three, but
there is a missing “cy” term on the left-hand side, we expect that
there is a polynomial of degree 4 solving the differential equation.
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Let’s suppose

y = α4x
4 + α3x

3 + α2x
2 + α1x+ α0

solves our non-homogeneous equation,

2
d2y

dx2
− 6

dy

dx
= x3 − 6x+ 4.

Plugging in the first and second derivatives of our polynomial above
would give us

2(12α4x
2+6α3x+2α2)− 6(4α4x

3+3α3x
2+2α2x+α1) = x3− 6x+4.

Combining like-terms on the left-hand side would give us

−24α4x
3+(24α4−18α3)x

2+(12α3−12α2)x+4α2−6α1 = x3−6x+4.

We are thus lead to the following system of linear equations,

−24α4 = 1

24α4 − 18α3 = 0

12α3 − 12α2 = 6

4α2 − 6α1 = 4

(Notice there are no restrictions on α0 here since the α0 will disap-
pear when differentiating. We can thus take α0 to be any constant,
and for simplicity we will take it to be zero.) The arithmetic for solv-
ing this system is a bit tedious, but the solution is

α4 = − 1/24

α3 = − 1/18

α2 = − 5/9

α1 = − 28/27

and so one particular solution to our non-homogeneous equation is

y =
−1
24
x4 − 1

18
x3 − 5

9
x2 − 28

27
x.
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The general solution to our non-homogeneous differential equation
is then

y = c1 + c2e
3x − 1

24
x4 − 1

18
x3 − 5

9
x2 − 28

27
x.

To satisfy our initial condition y(0) = 2 and y′(0) = 3, we need to
find c1 and c2 so that

c1 + c2 = 2

3c2 −
28

27
= 3.

Solving this tells us c2 = 1 + 28
81

and c2 = 1 − 28
81

, and so our initial
value problem is solved by

y = 1− 28

81
+

(
1 +

28

81

)
e3x − 1

24
x4 − 1

18
x3 − 5

9
x2 − 28

27
x.

The key observation we made to solve the non-homogeneous differen-
tial equations above was that the derivative of a polynomial is a polyno-
mial, and so if the right-hand side of our differential equation is a polyno-
mial, it’s reasonable to expect there to be a polynomial solution. Writing
out a polynomial of the “correct” degree with unknown coefficients and
plugging it into the differential equation gave us a system of linear equa-
tions whose solution gave the coefficients of our polynomial. This method
is called the method of undetermined coefficients, and it applies to more
than just polynomials.

In order to use the method of undetermined coefficients, what we
need is a family of functions whose derivatives belong to the same family.
There are two more “obvious” families with these properties: exponen-
tials and trig functions.

By “exponentials” we mean functions of the form aebx. What’s nice
about these functions is that each time you differentiate you simply pick
up a factor of b. That is, the first derivative is abebx, the second derivative
is ab2ebx, the third derivative is ab3ebx, and so on.

Example 3.7.
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Find a soluton to the equation

d2y

dx2
− 3

dy

dx
+ 2y = 6e7x.

Suppose that a solution y had the form y = αe7x, so y′ = 7αe7x

and y′′ = 49αe7x. Hence if y solves our differential equation above,
we must have

49αe7x − 21αe7x + 2αe7x = 6e7x

=⇒ 30αe7x = 6e7x

=⇒ α = 6/30 = 1/5.

Trig functions also have the property that their derivatives are again
trig functions. E.g., the derivative of sin(x) is cos(x) and the derivative
of cos(x) is − sin(x). So, if we had a non-homogeneous equation where
the right-hand side of the equation was a linear combination of sines and
cosines, we should expect the solution is also a linear combination of sines
and cosines.

For example, suppose we wanted to find a solution to

d2y

dx2
− 7

dy

dx
+ 12y = 6 cos(5x).

then we might suppose the solution had the form

y = α sin(5x) + β cos(5x).

Notice that we want both a sine and a cosine term. If we only had one or
the other, then the dy

dx
term on our left-hand side would contain the other

function, whereas the y and d2y
dx2

terms would contain the initial function.
Thus we’ll need to consider that y contains both types of terms to avoid
resulting in a system of equations with no solutions.

Let’s notice that if y is the linear combination of sin(5x) and cos(5x)
above, then

dy

dx
= 5α cos(5x)− 5β sin(5x)

d2y

dx2
= −25α sin(5x)− 25β cos(5x).
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Plugging these into the left-hand side of the differential equation would
give us
d2y

dx2
− 7

dy

dx
+ 12y

=(−25α sin(5x)− 25β cos(5x))− 7 (5α cos(5x)− 5β sin(5x)) + 12 (α sin(5x)− β cos(5x))
=(−13α + 35β) sin(5x) + (−13β − 35α) cos(5x).

Keeping in mind this is supposed to equal 6 cos(5x), we have
(−13α + 35β) sin(5x) + (−13β − 35α) cos(5x) = 6 cos(5x),

and so we are lead to the following system of linear equations by equating
the sine terms and cosine terms of the left- and right-hand sides of the
equation above:

−13α + 35β = 0

−13β − 35α = 6

Solving this system is not particularly hard, but the numbers are ugly:

α =
−105
697

and β =
−39
697

and so a particular solution to our non-homogeneous equation above is

y =
−105
697

sin(5x)− 39

697
cos(5x).

Example 3.8.
Find a solution to the non-homogeneous equation

d2y

dx2
+ 2

dy

dx
+ 5y = 3 sin(2x).

Suppose there is a solution of the form

y = α sin(2x) + β cos(2x)

The derivatives are then
dy

dx
= 2α cos(2x)− 2β sin(2x)

d2y

dx2
= −4α sin(2x)− 4β cos(2x)
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Plugging these into the left-hand side of our differential equation
above we would have
d2y

dx2
+ 2

dy

dx
+ 5y

=− 4α sin(2x)− 4β cos(2x) + 2 (2α cos(2x)− 2β sin(2x)) + 5 (α sin(2x) + β cos(2x))

=(α− 4β) sin(2x) + (β + 4α) cos(2x)

Equating this with 3 sin(2x) gives us the system of equations

α− 4β = 3

4α + β = 0

Solving this system gives us α = 3/17 and β = − 12/17, and so a partic-
ular solution to our non-homogeneous differential equation above
is

y =
3

17
sin(2x)− 12

17
cos(2x).

Let’s now notice that if we multiply a polynomial and an exponential,
their derivative is also a product of a polynomial and an exponential. Sim-
ilarly, the product of a polynomial and a combination of sines and cosines
has a derivative which is a product of polynomials and sines and cosines.
We can use this to get yet another “family” of functions whose derivative
is again a function in that family.

For example, suppose we wanted to find a particular solution to

d2y

dx2
+ 2

dy

dx
+ y = (x2 + x)e3x.

Since the right-hand side is a product of a polynomial and an exponential,
we may suppose there is a solution of the form

y = (α2x
2 + α1x+ α0)βe

3x.

Computing the derivatives of this and putting them together according to
the left-hand side of the differential equation would give us the following:[

16α2x
2 + (12α2 + 13α1)x+ 2α2 + 8α1 + 13α0

]
βe3x.
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Equating this with (x2 + x)e3x then gives us a system of equations,

16α2 = 1

12α2 + 13α1 = 1

2α2 + 8α1 + 13α0 = 0

β = 1

which is solved by

α2 =
1

16

α1 =
1

52

α0 =
−29
1352

β = 1

and so a solution to our non-homogeneous equation is

y =

(
1

16
x2 +

1

52
x− 29

1352

)
e3x

More generally, if we have a linear non-homogeneous differential equa-
tion where the right-hand side is a sum where each term belongs to a fam-
ily of functions we have described (exponentials, polynomials, sines/cosines,
products of exponentials and polynomials, etc.), then the the solutions to
that differential equation are sums of solutions to the same differential
equation where each right-hand side is one of the terms of the right-hand
side of the original equation.

That is, if our differential equation is of the form

L(y) = r1 + r2 + · · ·+ rn

and if L(yi) = ri for each i, then the differential equation is solved by

y = y1 + y2 + · · ·+ rn

because L is linear:

L(y) = L(y1 + y2 + · · ·+ yn)

= L(y1) + L(y2) + · · ·+ L(yn)

= r1 + r2 + · · ·+ rn.
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For example, consider the differential equation

d2y

dx2
+ y = x2ex + e2x cos(x) + x2 + x− 2.

To find a particular solution to this equation, we solve each of the follow-
ing equations:

d2y1
dx2

+ y1 = x2ex

d2y2
dx2

+ y2 = e2x cos(x)

d2y3
dx2

+ y3 = x2 + x− 2

Exercise 3.1.
Solve each of the three differential equations above.

After solving these differential equations we find

y1 =

(
1

2
x2 − x+ 1

2

)
ex

y2 =
1

8
e2x cos(x) +

1

8
e2x sin(x)

y3 =
1

2
x2 + x− 3

Putting these together, our differential equation above,

d2y

dx2
+ y = x2ex + e2x cos(x) + x2 + x− 2.

is solved by

y = y1 + y2 + y3

=

(
1

2
x2 − x+ 1

2

)
ex +

1

8
e2x cos(x) +

1

8
e2x sin(x) +

1

2
x2 + x− 3
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3.5 Variation of parameters
In using the method of undetermined coefficients, we made an assump-
tion about the form of our solution. We would like to now describe a
method which does not require us to restrict ourselves to polynomials,
exponents, or trig functions.

The idea is that if the homogeneous equation
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0

has general solution c1y1(x) + c2y2(x), then the non-homogeneous differ-
ential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x)

has a solution of the form
y = u1(x)y1(x) + u2(x)y2(x)

and we can try to solve for u1 and u2.
For example, suppose we wished to solve

d2y

dx2
− 2

dy

dx
+ y =

ex

x2 + 1
.

The corresponding homogeneous differential equation is solved by y1 =
ex and y2 = xex. So we suppose there is a solution to the non-homogeneous
differential equation of the form

y = u1(x)e
x + u2(x)xe

x

and we want to find u1 and u2. Notice the derivative of y is
y′ = u′1(x)e

x + u1(x)e
x + u′2(x)xe

x + u2(x)(e
x + xex).

We can compute y′′ and then plug y, y′, and y′′ into our equation above.
Notice, though, that this will give us one equation in two variables which
may have infinitely-many solutions. To winnow down to one solution,
we will impose another condition that will make y′′ easier to compute.
Suppose that we assume

u′1(x)e
x + u′2(x)xe

x = 0.

Under this assumption, y′ becomes
y′ = u1(x)e

x + u2(x)(e
x + xex) = ex(u1(x) + u2(x)(x+ 1)).
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Then y′′ can be written as

y′′ = ex(u1(x) + u2(x)(x+ 1)) + ex(u′1(x) + u′2(x)(x+ 1) + u2(x))

= ex(u1(x) + u2(x)(x+ 1)) + u′1(x)e
x + u′2(x)xe

x + u′2(x)e
x + exu2(x)

= ex(u1(x) + u2(x)(x+ 1)) + u′2(x)e
x + u2(x)e

x

= ex(u1(x) + xu2(x) + 2u2(x) + u′2(x)).

Our differential equation then becomes

ex(u1(x) + (x+ 2)u2(x) + u′2(x))− 2ex(u1(x) + u2(x)(x+ 1)) + u1e
x + u2xe

x

=
ex

x2 + 1
.

We may write this as

u1(x) + (x+ 2)u2(x) + u′2(x)− 2u1(x)− 2xu2(x)x+−2u2(x) + u1 + u2x

=
1

x2 + 1
.

This further simplifies to

u′2(x) =
1

x2 + 1

which we can directly solve:

u2(x) =

ˆ
dx

x2 + 1
= tan−1(x) + C2.

Now we can go back and plug this into the equation that we introduced,

u′1(x)e
x + u′2(x)xe

x = 0

which we may rewrite as

u′1(x) + xu′2(x) = 0

and plug in u′2(x) to write

u′1(x) +
x

x2 + 1
= 0

=⇒ u1(x) = −
ˆ

x

x2 + 1
dx.
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Performing the substitution u = x2 + 1, du = 2xdx, this becomes
−1
2

ˆ
du

u
=
−1
2

ln |u|+ C1

and so
u1(x) =

−1
2

ln(x2 + 1) + C1

and so we claim that the differential equation
d2y

dx2
− 2

dy

dx
+ y =

ex

x2 + 1

is solved by

y =

(
−1
2

ln(x2 + 1) + C1

)
ex +

(
tan−1(x) + C2

)
xex.

Exercise 3.2.
Verify that

y =

(
−1
2

ln(x2 + 1) + C1

)
ex +

(
tan−1(x) + C2

)
xex.

does indeed solve
d2y

dx2
− 2

dy

dx
+ y =

ex

x2 + 1
.

Generalizing this procedure gives us Lagrange’s variation of param-
eters. The general statement of which is the following:

Theorem 3.13 (Variation of parameters).
If p(x), q(x), and r(x) are continuous functions defined on an interval I

and if y1(x) and y2(x) form a fundamental set of solutions to the homoge-
neous differential equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0
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(note this means the Wronskian of y1 and y2 is non-zero), then every solu-
tion to the non-homogeneous equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x)

may be written as

y = u1(x)y1(x) + u2(x)y2(x)

where

u1(x) = C1 −
ˆ
y2(x)r(x)

W (x)
dx

u2(x) = C2 +

ˆ
y1(x)r(x)

W (x)
dx

Example 3.9.
Find the general solution to

d2y

dx2
+ y = tan(x)

on the interval I = (0, π/2).
First we need to find a pair of fundamental solutions to

d2y

dx2
+ y = 0

which has characteristic equation r2 + 1 = 0, which is solved by
r = ±i, and so e±ix is a complex-valued solution to the homogeneous
differential equation, and the real and imaginary parts,

y1(x) = cos(x) and y2(x) = sin(x)

form a fundamental set of real-valued solutions.
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By Theorem 3.13, the general solution to the differential equation
is then given by

y =

(
c1 −

ˆ
sin(x) tan(x)

W (x)
dx

)
cos(x)+

(
c2 +

ˆ
cos(x) tan(x)

W (x)
dx

)
sin(x).

Notice the Wronskian here is particularly nice:

W (x) = det

(
cos(x) sin(x)
− sin(x) cos(x)

)
= cos2(x) + sin2(x)

= 1

Now we simply need to compute the two integrals above:
ˆ

sin(x) tan(x) dx =

ˆ
sin2(x)

cos(x)
dx

=

ˆ
sec(x) sin2(x) dx

=

ˆ
sec(x) · (1− cos2(x)) dx

=

ˆ
(sec(x)− cos(x)) dx

=

ˆ
sec(x) dx−

ˆ
cos(x) dx

Of course, ´ cos(x) dx = sin(x) + C. Integrating sec(x) requires one
little trick:

ˆ
sec(x) dx =

ˆ
sec(x) · sec(x) + tan(x)

sec(x) + tan(x)
dx

=

ˆ
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx.

Now we let u = sec(x)+tan(x) and du = (sec(x) tan(x) + sec2(x)) dx,
and so the integral becomes simply

ˆ
1

u
du = ln |u|+ C
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which, after replacing u, gives us
ˆ

sec(x) dx = ln | sec(x) + tan(x)|+ C.

On (0, π/2) the function sec(x) + tan(x) is positive, and so on this in-
terval we haveˆ

sin(x) tan(x) dx = ln(sec(x) + tan(x))− sin(x) + C.

The other integral we have to compute is even easier:
ˆ

cos(x) tan(x) dx =

ˆ
sin(x) dx = − cos(x) + C

and so the general solution to

d2y

dx2
+ y = tan(x)

on the interval (0, π/2) is

y = (c1 − ln(sec(x) + tan(x)) + sin(x)) cos(x) + (c2 − cos(x)) sin(x)

= (c1 − ln(sec(x) + tan(x))) cos(x) + c2 sin(x)



4Higher order differential equations
Do not worry about your difficulties in
mathematics. I can assure you mine are still
greater.

Albert Einstein

In the last chapter we saw how to solve some second order differen-
tial equations, particularly in the case where all of the coefficients on the
derivatives in the were constants. In this chapter we extend those ideas to
higher order differential equations. This mostly follows the same format
as the second order case, but there are some difficulties that are intro-
duced. In particular, the characteristic polynomial can be more difficult
to factor, and there are more possibilities for the roots. For instance, we
could have a polynomial which has repeated complex conjugate roots. In
this chapter we discuss the various possibilities that can arise in solving
these higher order differential equations.

4.1 General remarks about linear
homogeneous equations

Given a linear homogeneous differential equation of order n,

pn(x)
dny

dxn
+ pn−1(x)

dn−1y

dxn−1
+ · · ·+ p2(x)

d2y

dx2
+ p1(x)

dy

dx
+ p0(x)y = 0,

there are functions y1(x), y2(x), ..., yn(x) such that all solutions to the dif-
ferential equation will have the form

y = c1y1(x) + c2y2(x) + · · ·+ cnyn(x).

In terms of linear algebra, this means that the set of all solutions forms an
n-dimensional real vector space with basis y1(x), y2(x), ..., yn(x).

Given a collection of n functions y1(x), y2(x), ..., yn(x) solving the equa-
tion, we want to know if these functions will form a fundamental set of
solutions. This is not a guarantee! For example, if one of the functions turns
out to be a sum of multiples of the others, we won’t have a fundamental
set of solutions. To determine if a given collection of n functions forms a

147
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fundamental set of solutions, we can determine if the Wronskian of those
solutions is zero or not. The Wronskian here is the determinant of an n×n
matrix whose rows are given by the original functions and the first n− 1
derivatives:

W (x) = det



y1(x) y2(x) y3(x) · · · yn(x)
y′1(x) y′2(x) y′3(x) · · · y′n(x)
y′′1(x) y′′2(x) y′′3(x) · · · y′′n(x)...

y
(n−2)
1 (x) y

(n−2)
2 (x) y

(n−2)
3 (x) · · · y

(n−2)
n (x)

y
(n−1)
1 (x) y

(n−1)
2 (x) y

(n−1)
3 (x) · · · y

(n−1)
n (x)


While there is a general formula for the determinant of a n× n matrix, in
this course we will not ever need to consider matrices larger than 3 × 3,
and here the formula isn’t too terrible to remember: Given a 3× 3 matrix
A,

A =

a b c
d e f
g h i


the determinant det(A) is computed by

det(A) = aei+ bfg + cdh− ceg − bdi− afh.

This looks like a complicated formula, but luckily there’s a nice way to
remember it. First, let’s rearrange our formula just a tiny little bit.

aei− afh− bei+ bfg + ceh− ceg
=aei+ bfg + cdh− ceg − bdi− afh

Now the way we remember this formula is that we look at lines through
the matrix which go down and to the right (wrapping around if you hit
the “edge” of the matrix):  a b c

d e f
g h i


We multiply the entries on each line, and then add them all up:

aei+bfg+bdh
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Now to get the other entries, we draw lines through the matrix which go
down and left:  a b c

d e f
g h i


Now we multiply the entries on each line, make them negative, and add
them all up:

−ceg− bdi− afh

Now adding up these two quantities (the positives and the negatives),
we have our formula for the determinant.

det(M) = aei+bfg+bdh−ceg− bdi− afh

Supposing we have found a fundamental set of solutions to an n-th
order differential equation, we may wish to find the values of c1, ..., cn
which solve a given initial value problem. Ultimately this will come down
to solving a system of equations, and since there are n unknowns, we
should expect this sytem to have n equations. That is, just as an IVP for
a first-order differential equation needed one initial condition, and we
need two initial conditions to solve a second-order IVP, we will need three
conditions for a third-order IVP, four conditions for a fourth-order IVP,
and so on. Typically, but not always, these will be given by specifying
a point which must be on the graph of the solution, as well as the first
derivative, second derivative, third derivative, and so on, of the function
at that point. That is, our initial conditions will often (but not always) be
given as

y(x0) = y0, y
′(x0) = y1, y

′′(x0) = y2, ..., y
(n−1)(x0) = yn−1.

4.2 Solving homogeneous equations with
constant coefficients

Suppose we have a differential equation of the form

cn
dny

dxn
+ cn−1

dn−1y

dxn−1
+ · · ·+ c2

d2y

dx2
+ c1

dy

dx
+ c0y = 0.
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As in the case of two variables, we can consider the characteristic polyno-
mial,

cnr
n + cn−1r

n−1 + · · ·+ c2r
2 + c1r + c0,

and the roots of this polynomial will tell us the solutions of the original
differential equation. For example, the differential equation

d3y

dx3
− 9

d2y

dx2
+ 26

dy

dx
− 24y = 0

has characteristic polynomial
r3 − 9r2 + 26r − 24.

To determine the roots of this polynomial we would like to factor it. Here
factoring can be more involved than with quadratic polynomials. In the
case of a quadratic, we can always resort to using the quadratic formula,
but there are not equivalent formulas for all higher-order polynomials.
(There are actually formulas for polynomials of degree three and four,
but they are considerably more complicated than the quadratic formula.
There is not a general formula that works for all polynomials of degree
five and higher.1)

In order to help us factor the polynomial above, it is helpful to recall
the following basic fact about polynomials.

Proposition 4.1.
If a is a root of a polynomial

cnr
n + cn−1r

n−1 + · · ·+ c2r
2 + c1r + c0,

then r − a is a factor of the polynomial.

This proposition can give us a tool for factoring the polynomial since
if we find one root, we know one factor, and can use polynomial long

1The existence of formulas for degree five and higher was an open question in math-
ematics for a long time, but was eventually settled by Evariste Galois during the 19th
century. The story goes that Galois challenged another man to a duel and the evening
before the duel wrote down all of his thoughts about why such a formula could not exist,
and mailed it to one of his friends. Although Galois was killed in the duel, at the age of
20, his friend forwarded his letter to leading mathematicians of the day who eventually
deciphered his work. Galois’ work is now often credited with beginning the study of
abstract algebra (more specifically, group theory and Galois theory).
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division to determine the factor. How can we go about finding a root,
though? Here another proposition is helpful:

Proposition 4.2.
Given a monic polynomial

rn + cn−1r
n−1 + · · ·+ c2r

2 + c1r + c0

(i.e., a polynomial whose leading coefficient is 1) whose coefficients are all
integers, any integer roots must divide the constant c0.

So, in the case of our polynomial above

r3 − 9r2 + 26r − 24,

a starting point is to find the integers that divide 24. Let’s notice that
24 = 2 · 12, so 2 and 12 are both divisors of 24 (among others). It’s easy
to check if each of these makes the polynomial zero or not. Plugging 12
in gives

123 − 9 · 122 + 26 · 12− 24 = 720 6= 0

which tells us 12 is not a root of the polynomial, so r − 12 is not a factor.
Plugging 2 in gives

23 − 9 · 22 + 26 · 2− 24 = 0

Thus r = 2 is a root to the polynomial, and so r − 2 is a factor. That is,
there is some polynomial g(r) so that

r3 − 9r2 + 26r − 24 = g(r) · (r − 2).

