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Introduction to the Course
Difficulties strengthen the mind, as labor
does the body.

Seneca the Younger

Overview

Welcome to Math M-365, the first course in probability and statistics at
Indiana University. The goal of this course is to teach you the fundamentals
of probability theory and random variables, and how these ideas are applied
to inferential statistics. The course is divided up into three main portions,
each of which should roughly take about one third of the semester and
more-or-less corresponds to each exam during the regular semester (i.e.,
before the final exam).

Before getting started on the three main portions of the course, though,
we will have a very quick introduction/review to set theory, which is the
basic language of most modern mathematics. You have likely seen parts of
this material before in other courses, but to make sure everyone is on the
same page we will start from the very basics. Because of time constraints
we will likely not spend more than the first week of class discussing this
material in lecture, but the details of everything discussed in class will be
fleshed out in these lecture notes.

After the set theory introduction we will discuss probability theory. We
will begin by defining the ideas of experiments, sample spaces, events, and
probability very precisely. After the basic definitions we will discuss some
combinatorial (aka counting) techniques which will be helpful for solving
problems where we need to determine all the possible outcomes of an ex-
periment. We will then move on to discussing conditional probability which
tells us how partial information about the outcome of an experiment can
help us compute probabilities, and finally we will discuss Bayes’ theorem
and related topics.

In the second third of material we will discuss random variables, which
are functions defined on the set of outcomes of a random experiment. We
will see that there are two basic types of random variables, called discrete
and continuous, and will also spend some time discussing some important
families of each type of random variable. Initially we will only concern

vii



INTRODUCTION TO THE COURSE viii

ourselves with one random variable at a time, but later we will be interested
in dealing with several random variables simultaneously. This will require
a brief excursion into the technique of iterated integrals from calculus, but
we will define everything we need in class for the benefit of anyone that
hasn’t seen (or has seen and forgotten) that material.

Finally, we will turn our attention to statistics. Here we will apply the
theory, tools, and techniques we’ve developed while discussing probability
and random variables to study how we can infer information about an
entire population based on a sample of individuals from that population. In
particular, we will discuss point estimators and confidence intervals, which
give us tools for estimating parameters of the population from sample data.
We will also discuss hypothesis testing which can tell us if there is enough
evidence to accept or reject a claim about the population.

Many of the ideas we will discuss in this class have direct application
to a variety of real-world problems, and when time permits we will discuss
applications of the material. Most of the interesting applications will have
to wait until we’ve developed some theory, however.

Prerequisites

This course is meant to be a first introduction to probability theory and
statistics, and assumes no previous knowledge of either of these topics.
Having said that, there is a bit of “mathematical maturity” that is assumed.
Officially this means the prerequisites for this course are calculus, and it
assumed that you are familiar with basic ideas and techniques learned in
the first two semesters of the calculus sequence (e.g., the various derivative
rules, integration formulas, and the main theorems from calculus). Any
other mathematical background not covered in the typical calculus sequence
will be developed in class as needed.

How to do well in this course

For most students, this course will be more demanding and require more
work than most of their previous math courses. Though the course will start
from basic principles and require relatively simple computations initially,
by the end of the semester we will be using some fairly sophisticated ideas
and techniques on a regular basis. The material in this course is by its
very nature cumulative: everything we do in class will build off of previous
material. For this reason it is important that you stay up-to-date with the
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material discussed in class. Because of the pace of the class, falling behind
will make it extremely difficult to catch up. You need to understand this
so that you can be prepared to devote time to studying for the course on a
regular and consistent basis.

My recommendation is that you come to class every class period when-
ever possible; take notes during class; shortly after class review your notes;
read the lecture notes online; read the textbook for the course; and do as
many practice problems as you can. Practice problems will be scattered
throughout the lecture notes, and solutions to the problems will appear
at the end of the notes. Many of the practice problems are actual prob-
lems from previous homeworks, quizzes, and exams and should help you to
prepare for your own assignments.

Some of the topics we discuss in this class will be confusing at first, and
it’s okay if you don’t understand everything at first. The important thing is
to continually work hard, think about the material, and ask questions if you
don’t understand something. This can be frustrating and time-consuming,
but it is the only way to learn some of the difficult material you will en-
counter in this course.

Be sure to start homework assignments early, as some problems can be
tricky and require a little bit of time to figure out. This won’t be an issue
if you start the assignment early and try to do a few problems each day.
However, if you wait until the day before an assignment is due to start it,
it’s unlikely you will be able to finish before the due date.

Even though the material in this course can be challenging, you can
master it if you’re willing to work hard and not allow any initial frustrations
to prevent you from continuing to study.



Part I

Preliminaries

1



1Naive Set Theory

A set is a Many which allows itself to be
thought of as a One.

Georg Cantor

Before we can discuss probability theory, we need to set up some basic
ideas from set theory, although we will do this in a somewhat hand-wavy
way. Set theory provides a foundation for most of mathematics, even though
this point of view often isn’t emphasized in more basic courses. For our
purposes in this course, we will primarily treat set theory as a convenient
language for organizing ideas.

Some of the proofs of the facts we state in this chapter, as well as
in chapters two and three, are a little technical and will probably seem
confusing if this is your first time learning this material. Don’t let this
worry you too much: the proofs are included mostly for completeness and
you can safely skip reading them if you want. You should, however, know
all of the definitions and statements of theorems since we will use them
later in the semester.

1.1 Sets

Definitions and examples

A set is an unordered collection of objects. These objects could be numbers,
points in space, functions, words, symbols, other sets, or (almost) anything
else. Most of mathematics is described in terms of sets, even though this
isn’t always made explicit.

We sometimes describe a set by explicitly writing out everything in the
set, separated by commas, and surrounded by curly braces. For example,
the set containing the first few positive, even numbers is

{2, 4, 6, 8, 10}.

The only thing that matters when we talk about a set is what is in the
set. The order in which an object occurs in a set does not matter, so the
following sets are all the same:

{2, 4, 6, 8, 10} = {10, 8, 6, 4, 2} = {8, 2, 4, 10, 6}.

2



CHAPTER 1. NAIVE SET THEORY 3

The number of times we write an object in the set also does not matter (as
long as it occurs at least once):

{2, 4, 6, 8, 10} = {2, 2, 2, 4, 4, 6, 8, 10, 10, 10, 10, 10}.

We use the symbol ∈ to denote that something is an element of a set, and
/∈ to denote that something is not an element of a set:

2 ∈ {2, 4, 6, 8, 10}
3 /∈ {2, 4, 6, 8, 10}.

Many times a set will be too big for us to write out all of the elements,
and in that situation we need some other notation to describe the set. One
common notation is to list a few elements in a set and then write “...” to
mean “continue the pattern.” For example,

{2, 4, 6, 8, 10, 12, 14, ...}

denotes the set of all positive even numbers; while

{5, 10, 15, 20, 25, 30, ...}

denotes the set of all positive multiples of 5.

Exercise 1.1.
Write down a set which contains all positive integers that satisfy the
following conditions: each number is a multiple of 4, a multiple of 6,
and is less than 50.