To determine g(r), let’s divide r − 2 over to obtain

g(r) =
r3 − 9r2 + 26r − 24

r − 2
.
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We can compute this quotient by using polynomial long divison:
r2 − 7r + 12

r − 2
)

r3 − 9r2 + 26r − 24
− r3 + 2r2

− 7r2 + 26r
7r2 − 14r

12r − 24
− 12r + 24

0

This tells us
r3 − 9r2 + 26r − 24 = (r − 2)(r2 − 7r + 12).

Our goal now becomes factoring r2−7r+12, but this is much easier. Either
by inspection or using the quadratic formula we can easily determine r2−
7r + 12 = (r − 3)(r − 4). Thus our original polynomial factors as

r3 − 9r2 + 26r − 24 = (r − 2)(r − 3)(r − 4).

So, the characteristic polynomial of our differential equation above has
roots r = 2, r = 3, and r = 4. Of course, these roots will tell us the
solutions to our differential equation, and there are a few different cases
to consider:

1. Distinct real roots
2. Repeated real roots
3. Complex conjugate roots
4. Repeated complex conjugate roots

Unlike the second order situation, with higher order equations we could
have characteristic polynomials where all four cases occur simultaneously!
The reason for this is the following important theorem:

Theorem 4.3 (The fundamental theorem of algebra).
Every polynomial of degree n with real (or complex) coefficients factors
completely as a product of n linear factors, some of which may be repeated.
If the polynomial has only real coefficients, any complex roots must occur
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as complex conjugate pairs.

Grouping together identical factors, we can thus write every polynomial
with real coefficients as

(r − r1)m1(r − r2)m2(r − r3)m3 · . . . · (r − rn)mn

and we call mj the multiplicity of the j-th root.

Distinct real roots
If the characteristic polynomial for our differential equation has a real
root a with multiplicity 1 (i.e., the root is not repeated), then just as in
the second-order situation the function y = eax will be a solution to the
differential equation. For example, in our differential equation described
earlier

d3y

dx3
− 9

d2y

dx2
+ 26

dy

dx
− 24y = 0,

we had characteristic polynomial
r3 − 9r2 + 26r − 24 = (r − 2)(r − 3)(r − 4)

which has roots 2, 3, and 4. Each of these roots gives us a solution to the
differential equation,

y1(x) = e2x, y2(x) = e3x, y3(x) = e4x.

While tedious, it’s easy to compute the Wronskian of these solutions to
see that they form a fundamental set of solutions:

W (x) = det

 e2x e3x e4x

2e2x 3e3x 4e4x

4e2x 9e3x 16e4x


= 48e9x + 16e9x + 18e9x − 12e9x − 32e9x − 36e9x

= 2e4x 6= 0.

Thus every solution to the differential equation
d3y

dx3
− 9

d2y

dx2
+ 26

dy

dx
− 24y = 0,

has the form
y = c1e

2x + c2e
3x + c3e

4x.



CHAPTER 4. HIGHER ORDER DIFFERENTIAL EQUATIONS 154

Exercise 4.1.
Verify that functions of the form

y = c1e
2x + c2e

3x + c3e
4x

solve the differential equation

d3y

dx3
− 9

d2y

dx2
+ 26

dy

dx
− 24y = 0.

An initial value problem for this equation would require three initial
conditions. For example, suppose we wished to find the solution to the
equation above which satisfied y(0) = 2, y′(0) = 0, and y′′(0) = 1. We
would need to compute the derivatives of our general solution above:

y = c1e
2x + c2e

3x + c3e
4x

y′ = 2c1e
2x + 3c2e

3x + 4c3e
4x

y′′ = 4c1e
2x + 9c2e

3x + 16c3e
4x.

Now if we evaluate these at zero we have

y(0) = c1 + c2 + c3

y′(0) = 2c1 + 3c2 + 4c3

y′′(0) = 4c1 + 9c2 + 16c3

But as we are told y(0) = 2, y′(0) = 0, and y′′(0) = 1, this means we have
a system of equations

c1 + c2 + c3 = 2

2c1 + 3c2 + 4c3 = 0

4c1 + 9c2 + 16c3 = 1

Since the Wronskian of our fundamental set of solutions was non-zero,
this system must have a unique solution. There are a few different ways
to solve this system, but perhaps the most direct way would be to use
Cramer’s rule which is described in Appendix ??.

Cramer’s rule tells us the solution to this system of equations can be
computed in terms of determinants of certain matrices. In particular, the
coefficient matrix of the system above is the 3× 3 matrix that is obtained
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by looking at the coefficients of the unknowns c1, c2, and c3, in our system
above. Let’s refer to this matrix as A:

A =

1 1 1
2 3 4
4 9 16

 .

Now we construct three new matrices, which we will refer to as A1, A2,
and A3, which are given by taking the first, second, and third columns,
respectively, of the coefficient matrixA, and replacing them by the column
that contains the three numbers on the right-hand sides of our equations,
which are 2, 0, and 1. That is, our matrices are:

A1 =

2 1 1
0 3 4
1 9 16

 A2 =

1 2 1
2 0 4
4 1 16

 A1 =

1 1 2
2 3 0
4 9 1


Again, A1 was obtained by replacing the first column of A with the val-
ues 2, 0, 1, and these numbers are being used because they appear as the
values on the right-hand side of our system of equations.

Cramer’s rule says that the solutions c1, c2, and c3 are equal to the ratios
of determinants of our matrices above. In particular,

c1 =
det(A1)

det(A)
c2 =

det(A2)

det(A)
c3 =

det(A3)

det(A)

Computing these determinants we have

c1 =

det

2 1 1
0 3 4
1 9 16


det

1 1 1
2 3 4
4 9 16


=

96 + 4 + 0− 3− 0− 72

48 + 16 + 18− 12− 32− 36

=
25

2
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c2 =

det

1 2 1
2 0 4
4 1 16


det

1 1 1
2 3 4
4 9 16


=

0 + 32 + 2− 0− 64− 4

2
= −17

c3 =

det

1 1 2
2 3 0
4 9 1


det

1 1 1
2 3 4
4 9 16


=

3 + 0 + 36− 24− 2− 0

2

=
13

2

It is easy to verify that c1 = 25/2, c2 = −17, and c3 = 13/2 do in fact solve
our system above, and so the solution to our initial value problem with
differential equation

d3y

dx3
− 9

d2y

dx2
+ 26

dy

dx
− 24y = 0,

and initial conditions

y(0) = 2, y′(0) = 0, and y′′(0) = 1

is
y =

25

2
e2x − 17e3x +

13

2
e4x.

To summarize, if the characteristic polynomial of an n-th order homo-
geneous differential equation with constant coefficients has distinct real
roots r1, r2, ..., rn, then the general solution to the differential equation is

y = c1e
r1x + c2e

r2x + · · ·+ cne
rnx.
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Repeated real roots
Let’s now consider a case where the characteristic polynomial has a re-
peated root. Suppose we want to solve the following fourth-order equa-
tion:

d4y

dx4
+ 4

d3y

dx3
+ 6

d2y

dx2
+ 4

dy

dx
+ y = 0.

The characteristic polynomial is

r4 + 4r3 + 6r2 + 4r + 1.

Let’s notice that since this is a monic polynomial (the coefficient on the
leading term is 1), any integer roots must divide the constant term, 1. The
only integers that divide 1 are 1 and −1. We can easily plug each of these
into the polynomial to see if they are 1 or not:

14 + 4 · 13 + 6 · 12 + 4 · 1 + 1 = 16

(−1)4 + 4 · (−1)3 + 6 · (−1)2 + 4 · (−1) + 1 = 0.

Thus r = −1 is a root, so r+1 is a factor of the polynomial. To determine
another factor we can use polynomial long division:

r3 + 3r2 + 3r + 1

r + 1
)

r4 + 4r3 + 6r2 + 4r + 1
− r4 − r3

3r3 + 6r2

− 3r3 − 3r2

3r2 + 4r
− 3r2 − 3r

r + 1
− r − 1

0

Now our goal is to factor r3 + 3r2 + 3r + 1. Here we again notice there
is a constant term of 1 in the monic polynomial, so if this has any integer
roots, they must be ±1. Checking each one we will see that r = −1 is
a root, but r = 1 is not and so r + 1 is also a root of this polynomial.
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Applying polynomial long division again we have
r2 + 2r + 1

r + 1
)

r3 + 3r2 + 3r + 1
− r3 − r2

2r2 + 3r
− 2r2 − 2r

r + 1
− r − 1

0

We may at this point recognize that r2+2r+1 = (r+1)2. Combining this
with other factors of r + 1, we see that the polynomial factors as (r + 1)4.
That is, r = −1 is a root with multiplicity four.

In the case of a second order equation, we saw that when we had a
repeated root we added a factor of x to erx, obtaining xerx, as a second
solution. Continuing this pattern, for a repeated root we continue to add
progressively higher powers of x: if we had a root r of multiplicity 3, we
would have solutions erx, xerx, and x2erx; for a root r of multiplicity 4, we
have solutions erx, xerx, x2erx, and x3erx; and so on.

In the case of our particular differential equation above, we have that
the general solution will be

y = c1e
−x + c2xe

−x + c3x
2e−x + c4x

3e−x.

Of course, it could happen that our characteristic polynomial has sev-
eral roots of different multiplicities. For example, consider

(r + 1)3(r − 5)2 = r5 − 7r4 − 2r3 + 46r2 + 65r + 25.

This is the characteristic polynomial of the differential equation
y(5) − 7y(4) − 2y(3) + 46y(2) + 65y(1) + 25y = 0.

The root r = −1 has multiplicity 3 and so gives us the solutions
e−x, xe−x, x2e−x,

while the root r = 5 has multiplicity 2 and so gives us the solutions
e5x, xe5x.

Putting this together, the differential equation has general solution
y = c1e

−x + c2xe
−x + c3x

2e−x + c4e
5x + c5xe

5x.
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Distinct complex conjugate roots
Recall that for any polynomial with real coefficients, if complex roots exist
they must come in complex conjugate pairs, a ± ib. As we saw with sec-
ond order equations, if a± ib were roots of the characteristic polynomial,
then eax cos(bx) and eax sin(bx) were two linearly independent solutions.
Something similar happens for higher-order equations, except we may
have multiple complex conjugate roots to the characteristic polynomial.
Each distinct complex conjugate pair a ± ib again gives us linearly inde-
pendent real-valued solutions eax cos(bx) and eax sin(bx). For example, the
differential equation

d4y

dx4
− 2

d3y

dx3
+ 3

d2y

dx2
− 2

dy

dx
+ 2y = 0

has characteristic polynomial

r4 − 2r3 + 3r2 − 2r + 2.

Even though all the coefficients here are integers, it is easy to check there
are no integer roots: the only divisors of the constant term 2 are ±1 and
±2, and plugging each of those four numbers into the polynomial will
reveal none of these are roots. Factoring this polynomial is not at all ob-
vious, but let’s observe we could rewrite the polynomial as follows by
writing 3r2 = 2r2 + r2:

r4 − 2r3 + 2r2 + r2 − 2r + 2.

Notice the first three terms look very similar to the second three terms,
except they each have an extra factor of r2. Factoring r2 out of the first
three terms would then give us

r2(r2 − 2r + 2) + r2 − 2r + 2

=r2(r2 − 2r + 2) + 1 · (r2 − 2r + 2)

We can now factor by grouping to obtain

(r2 + 1)(r2 − 2r + 2).

Determining the roots now becomes a question of finding the roots of
each of these quadratics. The first one, r2 +1, of course has roots ±i (this
is easily seen by solving r2+1 = 0 for r). For the second one we can apply
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the quadratic formula to obtain

r =
2±
√
4− 4 · 1 · 2
2 · 1

=
2±
√
−4

2

=
2± 2i

2
= 1± i

Our complex conjugate roots are thus ±i and 1± i.
Each of these complex conjugate pairs gives us a pair of linearly inde-

pendent real-valued solutions to the differential equation, just as in the
second-order case. The roots ±i give us the functions sin(x) and cos(x);
and the roots 1 ± i give us the functions ex cos(x) and ex sin(x). Thus the
general solution to our differential equation is

y = c1 sin(x) + c2 cos(x) + c3e
x sin(x) + c4e

x cos(x).

Repeated complex conjugate roots
With second order equations it was impossible to have repeated complex
roots, as the fundamental theorem of calculus tells us a quadratic equa-
tion can have only two roots. For higher order equations, however, com-
plex roots can repeat. Just as in the case of repeated real roots, however,
we simply attach factors of powers of x, as determined by the multiplicity
of the root.

As an example, consider the differential equation

y(6) − 12y(5) + 87y(4) − 376y(3) + 1131y(2) − 2028y′ + 2197y = 0

with characteristic polynomial

r6 − 12r5 + 87r4 − 376r3 + 1131r2 − 2028r + 2197.

Factoring this polynomial is not obvious, but it does factor

(r2 − 4r + 13)3

Using the quadratic formula, we see the roots of r2 − 4r + 13 are 2 ± 3i.
Because r2−4r+13 is cubed, however, each of these roots has multiplicity
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three. That is, factoring down to a product of linear terms (which the fun-
damental theorem of algebra says we can always do if we allow complex
roots), the polynomial becomes

(r − (2 + 3i))3(r − (2− 3i))3.

This simply means our fundamental set of solutions to the differential
equation is given by

y1 = e2x cos(3x) y2 = e2x sin(3x)

y3 = xe2x cos(3x) y4 = xe2x sin(3x)

y5 = x2e2x cos(3x) y6 = x2e2x sin(3x)

and the general solution to the differential equation is

y = c1e
2x cos(3x)+c2e

2x sin(3x)+c3xe
2x cos(3x)+c4xe

2x sin(3x)+c5x
2e2x sin(3x)+c6x

2e2x cos(3x).

Combining the previous cases
Of course, all of the various possibilities described above can occur in a
given differential equation. As an extreme example, consider the differ-
ential equation

y(9)−y(8)+4y(7)−12y(6)−21y(5)−51y(4)−104y(3)−88y(2)−80y′−48y = 0.

The characteristic polynomial,

r9 − r8 + 4r7 − 12r6 − 21r5 − 51r4 − 104r3 − 88r2 − 80r − 48

factors (although it’s not at all obvious at first glance) as

(r − 3)(r + 1)2(r − i)(r + i)(r − 2i)2(r + 2i)2

and so we have a real root of 3 with multiplicity 1, a real root of −1
with multiplicity 2, a pair of complex conjugate roots ±i with multiplic-
ity 1, and another pair of complex conjugate roots ±2i with multiplicity
2. Combining the solutions of the differential equation for these various
roots, as described in the sections above, the general solution to the dif-
ferential equation is

y = c1e
3x+c2e

−x+c3xe
−x+c4 cos(x)+c5 sin(x)+c6 cos(2x)+c7 cos(2x)+c8x cos(2x)+c9x sin(2x).



5The Laplace Transform
Nature laughs at the difficulties of integration.

Pierre-Simon Laplace

5.1 What is the Laplace transform?
Recall that when differentiating certain complicated functions such as

f(x) =
xcos(x)(x3 + 3x− 1)√

x4 + 1

it can be advantageous to first take the natural logarithm of the function
before differentiating,

ln(f(x)) = ln

(
xcos(x)(x3 + 3x− 1)√

x4 + 1

)
= cos(x) ln(x) + ln(x3 + 3x− 1)− 1

2
ln(x4 + 1)

The reason for this is that certain difficult to differentiate functions (ex-
ponentiation of functions, products, and quotients) are transformed into
functions which are much simpler to differentiate (products, sums, and
differences). Thus instead of differentiating the original function directly,
we “transform” the function to a new function which we can differentiate,

1

f(x)
f ′(x) = − sin(x) ln(x) +

cos(x)

x
+

3x2 + 3

x3 + 3x− 1
− 4x3

2(x4 + 1)
.

After doing this we must “invert” our transformation by solving for what
we originally cared about:

f ′(x) = f(x)

(
− sin(x) ln(x) +

cos(x)

x
+

3x2 + 3

x3 + 3x− 1
− 4x3

2(x4 + 1)

)
=
xcos(x)(x3 + 3x− 1)√

x4 + 1

(
− sin(x) ln(x) +

cos(x)

x
+

3x2 + 3

x3 + 3x− 1
− 4x3

2(x4 + 1)

)

162
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That is, this process of transforming our problem, solving the transformed
problem, and then undoing the transformation to obtain the solution to
the original problem makes the problem much easier. (Without taking
logarithms and directly differentiating the function above we have a com-
plicated mess of product rules and quotients rules.)

In this chapter we will discuss an operation which is similar in spirit
called the Laplace transform. As we will see, the Laplace transform will
convert functions into other functions in such a way that certain differ-
ential equations become algebraic equations which are hopfully simpler
to solve. Once we solve the algebraic equation, we will then “undo” the
transformation process and have a solution to our initial differential equa-
tion.

Given a continuous function f(t)defined on [0,∞), we define its Laplace
transform as the function

F (s) =

ˆ ∞
0

e−stf(t) dt.

Notice that the domains of these functions are different: the original func-
tion f has as its domain [0,∞) and we referred to the inputs to this func-
tion as t, whereas F has some other domain (to be discussed momentar-
ily), and we refer to its input as s.

So, for example, F (2) would be
ˆ ∞
0

e−2tf(t) dt

whatever that quantity happens to be, and F (−7) would be
ˆ ∞
0

e7tf(t) dt

whatever that integral works out to be. Let’s notice, though, that since
these are improper integrals, they may not converge for all values of s.
That is, our integral above is really a limit,

ˆ ∞
0

e−stf(t) dt = lim
b→∞

ˆ b

0

e−stf(t) dt

and this limit may fail to exist. However, supposing the limit exists for
some value s0, it is an easy calculus exercise (using the comparison test)
to verify that the limit will exist for all s > s0.

We will often refer to the function F (s) above as L {f(t)} to help dis-
tinguish it from the antiderivative of f .
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5.2 Examples of computing Laplace transforms
Let’s go ahead and compute a few examples of Laplace transforms.

Example 5.1.
Compute the Laplace transform of a constant function f(t) = k.

L {k} =
ˆ ∞
0

e−stk dt

= lim
b→∞

ˆ b

0

e−stk dt

= lim
b→∞

k

ˆ b

0

e−st dt

= lim
b→∞

k
e−st

−s

∣∣∣∣b
0

=
−k
s

lim
b→∞

(
e−sb − e0

)

Now let’s notice that if s > 0, then −s < 0 and limb→∞ e
−sb = 0.

If, however, s < 0, then −s > 0 and limb→∞ e
−sb diverges to infin-

ity. If s = 0, then our integral ´∞
0
e−stk dt clearly diverges. That is,

the Laplace transform L {k} will only be defined if s > 0. Continu-
ing with the computation though, we may simplify this as follows,
supposing s > 0:

L {k} = −k
s

lim
b→∞

(
e−sb − e0

)
=
−k
s

(0− 1)

=
k

s

Example 5.2.
Compute the Laplace transform of f(t) = eat.
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L {eat} =
ˆ ∞
0

e−steat dt

= lim
b→∞

ˆ b

0

e(a−s)t dt

= lim
b→∞

e(a−s)t

a− s

∣∣∣∣b
0

= lim
b→∞

(
e(a−s)b

a− s
− 1

a− s

)
The first term of this limit will converge to zero if a−s < 0, meaning
s > a, and in this case we have

L {eat} = 1

s− a
provided s > a

The idea of a Laplace transform is not limited to simply real-valued
functions, nor is the function that results from taking the Laplace trans-
form limited to taking only real values.

For example, if k is a complex constant and s is a complex value, we
may still compute

L {k} =
ˆ ∞
0

e−stk dt

= lim
b→∞

ˆ b

0

e−stk dt

= lim
b→∞

k

ˆ b

0

e−st dt

= lim
b→∞

k
e−st

−s

∣∣∣∣b
0

=
−k
s

lim
b→∞

(
e−sb − e0

)

Now to deal with the complex-valued s we use Euler’s formula to write

e−sb = e(Re(s)+i Im(s))(−b) = e−bRe(s)e−ib Im(s) = e−bRe(s)(cos(b Im(s))−i sin(b Im(s)))
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and the last line of the derivation above becomes
−k
s

lim
b→∞

(
e−sb − e0

)
=
−k
s

(
lim
b→∞

e−bRe(s)(cos(b Im(s)− i sin(b Im(s))))− 1
)

The cosine and sine oscillate between 1 and −1, so this expression con-
verges only when Re(s) > 0 so that e−bRe(s) goes to zero. Thus, in this
more general setting of a complex-valued Laplace transform where s is
allowed to be a complex number we have

L {k} = k

s
provided Re(s) > 0.

The same kind of modification to our computation of L {eat}will show
that if we consider the complex Laplace transform and allow for complex
valued a, then

L {eat} = 1

s− a
provided Re(s) > Re(a)

The last few examples have been relatively straight-forward computa-
tions, but as the next example shows, computing Laplace transforms can
be involved.

Example 5.3.
Compute the Laplace transform of f(t) = sin(ωt).

L {sin(ωt)} =
ˆ ∞
0

e−st sin(ωt) dt

= lim
b→∞

ˆ b

0

e−st sin(ωt) dt.

We will first compute the indefinite integral of e−st sin(ωt), then eval-
uate at b and 0, and finally take the limit as b goes to infinity.

To get started, we use integration by parts with

u = sin(ωt) dv = e−st dt

du = ω cos(ωt) v =
−e−st

s
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We then have
ˆ
e−st sin(ωt) dt =

−e−st sin(ωt)
s

−
ˆ
−ωe−st cos(ω)

s
dt

=
−e−st sin(ωt)

s
+
ω

s

ˆ
e−st cos(ωt) dt

We now compute ´ e−st cos(ωt) by applying integration by parts again,
ˆ
e−st cos(ωt) dt =

−e−st cos(ωt)
s

− ω

s

ˆ
e−st sin(ωt) dt

Now plugging this back into our earlier expression for ´ e−st sin(ωt) dt
we have
ˆ
e−st sin(ωt) dt =

−e−st sin(ωt)
s

+
ω

s

(
−e−st cos(ωt)

s
− ω

s

ˆ
e−st sin(ωt) dt

)
=
−e−st(s sin(ωt) + ω cos(ωt))

s2
− ω2

s2

ˆ
e−st sin(ωt) dt

Now we can solve for ´ e−st sin(ωt) dt:
ˆ
e−st sin(ωt) dt =

−e−st(s sin(ωt) + ω cos(ωt))

s2
− ω2

s2

ˆ
e−st sin(ωt) dt

=⇒
ˆ
e−st sin(ωt) dt+

ω2

s2

ˆ
e−st sin(ωt) dt =

−e−st(s sin(ωt) + ω cos(ωt))

s2

=⇒
(
1 +

ω2

s2

) ˆ
e−st sin(ωt) dt =

−e−st(s sin(ωt) + ω cos(ωt))

s2

=⇒
(
s2 + ω2

s2

) ˆ
e−st sin(ωt) dt =

−e−st(s sin(ωt) + ω cos(ωt))

s2

=⇒
ˆ
e−st sin(ωt) dt =

−e−st(s sin(ωt) + ω cos(ωt))

ω2 + s2

Now we can evaluate the definite integral which gives us
ˆ b

0

e−st sin(ωt) dt =
−e−sb(s sin(ωb) + ω cos(ωb))

ω2 + s2
+

ω

ω2 + s2
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Finally, as b goes to infinity, the e−sb factor that appears in the numer-
ator of the first term will go to zero if s > 0. Thus, after all of that
calculation we determine that the Laplace transform of sin(ωt) is

L {sin(ωt)} = ω

ω2 + s2
provided s > 0.