Of course, it can get tedious to write sets down in this way every time
we want to refer to a set. To save ourselves some writing if we are going
to refer to a set multiple times, we will often assign the set a name. For
example, if we write

E = {2, 4, 6, 8, 10, 12, 14, ...}

then we are saying we want to use the symbol E to refer to the set of all
positive even numbers. We are then justified in writing things like 28 ∈ E,
17 /∈ E, and −2 /∈ E.
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It will sometimes be convenient to say that several things are or are not
in a given set. In this case we list all of those things separated by commas
and followed by ∈ or /∈:

8, 32, 96, 384 ∈E
3, 347,−10 /∈E

Many times the sets we will be interested in will be “special,” and we
will only be interested in those sets for a little while – e.g., while we’re
solving a particular problem. So, we might use E to denote one set now
and then later use the same symbol again to denote a different set. For
instance, in solving one problem we may let E denote the set {1, 2, 3}, and
let we’ll use E to denote the set {−3, 7, 8}. It will usually be clear from
context which set a given symbol refers to.

There are some sets that are used over and over, again and again, and
those sets have special names and symbols that are reserved only for those
particular sets. One such set is the set of natural numbers , which is the
set of all positive whole numbers and is denoted by a capital N , but written
in what is often called “blackboard bold” and looks like N:

N = {1, 2, 3, 4, 5, 6, ...}.

Remark.
In older textbooks this N was originally written as a bold N. It’s
difficult to write bold letters on paper or a blackboard, however, and
so people started writing an extra line in the letter to denote the letter
was bold. This way of writing bold letters eventually became popular
enough that it made its way into typed works as a special typeface.

The set of all whole numbers (positive, negative, and zero) is called the
set of integers and is denoted by a blackboard bold Z:

Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}.
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Remark.
Using the letter Z might seem like a weird choice for integers, but it’s
only weird if you’re an English speaker. Many influential mathemati-
cians of the past, including Georg Cantor who is considered the father
of set theory, were German and so they of course used the German
equivalent of these words and used the first letter of those German
words. The German word for numbers is die Zahlen (die is the fem-
inine definite article in German, like la in French or Spanish), hence
the Z.

Conveniently, German and English have some commonalities and
so some German words are very similar to their English counterparts,
so most of these blackboard bold letters are actually what you would
guess using the English words. For example, the natural numbers in
German is die natürliche Zahlen, so N makes sense in both German
and English.

The number of distinct elements in a set A is called the cardinality of
the set and is denoted by either #A or |A|. For example #{7, 8, 0, 4, 3} = 5
while #{3, 6, 9, 12, ..., 84, 87, 90} = 30. The cardinality can be infinite as
well; both N and Z have infinite cardinality.

1.2 Set-builder notation

Unfortunately, there are times when the ... notation mentioned above can
be ambiguous. For example,

{2, 4, ...}

could mean the set of all even numbers, or it could be all the powers of 2:
both of the following sets match the pattern

{2, 4, 6, 8, 10, ...}
{2, 4, 8, 16, 32, ...}.

To get around this ambiguity we sometimes use set builder notation . In
this notation we write two curly braces, like normal, but separated into two
parts by a vertical bar. On the left-hand side of the bar we write a variable
(or sometimes a collection of variables) that give us some pattern that all
of the elements in the set follow, and on the right-hand side we given a
condition (usually in the form of an equation or inequality, but sometimes
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written in words) that the variable must satisfy in order to be an element
of the set. The collection of all positive even integers, for example may be
written in set builder notation as

E = {x
∣∣x = 2n for some n ∈ N}.

That is, we start off by considering the natural numbers, but to be an
element of E, a given natural number x has to be two times some other
natural number. (A number is even if and only if it is divisible by two.)

We could define the set of all positive odd numbers as

O = {x
∣∣x = 2n− 1 for some n ∈ N}.

Exercise 1.2.

(a) Write the set of all positive, whole number multiples of 5 in set
builder notation.

(b) Write the set of all whole number multiples (including negatives)
of 5 in set builder notation.

Another common set of numbers is the set of rational numbers, which
are ratios of integers where the denominator is not zero. These are quo-
tients1, so the set of all rational numbers is denoted Q. In set builder
notation we can express Q as

Q =

{
p

q

∣∣∣∣ p, q ∈ Z and q 6= 0

}
.

In the examples thus far we have only considered sets of numbers, but
there is nothing special about numbers: the elements of a set can be any
type of object. They could be names of people,

{William, Charles, Percy, Fred, George, Ron, Ginny},

or abstract symbols,
{♥,♣,♦,♠},

or points in space,
1Conveniently, the German word for the quotient is der Quotient, and so the Q makes

sense for English speakers too!
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{
(x, y)

∣∣ − 2x+ 8y = 10
}

.

You can even have sets that contain other sets:

{{1, 2}, {1, 3}, {2, 3}}.

Sets are ubiquitous in mathematics: the vast majority of things you work
with are, or are defined in terms of, sets. This point may not have been
made clear to you before in earlier mathematics courses because it may
not have been needed, but for our purposes in this class we will need to
deal with sets on a regular basis, so it’s important that we have a good
understanding of them.

1.3 Subsets and supersets

We say that a set A is a subset of a set B if every element of A is also an
element of B. When this happens we write A ⊂ B.

Example 1.1.
Every natural number is an integer, so the set of natural numbers is a
subset of the set of integers: N ⊂ Z. Every integer is also a rational
number (e.g., 3 = 3/1), so Z ⊂ Q.

Example 1.2.
Suppose that A is the set of all the multiples of 3, and B is the set of
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all multiples of 12:

A =
{
x
∣∣x = 3n for some n ∈ N

}
,

B =
{
x
∣∣x = 12n for some n ∈ N

}
.

Since every multiple of 12 is also a multiple of 3 (because 3 divides
12), B is a subset of A: B ⊂ A.

When A is a subset of B we say that B is a superset of A. That is,
when we write A ⊂ B the set on the left is a subset of the set on the right;
and the set on the right is a superset of the set on the left. The superset
is the “larger” set, and the subset is the “smaller” set. Sometimes it will
be convenient for the symbol ⊂ to be written in the other direction: for
example B ⊃ A. Here B is still the larger superset, and A is the smaller
subset. (Compare this to writing 3 < 4 and 4 > 3.)

In our mind’s eye we often picture the relationship between a set and a
any subsets or supersets as shown in Figure 1.1.

B

A

Figure 1.1: If A ⊂ B, then we imagine A as sitting inside of B.

We will use pictures like this, which are called Venn diagrams , many
times when describing sets, even if the sets we’re talking about don’t really
look like the two-dimensional shapes we’ll draw: though the pictures aren’t
technically accurate (e.g., A and B may not be actually be the set of points
making up two ovals in the plane), it’s often very helpful to use these kinds
of abstract pictures because they provide us with some intuition about how
different sets are related to one another.

Notice again that we say A is a subset of B if every element of A is also
an element of B. This means, in particular, that for every set A, A is a
subset of itself: every element of A is also an element of A. We are thus
justified in writing A ⊂ A. If we want to explicitly exclude this possibility,
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we use the symbol (: writing A ( B means that A is a subset of B and A
is not all of B.

Exercise 1.3.
Suppose that A and B are two sets and A ( B. Show that this means
there must exist at least one element of B which is not an element of
A.

When A ( B we call A a proper subset of B. For example, the natural
numbers are a proper subset of the integers, and the integers are a proper
subset of the rational numbers.

Remark.
There is a little bit of ambiguity that can occur with the symbol ⊂:
some authors use ⊂ to mean (, and use ⊆ to mean ⊂. That is, some
people will use A ⊆ B to mean that A is a subset of B, possibly all
of B, and A ⊂ B to mean that A is a subset of B but not all of B.
This is reminiscent to using ≤ and < in comparing numbers, but it’s
not completely standard.