5.3 Properties of the Laplace transform
As the previous example likely should convince you, computing the Laplace
transform of a function can be a rather difficult and lengthy process from
the definition as an integral. Conveniently, however, the Laplace trans-
form satisfies many nice properties which can be used to greatly simplify
our computations.

One of the main properties of the Laplace transform is that it is linear,
which is very easy to check.

Proposition 5.1.
Given two integrable functions f and g defined on (0,∞) and any constant
λ (including complex constants), we have

L {f(t) + g(t)} = L {f(t)}+ L {g(t)}
L {λf(t)} = λL {f(t)}.

Proof.
Both of these properties easily follow from the fact that integration
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is linear:

L {f(t) + g(t)} =
ˆ ∞
0

e−st(f(t) + g(t)) dt

=

ˆ ∞
0

(
e−stf(t) + e−stg(t)

)
dt

=

ˆ ∞
0

e−stf(t) dt+

ˆ ∞
0

e−stg(t) dt

= L {f(t)}+ L {g(t)}

L {λf(t)} =
ˆ ∞
0

e−stλf(t) dt

= λ

ˆ ∞
0

e−stf(t) dt

= λL {f(t)}

To see how these simple properties can greatly simplify our computa-
tions, let’s re-compute the Laplace transform of sin(ωt) by recalling that
for any complex number z = x+ iy we have

Im(z) =
z − z
2i

since
z − z
2i

=
x+ iy − (x− iy)

2i
=
x+ iy − x− iy

2i
=

2iy

2i
= y.

Now notice that, by Euler’s formula, sin(ωt) = Im(eiωt). That is, we may
write

sin(ωt) =
eiωt − e−iωt

2i

By linearity of the Laplace transform, we may then compute

L {sin(ωt)} = L

{
eiωt − e−iωt

2i

}
=

1

2i

(
L {eiωt} −L {e−iωt}

)
.
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We had already computed the Laplace transform of eat was 1
s−a when

Re(s) > Re(a), and so taking a to be iω, we have

L {eiωt} = 1

s− iω

provided Re(s) > 0 (as the real part of iω is zero). Similarly, L {e−iωt} =
1

s+iω
providedRe(s) > 0. Continuing with our computation of L {sin(ωt)}

we then have

L {sin(ωt)} = 1

2i

(
L {eiωt} −L {e−iωt}

)
=

1

2i

(
1

s− iω
− 1

s+ iω

)
=

1

2i

(
1

s− iω
· s+ iω

s+ iω
− 1

s+ iω
· s− iω
s− iω

)
=

1

2i
· s+ iω − s+ iω

s2 + ω2

=
ω

s2 + ω2

provided Re(s) > 0 (since this was necessary in the Laplace transform of
our exponential functions).

Exercise 5.1.
Combine linearity of the Laplace transform together with Euler’s for-
mula to compute

L {cos(ωt)} = s

s2 + ω2

provided Re(s) > 0.

Another useful property of the Laplace transform is the following: the
derivative of the Laplace transform of f(t) is the negative of the Laplace
transform of tf(t). Writing F (s) for L {f(t)}, this means

L {tf(t)} = −F ′(s).
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This follows simply from differentiating F (s) with respect to s:

d

ds
F (s) =

d

ds

ˆ ∞
0

e−stf(t) dt

=

ˆ ∞
0

d

ds
e−stf(t) dt

=

ˆ ∞
0

−te−stf(t) dt

= −
ˆ ∞
0

e−sttf(t) dt

= −L {tf(t)}.

We can sometimes take advantage of this to help us compute Laplace
transforms. For example, if we wanted to compute the Laplace transform
of t, it is possible to use the integral definition, but it’s rather tedious. If
we instead think of t as the product t · 1 use the fact L {1} = 1/s, we then
have that the Laplace transform of t must satisfy

L {t} = L {t · 1}

= − d

ds
L {1}

= − d

ds

1

s

=
1

s2

Similarly, we can interpret t2 as t · t and apply the same trick to compute

L {t2} = L {t · t}

= − d

ds
L {t}

= − d

ds

1

s2

=
2

s3
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We can continue in this way and compute the Laplace transform of t3 as

L {t3} = L {t · t2}

= − d

ds
L {t2}

= − d

ds

2

s3

=
6

s4

Notice that we have a 6 in the numerator of L {t3} since we brought down
a 3 and multiplied by the 2 that was already when computing the deriva-
tive. We continue to multiply by larger and larger numbers as we take
Laplace transforms of t raised to higher and higher powers, so perhaps
we should be surprised by the following:

Proposition 5.2.
For any non-negative integer n, the Laplace transform of tn is

L {tn} = n!

sn+1
.

Notice this, together with linearity, allows us to compute the Laplace trans-
form of any polynomial:

Example 5.4.
Compute the Laplace transform of

5t3 − 7t2 + 2t+ 3



CHAPTER 5. THE LAPLACE TRANSFORM 173

L {5t3 − 7t2 + 2t+ 3} = L
{
5t3
}
−L

{
7t2
}
+ L {2t}+ L {3}

= 5L
{
t3
}
− 7L

{
t2
}
+ 2L {t}+ 3L {1}

= 5 · 6
s4
− 7 · 2

s3
+ 2 · 1

s2
+ 3 · 1

s

=
30

s4
− 14

s3
+

2

s2
+

3

s

Translating Laplace transforms
If F (s) is the Laplace transform of f(t), then the translated function F (s−
a) is the Laplace transform of eatf(t). This follows easily from the inte-
gral definition of the Laplace transform. Notice first that, by the integral
definition of the Laplace transform,

F (s) =

ˆ ∞
0

e−stf(t) dt,

if we replace the argument s by s− a, we obtain the integral

F (s− a) =
ˆ ∞
0

e−(s−a)tf(t) dt.

We can easily check that this also equals the Laplace transform of eatf(t):

L
{
eatf(t)

}
=

ˆ ∞
0

e−steatf(t) dt

=

ˆ ∞
0

e−st+atf(t) dt

=

ˆ ∞
0

e(−s+a)tf(t) dt

=

ˆ ∞
0

e−(s−a)tf(t) dt

= F (s− a)

For example, consider the Laplace transform of e3tt. Since L {t} = 1
s2

,
the above tells us the Laplace transform of e3tt should be 1

(s−3)2 , which we
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can easily verify:

L
{
e3tt
}
= L

{
te3t
}

= − d

ds
L
{
e3t
}

= − d

ds

1

s− 3

= − d

ds
(s− 3)−1

= −(−1)(s− 3)−2

=
1

(s− 3)2

In terms of inverse Laplace transforms, this tells us that if L {f(t)} =
F (s), then L −1{F (s− a)} = eatf(t).

For example, suppose we need to compute the inverse Laplace of 8/(s+ 5)3.
Since this is a translated version of the function 8

s3
, the inverse Laplace

should be e−5t times the inverse Laplace of 8
s3

:

L −1
{

8

(s+ 5)3

}
= L −1

{
4 · 2

(s+ 5)3

}
= L −1

{
4 · 2!

(s+ 5)3

}
= 4L −1

{
2!

(s+ 5)3

}
= 4e−5t · t2.

where above we used the fact L {tn} = n!
sn+1 in the case n = 2.

5.4 Solving initial value problems and the
inverse Laplace transform

We now turn our attention to using the Laplace transform to help us solve
problems in differential equations. The key result we need is the follow-
ing theorem which will tell us that how to the Laplace transform of the
derivative f ′(t) is related to the Laplace transform of the original f(t).



CHAPTER 5. THE LAPLACE TRANSFORM 175

Theorem 5.3.
Suppose f is a differentiable function with (piecewise) continuous deriva-
tive defined on [0,∞) such that there exists constants K, a, and M so that
|f(t)| ≤ Keat for all t > M . Then L {f ′(t)} will exist for all s > a and

L {f ′(t)} = sL {f(t)} − f(0).

Proof.
For simplifying the proof we will suppose f ′(t) is continuous every-
where.

Let’s notice ˆ b

0

e−stf ′(t) dt

can be determined using integration by parts. We take

u = e−st dv = f ′(t) dt

du = −se−st v = f(t) dt

to write
ˆ b

0

e−stf ′(t) dt = e−stf(t)

∣∣∣∣b
0

+ s

ˆ b

0

e−stf(t) dt

= e−sbf(b)− f(0) + s

ˆ b

0

e−stf(t) dt.

Taking the limit as b goes to infinity will give the Laplace transform
for f ′(t). Notice, though, that e−sbf(b) will go to zero if s > a, as we
have assumed that |f(t)| ≤ Keat for t > M , and so

|e−sbf(b)| = e−sb|f(b)| ≤ e−sbKeab = Ke(a−s)b.

The last term above goes to zero if a− s < 0, so s > a. But as b goes
to infinity, ´ b

0
e−stf(t) dt converges to the Laplace transform of f(t),

and the result is shown.

We can easily iterate the the use of the theorem above to obtain a for-
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mula for the Laplace transform of f ′′(t), f ′′′(t), and higher order deriva-
tives. For example, since f ′′(t) is the derivative of f ′(t), the above theorem
tells us

L {f ′′(t)} = sL {f ′(t)} − f ′(0)

but if we plug in that L {f ′(t)} = sL {f(t)} − f(0), this becomes

L {f ′′(t)} = sL {f ′(t)} − f ′(0)
= s (sL {f(t)} − f(0))− f ′(0)
= s2L {f(t)} − sf(0)− f ′(0).

We can easily repeat the process to compute

L {f ′′′(t)} = s3L {f(t)} − s2f(0)− sf ′(0)− f ′′(0)

and so on. This is the key to using the Laplace transform to solve differen-
tial equations problems: the Laplace transform replaces derivatives with
Laplace transforms of the original function.

A consequence of the fact that f(0), f ′(0), and so on appear in our
formulas for the Laplace transform of a derivative is that when we use
the Laplace transform to solve a differential equation, we will actually
obtain a solution to an initial value problem.

As an example, let’s consider a simple first-order differential equation:

dy

dt
+ y = t

together with the initial condition y(0) = 1.
We will take the Laplace transform of both sides of the equation. Since

we are doing the same thing to both sides of an equation, we still have an
equation:

L

{
dy

dt
+ t

}
= L {t}.

On the left-hand side we can apply linearity to obtain

L

{
dy

dt

}
+ L {t} = L {t}.

Now we simply fill in what L {dy/dt} and L {t}. We had seen above that
L {dy/dt} is sL {y} − y(0) and L {t} = 1/s2, and so this becomes

sL {y} − y(0) + L {y} = 1

s2
.
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Notice that this is really just an algebra problem now where L {y} is the
unknown. So, we just try to solve for L {y} and this gives us

sL {y} − y(0) + L {y} = 1

s2

=⇒ sL {y}+ L {y} = 1

s2
+ y(0)

=⇒ (s+ 1)L {y} = 1

s2
+ 1

=⇒ L {y} =
1
s2
+ 1

s+ 1
=

1 + s2

s2(s+ 1)

=⇒ L {y} = 1 + s2

s3 + s2)

So, now we know what the Laplace transform of y needs to be. Can we
somehow “work backwards” to determine what the original y was? That
is, can we somehow “undo” what the Laplace transform did to y?

It will turn out the answer to this question is yes, there is a way for us
to “invert” the Laplace transform. In order to understand how to do this,
we need to know two things:

1. Laplace transforms are unique in the sense that if L {f(t)} = L {g(t)},
then f(t) = g(t). (At least, this is true if we make some technical as-
sumptions about the functions, which we will do implicitly.) This
means the Laplace transform is a one-to-one function and so is in-
vertible.

2. Inverses of linear transformations are also linear. That is, the inverse
Laplace transform, L −1, also has the property that we can split
up sums and factor out scalars: L −1 {f(t) + g(t)} = L −1 {f(t)} +
L −1 {g(t)} and L −1 {λf(t)} = λL −1 {f(t)}.

How can we use these properties to “undo” the Laplace transform
above,

L {y} = 1 + s2

s3 + s2

to recover the original y? First we need to express the right-hand side,
1+s2

s3+s2
, as a sum of simpler terms, and we can do this by computing its

partial fraction decomposition. Since the denominator factors as s2(s+1),
we need to find values of A, B, and C so that

1 + s2

s3 + s2
=
A

s
+
B

s2
+

C

s+ 1
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Adding these fractions on the right together gives us

(A+ C)s2 + (A+B)s+B

s3 + s2

Equating this with 1+s2

s3+s2
gives us a system of equations,

A+ C = 1

A+B = 0

B = 1

The second equation tells us B and A are negatives of one another, and
hence A = −1. Now we can easily plug into the first equation to deter-
mine C = 2 and so we have

1 + s2

s3 + s2
=
−1
s

+
1

s2
+

2

s+ 1
.

Thus we can write
L {y} = −1

s
+

1

s2
+

2

s+ 1
.

To recover y we compute the Laplace inverse, L −1, of both sides of the
equation:

L −1 {L {y}} = L −1
{
−1
s

+
1

s2
+

2

s+ 1

}
.

On the left-hand side we have L −1 {L {y}} = y since we are composing a
transformation with its inverse. On the right-hand side we take advantage
of linearity to write

L −1
{
−1
s

+
1

s2
+

2

s+ 1

}
= −L −1

{
1

s

}
+ L −1

{
1

s2

}
+ 2L −1

{
1

s+ 1

}
.

We have already seen functions whose Laplace transform are each of these
functions, however:

L {1} = 1

s
=⇒ L −1

{
1

s

}
= 1

L {t} = 1

s2
=⇒ L −1

{
1

s2

}
= t

L
{
e−t
}
=

1

s+ 1
=⇒ L −1

{
1

s+ 1

}
= e−t
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Thus we have computed

y = −1 + t+ 2e−t

is the solution to our initial value problem, which is easy to verify:

y(0) = −1 + 0 + 2e0 = −1 + 2 = 1

dy

dt
=

d

dt

(
−1 + t+ 2e−t

)
= 1− 2e−t

=⇒ dy

dt
+ y =

(
1− 2e−t

)
+
(
−1 + t+ 2e−t

)
= t

If we want to obtain the general solution to a differential equation in-
stead of the solution to a particular initial value problem, we can leave
the value of y(0) (and any derivatives y′(0), y′′(0), etc.) as parameters.
For example, if we want to find the general solution to

dy

dt
+ y = t,

we repeat the same calculations above but leave y(0) = C for some un-
specified C. Taking the Laplace transform of each side of the equation
then gives us

sL {y} − C + L {y} = 1

s2

which we can solve for L {y} to obtain

L {y} = 1 + Cs2

s2(s+ 1)
.

Taking the partial fraction decomposition of the right-hand side, we could
rewrite this as

L {y} = −1
s

+
1

s2
+

1 + C

s+ 1

We then take the inverse Laplace transform of each side to obtain

y = −L −1
{
1

s

}
+ L −1

{
1

s2

}
+ L −1

{
1

s+ 1

}
+ CL −1

{
1

s+ 1

}
(The last two terms follow from writing 1+C

s+1
as 1

s+1
+ C

s+1
.) Conveniently

we know the functions which give us these Laplace transforms, so we
have

y = −1 + t+ e−t + Ce−t = −1 + t+ (1 + C)e−t.
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Then we want to solve a particular initial value problem, we just choose
what y(0) = C is. For instance, if y(0) = 1 then C = 1, and we recover our
earlier solution to that initial value problem.

As another example, consider the following second-order initial value
problem:

d2y

dt2
+ 3t

dy

dt
− 6y = 2 where y(0) = 0, y′(0) = 0.

Notice that when we take the Laplace transform of each side of the equa-
tion we will need to to compute L

{
tdy
dt

}, but we can do this as follows:

L

{
t
dy

dt

}
= − d

ds
L

{
dy

dt

}
= − d

ds
(sL {y} − y(0))

= −s d
ds

L {y} −L {y}

Notice that this gives us a derivative of the Laplace transform. This means
our resulting equation will in fact be a differential equation involving the
Laplace transform.

When we take the Laplace transform of our original second order equa-
tion above we have

s2L {y} − sy(0)− y′(0) + 3

(
−s d

ds
L {y} −L {y}

)
− 6L {y} = 2

s

which we can simplify down to

d

ds
L {y}+

(
3

s
− s

3

)
L {y} = −2

3s2
.

Notice that to solve for L {y} here, we actually have to solve a differen-
tial equation! Conveniently this is a linear first order equation and so it’s
something we can solve with an integrating factor:

µ = e
´
( 3
s
− s

3) ds = s3e−s
2/6

Multiplying our first-order equation above by this integrating factor gives
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us

s3e−s
2/6 d

ds
L {y}+ s3e−s

2/6

(
3

s
− s

3

)
L {y} = s3e−s

2/6−2
3s2

=⇒ d

ds
s3e−s

2/6L {y} = −2s
3
e−s

2/6

=⇒ s3e−s
2/6L {y} = 2e−s

2/6

=⇒ L {y} = 2

s3

Thus y = t2 solves our initial value problem as is easily verified.
As one final example, let’s try to solve another second-order differen-

tial equation. We will try to solve the initial value problem

t
d2y

dt2
− (t+ 1)

dy

dt
+ y = 0.

where y(0) = 0 and y′(0) = 0.
Taking the Laplace transform of each side of the equation gives us

L

{
t
d2y

dt2

}
−L

{
(t+ 1)

dy

dt

}
+ L {y} = L {0} .

It’s easy to see that L {0} = 0, but we need to write the other terms as
expressions involving L {y}. Let’s first consider

L

{
(t+ 1)

dy

dt

}
.

We can distribute and then apply linearity to write

L

{
(t+ 1)

dy

dt

}
= L

{
t
dy

dt

}
+ L

{
dy

dt

}
.

We know that L
{
dy
dt

} is given by

L

{
dy

dt

}
= sL {y} − y(0) = sL {y} − y(0).

Using our property that L {tf(t)} = −F ′(s), where L {f(t)} = F (s), we
can write

L

{
t
dy

dt

}
= − d

ds
L

{
dy

dt

}
,
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but as noted above, we have L
{
dy
dt

}
= sL {y} − y(0), and so

d

ds
L

{
dy

dt

}
=

d

ds
(sL {y} − y(0)) = L {y}+ s · d

ds
L {y} .

(Keep in mind that L {y} is a function of s, so we needed to use the prod-
uct rule to compute the derivative of sL {y}.) Putting this together,

L

{
(t+ 1)

dy

dt

}
= −

(
L {y}+ s

d

ds
L {y}

)
+ sL {y} − y(0)

= (s− 1)L {y} − s d
ds

L {y} − y(0)

We still need to compute L
{
td

2y
dt2

}
:

L

{
t
d2y

dt2

}
= − d

ds
L

{
d2y

dt2

}
= − d

ds

(
s2L {y} − sy(0)− y′(0)

)
= −

(
2sL {y}+ s2

d

ds
L {y} − y(0)

)
= −2sL {y} − s2 d

ds
L {y}+ y(0)

Thus Laplace transform of the right-hand side of our differential equation
above is

L

{
t
d2y

dt2

}
−L

{
(t+ 1)

dy

dt

}
+ L {y}

=− 2sL {y} − s2 d
ds

L {y}+ y(0)−
(
(s− 1)L {y} − s d

ds
L {y} − y(0)

)
+ L {y}

=(s− s2) d
ds

L {y}+ (2− 3s)L {y}+ 2y(0)

Keeping in mind the right-hand side of our earlier equation was simply
zero, and our initial conditions tell us y(0) = 0, we now have the follow-
ing:

(s− s2) d
ds

L {y}+ (2− 3s)L {y} = 0.

Notice this is a first-order equation. To simplify notation, let’s simply
write L for L {y} and C for y(0) so our equation is

(s− s2)L′ + (2− 3s)L = 0.
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This is a linear first-order equation which we can further rewrite as

L′ +
2− 3s

s− s2
L = 0.

The integrating factor for this equation is

µ = e
´

2−3s

s−s2
ds

= eln(1−s)+2 ln(s)

= s2(1− s)

Multiplying through by the integrating factor gives

(s2 − s3)L′ + (2s− 3s2)L = 0

which can be written as
d

ds
(s2 − s3)L = 0

which is easily solved by integrating both sides and solving for L:
d

ds
(s2 − s3)L = 0

=⇒
ˆ

d

ds
(s2 − s3)Lds =

ˆ
0 ds

=⇒ (s2 − s3)L = C

=⇒ L =
C

s2 − s3

That is, the Laplace transform of our solution y to the differential equation
satisfies

L {y} = C

s2 − s3
We need to compute the inverse Laplace transform. Since the inverse is
linear, though, we have

y = CL −1
{

1

s2 − s3

}
To compute this Laplace inverse we need the partial fraction decomposi-
tion,

1

s2 − s3
=

1

s2(1− s)
=

1

s2
+

1

s
− 1

s− 1
.
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Conveniently we know each of these inverse Laplace transforms:

L −1
{

1

s2

}
= t

L −1
{
1

s

}
= 1

L −1
{

1

s− 1

}
= et

and so we can compute

y = C(t+ 1− et).

Now let’s notice that regardless of what C is we will have

y(0) = C(0 + 1− e0) = C(1− 1) = 0.

The derivative will be
y′ = C(1− et)

and so y′(0) = C(1− e0) = 0.



6Systems of Differential Equations
6.1 Introduction to systems of differential

equations
In general, a system of equations is a collection of several equations and
a solution to the system is a choice of unknowns (e.g., variables) which
simultaneously solve all of the equations at once. While systems of equa-
tions come in several forms (e.g., linear systems in linear algebra, polyno-
mial systems in algebraic geometry), in this class we are specifically inter-
ested in systems of differential equations. For example, we may wish to
find a pair of functions x(t) and y(t)whose derivatives satisfy an equation
such as

x′(t) = 3x(t)− 2y(t)

y′(t) = −x(t) + 2y(t)

To solve this system we require functions x(t) and y(t) such that both
sides of each equation above are equal at the same time. Notice that the
derivative of one function may depend on another. As an example, you
can verify that the functions

x(t) = −2e4t

y(t) = e4t

form a solution to this system as
3x(t)− 2y(t) = 3(−2e4t)− 2e4t = −6e4t − 2e4t = −8e4t = x′(t)

− x(t) + 2y(t) = −(−2e4t) + 2e4t = 2e4t + 2e4t = 4ert = y′(t).