To avoid any potential ambiguity we will typically use A ( B to mean
that A is a proper subset of B, and A ⊆ B to mean that A is a subset of
B but could potentially be all of B.

1.4 Equality

We say that two sets A and B are equal if they have precisely the same
elements: that is, if x ∈ A then x ∈ B and if y ∈ B, then y ∈ A as well.
This is exactly the same thing as saying A ⊆ B and B ⊆ A. When this
happens we, unsurprisingly, write A = B.

Example 1.3.
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Let A and B be the sets described below:

A =
{
x ∈ Z

∣∣x = 2n for some n ∈ Z, and x = 3m for some m ∈ Z
}
,

B =
{
y ∈ Z

∣∣ y = 6n for some n ∈ Z
}
.

Show that A and B are equal.
Here, A is the set of all integers which are simultaneously multiples

of 2 and 3, while B is the set of all integers which are multiples of 6.
If you start writing down a few elements of A, then you’ll probably
be convinced pretty quickly that, sure enough, everything in A is a
multiple of 6, but let’s actually prove this.

We first want to show that A ⊆ B: i.e., every integer which is a
multiple of both 2 and 3 must be a multiple of 6. So suppose x ∈ A, we
want to show that x ∈ B as well. If x ∈ A then x = 2n = 3m for some
pair of integers m and n. This equation means, in particular, that 2
divides 3m. Since 2 is a prime number it must divide either 3 or m
(this is basically the definition of a prime number; see the Wikipedia
page about prime numbers for more information). Since 2 does not
divide 3, it must divide m. Thus m = 2k for some k. This means
x = 3m = 3 · 2k = 6k, and so x must be a multiple of 6. Hence if
x ∈ A, then x ∈ B as well, so A ⊆ B.

We also need to show that B ⊆ A. Suppose that y ∈ B, so y = 6k
for some k. But then y = 3 ·2 ·k, and so y is simultaneously a multiple
of 2 (take n = 3k in the definition of A) and a multiple of 3 (let
m = 2k). Thus B ⊆ A.

As A ⊆ B and B ⊆ A, A = B.

Remark.
Just a reminder that it’s okay if you don’t understand an example
when you first read it in these notes. The important thing is to make
an effort to try to understand it. Usually just making an effort, even
if you don’t feel comfortable that you understood what you just read,
still helps to get your brain thinking about the idea. You may find
that if you read something you don’t understand, then step away from
it for a while (a few hours, maybe a day or two) and then re-read it, it
might make sense on the second reading. If you still don’t understand
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the example on a second reading, don’t beat yourself up about it.
Feel free to ask questions about the idea through email, office hours,
or in class if you’re still unable to understand what’s going on. The
most important thing is to keep trying and not let one thing you don’t
understand discourage you from trying anything else.

1.5 The empty set

There is one special set in mathematics called the empty set which is the
only set that contains no elements; it is the only set of cardinality zero and
is denoted ∅.

A set without anything in it might sound uninteresting, but there is at
least one surprising thing about the empty set: the empty set is a subset of
every other set. That is, for any set A, ∅ ⊆ A. Why is this the case? We
should only write ∅ ⊆ A if every element of ∅ is also an element of A. Since
∅ has no elements, however, it immediately satisfies this definition! All the
elements of ∅ (all zero of them) are also elements of A!

Exercise 1.4.
If the idea that the empty set is a subset of every other set sounds a
little bit odd, re-read the above paragraph and think about the logic
behind the last sentence until it makes sense. The solution to this
exercise in the appendices gives another way to think about this if the
first explanation above simply won’t “click” for you.

1.6 Real numbers

So far we have described three different sets of numbers: the natural num-
bers N, the integers Z, and the rational numbers Q. We now describe one
more set of numbers which we will use in this class: the real numbers.

To define the real numbers rigorously would take us very far afield, and
so we will be a little bit hand-wavy in the definition. A real number
is simply the coordinate of a point on the real line; equivalently, it is the
collection of all numbers that we can write down with a (possibly infinite)
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decimal expansion. All of the numbers described thus far (natural numbers,
integers, and rational numbers) are real numbers: we can write 6 as 6.000...;
we can write -3 as -3.000...; we can write 22

7
as 3.142857142857142857...

The set of all real numbers is denoted R. Notice we have the following
string of subsets:

N ( Z ( Q ( R.

Notice that the examples of real numbers we wrote down above all have
a decimal expansion which is eventually repeating. However there are num-
bers that can’t be written in this way. One simple example is

√
2. We

can write
√

2 as an infinite decimal expansion
√

2 = 1.414213562..., this
expansion never repeats no matter how many digits you write down. We
won’t do it, but it can be shown that every rational number has an eventu-
ally repeating decimal expansion. So, another way to say that the decimal
expansion of

√
2 never repeats, is to say that it is impossible to write

√
2

as a ratio of two integers. That is,
√

2 is not a rational number. A real
number that is not rational is called an irrational number .

Theorem 1.1.
The square root of 2 is irrational.

We will prove Theorem 1.1 using a a standard proof technique technique
called proof by contradiction , which is also sometimes called reductio
ad absurdum, Latin for “reduction to absurdity.” The idea is that we will
suppose that what we want to show to be true is in fact false, and show that
this leads to some impossible situation. Since if the statement were false
something impossible would have to happen, it must be that the statement
is in fact true.

Remark.
You really don’t need to try to understand the proof below if you don’t
want to. It is included only for the sake of completeness and to justify
the claim that not all real numbers are rational. If you’re willing to
take this on faith, you can safely skip over the proof below.
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Proof of Theorem 1.1.
Suppose that

√
2 were rational. Then we could write

√
2 = p

q
where

p and q were integers. We could cancel out any common factors of p
and q, and so we may assume that there is nothing which divides both
p and q simultaneously.

If we square both sides of the equation
√

2 = p
q
, then we obtain

2 = p2

q2
. This means q2 = p2

2
. As q2 is an integer, p2

2
must be an integer

as well. This means that p2 must be even. If p2 is even, however,
then p must also be even.a Thus p = 2r for some integer r. But then
p2 = 4r2, so q2 = p2

2
= 2r2. Again, q2 is even so q must also be even:

say q = 2s.
At this point we have a contradiction: we originally assumed that

p and q had no common factors, but then showed that p and q must
both be even meaning that 2 is a common factor. This is impossible:
p and q can not simultaneously have no common factors and also have
2 as a common factor! We obtained this contradiction because we
supposed that

√
2 was rational, so we must conclude that

√
2 is not

rational.
aIf this isn’t clear, think about it and notice that 2 is a prime number.

The main takeaway from this is that there are numbers we care about,
the real numbers, which are not rational numbers. The vast majority of the
time this won’t really matter for our purposes in this class, but it’s good to
be aware of this fact.
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1.7 Practice problems

Problem 1.1.
Rewrite each set below using set-builder notation.

(a) {1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...}

(b) {−1, 4,−9, 16,−25, 36,−49, 64,−81, 100, ...}

(c) The set of rational numbers where the numerator is the cube of the
denominator.

(d) The set of points in the plane which are on the graph of the function
f(x) = x3.

Problem 1.2.
Let A be the set of all natural numbers which are multiples of 15, B be the
set of all natural numbers which are multiples of 10, C the set of all natural
numbers which are multiples of 20, and D the set of all natural numbers
which are multiples of 30.

(a) Write A, B, C, and D in set builder notation.