Systems such as this naturally arise in many different contexts: in ecol-
ogy they are used to model interactions between predators and prey; in
electrical engineering they arise in the analysis of circuits, particularly cir-
cuits with several components in parallel; in Riemannian and Lorentzian
geometry (the mathematical foundations for Einstein’s general theory of
relativity) they arise in the study of geodesics which curves that locally
minimize distance.

As we begin to study systems of differential equations, we will see that
certain tools from linear algebra are indispensible. In particular, we will
need to understand how to multiply a matrix with a vector and how to
compute the eigenvalues and eigenvectors of a matrix. Here we provide
a very quick summary of these ideas which developed more thoroughly
in the appendix.

185
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Vectors and matrices
A vector for our purposes is simply a list of values, which we will usu-
ally write in a column. The number of values that appears is called the
dimension of the vector. For example,1

2
3


is a three-dimensional vector, whereas

−π
e√
2
0
42


is a five-dimensional vector. While vectors occur in many different con-
texts and have various interpretations (e.g., forces, velocities, and acceler-
ations in physics are all vector-valued quantities), for us they are mostly
a convenient device for recording information.

When we assign a variable a vector, we often write the vector either
with an arrow over it, as~v, or in bold, v, to indicate this quantity is a vector
and not a single number. Both of these conventions are common, though
in handwritten work the arrow is usually preferred since it is easier to
write than making a letter bold.

Sometimes we will refer to an individual number as a scalar to distin-
guish it from a vector. We will often use the Greek letter lambda, λ, as a
generic scalar and the letter v as a generic vector. When we need to refer
to the specific values contained in a vector (sometimes called the vector’s
components) were often denote them by subscripts. For example,

v =


v1
v2
v3
...
vn

 .

When the vector only contains two or three components, however, we
often just refer to them as x, y, and z.
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One of the most basic operations we can perform with vectors is scalar
multiplication where we multiply a vector by a scalar to obtain a new vec-
tor of the same dimension. This is accomplished simply by multiplying
each component by the scalar:

λv =


λv1
λv2
λv3

...
λvn

 .

For example, if we multiply the three-dimensional vector with compo-
nents 4, −3 and 7 by the scalar 2 we have

2

 4
−3
7

 =

 8
−6
14

 .

Given two vectors v and w of the same dimension, we can define vec-
tor addition by constructing a new vector whose components are just the
sums of components of v and w:

v +w =


v1
v2
v3
...
vn

+


w1

w2

w3
...
wn

 =


v1 + w1

v2 + w2

v3 + w2
...

vn + wn


For example,  3

2
−3

+

0
5
1

 =

 3
7
−2

 .

We can also define a notion of multiplication between a matrix and
a vector. Though the definition looks a bit involved in general, the idea
is that we are simply combining the two operations (scalar multipication
and vector addition) together. In particular, ifA is anm×nmatrix and v is
an n-dimensional vector, we define anm-dimensional vector by perform-
ing scalar multiplication between the first component of v and the first
column of A, then scalar multiplication between the second component
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of v and the second column of A, and so on, and adding up the results:
a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn



v1
v2
...
vn

 = v1


a11
a21
...

am1

+ v2


a12
a22
...

am2

+ · · ·+ vn


a1n
a2n
...

amn


For example,(
2 4 3
5 1 2

)−33
4

 = −3
(
2
5

)
+3

(
4
1

)
+4

(
3
2

)
=

(
−6
−15

)
+

(
12
3

)
+

(
12
8

)
=

(
18
−4

)

Eigenvalues and eigenvectors
Given a square n × n matrix A, we sometimes want to find a scalar λ
together with a vector v such that the following equation is satisfied:

Av = λv.

When we find a scalar λ and vector v related to one another in this way,
we say that v is an eigenvector of the matrixA associated with eigenvalue
λ.

Remark.
We will see why knowledge of eigenvectors and eigenvalues is use-
ful in the context of solving systems of differential equations soon.
However, eigenvectors and eigenvalues appear in many other types
of problems. For example, the PageRank algorithm which Google
uses to determine which web pages are most relevant for a given
search uses eigenvectors and eigenvalues in a fundamental way. Think-
ing of all the pages on the Internet that contain a particular phrase,
such as differential equations, the question is which of these web pages
is the most helpful. You can think of this collection of web pages as
a large graph with one vertex per page and an edge between two
vertices if one page links to another. We then think of each web
page as getting one “vote” for the other pages that are important,
with pages being allowed to split their vote between multiple other
pages, and the “votes” coming from the other pages a given page
links to. Determining the most relevant page then becomes a ques-
tion of counting the votes, where we weigh votes by the importance
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of the pages which are voting. Writing out the details of this turns
the question into a question of computing the eigenvector of some
particularly large matrix with an associated eigenvalue of 1. There
are lots of details to be filled in, but that is the essence of how Google
search works.

(Fun fact: the PageRank algorithm is intellectual property of Stan-
ford University where Larry Page and Sergey Brin, the founders of
Google, were graduate students at the time they developed the al-
gorithm. Stanford licenses the algorithm to Google.)

Notice that the vector of all zeros, 0, necessarily solves Av = λv for
any scalar λ and any square matrix A. We consider this a trivial solution
and so don’t think of 0 as being an eigenvector. Thus we want to find all
of the non-zero vectors v that solve Av = λv. Rewriting this equation
slightly we have

(A− λI)v = 0

where I is the n× n identity matrix. All this means is that we subtract λ
from each diagonal entry of the matrix A. This equation will have non-
zero solution precisely when the determinant of A − λI is zero. That is,
an eigenvalue of A is a scalar λ so that det(A − λI) = 0. Writing all of
this out in detail basically gives us an algebra problem. For example, if
we want to find the eigenvalues of the matrix

A =

(
1 2
5 −2

)
we need to find the values of λ so that

A− λI =

(
1− λ 2
5 −2− λ

)
has zero determinant. I.e.,

(1− λ)(−2− λ)− 10 = 0

=⇒ − 2− λ+ 2λ+ λ2 − 10 = 0

=⇒ λ2 + λ− 12 = 0

This gives us a quadratic equation which we can easily solve since it fac-
tors as (λ+ 4)(λ− 3), and so the eigenvalues are λ = −4 and λ = 3.
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Remark.
Notice that ifA is ann×nmatrix with all real entries, the equation we
must solve to determine the eigenvalues λ is a polynomial of degree
nwith real coefficients. This means the roots of the polynomial (the
eigenvalues of the matrix) can be distinct real numbers, repeated
real numbers, or can come in complex conjugate pairs (possibly re-
peated).

Once we have the eigenvalues, we can work to find the associated
eigenvectors. In the case of eigenvalue λ = 3 for our matrix above, for
example, we seek vectors v so that

Av = 3v,

or
(A− 3I)v = 0.

Writing out the details this gives us a system of equations

−2v1 + 2v2 = 0

5v1 − 5v2 = 0

Unlike other systems that we have seen before this kind of system will
never have a single, unique solution. There will be infinitely-many eigen-
vectors associated with each eigenvalue. Our goal, then, should be to
parametrize the space of all eigenvectors for a given eigenvalue, called
the eigenspace. We can do this by describing some of the components of
the vector v in terms of the other components. In particular, the two equa-
tions above tell us that if v is an eigenvector associated with eigenvalue
λ = 3 for our matrix above, we must have v1 = v2. Thus the eigenspace
for this eigenvalue is {(

v1
v2

) ∣∣ v1 = v2

}
So, for example, the vectors(

1
1

)
,

(
7
7

)
, and

(
−π
−π

)
are all eigenvectors. In some problems we will just want to find one par-
ticular eigenvector, and so we often make the simplest possible choice of
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our components satisfying the necessary conditions. In other problems
we want to describe all possible eigenvectors and so seek the list of equa-
tions the components of the eigenvectors must satisfy. (In terms of linear
algebra we want a basis of the eigenspace.)

Exercise 6.1.
Find the eigenspace associated to eigenvalue λ = −4 of the matrix
from before,

A =

(
1 2
5 −2

)

6.2 Linear first-order homogeneous systems
Suppose that we have two functions, x(t) and y(t), and we are told that
the derivative of each function depends not only on the function itself, but
also on the other function. For example, maybe x′(t) equals 2x(t) + 3y(t),
and simultaneously y′(t) = 2x(t) + y(t). That is, we have a system of
differential equations:

x′(t) = 2x(t) + 3y(t)

y′(t) = 2x(t) + y(t)

Solving this system means finding functions x(t) and y(t) so that both of
these differential equations are satisfied simultaneously.

When studying systems of equations such as this, it can be convenient
to rewrite the equation in terms of matrices and vectors. Let’s let x(t)
denote the two-dimensional vector whose components are x(t) and y(t):

x(t) =

(
x(t)
y(t)

)
The derivative of such a vector-valued function is simply the vector whose
components are the derivatives of the components of the initial function:

x′(t) =

(
x′(t)
y′(t)

)
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Our system above can thus be written as(
x′(t)
y′(t)

)
=

(
2 3
2 1

)(
x(t)
y(t)

)
Or, letting A denote the 2× 2 matrix above,

x′(t) = Ax(t).

How should we go about solving this system? Let’s take a cue from the
case of a single equation, x′(t) = Ax(t) where x(t) is a “normal” scalar-
valued function and A is a constant (a single number). In this case we
would divide x(t) over and write our equation as

1

x

dx

dt
= A,

integrating both sides of the equation would yield
ˆ

1

x

dx

dt
dt =

ˆ
Adt

=⇒
ˆ

1

x
dx =

ˆ
Adt

=⇒ ln |x| = At+ C

=⇒ x = CeAt.

In some very special situations our system of two (or more) differential
equations is reallly two equations of this form in disguise. Consider, for
example, (

x′(t)
y′(t)

)
=

(
3 0
0 1

)(
x(t)
y(t)

)
Writing this out we have

x′(t) = 3x(t)

y′(t) = y(t)

Here we are in a very special case because we see that x and y are inde-
pendent of one another, so we can treat each of the two equations above
as a “normal” differential equation whose solution we can compute as

x(t) = c1e
3t

y(t) = c2e
t
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Notice that we used two different arbitrary constants, c1 and c2, above as
there’s no great reason the constant that is used for the x should equal the
constant that’s used for the y.

If we were to write our above two equations in terms of vectors, we
could do some simple algebra to write the solution as(

x(t)
y(t)

)
=

(
c1e

3t

c2e
t

)
=

(
c1
0

)
e3t +

(
0
c2

)
et

Let’s observe that each term by itself gives us a solution to our system:(
x(t)
y(t)

)
=

(
c1
0

)
e3t and

(
x(t)
y(t)

)
=

(
0
c2

)
et

are both solutions to the system. (In each case we just took one of our
constants to be zero to kill off the other variable. This seems silly right
now, but we’re building up to something interesting.) Let’s look at each
of these solutions separately.

For the first solution, (
x(t)
y(t)

)
=

(
c1
0

)
e3t

notice if we differentiate each side of the equation we have(
x′(t)
y′(t)

)
=

(
c1
0

)
3e3t

which we could write as (
x′(t)
y′(t)

)
= 3

(
c1
0

)
e3t.

This quantity on the right-hand side is closely related to our original
matrix from before. It may not be a completely obvious thing to notice at
first, but we could write the right-hand side of the equation above as

3

(
c1
0

)
e3t =

(
3 0
0 1

)(
c1
0

)
e3t

Dividing out the e3t (which is a scalar-valued function that never equals
zero, so there’s no concern about dividing it through) we have

3

(
c1
0

)
=

(
3 0
0 1

)(
c1
0

)
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Similarly for our second solution,(
x(t)
y(t)

)
=

(
0
c2

)
et,

differentiating each side gives us(
x′(t)
y′(t)

)
=

(
0
c2

)
et

and this right-hand side we could write as(
0
c2

)
et =

(
3 0
0 1

)(
0
c2

)
et

and canceling the et’s we have(
0
c2

)
=

(
3 0
0 1

)(
0
c2

)
.

In both cases, notice that we have a constant λ (which is λ = 3 for the
first solution and λ = 1 for the second) together with a vector v (in the
first equation it’s v =

(
3
0

)
, and in the second it’s v =

(
0
1

)
) so that using

our matrix A =

(
3 0
0 1

)
the following equation is satisfied:

λv = Av.

Equations of this form and the constants λ and vectors v that appear are
very special: they are called the eigenvalues and eigenvectors of the ma-
trix A. Eigenvectors and eigenvalues are topics that traditionally first en-
countered in a course in linear algebra, which some students may have
had, but some students may not have had. For this reason a more thor-
ough discussion of eigenvectors and eigenvalues appears in Appendix A.4.

Though the above situation was very special in that x(t) and y(t) were
independent of each other, they showed us that the solution to our sys-
tem of differential equations was closely related to the eigenvectors and
eigenvalues of the coefficient matrixA that appeared in our system. With
this in mind, let’s consider the general setting.
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Consider a system of n first-order linear equations with constant co-
efficients,

x′1(t) = a11x1(t) + a12x2(t) + · · ·+ a1nxn(t)

x′2(t) = a21x1(t) + a22x2(t) + · · ·+ a2nxn(t)

x′3(t) = a31x1(t) + a32x2(t) + · · ·+ a3nxn(t)

...
x′n(t) = an1x1(t) + an2x2(t) + · · ·+ annxn(t)

Written in terms of vectors and matrices we can condense this to
x′(t) = Ax(t)

where

x(t) =


x1(t)
x2(t)
x3(t)

...
xn(t)

 ,

x′(t) is the vector of derivatives, and A is the coefficient matrix,

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
an1 an2 · · · ann

 .

Now let’s suppose that v is an eigenvector ofAwith corresponding eigen-
value λ. Our claim is that

x(t) = veλt,

which is really short-hand for
x1(t) = v1e

λt

x2(t) = v2e
λt

...
xn(t) = vne

λt

is a solution to our system of equations. To verify this, let’s differentiate
both sides of the equation. Since v is a vector of constants, we have

x′(t) = vλeλt
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Sincev is an eigenvector ofAwith associated eigenvalue λ, we knowAv =
λv, and so we may rewrite the above as

x′(t) = Aveλt

but x(t) = veλt and so we have
x′(t) = Ax(t)

and thus verify that we have a solution to our system of differential equa-
tions.

The argument above is the proof of the following proposition:

Proposition 6.1.
If v is an eigenvector associated with eigenvalue λ for a matrix A, then
x(t) = veλt is a solution to the system of differential equations given by
x′(t) = Ax(t).

Example 6.1.
Determine a pair of solutions to the following system of differential
equations:

x′(t) = 2x(t) + 3y(t)

y′(t) = 2x(t) + y(t).

In terms of matrices and vectors we write this as x′(t) = Ax(t)
where x(t) is the vector

x(t) =

(
x(t)
y(t)

)
and A is the coefficient matrix

A =

(
2 3
2 1

)
.

We now determine the eigenvectors and eigenvalues of this matrix.
If v is an eigenvector with associated eigenvalue λ, then we have
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Av = λv which we can rewrite as (A − λI)v = 0. If this equation
has non-zero solutions v, then A − λI is non-invertible and so has
determinant zero, so we first need to find the values of λ so that
det(A− λI) = 0. In our particular example this means

det

(
2− λ 3
2 1− λ

)
= (2− λ)(1− λ)− 3 · 2 6= 0.

Expanding this and combining like-terms, we have a quadratic in λ:

λ2 − 3λ− 4 = 0

This factors as (λ − 4)(λ + 1), and so our eigenvalues are λ = 4 and
λ = −1. For each of these eigenvalues we have to determine the
corresponding eigenvectors.

For each eigenvalue we determine the corresponding eigenvec-
tors. In the case of λ = 4, we need to find vectors

v =

(
v1
v2

)
so that Av = 4v:

Av = 4v

=⇒
(
2 3
2 1

)(
v1
v2

)
= 4

(
v1
v2

)

Writing this out as a system of equations we have

2v1 + 3v2 = 4v1

2v1 + v2 = 4v2

We move all the variables to the left-hand side to write

−2v1 + 3v2 = 0

2v1 − 3v2 = 0

Notice we can solve either of these equations for one variable or the
other to obtain 2v1 = 3v2, or v2 = 2

3
v1. This means that for any choice

of v1, the v2 vector is completely determined: it must be two-thirds



CHAPTER 6. SYSTEMS OF DIFFERENTIAL EQUATIONS 198

of v1. Choosing any non-zero v1, say v1 = 1, we have that our eigen-
vector is

v =

(
1
2/3

)
.

This means one solution to our system of differential equations is

x(t) = e4t

y(t) =
2

3
e4t.

It’s easy to verify this is in fact a solution to our system. Computing
the derivatives we have

x′(t) = 4e4t

y′(t) =
8

3
e4t

If we multiply the vector x(t) by the coefficient matrixA from above,
we compute

Ax(t) =

(
2 3
2 1

)(
e4t
2
3
e4t

)
=

(
2e4t + 3 2

3
e4t

2e4t + 2
3
e4t

)
=

(
4e4t
8
3
e4t

)
and so we do in fact have a solution to our system of equations.

Above we computed an eigenvector associated to eigenvalue λ =
4, but we also need to compute an eigenvector for our other eigen-
value, λ = −1. This means we need to find vectors v so that Av =
−v, which we can write as (A + I)v = 0, so we have a system of
equations

3v1 + 3v2 = 0

2v1 + 2v2 = 0
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Solving either equations we see that v2 = −v1. So, our system of
differential equations is solved by

x(t) = e−t

y(t) = −e−t

We can verify this is a solution to our system by computing

Ax(t) =

(
2 3
2 1

)(
e−t

−e−t
)

=

(
2e−t − 3e−t

2e−t − e−t
)

=

(
−e−t
e−t

)
and noticing the components of this vector are precisely the deriva-
tives of our x(t) = e−t and y(t) = −e−t above.

So, one we know that the eigenvalues of our coefficient matrix and
the corresponding eigenvectors, we know some solutions to our system
of differential equations. The following principle of superposition says if we
have multiple solutions (e.g., coming from different eigenvectors and/or
eigenvalues) we can take linear combinations of them to obtain another
solution.

Proposition 6.2 (The principle of superposition).
if x1(t), x2(t), ..., xm(t) are all solutions to the system of linear differential
equations x′(t) = Ax(t), then so is any linear combination

µ1x1(t) + µ2x2(t) + . . .+ µmxm(t).

Proof.
We simply verify the linear combination is a solution which essen-
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tially just relies on linearity:

d

dt
(µ1x1(t) + µ2x2(t) + . . .+ µmxm(t))

=µ1x
′
1(t) + µ2x

′
2(t) + . . .+ µmx

′
m(t)

=µ1Ax1(t) + µ2Ax2(t) + . . .+ µmAxm(t)

=A (µ1x1(t) + µ2x2(t) + . . .+ µmxm(t)) .

As a consequence of the principle of superposition, if our coefficient
matrix for a system of n homogeneous linear differential equations with
constant coefficients has n linearly independent eigenvectors, the general
solution to the system has the form

x(t) = c1v
(1)eλ1t + c2v

(2)eλ2t + cnv
(n)eλnt

where v(1), ..., v(n) are the eigenvectors and v(j) is associated to eigenvalue
λj (we allow that a given eigenvalue λj may appear multiple times in the
expression above).

In the problems above we have been in the special case where we had
distinct real eigenvalues, but in general eigenvalues may be repeated and
may be complex.

If we have an n × n matrix with all real entries, then any associated
complex eigenvalues must have corresponding complex eigenvectors. Con-
sider, for example, the matrix (

−1 2
−2 −1

)
To find the eigenvalues we must solve

det

(
−1− λ 2
−2 −1− λ

)
= 0.

Writing out the determinant this becomes

(−1− λ)2 + 4 = 0

or
λ2 + 2λ+ 5 = 0
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Using the quadratic formula we can solve this for λ to obtain

λ =
−2±

√
4− 20

2

=
−2±

√
−16

2

=
−2± 4i

2
= −1± 2i

To find the eigenvector associated with −1 + 2i, we need a vector so that(
−1 2
−2 −1

)(
v1
v2

)
= (−1 + 2i)

(
v1
v2

)
Multiplying out each side this becomes(

−v1 + 2v2
−2v1 − v2

)
=

(
(−1 + 2i)v1
(−1 + 2i)v2

)
Equating components gives us a system

−v1 + 2v2 = (−1 + 2i)v1

−2v1 − v2 = (−1 + 2i)v2

Now suppose we solve the first equation for v2:

− v1 + 2v2 = (−1 + 2i)v1

=⇒ 2v2 = −v1 + 2iv1 + v1

=⇒ 2v2 = 2iv1

=⇒ v2 = iv1

This tells us that entries in the corresponding eigenspace are given by{(
v1
v2

) ∣∣ v2 = iv1

}
.

Or, written another way, eigenvectors have the form(
v
iv

)
=

(
1
i

)
v.
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Exercise 6.2.
Verify that the eigenvectors corresponding to eigenvalue−1−2i have
the form (

1
−i

)
v.

To relate this back to systems of differential equations, if we had the
system

x′(t) = −x(t) + 2y(t)

y′(t) = −2y(t)− x(t)

the eigenvectors and eigenvalues above would tell us that complex-valued
solutions to our system of differential equation would have the form

c1

(
1
i

)
e(−1+2i)t + c2

(
1
−i

)
e(−1−2i)t

or

x(t) = c1e
(−1+2i)t + c2e

(−1−2i)t

y(t) = ic1e
(−1+2i)t − ic2e(−1−2i)t

While these are perfectly legitimate solutions, we may sometimes wish
to have real-valued solutions to our system. We can obtain real-valued
solutions to our system by taking the real and imaginary parts of these
solutions. Of course, the key to doing this is to use Euler’s formula. By
Euler, we may write

e(−1+2i)t = e−tei2t = e−t cos(2t) + ie−t sin(2t)

e(−1−2i)t = e−te−i2t = e−t cos(−2t) + ie−t sin(−2t) = e−t cos(2t)− ie−t sin(−2t)

Our complex-valued solution from above,(
1
i

)
e(−1+2i)t

can thus be written as(
1
i

)
(e−t cos(2t) + ie−t sin(2t))
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Performing the scalar multiplication we may write this as(
e−t cos(2t) + ie−t sin(2t)
−e−t sin(2t) + ie−t cos(2t)

)
or (

cos(2t)
− sin(2t)

)
e−t + i

(
sin(2t)
cos(2t)

)
e−t

The real and imaginary parts of this complex-valued solution,(
cos(2t)
− sin(2t)

)
e−t and

(
sin(2t)
cos(2t)

)
e−t

form a basis for the real-valued solutions. I.e., every real-valued solution
to our system has the form(

x(t)
y(t)

)
= c1

(
cos(2t)
− sin(2t)

)
e−t + c2

(
sin(2t)
cos(2t)

)
e−t

So far the examples we have seen have had 2 × 2 coefficient matrices
with either two distinct real eigenvalues, or a pair of complex conjugate
eigenvalues. We now turn our attention to the third possibility which is to
have a repeated eigenvalue. As an example of a system where this occurs,
consider

x′(t) = x(t)− y(t)
y′(t) = x(t) + 3y(t)

To solve this system we are lead to find the eigenvalues and eigenvectors
of the coefficient matrix (

1 −1
1 3

)
.