(b) Is A ⊆ B? Explain why or why not.

(c) Is A ⊆ C? Explain why or why not.

(d) Is A ⊆ D? Explain why or why not.

(e) Is B ⊆ A? Explain why or why not.

(f) Is B ⊆ C? Explain why or why not.

(g) Is B ⊆ D? Explain why or why not.

(h) Is C ⊆ A? Explain why or why not.

(i) Is C ⊆ B? Explain why or why not.

(j) Is C ⊆ D? Explain why or why not.

(k) Is D ⊆ A? Explain why or why not.

(l) Is D ⊆ B? Explain why or why not.

(m) Is D ⊆ C? Explain why or why not.
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Problem 1.3.
Let A be the set of all points (x, y) in the circle of radius one centered at
the origin, and let B be the set of all points (x, y) satisfying the inequality

x2 + y2

4
≤ 1. Show A ⊆ B.

Problem 1.4.
Are there any sets A such that A ⊆ ∅? If not, why not? If so, what can be
said about such a set?

Problem 1.5.
Let A be the graph of the function f(x) = x2−1

x−1
, and B the graph of the

function g(x) = x+ 1. Are A and B the same sets? If not, is one a subset
of the other?

Problem 1.6.
Suppose A 6= B. Is it true that there must be an element of A which is not
an element of B, and an element of B which is not an element of A?



2Operations on Sets

“Contrariwise,” continued Tweedledee, “if it
was so, it might be; and if it were so, it
would be; but as it isn’t, it ain’t. That’s
logic.”

Lewis Carroll
Through the Looking Glass

2.1 Unions

Given a collection of sets there are many different ways we can combine the
sets together to get new sets. Here we discuss the three most important
such operations: unions, intersections, and products.

Given two sets A and B, their union is the “smallest” set which con-
tains every element of A as well as every element of B, and is denoted A∪B.
You should think of the union as gluing two sets together to get a bigger
set.

Example 2.1.
Let A = {2, 4, 6, 8, 10} be the set of all even integers between 1 and
10, and let B = {1, 3, 5, 7, 9} be the set of all odd integers between 1
and 10. Then their union A ∪ B is the set of all integers between 1
and 10:

A ∪B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Exercise 2.1.
Let A and B be any two sets. Show that A ⊆ A∪B and B ⊆ A∪B.

Given any two sets A and B, there are going to be lots of other sets that
contain A and B as subsets. In the example above, for instance, the set

{1, 2, ..., 10, 11}

16
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contains both A and B as a subset, as does N and Z. The union A ∪ B is
the smallest set containing both A and B as subsets in the following sense:
If A ⊆ C and B ⊆ C, then A ∪B ⊆ C.

2.2 Intersections

Another operation we can perform on two sets is to intersect them. The
intersection of two sets A and B, denoted A∩B, consists precisely of all
of the elements which are in both A and B. That is, x ∈ A∩B if and only
if x ∈ A and x ∈ B.

Example 2.2.
Let A be the set of all multiples of 6, and B the set of all multiples of
10,

A = {...− 18,−12,−6, 0, 6, 12, 18, ...},
B = {...− 30,−20,−10, 0, 10, 20, 30, ...}.

Then A ∩ B is the set of all the numbers which are both multiples of
6 and 10.

A ∩B = {...,−90,−60,−30, 0, 30, 60, 90, ...}.

Example 2.3.
Suppose that S is the set of all characters that have ever appeared in
a Star Wars film,

S = {Luke Skywalker, Obi-Wan Kenobi, Kylo Ren, · · · },

that R is the set of all droids from the Star Wars films,

R = {R2D2, C3P0, BB-8, · · · },

D is the set of all characters corrupted by the dark side of The Force,

D = {Darth Vader, Kylo Ren, Emperor Palpadine, ...}
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and V is the set of all characters which appeared in Star Wars V: The
Empire Strikes Back,

V = {Luke Skywalker, Lando Calrissian, Boba Fett, · · · }.

Then the set of all droids that appeared in The Empire Strikes Back
is the intersection of the set of all droids and the set of all characters
that were in that movie:

R ∩ V = {C3P0, R2D2} .

The set of all characters which were corrupted by the dark side of The
Force and were in The Empire Strikes Back is the intersection of all
characters corrupted by the dark side of The Force and the set of all
characters in The Empire Strikes Back :

D ∩ V = {Darth Vader, Emperor Palpadine} .

Example 2.4.
Suppose that A is the set of all points in the plane (all (x, y)-pairs)
that are at most distance 1 from the origin.

x

y

A =
{

(x, y)
∣∣x2 + y2 ≤ 1

}
And suppose thatB is the line with slope 1 through the point (0,−0.25)
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x

y

B =
{

(x, y)
∣∣ y = x− 0.25

}
Then the intersection A ∩B is then the portion of the line B that

remains inside the disc A. This is the dark purple line segment in the
figure below. (The original disc and line are drawn in very lightly just
for comparison; they are not part of A ∩B.)

x

y

A ∩B =
{

(x, y)
∣∣ y = x− 0.25 and x2 + y2 ≤ 1

}

It may happen that two sets have nothing in common: for example, the
set A = {1, 2, 3} and the set B = {4, 5, 6} have no common elements. In a
situation such as the intersection of the two sets is empty, A ∩ B = ∅, and
we say that A and B are disjoint .
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Exercise 2.2.
Let A and B be any two sets. Show that A ∩ B is a subset of A and
also a subset of B.

Exercise 2.3.
Show that if A ⊆ B, then A ∩B = A.

Just as the union A ∪ B was the smallest set containing both A and B
as subsets, the intersection A ∩B is the largest subset of both A and B in
the following sense: If C ⊂ A and C ⊆ B, then C ⊆ A ∩B.

Anytime you have several operations defined on some collection of ob-
jects (e.g., unions and intersections defined for sets), you might be interested
in how those operations interact with one another. For unions and intersec-
tions this interaction is similar distributive law for normal numbers (e.g.,
that x · (y + z) = x · y + x · z).

Proposition 2.1.
For any sets A, B, and C we have the following two distributive laws:

A ∩ (B ∪ C) = [A ∩B] ∪ [A ∩ C]

A ∪ (B ∩ C) = [A ∪B] ∩ [A ∪ C]

Proof.
We will only prove the first distributive law; the proof of the second
one is almost identical.

Notice that elements of A ∩ (B ∪ C) are elements of A which are
also elements of either B or C. The elements of A∩B are elements of
both A and B; the elements of A ∩ C are elements of both A and C.
Unioning A ∩B and A ∩ C together, we have exactly the elements of
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A which are also in either B or C.

2.3 Products

One last operation we will mention is the Cartesian product, which we will
usually refer to simply as the “product.” Given two sets, A and B, their
(Cartesian) product is a set denoted A × B and which consists of all
ordered pairs (a, b) where a ∈ A and b ∈ B:

A×B =
{

(a, b)
∣∣ a ∈ A and b ∈ B

}
.

Example 2.5.
Let A = {x, y, z} and B = {u, v, x}. Then

A×B = {(x, u), (x, v), (x, x),

(y, u), (y, v), (y, x),

(z, u), (z, v), (z, x)}

Example 2.6.
Let A be the interval [1, 4] and B the interval [2, 3]. Then the product
A × B consists of all pairs of numbers (i.e., all (x, y) pairs in the
plane) where the first coordinate is between 1 and 4, and the second
coordinate is between 2 and 3:

x

y
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A×B =
{

(x, y)
∣∣ 1 ≤ x ≤ 4 and 2 ≤ y ≤ 3

}

It is fairly often that we will want to consider the product of a set with
itself, A × A. In such a situation we will usually simply write A2 to mean
A× A.