We thus need to find the values of λ that solve the following equation:

det

(
1− λ −1
1 3− λ

)
= 0

=⇒ (1− λ)(3− λ) + 1 = 0

=⇒ 3− λ− 3λ+ λ2 + 1 = 0

=⇒ λ2 − 4λ+ 4 = 0
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Notice the polynomial factors as (λ− 2)2, and so λ = 2 is our only eigen-
value. We now seek its eigenvectors:

Av = 2v

=⇒
(
1 −1
1 3

)(
v1
v2

)
= 2

(
v1
v2

)
=⇒

(
v1 − v2
v1 + 3v2

)
=

(
2v1
2v2

)
.

Equating components gives us the system

v1 − v2 = 2v1

v1 + 3v2 = 2v2

Solving the first equation for v2 gives us v2 = −v1 (the second equation
would also give us this relationship). Thus our only eigenvectors are mul-
tiples of the vector

(
1
−1

)
. This tells us one possible family of solutions

would be (
x(t)
y(t)

)
= c

(
1
−1

)
e2t.

Since we have a system of two equations and two unknowns, though, we
expect the space of solutions to be two-dimensional, not one-dimensional.
Thus there should be some “missing” solutions.

Motivated by our “trick” for repeated roots of the characteristic poly-
nomial for a higher-order differential equation, we may be tempted to
look for a solution of the form

x(t) = te2tv

for some unknown vectorv. If we compute the derivative of this, however,
we have to apply the product rule and compute

x′(t) = e2tv + 2te2tv.

If this is to solve our equation x′(t) = Ax(t), then we would have

e2tv + 2te2tv = Ate2tv.

Writing out the details in terms of the components, this means

v1e
2t + 2v2te

2t = v1te
2t − v2te2t = (v1 − v2)te2t

v2e
2t + 2v2te

2t = v1te
2t + 3v2te

2t = (v1 + 3v2)te
2t
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Since e2t is never zero, we could divide that out from the equations above
to obtain

v1 + 2v2t = (v1 − v2)t
v2 + 2v2t = (v1 + 3v2)t

Since there are no constant terms on the right-hand sides of these equa-
tions, this would mean v1 = v2 = 0. Thus there are no non-trivial solu-
tions of our system of equations of the form te2tv.

The “trick” around this is to instead consider possible solutions of the
form

x(t) = (tu+w)e2t = te2tu+ e2tw.

Supposing such a solution were to exist, when computing the derivative
we would have

x′(t) = e2tu+ 2te2tu+ 2e2tw = (u+ 2w)e2t + u2te2t.

Plugging this into our system we would have

(u+ 2w)e2t + u2te2t = A
(
(tu+w)e2t

)
Rewriting the right-hand side slightly, this becomes

(u+ 2w)e2t + u2te2t = Awe2t + Aute2t

Equating coefficients between the e2t and te2t terms on the left- and right-
hand sides of the system gives us

u+ 2w = Aw and 2u = Au.

The second equation is equivalent to saying that u is an eigenvector of A
associated with eigenvalue λ = 2. The first equation we can rewrite as

(A− 2I)w = u.

This gives us a system of equations very similar to the eigenvalue-eigenvector
system, except the right-hand side is an eigenvector of the original matrix
instead of the zero vector. The solutionsw to such a system are sometimes
called generalized eigenvectors.

Above we had computed that the eigenvectors of our matrix associated
with eigenvalue λ = 2 were multiples of

(
1
−1

)
.
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Plugging that into the right-hand side of the system above, we have(
1− 2 −1
1 3− 2

)(
w1

w2

)
=

(
1
−1

)
.

As a system of equations,
−w1 − w2 = 1

w1 + w2 = −1

Of course, these two equations are multiples of one another, and they tell
us that w1 and w2 are related by

w2 = −1− w1

That is, the vector w has the form

w =

(
n

−1− n

)
=

(
0
−1

)
+ n

(
1
−1

)
.

Thus our general solution to the system of differential equations above is

x(t) = c1

(
1
−1

)
e2t + c2

((
0
−1

)
e2t +

(
1
−1

)
te2t
)

Or, in terms of the individual components,
x(t) = c1e

2t + c2te
2t

y(t) = −c1e2t − c2e2t − c2te2t

Summary
To summarize, suppose we have a homogeneous system of linear, first-order
differential equations of the form

x′(t) = ax(t) + by(t)

y′(t) = cx(t) + dy(t)

where a, b, c, and d are real constants. We may write this in terms of
matrices and vectors as

x′(t) = Ax(t)

where

x(t) =

(
x(t)
y(t)

)
, x′(t) =

(
x′(t)
y′(t)

)
, and A =

(
a b
c d

)
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To determine the solutions to the system we need to find the eigenval-
ues and eigenvectors of the matrix A. The eigenvalues are the values of
λ such that det(A − λI) = 0. Once the eigenvalues are known we may
compute the eigenvectors by solving, for each eigenvalue λ, the vector
equation Av = λv (this is really a system of equations in two unknowns,
the components of v). The corresponding system of equations which tell
us the eigenvectors will not have a unique solution, so we seek a relation-
ship between the components. This will always be a linear equation in
the components, and we may write the equation as v2 = kv1 where k is
some constant.

The equation we solve to determine the eigenvalues is a quadratic
polynomial in the variable λ, and so there are three possibilities:

1. There are two distinct real eigenvalues.
2. There are two complex conjugate eigenvalues.
3. There is a repeated real eigenvalue.
Each case gives us a different possible set of solutions to the system of

differential equations, elaborated on below.

Distinct real eigenvalues

Suppose the matrix A has two distinct real eigenvalues, call them λ1 and
λ2. Each eigenvalue has a corresponding one-dimensional eigenspace
consisting of multiples of some given non-zero eigenvector. Write v(1)

for an eigenvector associated with eigenvalue λ1, and v(2) the eigenvec-
tor associated with λ2. The general solution to our system of differential
equations is given by

x(t) = c1v
(1)eλ1t + c2v

(2)eλ2t.

Or, written out in terms of the components,

x(t) = c1v
(1)
1 eλ1t + c2v

(2)
1 eλ2t

y(t) = c1v
(1)
2 eλ1t + c2v

(2)
2 eλ2t

As an example, consider the system

x′(t) = 5x(t)− 4y(t)

y′(t) = −x(t) + 5y(t)
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The coefficient matrix here is

A =

(
5 −4
−1 5

)
.

We first find the eigenvalues:

det

(
5− λ −4
−1 5− λ

)
= 0

=⇒ (5− λ)2 − 4 = 0

=⇒ 25− 10λ+ λ2 − 4 = 0

=⇒ λ2 − 10λ+ 21 = 0

=⇒ (λ− 7)(λ− 3) = 0

And so we have two distinct eigenvalues, λ1 = 7 and λ2 = 3. We now
seek the eigenvectors associated to each eigenvalue.

For the eigenvalue λ = 7, we need to find vectors v that solveAv = 7v.
This gives us the vector equation,(

5 −4
−1 5

)(
v1
v2

)
= 7

(
v1
v2

)
Performing the matrix and scalar multiplications and equating compo-
nents, this becomes

5v1 − 4v2 = 7v1

−v1 + 5v2 = 7v2

moving all the variables to the left-hand side of the equation this is

−2v1 − 4v2 = 0

−v1 − 2v2 = 0

Solving either of these equations for v2 will tell us v2 = −1
2
v1. Thus all the

eigenvectors associated to eigenvalue λ = 7 for this matrix are multiples
of

v(1) =

(
v
(1)
1

v
(1)
2

)
=

(
1
− 1/2

)
For the eigenvalue λ = 3, we solve Av = 3v:(

5 −4
−1 5

)(
v1
v2

)
= 3

(
v1
v2

)
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As a system of equations this is

5v1 − 4v2 = 3v1

−v1 + 5v2 = 3v2

Solving either of these equations for v2 will give us v2 = 1
2
v1, and so the

eigenvectors as multiples of

v(2) =

(
v
(2)
1

v
(2)
2

)
=

(
1
1/2

)
Ths general solution to our system of differential equations is then

written in vector form as

x(t) = c1

(
1
− 1/2

)
e7t + c2

(
1
1/2

)
e3t

or, in components,

x(t) = c1e
7t + c2e

3t

y(t) =
−1
2
c1e

7t +
1

2
c2e

3t

Complex conjugate eigenvalues

Suppose the matrix A has two complex conjugate eigenvalues, which we
will suppose are λ1 = α+iβ and λ2 = α−iβ. Each eigenvalue has an asso-
ciated complex eigenspace. That is, the eigenvectors will have complex-
valued components. These yield complex-valued solutions to our system
of differential equations determined by the same formula as in the case
of distinct real eigenvalues:

x(t) = c1v
(1)eλ1t + c2v

(2)eλ2t.

where v(j) is the complex eigenvector associated with eigenvalue λj .
To obtain real-valued solutions we must consider the real and imagi-

nary parts of complex-valued solutions. We may do this for either of our
eigenvector/eigenvalue pairs (since the eigenvalues are complex conju-
gates of one another they are closely related and we will obtain the same
set of solutions). Supposing the eigenvector v associated with eigenvalue
α + iβ is

v =

(
ξ1 + iη1
ξ2 + iη2

)
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then one of our complex-valued solutions is

ve(a+ib)t =

(
ξ1 + iη1
ξ2 + iη2

)
eateibt

Using Euler’s formula we may write this as(
ξ1 + iη1
ξ2 + iη2

)(
eat cos(bt) + ieat sin(bt)

)
Performing the scalar multiplication and writing the i2’s that appear as
−1, this becomes(

ξ1e
at cos(bt)− η1eat sin(bt) + i (ξ1e

at sin(bt) + η1e
at cos(bt))

ξ2e
at cos(bt)− η2eat sin(bt) + i (ξ2e

at sin(bt) + η2e
at cos(bt))

)
which we may further rewrite as(

ξ1 cos(bt)− η1 sin(bt)
ξ2 cos(bt)− η2 sin(bt)

)
eat + i

(
ξ1 sin(bt) + η1 cos(bt)
ξ2 sin(bt) + η2 cos(bt)

)
eat

The real and imaginary parts separately form a basis for the space of real-
valued solutions to our system, and so the general real-valued solution
is

x(t) = c1

(
ξ1 cos(bt)− η1 sin(bt)
ξ2 cos(bt)− η2 sin(bt)

)
eat + c2

(
ξ1 sin(bt) + η1 cos(bt)
ξ2 sin(bt) + η2 cos(bt)

)
eat

As an example, consider the system
x′(t) = x(t)− y(t)
y′(t) = x(t) + y(t)

The coefficient matrix here is

A =

(
1 −1
1 1

)
.

We need to determine the eigenvalues:
det(A− λI) = 0

=⇒ det

(
1− λ −1
1 1− λ

)
= 0

=⇒ (1− λ)2 + 1 = 0

=⇒ 1− 2λ+ λ2 + 1 = 0

=⇒ λ2 − 2λ+ 2 = 0
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We now solve for λ using the quadratic formula:

λ =
2±
√
4− 4 · 2
2

=
2±
√
4− 8

2

=
2±
√
−4

2

=
2± 2i

2
= 1± i

If we are only interested in real-valued solutions, note that we only need
to find the eigenvectors associated to one of the eigenvalues. For this ex-
ample we will use λ = 1 + i. We seek vectors v that solve Av = (1 + i)v.
This becomes (

1 −1
1 1

)(
v1
v2

)
= (1 + i)

(
v1
v2

)
.

This gives us the system of equations

v1 − v2 = (1 + i)v1 = v1 + iv1

v1 + v2 = (1 + i)v2 = v2 + iv2

Putting the variables all on the left-hand sides of the equations above, this
may be rewritten as

−iv1 − v2 = 0

v1 − iv2 = 0

Solving the first equation for v2 gives us v2 = −iv1.

Remark.
If we were to solve the second equation for v2 we will get the same
answer, but there’s a small technical point in that we would need to
divide by a complex number. In general this is done by multiplying
and dividing by the conjugate of the denominator in our fraction. In
the case of our example this we would have iv2 = v1 and dividing
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the i over we have:

v2 =
v1
i

=
v1
i
· −i
−i

=
−iv1
i · (−i)

=
−iv1
−i2

=
−iv1
−(−1)

= −iv1

Thus, taking v1 to be 1, we see that eigenvectors of our matrix associ-
ated with eigenvalue 1 + i are multiples of(

1
−i

)
In terms of our notation above, we have(

ξ1 + iη1
ξ2 + iη2

)
=

(
1
−i

)
and so ξ1 = 1, η1 = 0, ξ2 = 0 and η2 = −1. The eigenvalue was 1 + i, so
a = 1 and b = 1 as well and using the formula above, the solutions to our
system of differential equations are

x(t) = c1 cos(t)e
t + c2 sin(t)e

t

y(t) = c1 sin(t)e
t − c2 cos(t)et

Repeated real eigenvalues

Suppose the matrix A has a repated real eigenvalue λ with eigenvector v.
We then have that one solution to the system is given by

x(t) = c1ve
λt.

To find a second linearly independent solution we suppose there is a so-
lution of the form

x(t) = (tu+w)eλt.
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The derivative of this is then

x′(t) = (eλt + λteλt)u+ λeλtw

= (u+ λw)eλt + uλteλt

This, however, should equal Ax(t) which is Auteλt + Aweλt, so we have

(u+ λw)eλt + uλteλt = Auteλt + Aweλt

Equating the eλt terms on each side, as well as the teλt terms, this gives us
a pair of vector equations,

Au = λu

Aw = u+ λw

The first equation simply tells us the u is in fact our eigenvector from
before, and the second equation tells us w is a “generalized eigenvector.”
After doing the algebra to determine w (and keeping in mind the above
equations tell us u is the eigenvector v), the general solution to the system
of equations is given in vector form by

x(t) = c1ve
λt + c2(tv +w)eλt

As an example, consider the system

x′(t) = 6x(t) + 3y(t)

y′(t) = −3x(t) + 12y(t)

The coefficient matrix is
A =

(
6 3
−3 12

)
We compute the eigenvalues as follows:

det(A− λI) = 0

=⇒ det

(
6− λ 3
−3 12− λ

)
= 0

=⇒ (6− λ)(12− λ) + 9 = 0

=⇒ 72− 18λ+ λ2 + 9 = 0

=⇒ λ2 − 18λ+ 81 = 0

=⇒ (λ− 9)2 = 0
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Our only eigenvalue here is λ = 9. Now we seek its eigenvectors by solv-
ing Av = 9v. In terms of matrices and vectors this gives us(

6 3
−3 12

)(
v1
v2

)
= 9

(
v1
v2

)
After performing the multiplication this gives us the system of equations

6v1 + 3v2 = 9v1

−3v1 + 12v2 = 9v2

which we may rewrite as

−3v1 + 3v2 = 0

−3v1 + 3v2 = 0

and these equations tell us that v1 = v2, so our eigenvectors are multiples
of the vector

v =

(
1
1

)
This gives us some of the possible solutions to our system, but to find
the remaining solutions we need to determine a generalized eigenvector.
This means we need to find a vector w such that Aw = v + 9w, where
v is our eigenvector above. This gives us a system of equations we must
solve. Writing the above out in terms of matrices and vectors, we have(

6 3
−3 12

)(
w1

w2

)
=

(
1
1

)
+ 9

(
w1

w2

)
=⇒

(
6w1 + 3w2

−3w1 + 12w2

)
=

(
1 + 9w1

1 + 9w2

)
This corresponds to the system of equations

6w1 + 3w2 = 1 + 9w1

−3w1 + 12w2 = 1 + 9w2

Moving the variables to the left-hand side (but keeping the constants 1
on each right-hand side) this becomes

−3w1 + 3w2 = 1

−3w1 + 3w2 = 1
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Solving this for w2 we have

− 3w1 + 3w2 = 1

=⇒ 3w2 = 1 + 3w1

=⇒ w2 =
1

3
+ w1

So our generalized eigenvector w has the form(
w

w + 1
3

)
We may write this as

w

(
1
1

)
+

(
0
1/3

)
Notice that in our formula above,

x(t) = c1ve
λt + c2(tv +w)eλt

the factor of tv+w in the second term is the only place w appears. What
we’ve seen, though, is that our w is the sum of an eigenvector (a multiple
of our v) and the vector

(
0
1/3

)
. This second vector is the thing we really

care about, so we will use it as the w above.
To recap, we have that

λ = 9, v =

(
1
1

)
, and w =

(
0
1/3

)
Plugging this into our formula above, the solution to our system (as a
vector) is

x(t) = c1

(
1
1

)
e9t + c2

(
t

(
1
1

)
+

(
0
1/3

))
e9t

which in terms of the components equals

x(t) = c1e
9t + c2te

9t

y(t) = c1e
9t + c2(t+ 1/3)e9t
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6.3 Phase potraits
In this section we finish up our discussion of systems of differential equa-
tions by mentioning a way to qualitative describe the behavior of a solu-
tion to a system. We will specifically consider the case of two-dimensional
systems for simplicity, but the ideas are similar in higher dimensions.

Notice that if x(t) =

(
x(t)
y(t)

)
is a solution to a system x′(t) = Ax(t),

then what we have is a curve in the plane parametrized by x(t): at each
moment in time twe are told the x and y coordinates of a point, (x(t), y(t)),
and as the time t changes, taking these points in tandem gives us a curve.
The system of differential equations tells us what the tangent vectors to
the curves should be at every point. That is, the tangent vector of the
curve parametrized by (x(t), y(t)) is exactly the derivative

x′(t) =

(
x′(t)
y′(t)

)
but our differential equation tells us what these should derivatives should
be at each point. That is, the system of differential equations actually
determines a vector field, an association of a vector to each point in the
plane.

In particular, the system

x′(t) = ax(t) + by(t)

y′(t) = cx(t) + dy(t)

is associated to the vector field

F(x, y) =

(
ax+ by
cx+ dy

)
,

which means at a point (x, y) in the plane we associate the vector F(x, y)
described above.

In the case of the system

x′(t) = 2x(t) + 3y(t)

y′(t) = 2x(t) + y(t)

our vector field is
F(x, y) =

(
2x+ 3y
2x+ y

)
which we may visualize as
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Using the results from the last section, the general solution to this system
is given by

x(t) = c1

(
1
2/3

)
e4t + c2

(
1
−1

)
e−t

or, in components,

x(t) = c1e
4t + c2e

−t

y(t) = c1
2

3
e4t − c2e−t

Each choice of c1 and c2 gives us a solution to the system together with a
parametric curve. For example, plotted below is the curve corresponding
to c1 = 1, c2 = −1 plotted against the vector field.
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Notice that this curve is tangent to the vector field at every point. This is
a general fact: the solutions to a system of differential equations give us
an integral curve to the corresponding vector field.

Remark.
The above fact suggests a way to approximate solutions to a vec-
tor field: find (approximations to) integral curves. In particular, if
we want to find the solution to a system of equations which satisfies
some initial condition, say x(0) = a and y(0) = b, then we can start by
“marking” the point (a, b) on the plane. We then approximate x(t)
and y(t) for some small value t ≈ 0 by evaluating the vector field
at (a, b), and drawing a small line segment emanating from (a, b) in
the direction determined by the vector field at (a, b), F(a, b). This
gives us a second point on our approximate integral curve, and we
repeat the process starting from this new point. Doing this several
(hundreds, thousands, perhaps millions of times) for very small in-
crements of t gives us a reasonable approximation of the solution
to the system of equations. This technique is called Euler’s method
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and is one of the basic ways solutions to systems of equations are
numerically approximated on a computer.
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ALinear Algebra
There is hardly any theory which is more
elementary [than linear algebra], in spite of the
fact that generations of professors and textbook
writers have obscured its simplicity by
preposterous calculations with matrices.

Jean Dieudonné
Foundations of Modern Analysis, Vol. 1

In this appendix we review some topics from linear algebra which will
be helpful for our study of differential equations. We first introduce the
notion of a linear transformation and see how it is related to the idea of
a matrix. We then spend some time describing products of matrices and
vectors, and then matrices with one another. As we will see the odd rule
that many people rotely memorize for matrix multiplication is defined in
this way precisely so that products of matrices correspond to composi-
tions of linear transformations.

After reviewing these necessary bits of matrix algebra, we review to
closely related topics: the Laplace (or cofactor) expansion for computing
determinants, and Cramer’s rule for solving linear systems of n equations
with n variables when the corresponding coefficient matrix is invertible
(i.e., has non-zero determinant).

We finally introduce the ideas of eigenvectors and eigenvalues which
we will need when we discuss linear systems of differential equations.

A.1 Linear transformations and matrices

Linear transformations
To be a little bit more precise, a linear transformation is a function T
that takes n-dimensional vectors and converts them into m-dimensional
vectors (m and n may be the same, but they don’t need to be), and such
that for all pairs of n-dimensional vectors ~u and ~v and all scalars λwe have
the following two identities:

T (~u+ ~v) = T (~u) + T (~v)

T (λ~v) = λT (~v)

221
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That is, a linear transformation allows us to split up sums and factor out
scalars.

For example, consider the following function that converts three-dimensional
vectors into two-dimensional vectors:

T

xy
z

 =

(
2x+ y
z − 5y

)
. (A.1)

Here we are specifying T by describing how it uses the components of
its input vector (which is three-dimensional) to build its output vector
(which is two-dimensional). When this function is applied to the vector1
2
3

, for example, the result is

T

1
2
3

 =

(
2 · 1 + 2
3− 5 · 2

)
=

(
4
−7

)
. (A.2)

Sometimes in order to say thatT takesn-dimensional vectors and converts
them into m dimensional vectors we will write T : Rn → Rm.

It is important to notice that for a function T to be linear it must satisfy
T (~u + ~v) = T (~u) + T (~v) and T (λ~v) = λT (~v) for all input vectors ~u and ~v,
and all scalars λ. In order to check that this is the case, we have to leave
the components of ~u and ~v as variables and check if the two sides of the
equalities mentioned above really are equal.

In the case of the map T described above, we must compute the fol-
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lowing:

T (~u+ ~v) = T

u1 + v1
u2 + v2
u3 + v3


=

(
2(u1 + v1) + u2 + v2
u3 + v3 − 5(u2 + v2)

)
=

(
2u1 + u2 + 2v1 + v2
u3 − 5u2 + v3 − 5v2

)
=

(
2u1 + u2
u3 − 5u2

)
+

(
2v1 + v2
v3 − 5v2

)

= T

u1u2
u3

+ T

v1v2
v3


= T (~u) + T (~v)

Since we left the components of our vectors as arbitrary values (the vari-
ables u1, u2, and so on), the calculation above shows that for all three-
dimensional vectors ~u and ~v, we have that T (~u + ~v) equals T (~u) + T (~v).
If we had instead plugged in two particular choices for ~u and ~v, our cal-
cuation would have only shown that we can break up the sum of those
particular vectors, but we need to show we can break up all sums of vec-
tors, hence the need to leave the components as variables.

We can similarly check that scalars can be factored out of the function
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above:

T (λ~v) = T

λ
v1v2
v3


= T

λv1λv2
λv3


=

(
2λv1 + λv2
λv3 − 5λv2

)
=

(
λ(2v1 + v2)
λ(v3 − 5v2)

)
= λ

(
2v1 + v2
v3 − 5v2

)

= λT

v1v2
v3


= λT (~v).

Again, because the components of~v and the scalar λwere left as variables,
the above calculation shows that T (λ~v) = λT (~v) for all choices of ~v and
scalar λ.

Notice that not every function converting three-dimensional vectors
into two-dimensional vectors is necessarily a linear transformation. For
example, if we replace the function T above with the following,

T

xy
z

 =

(
x2 + y
1 + z

)
,

then we will not have a linear transformation. To see this, we just need to
find a single example where either of the inequalities T (~u + ~v) = T (~u) +
T (~v) or T (λ~v) = λT (~v) fails. Consider, for example, the following:

T

4

1
2
3

 = T

 4
8
12


=

(
42 + 8
1 + 12

)
=

(
24
13

)
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However, we also have

4T

1
2
3

 = 4

(
12 + 2
1 + 3

)

= 4

(
3
4

)
=

(
12
16

)
Since this does not equal our earlier calculation, we have

T

4

1
2
3

 6= 4T

1
2
3

 .

Since we have one instance where T (λ~v) 6= λT (~v), the function T above is
not linear.

Remark.
Notice that to be a linear transformation, we must have T (~u + ~v) =
T (~u)+T (~v) and T (λ~v) = λT (~v) for all choices of ~u, ~v, and λ. Once you
find one instance where either of these inequalities aren’t satisfied,
the transformation can not be linear.

One important property of linear transformations is that their compo-
sition is a linear transformation. That is, suppose T : Rn → Rm is a linear
transformation which convertsn-dimensional vectors intom-dimensional
vectors, and also suppose S : Rm → Rp is a linear transformation convert-
ing m-dimensional vectors into p-dimensional vectors. We can then take
an n-dimensional vector ~v, apply T to obtain an m-dimensional vector
T (~v), and then apply S to obtain a p-dimensional vector S(T (~v)). This
operation of applying T and then applying S is called composition and
is denoted S ◦ T : Rn → Rp.

For example, let T : R3 → R2 be the linear transformation from above

T

xy
z

 =

(
2x+ y
z − 5y

)
,
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and suppose S : R2 → R4 is the function

S

(
x
y

)
=


x+ y
x− y
2x

x− 3y

 . (A.3)

Exercise A.1.
Verify that the function S described in Equation A.3 above is in fact
a linear transformation. We must show that for any pair of two-
dimensional vectors ~u and ~v and any scalar λ, the following two
equalities are satisfied:

S(~u+ ~v) = S(~u) + S(~v) and S(λ~v) = λS(~v).

We do this by treaing the scalar and the components of our variables
to verify that the equalities are satisfied for all possible choices:

S(~u+ ~v) = S

((
u1
u2

)
+

(
v1
v2

))
= S

(
u1 + v1
u2 + v2

)

=


u1 + v1 + u2 + v2
u1 + v1 − (u2 + v2)

2(u1 + v1)
u1 + v1 − 3(u2 + v2)



=


u1 + u2 + v1 + v2
u1 − u2 + v1 − v2

2u1 + 2v1
u1 − 3u2 + v1 − 3v2



=


u1 + u2
u1 − u2
2u1

u1 − 3u2

+


v1 + v2
v1 − v2
2v1

v1 − 3v2


= S(~u) + S(~v)
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S(λ~v) = S

(
λ

(
v1
v2

))
= S

(
λv1
λv2

)

=


λv1 + λv2
λv1 − λv2

2λv1
λv1 − 3λv2



= λ


v1 + v2
v1 − v2
2v1

v1 − 3v2


= λS(~v)

The composition S ◦ T : R3 → R4 is then given by

S ◦ T

xy
z

 = S

T
xy
z


= S

(
2x+ y
z − 5y

)

=


2x+ y + z − 5y
2x+ y − (z − 5y)

2(2x+ y)
2x+ y − 3(z − 5y)



=


2x− 4y + z
2x+ 6y − z
4x+ 2y

2x+ 6y − 3z


We would like to see if S ◦ T is a linear transformation. We can do this
by manually checking that our equalities hold in each example, but this
is tedious. Thus we like the following theorem which tells us that pro-
vided we already know S and T are both linear transformations, their
composition must be a linear transformation as well.
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Theorem A.1.
If T : Rn → Rm and S : Rm → Rp are both linear transformations, then
their composition S ◦ T : Rn → Rp is also a linear transformation.

Notice that we need to already now S and T are linear transformations
for Theorem A.1 to be helpful, but once we’ve shown this for S and T , we
get that S ◦ T is linear for free.

Matrices
A matrix is simply a rectangular array of numbers, such as(

2 1 0
0 −5 1

)
or 

1 1
1 −1
2 0
1 −3


When referring to a matrix we specify its number of rows and columns
by saying the matrix ism×n (pronounced “m by n”) if it hasm rows and
n columns. The matrices above, for example, are 2× 3 and 4× 2.

It is often convenient to give matrices a name to save ourselves some
writing. For example, if we write

A =

(
2 1 0
0 −5 1

)
then we will refer to this particular 2 × 3 matrix by A. Once we given a
matrix a name, we will sometimes refer to the the individual entries in
the matrix by giving the lowercase name of the matrix with subscripts
indicating the row and column. For instance, we write a13 to mean the
entry of matrix A in the first row and third column. For our matrix A
above this would be a13 = 0; and a22 would be −5.

In general, when referring to an arbitrary m × n matrix we will leave
the individual entries as variables aij ; these act as a placeholder for the
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entry in the i-th row and j-th column,

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
... ... ... . . . ...

am1 am2 am3 · · · amn


Matrices are used in many different areas of mathematics and have

lots of applications; you could easily spend an entire course discussing
matrices and their applications (and if you take Linear Algebra, that’s
basically what you’ll be doing). There are lots of things we could say
about matrices, and several different operations, but there are three main
things that will be important for us in this course. Two operations we’ll
describe now, and one we’ll discuss later.

The first operation we will consider will allow us to “multiply” a ma-
trix by a vector, the result of which is a new vector. In particular, we will
multiply an m× n matrix by an n-dimensional vector, and the result will
be anm-dimensional vector. We are explicitly defining this operation only
when the number of columns in the matrix equals the number of entries in
the vector. For example, we can multiply a 2×3matrix by a 3-dimensional
vector, but we can not multiply a 2× 3 matrix by a 4-dimensional vector.

This operation is rather tedious to describe in words, but actually very
easy to compute in practice. We will write down the wordy description
first, but just bear with it for a moment, and then we will do an example
and the example should be easy to follow.

Let’s suppose that A is an m × n matrix and ~v is an n-dimensional
vector,

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
... ... ... . . . ...

am1 am2 am3 · · · amn

 ~v =


v1
v2
...
vn

 .

We will treat each column of the matrix A as an m-dimensional vector,
a11
a21
...

am1

 ,


a12
a22
...

am2

 ,


a13
a23
...

am3

 , · · · ,


a1n
a2n
...

amn

 ,

We will then multiply the first column (thought of as a vector) by the first
entry of the vector, v1, multiply the second column by the second entry
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in the vector, v2, multiply the third column by the third entry, v3, and so
on, then add these vectors together. The result is the product of A and ~v,
denoted A~v:

A~v =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
... ... ... . . . ...

am1 am2 am3 · · · amn



v1
v2
...
vn



= v1


a11
a21
...

am1

+ v2


a12
a22
...

am2

+ v3


a13
a23
...

am3

+ · · ·+ vn


a1n
a2n
...

amn

 .

Notice that since we are adding together m-dimensional vectors (each
column has m entries since the original matrix A has m rows), the result
is an m-dimensional vector.

As a concrete example, let’s multiply the matrix

A =

(
2 1 0
0 −5 1

)
by the vector

~v =

1
2
3

 .

We will multiply the first column of the matrix by 1, the second column
by 2, and the third column by 3, then add the result together:

A~v =

(
2 1 0
0 −5 1

)1
2
3


= 1

(
2
0

)
+ 2

(
1
−5

)
+ 3

(
0
1

)
=

(
2
0

)
+

(
2
−10

)
+

(
0
3

)
=

(
4
−7

)
One of the main reasons we care about matrices is that this operation

of multiplying a matrix and a vector defines a linear transformation! That
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is, we claim that matrix multiplication distributes over vector addition,

A(~u+ ~v) = A~u+ A~v,

and commutes with scalar multiplication,

A(λ~v) = λ(A~v).

Assuming these two properties are true (which is proven in Appendix ??),
this means we can use an m × n matrix A to define a linear transforma-
tion T : Rn → Rm by defining T (~v) to be the product the product A~v. The
two properties mentioned above, and restated in Theorem A.2 below, are
exactly what we need to know that T (~v) = A~v defines a linear transfor-
mation.

Theorem A.2.
If A is an m × n matrix, ~u and ~v are n-dimensional vectors and λ is a

scalar, then

A(~u+ ~v) = A~u+ A~v, and
A(λ~v) = λ(A~v).

As a consequence, the function T : Rn → Rm defined by T (~v) = A~v is a
linear transformation.

Thus every matrix determines a linear transformation. Moreover, ev-
ery linear transformation can be written as matrix multiplication. You
may have noticed, for example, that the product we computed above

(
2 1 0
0 −5 1

)1
2
3

 =

(
4
−7

)

was the same as the result of the linear transformation described in Equa-
tion A.2 on page 222. In fact, if we leave the components of the vector as
variables, we compute
(
2 1 0
0 −5 1

)xy
z

 = x

(
2
0

)
+ y

(
1
−5

)
+ z

(
0
1

)
=

(
2x+ y
−5y + z

)
=

(
2x+ y
z − 5y

)
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gives us the exact same result as the linear transformation described in
Equation A.1. This is not a coincidence: all linear transformations are
really just multiplication of a matrix and a vector. We can even explicitly
compute what the matrix should be for any given linear transformation,
as described in Theorem A.3.

Theorem A.3.
If T : Rn → Rm is a linear transformation, then T has the form

T (~v) = A~v

where A is the m×n matrix whose first column contains the entries in the
vector

T



1
0
0
0
...
0


,

whose second column contains the entries in the vector

T



0
1
0
0
...
0


,

whose third column contains the entries in the vector

T



0
0
1
0
...
0


,

and so on.
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In the case of the example described by Equation A.1, notice that we
compute

T

1
0
0

 =

(
2 · 1 + 0
0− 5 · 0

)
=

(
2
0

)

T

0
1
0

 =

(
2 · 0 + 1
0− 5 · 1

)
=

(
1
−5

)

T

0
0
1

 =

(
2 · 0 + 0
1− 5 · 0

)
=

(
0
1

)

and these are the columns of the matrix(
2 1 0
0 −5 1

)
previously described.

Example A.1.
Determine the matrix associated to the linear transformation S that
was described in Equation A.3 on page 226.

Recall S : R2 → R4 was defined by

S

(
x
y

)
=


x+ y
x− y
2x

x− 3y

 .

Since this transformation takes two-dimensional vectors and con-
verts them into four-dimensional vectors, we expect its representa-
tive matrix to be 4× 2. To find our two columns, we need to apply S
to the vectors (

1
0

)
and

(
0
1

)
.
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We simply compute

S

(
1
0

)
=


1
1
2
1



S

(
0
1

)
=


1
−1
0
−3

 .

Putting these together, we see that our matrix is
1 1
1 −1
2 0
1 −3

 .

Just to double-check this really is the correct matrix, we can mul-
tiply this 4×2 matrix by some arbitrary two-dimensional vector and
verify that the result is the same as the transformation S applied to
that vector,

1 1
1 −1
2 0
1 −3

(xy
)

= x


1
1
2
1

+ y


1
−1
0
−3

 =


x+ y
x− y
2x

x− 3y

 .

Notice this is exactly the value of S
(
x
y

)
.

Exercise A.2.
Consider the linear transformation T : R3 → R3 defined by

T

xy
z

 =

3x− y + 2z
−x+ z
6y − 3z

 .
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Compute the 3 × 3 matrix that represents this transformation. We
simply compute the three quantities

T

1
0
0

 , T

0
1
0

 , and T
0
0
1

 ,

and use these as the columns of our matrix.

T

1
0
0

 =

 3
−1
0


T

1
0
0

 =

−10
6


T

0
0
1

 =

 2
1
−3

 .

The matrix representing our transformation is thus 3 −1 2
−1 0 1
0 6 −3

 .

Multiplying matrices

Suppose now that we have two linear transformations which we can com-
pose; say T : Rn → Rm and S : Rm → Rp. We had previously seen
in Theorem A.1 that their composition S ◦ T is a linear transformation
which takes n-dimensional vectors, applies T to convert them into m-
dimensional vectors, and then applies S to finally convert them into p-
dimensional vectors. Since S ◦ T is linear, it should be represented by a
matrix. Is there an “easy” way for us to compute this matrix if we already
have the matrices for S and T ?

We have seen that we can multiply a matrix and a vector, and this was
tantamount to applying a linear transformation. To describe the compo-
sition of two linear transformations we will extend our notion of multipli-
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cation to allow us to multiply two matrices together. Our goal here is to
define matrix multiplication in such a way that multiplying two matrices
is the same as composing linear transformations. We can only compose
linear transformations, though, when the dimensions “match up” appro-
priately. That is, the composition S ◦ T is only defined if the output of
T has the same dimension as the input of S. In terms of our matrices,
the dimension of the output of a linear transformation is the number of
columns of the matrix, and the dimension of the number is the number
of rows. Thus we will only define matrix multiplication when the num-
ber of rows of the right-hand matrix equals the number of columns of the
left-hand matrix.

Before describing the general procedure, let’s consider a concrete ex-
ample. We had previously seen linear transformations T : R3 → R2 and
S : R2 → R4 given by

T

xy
z

 =

(
2x+ y
−5y + z

)
S

(
x
y

)
=


x+ y
x− y
2x

x− 3y

 .

The composition of these matrices, S ◦T , will take three-dimensional vec-
tors and ultimately convert them into four-dimensional vectors. Thus the
matrix representing S ◦T will be 4× 3. Our goal will be to determine this
4× 3 matrix just from the matrices that represent T and S.

Let’s denote the 2×3 matrix representing T byA, and letB denote the
4× 2 matrix representing S. We had calculated above that

A =

(
2 1 0
0 −5 1

)
, and B =


1 1
1 −1
2 0
1 −3

 .

Now let’s imagine that we applyS◦T to some arbitrary three-dimensional
vector ~v. Since T is applied first and S is applied second, the matrix A
(representing T) should be multiplied with ~v first, and then afterwards
we should multiply the result by the matrix B (representing S). That is,
we want to compute

BA~v =


1 1
1 −1
2 0
1 −3

(2 1 0
0 −5 1

)xy
z


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Multiplying A and ~v together first, leaving B alone, this becomes
1 1
1 −1
2 0
1 −3

( 2x+ y
−5y + z

)

We can multiply this matrix and vector together to obtain
2x+ y + (−5y + z)
2x+ y − (−5y + z)

2(2x+ y)
2x+ y − 3(−5y + z)

 =


2x− 4y + z
2x+ 6y − z
4x+ 2y

2x+ 6y − 3z


Notice this is the same as the product

2 −4 1
2 6 −1
4 2 0
2 6 −3


xy
z


That is, if our definition of matrix multiplication is going to agree with
our composition of linear transformations, we will need to define matrix
multiplication in such a way that

1 1
1 −1
2 0
1 −3

(2 1 0
0 −5 1

)
=


2 −4 1
2 6 −1
4 2 0
2 6 −3


To see exactly what’s going on, let’s replace the numbers in our example
above with variables:

A =

(
a11 a12 a13
a21 a22 a23

)
B =


b11 b12
b21 b22
b31 b32
b41 b42

 .

Now let’s again consider the product BA~v,
b11 b12
b21 b22
b31 b32
b41 b42

(a11 a12 a13
a21 a22 a23

)xy
z

 .
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We first multiply A~v, leaving B alone for the moment, to obtain
b11 b12
b21 b22
b31 b32
b41 b42

(x a11 + y a12 + z a13
x a21 + y a22 + z a23

)

Now we multiply the B matrix with this vector which gives us
(x a11 + y a12 + z a13) b11 + (x a21 + y a22 + z a23) b12
(x a11 + y a12 + z a13) b21 + (x a21 + y a22 + z a23) b22
(x a11 + y a12 + z a13) b31 + (x a21 + y a22 + z a23) b32
(x a11 + y a12 + z a13) b41 + (x a21 + y a22 + z a23) b42


We can distribute and rewrite this as

x (b11a11 + b12a21) + y (b11a12 + b12a22) + z (b11a13 + b12a23)
x (b21a11 + b22a21) + y (b21a12 + b22a22) + z (b21a13 + b22a23)
x (b31a11 + b32a21) + y (b31a12 + b32a22) + z (b31a13 + b32a23)
x (b41a11 + b42a21) + y (b41a12 + b42a22) + z (b41a13 + b42a23)

 .

This is the same as the following multiplication of a matrix and a vector:
b11a11 + b12a21 b11a12 + b12a22 + b11a13 + b12a23
b21a11 + b22a21 b21a12 + b22a22 + b21a13 + b22a23
b31a11 + b32a21 b31a12 + b32a22 + b31a13 + b32a23
b41a11 + b42a21 b41a12 + b42a22 + b41a13 + b42a23


xy
z


That is, the product of our two matrices should be defined to be
b11 b12
b21 b22
b31 b32
b41 b42

(a11 a12 a13
a21 a22 a23

)
=


b11a11 + b12a21 b11a12 + b12a22 b11a13 + b12a23
b21a11 + b22a21 b21a12 + b22a22 b21a13 + b22a23
b31a11 + b32a21 b31a12 + b32a22 b31a13 + b32a23
b41a11 + b42a21 b41a12 + b42a22 b41a13 + b42a23


This is quite an ugly expression, but it is the “right” expression, the right
way to define matrix multiplication, if we want matrix multiplication to
be the same thing as composition of linear transformations.

Even though this expression is rather ugly at first glance, if you looked
at it for a moment you might realize there are some nice patterns. In
particular, you might observe that the first column of our product matrix,
is obtained by multiplying the B matrix with the first column of the A
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matrix, thought of as a vector:
b11 b12
b21 b22
b31 b32
b41 b42

(a11a12
)

=


b11a11 + b12a21
b21a11 + b22a21
b31a11 + b32a21
b41a11 + b42a21


Similarly, the second column of the product matrix is the product of the
entireB matrix with the second column of theAmatrix; the third column
of the product is the same as the product of the entire B matrix with the
third column of theAmatrix. This, of course, is not simply a coincidence:
what’s really happening here is that Theorem A.3 is being applied.

We know from Theorem A.3 that the matrix representing S◦T is given
by applying S ◦ T to the vector with a 1 as its first component and all
zeros otherwise, this gives the first column of the matrix. The second
column is obtained by applying S ◦ T to the vector with a 1 in its second
component and all zeros otherwise, and so on. When we actually do this,
however, we apply T first, and we know tha T applied to the vector with
first coordinate 1 and all zeros otherwise gives us the first column of of the
matrix representing T . When we then apply S, we are thus multiplying
the matrix representingS by the first column of the matrix representing T ,
and this product gives us the first column of the matrix representing S◦T .
It’s all a bit tedious to write out in detail, but that’s all that’s happening
with matrix multiplication.

Example A.2.
Compute the following product of a 3×2matrixAwith a 2×4matrix
B,

A =

 1 1
3 −5
−1 3

 B =

(
−2 3 3 4
1 −4 0 2

)
We compute the productAB one column at a time by multiplying

A by the first column ofB, then multiplyingA by the second column
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of B, and so on. This gives us the following: 1 1
3 −5
−1 3

(−2
1

)
=

 −1−11
5


 1 1

3 −5
−1 3

( 3
−4

)
=

 −129
−15


 1 1

3 −5
−1 3

(3
0

)
=

 3
9
−3


 1 1

3 −5
−1 3

(4
2

)
=

6
2
2



We then put these four vectors together as the columns of the prod-
uct matrix AB,

AB =

 −1 −1 3 6
−11 29 9 2
5 −15 −3 2



A.2 Determinants
Every n×n real matrix determines a special type of function from the set
of n-dimensional real vectors, denoted Rn, to itself called a linear transfor-
mation. This is simply a function which takes n-dimensional vectors and
converts them into some (normally different) n-dimensional vector sub-
ject to two rules: for every pair of vectors u and v, we have T (u + v) =
T (u) + T (v); and for every scalar λ and vector v we have T (λv) = λT (v).
It turns out that linear transformations and matrices are essentially two
sides of the same coin: each matrix determines a linear transformation,
and every linear transformation is determined by a matrix. In order to un-
derstand what determinants are, it can be helpful to use this linear trans-
formation interpretation of a matrix.
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Properties of Determinants
Given an n × n matrix A, we will associate to A a number called the de-
terminant of A and denoted det(A). We will first give some geometric
properties of determinants, and then give some algebraic properties.

Geometric properties

One way to interpret the determinant is as a way of describing the “size”
of subsets of Rn, and how a linear transformation T : Rn → Rn changes
the size of a subsets.

Example A.3.
In R1, a linear transformation T : R1 → R1 is the same thing as mul-
tiplication by some fixed number which we’ll call A. For example,
T (x) = 3x is a linear transformation of R1. Given any interval, say
I = [2, 4] in R1, the image of I under T is another interval. In this
case, T (I) = [6, 12]. Notice that the length of T (I) is 6 while the
length of I is 2; so applying T stretched out the interval by a factor
of 3.