The three operations we described above can be defined for more than
two sets. For example, it makes sense to talk about the union, intersection,
or product of three sets. It is completely reasonable, for example, to say that
the union A∪B ∪C should be the smallest set containing all the elements
of A, all the elements of B, and all the elements of C. The intersection
A ∩ B ∩ C should contain only those elements that are in all three sets A,
B, and C.

Example 2.7.
Consider the sets A, B, and C described below:

A = {1, 2, 3, ..., 10}
B = {2, 4, 6, ..., 20}
C = {−12,−9,−6, ..., 6, 9, 12}.

The union of these sets is

A ∪B ∪ C = { − 12,−9,−6,−3, 0, 1, 2, 3, ...10,

12, 14, 16, 18, 20}.

The intersection is
A ∩B ∩ C = {6}.

Of course, there’s nothing magical about having two sets or three sets:
we can define unions and intersections for any number of sets – even infinitely-
many.
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Example 2.8.
For each n ∈ N define the set An to be the interval

[
− 1

2n
, 1

2n

]
. The

first few intervals are thus

A1 = [−1/2, 1/2]

A2 = [−1/4, 1/4]

A3 = [−1/8, 1/8]

A4 = [−1/16, 1/16]
...

The intersection of all these intervals is usually written in one of two
ways,

A1 ∩ A2 ∩ A3 ∩ · · · or
∞⋂
n=1

An,

and consists of all the elements which are in every An. In this case
the only such element is 0:

∞⋂
n=1

An = {0} .

Exercise 2.4.
For each n ∈ N, let Bn be the following interval:

Bn =

[
1

2n
, 1− 1

2n

]
.

What is the infinite union of all the Bn’s,
⋃∞
n=1Bn?

The product might be slightly, but not very, surprising. When we write
a product of three sets we will mean the collection of ordered triples; a
product of four sets is the collection of ordered quadruples. In general,
the product of n sets is the set of all ordered n-tuples. (An n-tuple is an
ordered list of n items. A 2-tuple is simply a pair; a 3-tuples is a triple; a
5-tuple has the form (a, b, c, d, e).)
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Example 2.9.
Let A, B, and C be the following sets:

A = {1, 2, 3}
B = {α, β}
C = {], [}

Then A×B × C is the following set

{(1, α, ]), (1, α, [), (1, β, ]), (1, β, [),
(2, α, ]), (2, α, [), (2, β, ]), (2, β, [),

(3, α, ]), (3, α, [), (3, β, ]), (3, β, [)}

It is very common to consider the Cartesian product of a set A with
itself n times, so we usually denote this as An.

Example 2.10.
The set of all ordered triples of integers could be written Z3:

Z3 =
{

(x, y, z)
∣∣x, y, z ∈ Z

}

We can also talk about products of infinitely-many sets, but for simplic-
ity we will avoid that for the time being.

2.4 Complements

The last operation on sets we will describe is not defined for all sets, but
only for subsets of some given set. That is, in some applications there will be
some ambient set “in the background,” and all other sets we are interested
in will be subsets of this ambient set. In such a situation, we sometimes
call the ambient set the universe because it consists of everything we care
about for the problem at hand. For example, in geometry the universe may
be the set of all points in the plane, R2 – for some geometric problems
everything you care about might take place in the plane, so that is your
universe.
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Once we have a universal set U , we can define the complement of any
subset E ⊆ U , which you should think of as being the complete opposite
of E. To be more precise, given any set E inside the universe U , the
complement of E, denoted Ec, is the set of all elements in U which are not
in E:

Ec =
{
x ∈ U

∣∣x /∈ E} .
Example 2.11.
Suppose the universe U consists of all integers between 1 and 10,

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

• If E is the set of all even numbers between 1 and 10, E =
{2, 4, 6, 10}, then its complement consists of all the odd num-
bers, Ec = {1, 3, 5, 7, 9}.

• if E is the set of all numbers in U greater than 7, E = {8, 9, 10},
then its complement is the set of all numbers less-than-or-equal-
to 7, Ec = {1, 2, 3, 4, 5, 6, 7}.

Exercise 2.5.
Let U be any universal set and E ⊆ U any subset. Show (Ec)c = E.

Example 2.12.
Suppose the universe U consists of all points in the plane, U = R2.
If E is the set of all points whose distance to the origin is at most 1
(so, E is the circular disc of radius 1 centered at the origin), then its
complement Ec consists of all the points distance more than 1 from
the origin (this would be the entire plane with a “hole” of radius 1
centered at the origin).
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E

Ec

Exercise 2.6.
Given some universe U , what is the complement of the empty set ∅?
What is the complement of U?

2.5 Difference

The difference between two sets E and F , denoted E \ F , is the set of all
elements in E which are not also elements in F :

E \ F =
{
x ∈ E

∣∣x /∈ F} .
To have a picture of this, imagine that E and F are the overlapping regions
indicated below.

E

F

Then the set difference E \ F , is the shaded region below.
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E \ F

Example 2.13.
Let S be the set of all Star Wars movies,

S = {Star Wars,The Empire Strikes Back,Return of the Jedi,

The Phantom Menace,The Clone Wars,Revenge of the Sith,

The Force Awakens,Rogue One,The Last Jedi,

Solo}

and let D be the set of all movies produced by Disney,

D = {Snow White,Pinocchio, ...,Coco,The Force Awakens, ...}.

Then S \D would be the set of all Star Wars movies not produced by
Disney,

S \D = {Star Wars,The Empire Strikes Back,Return of the Jedi,

The Phantom Menace,The Clone Wars,Revenge of the Sith}

Exercise 2.7.
Show that E \ F is equal to E \ (F ∩ E).

2.6 De Morgan’s laws

It is very common in mathematics to have multiple possible operations you
can perform on a given type of object, and then to ask how these operations
interact with one another. For example, in arithmetic two basic operations
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are addition and multiplication, and these two operations “interact” via the
distributive law a · (b+ c) = a · b+ a · c.

At this point we have a few different operations we can perform on sets,
and we want to know how they interact with each other. In particular, we
have unions, intersections, and complements. These three operations are
related by two rules called de Morgan’s laws, which essentially say that
unions turn into intersections (and intersections turn into unions) when we
take complements.

More precisely, if E and F are two subsets of some universe U (recall
we always need a “universe” to discuss complements), then we have the
following:

(E ∪ F )c = Ec ∩ F c

(E ∩ F )c = Ec ∪ F c

That is, we can intentionally turn unions into intersections and vice versa,
but we also have to take the complement of the sets involved. Right now
it might be hard to appreciate why this is something we’d like to do, but
we’ll see later that when calculating probabilities we will have special rules
for calculating probabilities of unions and intersections. In some types of
problems we use de Morgan’s laws to turn a complicated problem involving
probabilities of unions into a simpler problem involving probabilities of
intersections. (This is a little ways down the road from where we are now,
but that’s where we’re heading.)

Example 2.14.
Suppose the universal set is U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and let E =
{1, 2, 3} and F = {3, 4, 5}. Verify directly that de Morgan’s laws are
satisfied.

Here we just want to compute the four sets stated in de Morgan’s
laws above (two sets per equation) and see if the equalities that are
claimed to be true are in fact satisfied.