Example A.4.
Consider the linear transformation T : R2 → R2 given by the matrix(

3 2
1 2

)
This map takes the unit square and converts it into some parallelo-
gram of area 4.

T
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Notice that the determinant of this matrix (which we had previ-
ously defined for 2× 2 matrices

(
a b
c d

)
as ad− bc) is 4.

In general, if we have a set S ⊆ R2 and we apply a linear transforma-
tion T : R2 → R2 to each point of S to get a new set T (S). The absolute
value of det(T ) is the ratio of the areas of S and T (S):

area(T (S)) = |det(T )| · area(S).

If it happened to be that our linear transformation was not invertible,
then intuitively we should expect the linear transformation to “collapse”
along certain directions. (If T (v) = T (w), then T (v − w) = ~0 and every-
thing parallel to v − w gets sent to the zero vector.) In terms of sizes of
regions, this means we can take a set of positive size and send it to some-
thing with zero size, and so the determinant of a non-invertible transfor-
mation should be zero. In general, if v ∈ ker(T ), then all multiples of v
are in the kernel of T as well, so T collapses all vectors parallel to v.

Example A.5.
Consider the linear transformation in R2 given by the matrix(

2 1
1 1/2

)
Notice that (1 −2)T is in the kernel of this map, and so everything
parallel to this vector collapses to zero.

T

Since the area of the image on the right is zero, the determinant of
the linear transformation should be zero.

The same thing holds in higher dimensions: ifS ⊆ R3 andT : R3 → R3
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is a linear transformation, then

volume(T (S)) = |det(T )| · volume(S).

It is possible for the determinant of a matrix to be negative, so it’s impor-
tant that we use absolute values when we discuss areas or volumes since
we don’t want to talk about negative area or negative volume.

This idea extends to higher-dimensional spaces as well.

Remark.
Here the “size” of a set depends on what dimension we’re talking
about. In one dimension, “size” means the arclength of a subset of
the real line. In two dimensions, “size” means the area of a subset
of the plane. In three dimensions, “size” means volume. To define
size in higher dimensions it’s helpful if you know some calculus. In
particular, we can define the “size” of an set S in Rn as the integral

¨
· · ·
¨

S

1 dx1 dx2 · · · dxn−1 dxn

This notion of size is sometimes called n-dimensional hypervolume.

Besides telling us how the size of a set changes, we want the deter-
minant to also tell us if a linear transformation “reverses” a set. This is
simplest to describe in R1 and R2, but the idea extends to higher dimen-
sions.

Example A.6.
IfT : R1 → R1 is the linear transformation given byT (x) = −2x, then
T not only stretches subsets by a factor of two, but it also reverses
them. That is, given an interval I = [a, b], its image T (I) = [−2b,−2a]
has the “opposite” left- and right-hand sides compared to I : the left-
hand side of I became the right-hand side of T (I), and the right-
hand side of I became the left-hand side of T (I). In a situation such
as this we say that T is orientation reversing. We want the determi-
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nant of T to tell us if the map is orientation reversing, det(T ) < 0, or
orientation preserving, det(T ) > 0.

Example A.7.
Consider a map T : R2 → R2 given by the matrix(

−1 2
0 1

)
This map shears sets to the right, which doesn’t change the area of
the set, but then flips the set over.

T

Since this map “reverses” a set we again expect its determinant to be
negative, which it is: here the map has determinant −1.

Algebraic properties

In order to give some properties that this determinant will satisfy, it will
be helpful to think of det as a function which takes n vectors, all of which
are n-dimensional, and converts them into a single real number. That is,
we think of det as a function

det : Rn × Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R

When we write det(A) what we will really mean is
det(a1, a2, ..., an)

where a1, ..., an are the columns of the n× n matrix A.
By “algebraic properties” of the determinant we mean the rules the

determinant should obey when we modify the arguments of the function.
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There are only three algebraic properties we need to uniquely determine
the determinant:

1. Linearity
Our function det should be linear in each component. That is, for
the i-th argument of det we should have

det(—, v + w,—) = det(—, v,—) + det(—, w,—)

and
det(—, λv,—) = λ det(—, v,—)

where the dashes simply mean that the other entries of det don’t
matter. (If you want, pretend you’ve fixed all of the other entries
and are only letting the i-th entry change.)
Geometrically we should expect this property because it’s telling us
that if we extend a region along some axis, the areas should add. For
example, consider three linear transformations T1, T2, T3 : R2 → R2

with Ti given by the matrix Ai below.

A1 =

(
2 1
1 1

)
A2 =

(
2 2
1 2

)
A3 =

(
2 3
1 3

)
Consider how these linear transformation map the unit square to
parallelograms:

T1

T2
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T3

Notice that the area of the purple parallelogram is the sum of the
areas of the red and blue parallelograms.

2. Alternating
The determinant is alternating in each argument. This means that
if we swap two arguments, the determinant negates.

det(—, v,—, w,—) = − det(—, w,—, v,—)

This is how the determinant is “aware” of whether a linear transfor-
mation is orientation preserving or reversing.

3. Identity
The identity map id, whose matrix is the identity matrix I , doesn’t
do anything to sets, and so doesn’t change the size of a set or reverse
the set, and so we should expect that det(id) = 1. Interpreting the
determinant as a map from Rn × · · · × Rn︸ ︷︷ ︸

n times
to R, this means we want

det(e1, e2, · · · , en) = 1.

These three algebraic properties, that the determinant must be linear
in each argument, is alternating, and assigns 1 to the identity, are enough
to completely specify the determinant. That is, if you were to come up
with another map

ϕ : Rn × Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R

which was linear, alternating, and assigned 1 to the identity, then you
would actually have come up with the same map we are about to define.
For the sake of completeness we will prove this fact later in these notes,
but you can safely ignore this proof if you want.
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Computing the Determinant
So far we have described some properties we want our notion of determi-
nant to have, but haven’t said how to actually compute the determinant.
We will start off by first saying what the determinant of a 1 × 1 matrix
(i.e., a linear transformation R1 → R1) A =

(
a
) is simply

det(A) = a.

To compute the determinant of an n×nmatrix we will combine determi-
nants of some (n − 1) × (n − 1) submatrices. We will use the following
(non-standard) notation. Suppose our matrixA is n×nwith aij denoting
the entry in the i-th row and j-th column,

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n

...
an1 an2 an3 · · · ann

 .

We will letAij denote the submatrix ofA obtained by deleting the i-th row
and j-th column of A (that is, we remove the row and column containing
aij). For example,

A32 =


a11 a13 · · · a1n
a21 a23 · · · a2n
a41 a43 · · · a4n

...
an1 an3 · · · ann


The determinant ofAij is called the (i, j)minor of the matrix and is some-
times denoted

Mij = det(Aij).

If we multiply the (i, j) minor by (−1)i+j we have the (i, j) cofactor of the
matrix, sometimes denoted

Cij = (−1)i+jMij = (−1)i+j det(Aij).

The determinant of A is then given by calculating the cofactor expansion
ofA along any row or column. The cofactor expansion ofA along the i-th
row is

ai1Ci1 + ai2Ci2 + · · ·+ ainCin,
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and the cofactor expansion of A along the j-th row is

a1jC1j + a2jC2j + · · ·+ anjCnj.

(The cofactor expansion is sometimes also referred to as the Laplace ex-
pansion.)

Somewhat surprisingly, the cofactor expansion along any row or any
column always gives you the same value, and this value is the determi-
nant of the matrix.

It is important to realize that the cofactors, regardless of what row or
column you expand along, alternate between positive and negative. To
keep this straight we can rewrite the determinant as

det(A) =
n∑
j=1

(−1)i+jaij det(Aij)︸ ︷︷ ︸
cofactor expansion using the i-th row

=
n∑
i=1

(−1)i+jaij det(Aij)︸ ︷︷ ︸
cofactor expansion using the j-th column

We claim that the function det defined by cofactor expansion like this
satisfies the three algebraic properties above. Before verifying this, let’s
use the cofactor expansion to evaluate some determinants.

Example A.8.
Consider a 2× 2 matrix

A =

(
a b
c d

)
.

If we do cofactor expansion along the first row we have

det(A) =(−1)1+1a · det(d) + (−1)1+2b · det(c)
=ad− bc

Example A.9.
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Consider the 3× 3 matrix

A =

1 2 0
2 3 2
1 1 0


If we perform the cofactor expansion along the third column we have

det(A)

=(−1)1+3 · 0 · det
(
2 3
1 1

)
+ (−1)2+3 · 2 · det

(
1 2
1 1

)
+ (−1)3+3 · 0 · det

(
1 2
2 3

)
=0− 2(1− 2) + 0

=2

Notice that in the previous example we chose to expand along a col-
umn that had some zeros in it, and this in turn makes our calculation a
little bit simpler: we don’t need to bother calculating the determinants
that get multiplied by zero!

Exercise A.3.
Show that the determinant of a general 3× 3 matrix

A =

a b c
d e f
g h i


is given by the following formula:

det(A) = aei+ bfg + cdh− ceg − bdi− afh.
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Consider cofactor expansion along the first row:

det(A)

=a det

(
e f
h i

)
− b det

(
d f
g i

)
+ c det

(
d e
g h

)
=a(ei− fh)− b(di− fg) + c(dh− eg)
=aei− afh− bdi+ bfg + cdh− ceg
=aei+ bfg + cdh− ceg − bdi− afh.

Example A.10.
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det


1 2 4 1
2 1 1 −1
3 1 2 4
1 −1 2 2


=1det

 1 1 −1
1 2 4
−1 2 2

− 2 det

2 1 −1
3 2 4
1 2 2


+ 4det

2 1 −1
3 1 4
1 −1 2

− 1 det

2 1 1
3 1 2
1 −1 2


=1 ·

(
1 · det

(
2 4
2 2

)
− 1 · det

(
1 4
−1 2

)
+ (−1) · det

(
1 2
−1 2

))
− 2 ·

(
2 · det

(
2 4
2 2

)
− 1 · det

(
3 2
1 2

)
+ 1 · det

(
3 1
1 −1

))
+ 4 ·

(
2 · det

(
1 4
−1 2

)
− 1 · det

(
3 4
1 2

)
+ (−1) · det

(
3 1
1 −1

))
− 1 ·

(
2 · det

(
1 2
−1 2

)
− 1 · det

(
3 2
1 2

)
+ 1 · det

(
3 1
1 −1

))
=1 · (1 · (2 · 2− 4 · 2)− 1 · (1 · 2− 4 · (−1)) + (−1) · (1 · 2− 2 · (−1)))
− 2 · (2 · (2 · 2− 4 · 2)− 1 · (1 · 2− 4 · 1) + (−1) · (3 · 2− 2 · 1))
+ 4 · (2 · (1 · 2− 4 · (−1))− 1 · (3 · 2− 4 · 1) + (−1)(3 · (−1)− 1 · 1))
− 1 · (2 · (1 · 2− 2 · (−1))− 1 · (3 · 2− 2 · 1) + 1 · (3 · (−1)− 1 · 1))

=1 · (1 · (−4)− 1 · 6− 1 · 4)
− 2 · (2 · (−4)− 1 · (−2)− 1 · 4)
+ 4 · (2 · 6− 1 · 2− 1 · (−4))
− 1 · (2 · 4− 1 · 4 + 1 · (−4))

=1 · (−14)− 2 · (−14) + 4 · (14)− 1 · 0
=− 14 + 28 + 56− 0

=70
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A.3 Cramer’s Rule
Cramer’s rule is a method for describing the solution to a system Ax =
b, provided A is invertible, in terms of determinants. In order to state
Cramer’s rule we need one bit of notation. Given an n×nmatrixA and an
n-dimensional vector b, let Ai(b) denote the matrix obtained by replacing
the i-th column of A with b.

Example A.11.
Let A and b be the following:

A =


6 2 1 1
3 7 8 2
4 1 3 3
2 2 0 1

 b =


4
2
3
1


Then

A3(b) =


6 2 4 1
3 7 2 2
4 1 3 3
2 2 1 1



Theorem A.4 (Cramer’s Rule).
If A is an invertible n × n matrix, and b is an n-dimensional vector, then
the unique solution to Ax = b has components

xi =
det(Ai(b))

det(A)

Proof.
Notice that if we consider the matrix obtained by replacing the i-th
column of the identity matrix I with x, Ii(x), then the determinant
of this matrix is simply xi. To see this, perform cofactor expansion
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along the i-th row of Ii(x): all entries in the i-th row are zero for the
entry coming from the column which was replaced by x which has
xi in this location: the i-th row and i-th column. The corresponding
(i, i)-minor is simply the (n− 1)× (n− 1) identity matrix which has
determinant 1, and so we have that the cofactor (and hence the entire
determinant) is

(−1)i+ixi det(I) = xi.

Note too that

A · Ii(x) =

Ae1 Ae2 · · · Ax · · · Aen


So if x solves the equation Ax = b (since A is invertible there is ex-
actly one vector solving the equation) this becomes

A · Ii(x) =

Ae1 Ae2 · · · b · · · Aen


But notice that Aej is the j-th column of A, which we’ll denote aj ,
and so

A · Ii(x) =

a1 a2 · · · b · · · an

 = Ai(b)

If we take the determinant of both sides of the equation we have

det(A · Ii(x)) = det(Ai(b)

=⇒ det(A) · det(Ii(x)) = det(Ai(b))

=⇒ det(A) · xi = det(Ai(b))

=⇒ xi =
det(Ai(b))

det(A)

Cramer’s rule is generally not a very efficient way to solve large sys-
tems of equations, but can sometimes be helpful for theoretical situations
(e.g., in proving some theorem it might be helpful to have a way to ex-
press the components of a solution, and Cramer’s rule allows us to do
precisely that).



APPENDIX A. LINEAR ALGEBRA 254

Example A.12.
Use Cramer’s rule to solve the following system1 3 2

0 1 4
2 0 1

xy
z

 =

0
0
2


First note that the determinant of our matrix is

det

1 3 2
0 1 4
2 0 1

 = 21

By Cramer’s rule,

x =
1

21
det

0 3 2
0 1 4
2 0 1

 =
20

21

y =
1

21
det

1 0 2
0 0 4
2 2 1

 =
−8
21

z =
1

21
det

1 3 0
0 1 0
2 0 2

 =
2

21

Thus our system is solved byxy
z

 =

 20/21
− 8/21
2/21



A.4 Eigenvectors and Eigenvalues

Introduction
Given a linear transformation T : Rn → Rn, we should typically expect
that T will move the vectors around in Rn in a somewhat complicated
way. However, it may happen that some vectors only get stretched out
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(multiplied by a scalar). For example, consider the map T : R3 → R3

given by the matrix

A =

3 1 1
2 1 2
0 1 0

 .

It’s not immediately obvious, but it’s easy to check that this matrix leaves
the vector

u =

−11
1


alone; that is, Au = u:

Au =

3 1 1
2 1 2
0 1 0

−11
1

 = −

3
2
0

+

1
1
1

+

1
2
0

 =

−11
1

 = u.

Similarly, the vector

v =

 0
−1
1


is simply negated; that is, Av = −v:

Av =

3 1 1
2 1 2
0 1 0

 0
−1
1

 = 0 ·

3
2
0

−
1
1
1

+

1
2
0

 =

 0
1
−1

 = −v

And finally, the vector

w =

5
4
1


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gets multiplied by a factor of 4:

Aw =

3 1 1
2 1 2
0 1 0

5
4
1


=5

3
2
0

+ 4

1
1
1

+

1
2
0


=

20
16
4


=4

5
4
1


=4w.

At first glance this may not seem like the most useful observation, but
notice that these vectors u, v, andw form a basis for R3. Thus every vector
can be written as some linear combination of these vectors,

αu+ βv + γw.

It is now extremely easy to describe how our linear transformation acts
on these vectors:

A(αu+ βv + γw) = αu− βv + 4γw.

That is, if we write our vector as αβ
γ


B

then

T

αβ
γ


B

=

 α
−β
4γ


B

.

Thus having vectors which are simply stretched out by the linear transfor-
mation can make it extremely easy to describe the linear transformation,
and this can make studying linear transformations we may have interest
in considerably easier.



APPENDIX A. LINEAR ALGEBRA 257

Eigenvectors and Eigenvalues
Given a linear transformation T : Rn → Rn, we say that a vector v 6= 0
is an eigenvector of T with eigenvalue λ if v and λ satisfy the following
equation:

T (v) = λv.

That is, eigenvectors are precisely the vectors that simply get stretched
out by T and the eigenvalue tells us how much the vector gets stretched
out.

Exercise A.4.
Notice that eigenvectors are by definition never zero, but eigenvalues
are allowed to be zero. Show that a linear transformation will have
zero as an eigenvalue if and only if the linear transformation is not
injective. Notice that non-zero v ∈ ker(T ) is an eigenvector with
eigenvalue 0 as T (v) = 0 = 0·v. Thus if T is not injective, and so there
are non-zero elements of the kernel, then T has 0 as an eigenvalue. If
T has eigenvalue 0, then by definition this means there exists a non-
zero vector v such that T (v) = 0 · v = 0, so ker(T ) contains non-zero
elements, and T is not injective.

Remark.
The word eigen is an adjective in German that means something like
“owned by.” So the eigenvectors and eigenvalues are the vectors and
scalars “owned” by the linear transformation.

The vectors u, v, and w from the example in the introduction are thus
eigenvectors of the linear transformation with matrix3 1 1

2 1 2
0 1 0


while 1, −1, and 4 are the respective eigenvalues.
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Perhaps that first thing to notice about eigenvectors and eigenvalues is
that they are somewhat special: not every linear transformation will have
eigenvector and eigenvalues.

Example A.13.
The linear transformation in R2 with matrix(

0 1
−1 0

)
does not have any eigenvectors/eigenvalues. The easiest way to see
this is to think geometrically: this matrix acts on the plane R2 by 90◦

rotations, and no non-zero vector in the plane is simply stretched out
by a 90◦ rotation.

The other thing to notice about eigenvectors is that they come in fam-
ilies. For example, the vector

w =

5
4
1


from before is an eigenvector with eigenvalue 4 of the matrix3 1 1

2 1 2
0 1 0

 .

Notice that any scalar multiple λw is also an eigenvector with eigenvalue
4: As Aw = 4w we have Aλw = λAw = λ4w = 4λw. The collection of
all eigenvectors of a given eigenvalue forms a subspace of Rn called the
eigenspace of T with the given eigenvalue.

Lemma A.5.
Let T : Rn → Rn be a linear transformation and suppose λ is an eigenvalue
of T . The set of all eigenvectors of T with eigenvalue λ is a subspace of Rn,
provided this collection of eigenvectors is not empty (i.e., that λ really is an
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eigenvalue).

Proof.
The set of all eigenvectors with eigenvalue λ is precisely the set of all
vectors v ∈ Rn satisfying T (v) = λv. Let’s momentarily denote this
set U :

U =
{
v ∈ Rn

∣∣T (v) = λv
}
.

Since we’re already assuming U is non-empty, we need to show that
U closed under vector addition, and closed under scalar multiplica-
tion. Suppose u, u′ ∈ U and µ is any scalar.

Checking that U is closed under vector addition is easy:

T (u+ u′) = T (u) + T (u′) = λu+ λu′ = λ(u+ u′),

as is checking that U is closed under scalar multiplication:

T (µu) = µT (u) = µλu = λ · (µu).

Thus U , the eigenspace of vectors in Rn which are eigenvectors of T
with eigenvalue λ, is a subspace of Rn.

Computing Eigenvectors and Eigenvalues
The question now is how do we go about finding the eigenvectors and
eigenvalues of a matrix. This is a two-step process: first we have to find the
eigenvalues λ, and then for each eigenvalue we need to find the associated
eigenvectors.

If we want to find eigenvalues of T , then we need to find the scalars λ
for which there is a solution v to the equation T (v) = λv. For simplicity,
let’s suppose our linear transformation has domain Rn and codomain Rn

so that we can represent T by an n×nmatrixA. We then want to find the
scalars λ for which there is a solution to

Av = λv.



APPENDIX A. LINEAR ALGEBRA 260

Equivalently, we want to find the λ’s for which there is a solution to

Av − λv = 0.

We can rewriteAv−λv as (A−λI)v: just distribute the v and notice that λI
is the matrix with all zeros except for λ’s on the diagonal, thus (λI)v = λv.
So we want to find the λ’s for which there is a non-zero v solving

(A− λI)v = 0.

Since A − λI is an n × n matrix, this equation has a non-zero solution
precisely when A − λI is not invertible: i.e., there is a non-zero solution
exactly when det(A− λI) = 0. Long story short, we have the following:

Proposition A.6.
A scalar λ is an eigenvalue of A if and only if det(A− λI) = 0.

Example A.14.
Find the eigenvalues of the matrix

A =

(
2 3
2 1

)
We want to find the values of λ for which

det(A− λI) = det

((
2 3
2 1

)
−
(
λ 0
0 λ

))
= det

((
2− λ 3
2 1− λ

))
is zero.
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det

((
2− λ 3
2 1− λ

))
=0

=⇒ (2− λ)(1− λ)− 6 =0

=⇒ 2− 3λ+ λ2 − 6 =0

=⇒ λ2 − 3λ− 4 =0

=⇒ (λ− 4)(λ+ 1) =0

Thus our eigenvalues are λ = 4 and λ = −1.

Once the eigenvalues ofA are known, we can then search for the eigen-
vectors.

Example A.15.
Find the eigenvectors associated with eigenvalue λ = 4 for the matrix

A =

(
2 3
2 1

)
.

We are trying to find the solutions to Av = 4v, or equivalently
(A− 4I)v = 0. That is, we want to find the solutions to the homoge-
neous system(

2− 4 3
2 1− 4

)(
x
y

)
=

(
−2 3
2 −3

)(
x
y

)
=

(
0
0

)
.

Putting the coefficient matrix into RREF we have(
1 −3/2
0 0

)(
x
y

)
=

(
0
0

)
Thus the eigenspace of this matrix, associated with the eigenvec-

tor 4, is {(
x
y

) ∣∣∣∣x− 3

2
y = 0

}
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Exercise A.5.
Find the eigenvectors associated with eigenvalue λ = −1 for the ma-
trix

A =

(
2 3
2 1

)
.

We want to find the vectors v solvingAv = −v which we can rewrite
as (A+ I)v = 0. This means we are trying to solve the system

(A+ I)v =

(
3 3
2 2

)(
x
y

)
=

(
0
0

)
.

Putting the matrix in RREF gives(
1 1 0
0 0 0

)
and so the system is solve when x = −y. Hence the space of eigen-
vectors for this matrix with eigenvalue −1 is{(

y
−y

) ∣∣ y ∈ R
}

Perhaps unsurprisingly (since eigenvalues are related to determinants),
eigenvalues for triangular matrices are very easy to compute.

Theorem A.7.
If A is a triangular matrix, then the eigenvalues of A are the entries on the
diagonal.