First note E ∪ F = {1, 2, 3, 4, 5}. Hence (E ∪ F )c = {6, 7, 8, 9, 10}.
Now note Ec = {4, 5, 6, 7, 8, 9, 10} and F c = {1, 2, 6, 7, 8, 9, 10}. Their
intersection is Ec ∩ F c = {6, 7, 8, 9, 10}. So the first equation in de
Morgan’s laws is satisfied.

For the second equation we note E ∩ F = {3}, so (E ∩ F )c =
{1, 2, 4, 5, 6, 7, 8, 9, 10}. Now Ec and F c we computed above, and their
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union is Ec ∪F c = {1, 2, 4, 5, 6, 7, 8, 9, 10}, and so the second equation
in de Morgan’s laws is satisfied.

The proof of de Morgan’s laws essentially has to do with working out
what each side of each equation means. We will simply prove the first law,
leaving the second one as an exercise.

Proof of de Morgan’s first law.
We wish to show that (E ∪F )c = Ec∩F c. To show two sets are equal
we must show each one is a subset of the other: i.e., we must show
(E ∪ F )c ⊆ Ec ∩ F c and also that Ec ∩ F c ⊆ (E ∪ F )c.

Let x ∈ (E ∪F )c. That is, x is an element of U which is in neither
E nor F . Since x /∈ E and x /∈ F , we have x ∈ Ec and x ∈ F c, so
x ∈ Ec ∩ F c. This shows (E ∪ F )c ⊆ Ec ∩ F c.

Now to show the other inclusion, let x ∈ Ec ∩ F c. Thus x is in
both Ec and x is in F c. This means x is in neither E nor F , and
hence x /∈ E ∪ F . By the definition of the complement, that means
x ∈ (E ∪ F )c. Hence Ec ∩ F c ⊆ (E ∪ F )c.

Exercise 2.8.
Prove the second law of de Morgan. That is, if E and F are subsets
of a universal set U , then (E ∩ F )c = Ec ∪ F c.

There’s nothing really special about our using two sets in the statements
of de Morgan’s laws above instead of three or four or five or ... In general,
given any collection of subsets E1, E2, ..., En of some universal set U , de
Morgan’s laws extend to

(E1 ∪ E2 ∪ · · · ∪ En)c = Ec
1 ∩ Ec

2 ∩ · · · ∩ Ec
n

(E1 ∩ E2 ∩ · · · ∩ En)c = Ec
1 ∪ Ec

2 ∪ · · · ∪ Ec
n.

If you believe the proof of de Morgan’s laws for two sets, then it’s easy
to see how to get de Morgan’s laws for more than two sets. Let’s consider
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the case when there are three sets, and let’s just call them E, F , and G.
The first law says that

(E ∪ F ∪G)c = Ec ∩ F c ∩Gc.

How can we get this if we know only have de Morgan’s laws for two sets?
We’ll just cheat and rewrite the above as two sets. If we write H = E ∪ F ,
then E ∪ F ∪ G can be written as H ∪ G. De Morgan’s laws on two sets
then tell us

(E ∪ F ∪G)c = (H ∪G)c = Hc ∩Gc.

Now let’s figure out what Hc is: since H = E∪F , we must have Hc = (E∪
F )c. But now de Morgan’s laws for two sets tell us Hc = (E∪F )c = Ec∩F c.
Plugging this in for Hc on the right-hand side above we have

(E ∪ F ∪G)c = (H ∪G)c = Hc ∩Gc = Ec ∩ F c ∩Gc.

The same trick works for de Morgan’s second law for three sets.
Now that we know de Morgan’s laws for three sets, it’s easy to extend

it to de Morgan’s law for four sets; once we have de Morgan’s laws for
four sets, we can easily extend to five sets; etc. We just keep taking a
“complicated” de Morgan’s law with lots of sets and rewriting it in terms
of de Morgan’s law with fewer sets. Repeating this process several times
we can always boil everything back down to de Morgan’s law with two sets
which we already know.

Remark.
This idea of taking a complicated problem and breaking it up into
slightly simpler problems which you can continue to break up into
slightly simpler problems until you get down to the simplest possible
scenario is very common in mathematics and in computer science. In
math this is usually called induction , whereas in computer science
it’s called recursion , but they’re really the same thing.
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2.7 Practice problems

Problem 2.1.
Let E be the set of all even integers, and F the set of all integer multiples
of five. Find a simple way to express E ∩ F in set-builder notation.

Problem 2.2.
Suppose A and B are sets that satisfy the following: A ⊆ A ∩ B. What
does this tell you about B?

Problem 2.3.
Determine the following infinite intersection,

∞⋂
n=1

(−∞,−n)

Problem 2.4.
For each positive real number a, let Ha denote the set of points in the
xy-plane whose y-coordinate is greater than or equal to a,

Ha =

{
(x, y)

∣∣∣∣ y ≥ a

}
.

What is ⋃
a>0

Ha?



3
Functions

When you have eliminated the impossible,
whatever remains, however improbable, must
be the truth.

Sir Arthur Conan Doyle
The Sign of Four

The material in this chapter will be crucial when we begin to discuss
random variables later, however we will not need this material until then.
You may want to only skim over this chapter for now, then return to it once
we begin discussing random variables in class.

3.1 Definitions and examples

Given two sets A and B, a function from A to B (also called a map
from A to B) is a rule which associates to each element of A an element of
B. Sometimes we will represent functions pictorially by drawing A on the
left, B on the right, and then having arrows going from elements of A to
elements of B.

Example 3.1.
Suppose A = {a, b, c, d} and B = {1, 2, ..., 6}. One possible function

from A to B is pictured below:

32
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a

b

c

d

1

2

3

4

5

6

The function in Example 3.1 associates 1 to a; associates 2 to b; 2 is
also associated to c; and finally d gets associated to 6.

It is convenient to give a function a name so that we can refer to it
without drawing pictures like this all of the time. Let’s refer to the function
from Example 3.1 as f . To say that f takes elements of A and associates
an element of B to them we write f : A→ B. We then call A the domain
of f and B is called the codomain of f . The range of f is the subset
of B which actually get associated to an element of A. For the function in
Example 3.1 the range is {1, 2, 6}.

There are several different notations that are used to describe which
elements of B a function associates to elements of A. Some commonly used
ones are f(a) = b and a 7→ b. The first one you’ve probably seen before,
but the second one might be new. We pronounce a 7→ b as “a maps to b.”

Example 3.2.
Considering the function f shown in Example 3.1 we have

f(a) = 1

f(b) = 2

f(c) = 2

f(d) = 6
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Using the other notation we would write

a 7→ 1

b 7→ 2

c 7→ 2

d 7→ 6

It is important to realize that a function f : A→ B can only associate
one element of b to a given element of a (even though there could be several
elements of A associated to a given b ∈ B). A function f : A → B must
also associate every element of A to something in B, even though not every
element of may B necessarily have something associated to it. (The range
of f : A → B is by definition the set of all elements in B which have an
element of A associated to them.)

Example 3.3.
The following is not a function:

a

b

c

d

1

2

3

4

5

6
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Example 3.4.
The following is not a function:

a

b

c

d

1

2

3

4

5

6

3.2 Representing functions

It is common to represent a function by a formula, for example consider the
function f : Z → Z which takes a given number and squares it. It’s not
really reasonable to represent this function pictorially since Z has infinitely-
many elements, so we instead describe the function by an algebraic rule and
write f(x) = x2 or x 7→ x2.

Another way to represent a function is to consider its graph. In general,
the graph of a function f : A → B, which we will denote Graph(f), is a
subset of A×B which consists of pairs of the form (a, f(a)). That is,

Graph(f) =
{

(a, b) ∈ A×B
∣∣ b = f(a)

}
.

When we have a function from the set of real numbers R (defined below)
to itself, it is common to actually draw these points in the plane R2. That
is, given a function f(x) we plot all of the pairs (x, y) where y = f(x).



CHAPTER 3. FUNCTIONS 36

Example 3.5.
The graph of the function f : R→ R given by x 7→ x2 − 3x is

−2 −1 1 2

−2

−1

1

2

3.3 Special types of functions

As mentioned above, a function f : A → B must associate every element
of A to some element of B (i.e., for every a ∈ A, f(a) is defined), but not
every element of B must have an element of A associated to it (there may
be some b ∈ B such that for every a ∈ A, f(a) 6= b). In the special case
where every element of B does have an element of a associated to it, we
say the map f is surjective or onto. Equivalently, a function is surjective
when its codomain and range are the same.

Example 3.6.
The function f : Z→ Z defined by f(x) = x+ 3 is surjective. Every
y in the codomain Z gets associated an x from the domain, namely
x = y − 3.
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Example 3.7.
The function pictured below is surjective.

a

b

c

d

e

f

g

1

2

3

4

5

Remark.
The terms surjective and onto are completely synonymous, and which
one a person uses is largely a matter of personal preference.

Notice that the function pictured in Example 3.7 has the property that
multiple elements of the domain get associated to the same element in
the codomain: both b and c get associated to 2, while both e and g are
associated to 4. When this does not happen, we give the function a special
name.

We say that a function f : A → B is injective or one-to-one (com-
monly denoted 1-1 ) if each element of A is associated to a unique of B.
That is, if a1 and a2 are distinct elements of A, then f(a1) 6= f(a2).
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Example 3.8.
The following function is injective.

a

b

c

d

e

1

2

3

4

5

6

7

Example 3.9.
The function f(x) = x + 3 from Example 3.6 is injective: if x1 6= x2,
then f(x1) = x1 + 3 6= x2 + 3 = f(x2).

When a function is both injective and surjective, we say the function is
bijective . Bijective functions play a special role in most areas of mathe-
matics because having a bijection between two sets means those two sets
are “the same.” That is, you may label the elements of the sets differently
and think of them in different ways, but each element in one set has exactly
one element in the other set associated to it: we can pair the elements of
the sets together one by one.
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Example 3.10.
The following function is injective.

a

b

c

d

e

1

2

3

4

5

Example 3.11.
The function f(x) = x+ 3 from Example 3.6 is bijective as it is both
surjective and injective.

Remark.
If we know that a given function f : A→ B is injective, surjective, or
bijective, then we also instantly know how the cardinalities of A and
B are related. If f is injective, then #A ≤ #B. If f is surjective, then
#A ≥ #B. If f is bijective, then #A = #B. This holds even when
A and B have infinitely-many elements! These ideas can be used to
make sense of when one “type” of infinity is bigger than another type
of infinity.

The notion of different sizes of infinity was very controversial when
first proposed by Georg Cantor in the late 19th century, but today
is a commonly accepted and understood part of mathematics. For
a very easy and brief introduction to the idea of different sizes of
infinity, watch the short short TED-Ed video How big is infinity?,
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https://youtu.be/UPA3bwVVzGI.

When a function f : A → B is bijective, there is always a function
g : B → A which “undoes” f in the following sense: for every a ∈ A,
g(f(a)) = a, and for every b ∈ B, f(g(b)) = b. We call the function g
the inverse of f and usually denote it by f−1. (Notice that f−1 is not f
raised to the negative first power! This is simply a common, if unfortunate,
notation for the inverse.)

Example 3.12.
The bijective function f is denoted in black in the image below, while
its inverse f−1 is given in red.

a

b

c

d

e

1

2

3

4

5

3.4 Images and preimages

Just as a function f : A→ B associates elements of B to elements of A, it
also associates subsets of B to subsets of A by applying f to every element

https://youtu.be/UPA3bwVVzGI
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of a subset of A.
Suppose that f : A→ B is any function and that X ⊆ A is any subset

of A. We can define a subset of B, which we’ll denote f(X), in the following
way:

f(X) =
{
f(x)

∣∣x ∈ X}
This set f(X) is called the image of X under f .

Example 3.13.
Let A = {a, b, c, d}, B = {1, 2, ..., 6} and let f be the function from

Example 3.1. If X = {a, b, c}, then its image f(X) is {1, 2}.

a

b

c

d

1

2

3

4

5

6

Given any Y ⊆ B, the preimage of Y is the set of all elements in
A which get mapped to an element of Y . The preimage is often denoted
f−1(Y ), even if f is not bijective.

f−1(Y ) =
{
x ∈ A

∣∣ f(x) ∈ Y
}

Example 3.14.
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Let A, B, and f be as in Example 3.13. If Y = {1, 2}, then f−1(Y ) =
{a, b, c}.

Exercise 3.1.
Let A, B, and f be as in Example 3.13. What is the preimage of
{3, 4, 5}?
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3.5 Practice problems

Problem 3.1.
For each function f given below, determine the domain and range of the
function, and determine whether the function is injective, surjective, nei-
ther, or both. In these functions we are assuming the domain is a subset of
the real numbers, and the codomain is R.

(a) f(x) = x2

(b) f(x) = x3

(c) f(x) = sin(x)

(d) f(x) = cot(x)

(e) f(x) =
√
x



Part II

Basic Probability Theory
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4Basic Notions and Definitions

It is likely that unlikely things should happen.

Aristotle

The outcome of many different types of events can not be predicted
perfectly. For example, whether it will rain or snow tomorrow is never
known for sure until it actually starts to precipitate. However, even if we
can not know the outcome ahead of time with absolute certainty, we may
still be able to measure the likelihood an event will occur. For instance,
might be able to say there’s a 75% chance it will rain tomorrow; or there is
a 60% chance a given politician will win an elected office; or a 0.0000003%
chance of winning the PowerBall Jackpot. In each situation we don’t know
for sure what will happen (maybe it will rain, maybe it won’t; maybe the
politician will be elected, but maybe not; maybe you’ll buy the winning
lottery ticket, but maybe you won’t), however we may be able to assign a
numerical value which measures how likely or unlikely each event is.

The mathematics used to assign these measures of likelihood belongs
to the discipline of probability theory, and having a good understanding
of the basics of probability theory will be required for everything else in
this course. We will thus spend a fair amount of time slowly defining the
basic definitions and ideas behind probability theory before we do anything
else, starting “from the ground up” assuming you have never seen any
probabilities before, and gradually introducing new, more involved ideas as
necessary.

4.1 Experiments, sample spaces, and events

In the context of probability theory, an experiment is simply something
whose outcome is not known with complete certainty. For example, flipping
a coin, rolling a die, drawing a card from a shuffled deck, and recording the
amount of time until a fish bites a hook are all experiments. In each case
there are multiple possible outcomes (the coin may come up heads or tails;
the die may roll a 1, 2, 3, 4, 5, or 6; the card may be the Ace of Spades, the
King of Diamonds, the Two of Clubs, etc; the fish may bite the hook after
one minute, or 39 minutes, or two hours, and so on), but we don’t know
exactly which outcome will take place ahead of time.