Proof.
Suppose that A is a triangular matrix with diagonal entries a11, a22,
..., ann. Then A − λI is also a triangular matrix, but with diagonal
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entries a11 − λ, a22 − λ, ..., ann − λ. Thus

det(A− λI) = (a11 − λ)(a22 − λ) · · · (ann − λ).

This will only be zero when one of the factors is zero, that is when λ
equals aii for some diagonal entry aii.

Example A.16.
The eigenvalues of 

3 2 1 1 0
0 −1 0 0 0
0 0 0 2 2
0 0 0 5 0
0 0 0 0 3


are 3, −1, 0, 5, and 3.

Example A.17.
Find the eigenvalues and associated eigenvectors of the following
matrix:

A =

2 1 3
0 2 1
0 0 1

 .

Thanks to the previous theorem we can easily determine that the
eigenvalues are 2 and 1. Now we simply need to find the associated
eigenvectors.

For the eigenvalue λ = 2 we need to solve the equation (A −
2I)v = 0, 0 1 3

0 0 1
0 0 −1

xy
z

 =

0
0
0





APPENDIX A. LINEAR ALGEBRA 264

Putting the matrix into RREF, this system is equivalent to0 1 0
0 0 1
0 0 0

xy
z

 =

0
0
0


Thus the eigenspace associated to 2 is

x0
0

∣∣∣∣x ∈ R


For the eigenvalue λ = 1we need to solve the equation (A−I)v =

0, 1 1 3
0 1 1
0 0 0

xy
z

 =

0
0
0


This is equivalent to solving the system1 0 2

0 1 1
0 0 0

xy
z

 =

0
0
0


and so the eigenspace associated to 1 is

xy
z

∣∣∣∣x = −2z, y = −z, z ∈ R



In our motivating example at the start of the lecture, notice that the
eigenvectors for

A =

3 1 1
2 1 2
0 1 0


formed a basis for R3. Even though this doesn’t happen in Example A.16,
notice that the eigenvectors associated to different eigenvalues are linearly
independent. This is true in general.
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Theorem A.8.
If v1, v2, ..., vm are eigenvectors associated with distinct eigenvalues λ1, λ2,
..., λm of A, then {v1, v2, ..., vm} is a linearly independent set.

Proof.
Suppose instead that {v1, v2, ..., vm} is linearly dependent. Rearrang-
ing the order of eigenvectors and eigenvalues if necessary, we may
assume that {v1, v2, ..., vr} is linearly independent (it could be that
r = 1) and {v1, v2, ..., vr, vr+1} is linearly dependent. That is, there
exist scalars µ1 through µr such that

vr+1 = µ1v1 + · · ·+ µrvr.

If we apply A to both sides of the equation we have

Avr+1 = A(µ1v1 + · · ·+ µrvr)

=⇒ λr+1vr+1 = µ1λ1v1 + · · ·+ µrλrvr

But notice that if we multiply both sides of

vr+1 = µ1v1 + · · ·+ µrvr

by λr+1 we have

λr+1vr+1 = µ1λr+1v1 + · · ·+ µrλr+1vr.

Thus

µ1λ1v1 + · · ·+ µrλrvr = µ1λr+1v1 + · · ·+ µrλr+1vr.

Subtracting the right-hand side from the left-hand side gives

µ1(λ1 − λr+1)v1 + · · ·+ µr(λr − λr+1)vr = 0.

But this is a contradiction since {v1, ..., vr} is a linearly independent
set.



BSolutions to Practice Problems
B.1 Chapter 1
1.1 (a) x,y = var(’x,y’)

plot_slope_field(-y, (x, -5, 5), (y, -5, 5))

As x goes to infinity, all solutions approach y = 0.
(b) x,y = var(’x,y’)

plot_slope_field(-y + 3, (x, -5, 5), (y, -5, 5))

266
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As x goes to infinity, all solutions approach y = 3.
(c) x,y = var(’x,y’)

plot_slope_field(-2*y + 3, (x, -5, 5), (y, -5, 5))
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As x goes to infinity, all solutions approach y = 3/2.
(d) x,y = var(’x,y’)

plot_slope_field(y, (x, -5, 5), (y, -5, 5))
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Here there are three possibilities, although one is slightly subtle. It
is easy to see that as if a solution passes through a point above the
x-axis, then that solution will go to infinity as x goes to infinity. If a
solution passed through a point below the x-axis, then that solution
will go to negative infinity as x goes to infinity. The third possibility
is that if the solution passes through the x-axis, then that solution
will necessarily be zero for all values of x. (I.e., the constant function
y = 0 is a solution to the equation, as is easily checked.)

(e) x,y = var(’x,y’)

plot_slope_field(y + 3, (x, -5, 5), (y, -5, 5))
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Here solutions which pass through a point above y = −3 will move
to infinity as x increases; solutions passing through a point below
y = −3 will approach negative infinity as x increases; and y = −3 is
also a solution.
It may be surprising that y = −3 is the solution instead of y = 3,
but let’s notice this solution is special. This is an equilibrium solution
because it is always the same value, it’s always constant. If we have an
equilibrium solution, then that means the rate of change (derivative)
is zero. As dy

dx
= y + 3, if we have dy

dx
= 0, then that means y + 3 = 0

and so y = −3.

1.2 (a) Notice that in particular y = 2would be a solution to this differen-
tial equation. This would necessarily be an equilibrium solution, and
so we would require thatmy+ b satisfymy+ b = 0 =⇒ y = 2. There
are two ways we could choose m and b for this to happen: we could
havem = 1 and b = −2 and so the equation becomes dy

dx
= y−2, or we

could havem = −1 and b = 2 and the equation is dy
dx

= −y+2. One of
these will correspond to our solutions converging towards 2, and the
other will correspond to our solutions diverging away from 2. For
the purposes of this lab we can distinguish these just by plotting the
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slope fields and seeing which is which. A slightly more analytic ap-
proach would be to notice we need for solutions about the line y = 2
to decrease, so their derivatives are negative, and this will tell us we
want the equation dy

dx
= −y + 2.

(b) This is essentially the same as part (a), but with 3
4

in place of 2. Our
solution is thus dy

dx
= −y + 3/4. (We could also use dy

dx
= −4y + 3.)

(c) By the same logic as in part (a), the solution is dy
dx

= y + 2
5
.

1.3 (a) The forces acting on the object are its weight pulling it down,
W = −9.8·15 (this is the object’s mass times acceleration due to grav-
ity), and the drag which resists the direction of motion, D = −0.47v.
Notice the negative sign here is so that drag will point in the oppo-
site direction of the velocity (when v is negative, D will be positive).
By Newton we know force equals mass times acceleration, and since
acceleration is the derivative of velocity we have

15
dv

dt
= −9.8 · 15− 0.47v

or
dv

dt
= −9.8− 0.47

15
v.

(b) Our slope field is
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To get a better estimate of the terminal velocity we can “zoom in” on
the slope field by altering out window to obtain
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and from this we may guess that the terminal velocity is roughly
−312.5m

s .

1.4 (a) This is a linear first-order equation. Notice that even though an
x2 term appears, both y and dy

dx
are only raised to the first power, and

they are not multiplied together, which is why this is considered lin-
ear. The equation is first order since only a first derivative appears.

(b) This is a non-linear second-order equations. Because y and dy
dx

are
multiplied together, the equation is not linear. It is second order since
a second order derivative appears.

(c) This is a non-linear second-order equation. As in part (b) this is non-
linear since y and dy

dx
are multiplied together. It is second-order since

second derivatives appear.
(d) This is a linear third-order equation. It is third order since we have a

third derivative, and it is linear because y and its derivatives are not
raised to powers or multiplied together.

(e) This is a linear second-order equation. This is linear because y and
its derivatives are not multiplied together or raised to powers, and it
is second order because a second derivative is involved.
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1.5 (a) There are a few different ways to solve this equation, but for now
we are mainly just focusing on the following fact:

dy

dx
= my + b

=⇒ y = Cemx − b

m

In this case m = −1 and b = 5 so we have

y = Ce−x + 5.

(b) As in part (a) we are simply using the fact that we have seen that
y = Cemx − b

m
solves dy

dx
= my + b. Here m = 2 and b = −3 and so

this differential equation is solved by

y = Ce2x +
3

2
.

(c) As in parts (a) and (b) we are simply applying our formula for these
particularly simple differential equations. For this one, though, we
need to do the tiniest bit of algebra and rewrite the equation before we
can use our formula. Subtracting 3y from both sides of the equation
and multiplying through by −1 the equation becomes

3y − dy

dx
= 4y + 1

=⇒ − dy

dx
= y + 1

=⇒ dy

dx
= −y − 1

and so our equation is solved by

y = Ce−x − 1.

B.2 Chapter 2
2.1 (a) This is a linear differential equation and so we may solve it using

the method of integrating factors. In particular, we seek a function
µ(x) so that after multiplying both sides of the equation by µ(x), our
equation becomes

µ(x)
dy

dx
+ µ(x)x2y = 0
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where the left-hand side will be given by a product rule,

d

dx
µ(x)y = µ(x)

dy

dx
+ µ(x)x2y.

When we apply the product rule to differentiate µ(x)y, however, we
obtain

d

dx
µ(x)y = µ(x)

dy

dx
+
dµ

dx
y.

Equating the right-hand sides of the two equations above (since they
both equal d

dx
µ(x)y, we have

µ(x)
dy

dx
+ µ(x)x2y = µ(x)

dy

dx
+
dµ

dx
y

=⇒ µ(x)x2y =
dµ

dx
y

=⇒ µ(x)x2 =
dµ

dx
.

This equation we can now solve as follows:

dµ

dx
= x2µ

=⇒ 1

µ

dµ

dx
= x2

=⇒
ˆ

1

µ

dµ

dx
dx =

ˆ
x2 dx

=⇒ ln |µ| = x3

3
+ C

=⇒ |µ| = ex
3/3+C = Cex

3/3

=⇒ µ = ±Cex3/3 = Cex
3/3.

Any choice of C will give us a solution to our equation dµ
dx

= x2µ, so
we will take C = 1. Thus we want to multiply our original equation
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through by ex3/3. This gives us the following:
dy

dx
+ x2y = 0

=⇒ ex
3/3 dy

dx
+ ex

3/3x2y = 0

=⇒ d

dx
ex

3/3y = 0

=⇒
ˆ

d

dx
ex

3/3y dx =

ˆ
0 dx

=⇒ ex
3/3y = C

=⇒ y = Ce−x
3/3

(b) Once again we will need to multiply through by an integrating factor,
which in this problem will be

µ = e
´
(−2) dx = e−2x.

After multiplying both sides of the equation by µ we have

e−2x
dy

dx
− 2e−2xy = 4e−2x − xe−2x.

By the product rule we may rewrite this as
d

dx
e−2xy = 4e−2x − xe−2x.

Now we integrate both sides of the equation with respect to x:
ˆ

d

dx
e−2xy dx =

ˆ (
4e−2x − xe−2x

)
dx.

On the left-hand side we are finding the antiderivative of a derivative,
so those operations cancel out and the left-hand side is just e−2xy. For
the right-hand side we break the integral in two:

ˆ (
4e−2x − xe−2x

)
dx =

ˆ
4e−2x dx−

ˆ
xe−2x dx.

The first term is easily computed using u-substitution: using u =
−2x, du = −2dx, we have ´ 4e−2x dx = −2e−2x. (We will suppress
the “+C” in our integrals since they all get combined into a single C
at the end.)
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The second integral requires integration by parts. Using
u = x dv = e−2x dx

du = dx v =
−1
2
e−2x

the integral becomes
−xe−2x

2
+

1

2

ˆ
e−2x dx =

−xe−2x

2
− 1

4
e−2x =

−e−2x

4
(2x+ 1)

Plugging these integrals into the right-hand side of our calculation
above gives us

e−2xy = −2e−2x + e−2x

4
(2x+ 1) + C,

and solving for y we have

y = −2 + 2x+ 1

4
+ Ce2x =

2x− 7

4
+ Ce2x

2.2 (a) Since this equation has the form dy
dx

= my + b, with m = 3 and
b = 0, we know it is solved by

y = Cemx − b

m
= Ce3x.

To determine the value of C we must use the initial condition y(0) =
2. This tells us

2 = y(0) = Ce3·0 = C

and so C = 2 and our initial value problem is solved by y = 2e3x.
We can plot the slope field together with the curve y = 2e3x in Sage
with the following commands.

x,y = var(’x,y’)

img = plot_slope_field(3*y, (x, -5, 5), (y, -5, 5))

img += plot(2*e^(3*x), (x, -5, 5))

img.show(ymax = 5)

(The ymax = 5 argument in the last line just makes sure our plot gets
cut off at y = 5, which is convenient to use because e3x grows so
quickly it makes the slope field hard to see.) This produces the fol-
lowing plot:
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(b) The general solution to this equation is given by

y = Ce−x + 7.

We use the fact y(1) = −2 to determine C:

−2 = y(1) = Ce−1 + 7 =⇒ −9 = Ce−1 =⇒ C = −9e

and so our IVP is solved by

−9e1−x + 7

Our slope field together with this solution can be plotted in Sage with

x,y = var(’x,y’)

img = plot_slope_field(-y + 7, (x, -5, 5), (y, -5, 5))

img += plot(-9*e^(1-x)+7, (x, -5, 5))

img.show(ymin = -5, ymax=5)

This produces the following plot:
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2.3 Our differential equation is solved by
b(t) = Cet/2 + 900

where b(0) = b0 = C + 900 and so C = b0 − 900 and we may write
b(t) = (b0 − 900)et/2 + 900.

We want to know when b(t) = 0:
b(t) = 0

=⇒ (b0 − 900)et/2 + 900 = 0

=⇒ et/2 =
−900
b0 − 900

=
900

900− b0
=⇒ t/2 = ln(900)− ln(900− b0)
=⇒ t = 2 (ln(900)− ln(900− b0))

2.4 (a) We may rewrite this as

y
dy

dx
= x2.

Integrating both sides gives usˆ
y dy =

ˆ
x2 dx

=⇒ y2

2
=
x3

3
+ C

=⇒ y2 =
2x3

3
+ C.
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To obtain an explicit solution we would need to make a choice of pos-
itive or negative square root, but we can’t make such a choice without
an initial condition.

(b) We write the equation as

(3 + 2y)
dy

dx
= 3x2 − 1

and integrate both sides:
ˆ

(3 + 2y) dy =

ˆ
(3x2 − 1) dx

=⇒ 3y + y2 = x3 − x+ C

(c)
dy

dx
=

4− 2x

3y2 − 5

=⇒ (3y2 − 5)
dy

dx
= 4− 2x

=⇒
ˆ

(3y2 − 5) dy =

ˆ
(4− 2x) dx

=⇒ y3 − 5y = 4x− x2 + C

2.5 (a) Dividing the y to the other side of the equation and integrating
both sides gives us

ln |y| = x2 + C

and so y = Cex
2 . Plugging in our initial conditions this becomes

2e = C and so the IVP is solved by

y = 2e · ex = 2ex+1.

(b) We first write the equation as

dy

dx
= 2y − 1

which we may further write as

1

2y − 1

dy

dx
= 1.
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Now we integrate both sides. The right-hand side is simply x + C,
and the left-hand side becomes 1

2
ln |2y−1|. To get an explicit solution

let us rewrite this as follows:
1

2
ln |2y − 1| = x+ C

=⇒ ln |2y − 1| = 2x+ C

=⇒ |2y − 1| = e2x+C = Ce2x

=⇒ 2y − 1 = ±Ce2x = Ce2x

=⇒ 2y = Ce2x + 1

=⇒ y = Ce2x +
1

2
.

When x = 1 and y = 1 this becomes

1 = Ce2 +
1

2
=⇒ Ce2 =

1

2
=⇒ C =

1

2e2

and the differential equation is explicitly solved by

y =
1

2e2
e2x +

1

2
.

(c) Notice e2x−y = e2xe−y and so we may rewrite the equation as

ey
dy

dx
= 6e2x.

Integrating both sides yields
ey = 3e2x + C

Plugging in x = y = 0 this becomes 1 = 3 + C and so C = −2 and
our solution is

y = ln(3e2x − 2)

2.6 Notice that if the current concentration of saltwater is C, then the
amount of salt being removed from the tank at each minute is

2
gal
min · C

lb
gal = 2C

lb
min .

Thus the concentration of saltwater is decreasing at a rate of
2C lb/min
100gal =

C

50

lb/gal
min .
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However, salt is being introduced to the tank at a rate of

2
gal
min ·

1

2

lb
gal = 1

lb
min

and so the concentration is also increasing at a rate of
1

100

lb/gal
min

Putting these together, the rate of change of the concentration is
dC

dt
=

1

100
− C

50
=

1− 2C

100
.

Solving this differential equation gives us the following (we use k as the
constant of integration here since C is being used to represent concentra-
tion):

dC

dt
=

1− 2C

100

=⇒ 100

1− 2C

dC

dt
= 1

=⇒
ˆ

100

1− 2C
dC =

ˆ
dt

=⇒ − 50 ln |1− 2C| = t+ k

=⇒ ln |1− 2C| = −t
50

+ k

=⇒ 1− 2C = ke−t/50

=⇒ C =
1

2
− ke−t/50

Since C(0) = 0, we have k = 1/2 and so

C(t) =
1− e−t/50

2
.

Thus after 10 minutes the concentration is

C(10) =
1− e−1/5

2
≈ 0.0906

lb
gal

2.7 (a) Notice the coefficient on y is only continuous in (−2, 2), and the
right-hand side is continuous everywhere. This tells us the solution
to the differential equation only exists in (−2, 2).
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(b) As in part (a), the coefficient of y is continuous in (−2, 2). The right-
hand side, however, is continuous in (−∞, 0) and (0,∞). We need
the largest interval where both of these are continuous which contains
our initial point x = 1, and so the solution exists in (0, 2).

(c) Here the coefficient on y and the right-hand side are both continu-
ous on the entire real line, so the solution exists for all real numbers,
(−∞,∞).

2.8 (a) The graph of dy
dt

is

The equilibria occur at y = 0 and y = 2. Since dy
dt

> 0 to the left
of y = 0 and negative to the right of y = 0, it is increasing to the
left and decreasing to the right, so y = 0 is asymptotically stable.
The equilibrium y = 2, however, is asymptotically unstable since the
derivative is negative to the left of 2 and positive to the right of 2, and
so nearby solutions move away from the equilibrium.
The slope field is
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(b) The graph of dy
dt

is

The equilibria are y = −2 and y = 2. From the signs of the deriva-
tive, we see that solutions to the left of y = −2 increase towards −2
and solutions to the right decrease towards −2 as well, so y = −2
is asymptotically stable. However, solutions to the left of 2 decrease
and solutions to the right of 2 increase, and so y = 2 is asymptotically
unstable.
The slope field is
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(c) The graph of dy
dt

is

This differential equation is the negative of the one in part (b), and
so the roles of “increasing” and “decreasing” have reversed. This
means y = −2 is not unstable whereas y = 2 is stable.
The slope field is
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2.9 (a) ˆ (
x2y − y + 3x

)
dx =

x3y

3
− xy + 3x2

2
+ g(y)

ˆ (
x2y − y + 3x

)
dy =

x2y2

2
− y2

2
+ 3xy + h(x)

(b) ˆ
x

y2 + 1
dx =

x2

2y2 + 2
+ g(y)

ˆ
x

y2 + 1
dy = x arctan(y) + h(x)

2.10 (a) Notice that
∂

∂y
ex sin(y) = ex cos(y) =

∂

∂x
ex cos(y)

and so a ψ with the desired derivatives must exist. We can compute
it by integrating either of its partial derivatives:

ψ =

ˆ
ψxx dx

=

ˆ
ex sin(y) dx

= ex sin(y) + g(y)

Now we must choose g(y) so that our other partial derivative is sat-
isfied:

ex cos(y) = ψy =
∂

∂y
ex sin(y) + g(y) = ex cos(y) + g′(y)
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we may thus take g′(y) = 0 and so g(y) is a constant, C. Our function
ψ thus has the form

ψ(x, y) = ex sin(y) + C

(b) Notice
∂

∂y
x2 = 0 =

∂

∂x
y2

and so a ψ with the desired derivatives exists. We can compute it by
integrating either of its partial derivatives:

ψ =

ˆ
ψx dx

=

ˆ
x2 dx

=
x3

3
+ g(y)

Now we must choose g(y) so that our other partial derivative is sat-
isfied:

y2 = ψy =
∂

∂y

(
x3

3
+ g(y)

)
= g′(y)

=⇒ g(y) =

ˆ
y2 dy =

y3

3
+ C

and so our function ψ is

ψ(x, y) =
x3

3
+
y3

3
+ C.

(c) Notice
∂

∂y
3x2y = 3x2 6= 3y2 =

∂

∂x
3xy2

and so there does not exist a function ψ so that ψx = 3x2y and ψy =
3xy2.

2.11 1. First we check to see if this is an exact equation or not:

∂

∂y
(y + 2x) = 1 =

∂

∂x

(
x+ 3y2

)
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and so there must exist a function ψ with these antiderivatives, and
the equation is exact. We compute ψ as follows:

ψ =

ˆ
ψy dy

=

ˆ (
x+ 3y2

)
dy

= xy + y3 + h(x)

Now we must choose h(x) so that our partial with respect to x equals
y + 2x

y + 2x =
∂

∂x

(
xy + y3 + h(x)

)
= y + h′(x)

Thus h′(x) = 2x and so h(x) = x2 and our function ψ is

ψ(x, y) = xy + y3 + x2.

The differential equation is solved implicitly by

xy + y3 + x2 = C.

To solve the initial value problem we simply plug in x = 2 and y = 3
to determine C = 6+27+4 = 37, and so the IVP is solved implicitly
by

xy + y3 + x2 = 37.

2. Let’s first rewrite the equation as
2x

1 + x2
− y sin(xy) +

(
2 + 3y2 − x sin(xy)

) dy
dx

= 0.

Note this is an exact equation as

∂

∂y

(
2x

1 + x2
− y sin(xy)

)
= − sin(xy)−xy cos(xy) = ∂

∂x

(
2 + 3y2 − x sin(xy)

)
.

Now we compute ψ:

ψ =

ˆ
ψx dx

=

ˆ (
2x

1 + x2
− y sin(xy)

)
dx

= ln(1 + x2) + cos(xy) + g(y)
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If we differentiate with respect to y we obtain

−x sin(xy) + g′(y)

but we know this should equal 2 + 3y2 − x sin(xy), and so g′(y) =
2 + 3y2 and g(y) = 2y + y3. Thus our differential equation is solved
implicitly by

−x sin(xy) + 2y + y3 = C.

Seeting x = y = 0, we see our particular IVP is solved by

−x sin(xy) + 2y + y3 = 0.
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