45
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The collection of all possible outcomes of a given experiment is called
the sample space of that experiment, and we will often denote the sample
space of an experiment by the capital Greek letter omega, Ω.

Example 4.1.
In the experiment of flipping a coin where the coin may come up heads
or tails, we may use the symbols H to mean the coin comes up heads,
and T to mean the coin comes up tails. The sample space of this
experiment is then Ω = {H,T}.

Example 4.2.
In the experiment where we draw a card from a shuffled deck of fifty-
two standard playing cards, the sample space is the set of all cards,

Ω = {Ace of Spades, 2 of Spades, 3 of Spades, ...}.

Example 4.3.
On the game show Wheel of Fortune, contestants try to solve word
puzzles one letter at a time until they can determine the phrase that
solves the puzzle. On their turn, each play must spin a wheel which
determines the amount of money they win for correctly guessing a
letter in the phrase, or if instead of winning money something “bad”
happens (such as losing a turn or going bankrupt and losing all money
that has been won).

If our experiment is the result of one spin of the wheel, then the
sample space is the set of all possible results of one spin of the wheel,
which is

Ω = {Bankrupt,Lose a Turn, $500, $600, $650, $700,

$800, $900, $2500, $1, 000, 000}.
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An event is a subset of the sample space of an experiment, and could
consist of a single possible outcome (this is sometimes called a simple
event) or multiple possible outcomes (this is a compound event).

Example 4.4.
In the example of rolling a six-sided die, so the sample space is Ω =
{1, 2, 3, 4, 5, 6}, depending on the number of dots (called pips) that
appear when the die is rolled, the event where we roll a particular
number like 5 is a simple event, {5}. The event where we roll one of
several possible numbers, such as rolling an even number, is a com-
pound event: {2, 4, 6}.

Example 4.5.
If our experiment is drawing a single card from a deck of shuffled
playing cards, drawing one particular card such as the Ace of Spades,
is a simple event: {Ace of Spades}. Drawing one of several possible
cards, for example drawing a heart, is a compound event:

{2 of Hearts, 3 of Hearts, ...,Queen of Hearts,King of Hearts}.

Example 4.6.
Suppose a certain game involves rolling two distinguishable six-sided
dice simultaneously (say, for example, one die is blue and one is red).
What is the sample space? What event corresponds to the sum of the
dice equalling eight?

The sample space consists of all possible rolls of the two dice. We’ll
denote the possible rolls as ordered pairs of numbers, where the first
number corresponds to what value is rolled on the blue die, and the
second roll corresponds to the value on the red die. For instance, (3, 5)
means a 3 appeared on the blue die and a 5 appeared on the red die.
The sample space then consists of all thirty-six possible rolls of the
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two dice:

Ω = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

The event where the two dice sum up to eight is

{(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)}

In what follows, we will always let the sample space Ω of an experiment
be the universal set so that we can talk about complements. (We’ll see why
this will be useful soon.)

Let’s now make a three simple observations about events E in a sample
space Ω:

1. The sample space Ω is itself an event, since Ω ⊆ Ω.

2. For any event E ⊆ Ω, its complement Ec ⊆ Ω is also an event.

3. Given any sequence of events, E1, E2, E3, ... (i.e., each Ei ⊆ Ω is
itself an event), the infinite union of these events is itself an event:

∞⋃
i=1

Ei = E1 ∪ E2 ∪ E3 ∪ · · ·

=
{
ω ∈ Ω

∣∣ω ∈ Ei for some Ei
}

These three observations may not seem very interesting or important
right now, but they are necessary in order to make probability theory rig-
orous. (We won’t try to make probability theory too rigorous in this class,
but it’s good to know there is a way to do so.)

Remark.
Long ago, a lot of mathematics was done in a very loose and hand-
wavy sort of way, but in the late 19th century and early 20th century
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there was a big push to put a lot of the hand-wavy mathematics people
had been using for hundreds of years on firm ground using principles
of formal logic. Even though people had considered probability math-
ematically since at least the 16th century, probability theory was not
put on firm logical ground until the middle of the 20th century.

Going through the details of making probability theory rigorous
requires a rather technical detour through a branch of mathematics
called measure theory, and if you continue to study probability and
statistics for long enough – in particular if you studied these topics
in graduate school – you would eventually see the measure-theoretic
foundations we are skipping over.

4.2 Probability

The goal of probability theory is to associate numbers to events in such a
way that these numbers indicate the likelihood the event will take place.
An experiment results in only one outcome, but an event may consist of
multiple possible outcomes (this is exactly what it means to be a compound
event). In many situations we may only care that one of several possible
outcomes took place, and not care about which particular output occured.
For example, in playing a certain type of card game you may know that
you’ll win the game if the next card you receive has a value of 9 or higher,
regardless of the suit. The event that you care about is then

{9♥, 9♣, 9♦, 9♠, 10♥, 10♣, 10♦, 10♠, J♥, J♣, J♦, J♠,
Q♥, Q♣, Q♦, Q♠, K♥, K♣, K♦, K♠, A♥, A♣, A♦, A♠}

and not which particular card you received.
To each event E in the sample space Ω we are going to associate a

number called the probability of the event E, and denoted Pr(E). We
can think of this as a function Pr whose inputs are events E (i.e., subsets
of Ω) and whose outputs are real numbers. To be considered a probability,
though, we require that three conditions are satisfied:

1. For every event E, 0 ≤ Pr(E) ≤ 1.

2. Pr(Ω) = 1.
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3. If E1, E2, E3, ... is a (countably) infinite sequence of pairwise disjoint
events (i.e., if each Ei ∩ Ej = ∅ as long as i 6= j), then

Pr

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

Pr(Ei).

These three conditions are called the axioms of probability , and any time
we are discussing probabilities we will always assume these three conditions
are satisfied.

At first glance the axioms of probability may seem technical, so let’s
spend a minute thinking about what they actually mean.

1. A probability is supposed to represent a likelihood, and we are adopt-
ing the convention that probabilities close to zero mean the event is
unlikely, and probabilities close to one mean the event is more likely.
Sometimes instead of probabilities people talk about percentages, and
you can convert probabilities to percentages by multiplying by 100.
E.g., a probability of 0.78 corresponds to the percentage 78%. We
don’t want our likelihoods to be less than 0% or greater than 100%
– it doesn’t mean anything to say there a −13% chance something
happens, or a 137% chance something happens – and so this means
our probabilities need to be no less than 0 and no greater than 1.

2. When you perform an experiment something must happen, whatever
it is. Since the sample space Ω represents all possible outcomes, some
element of Ω must be the result of our experiment. That is, it’s a sure
thing that the event Ω will take place – there is a 100% chance (aka,
probability 1) the event Ω will occur.

3. The third condition is maybe a little bit harder to see, but the idea
is simple: if the event we care about can be broken up into lots of
simpler pieces, we ought to be able to compute the probability of
the original “large” event in terms of the probabilities of the simpler
pieces. What we’re claiming is that the right way to do this is to
imagine chopping the big event into lots of non-overlapping, smaller
pieces (this is the pairwise disjointness condition above), and then
just add the probabilities of these smaller pieces together.

The reason we want the events to not overlap (i.e., be pairwise dis-
joint) is because if they did overlap, then elements in the overlap
would be counted multiple times. In principle this might be okay, we
might be able to fix this by subtracting off some of the elements we
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overcounted, but it makes the formula more complicated. (We’ll see
several concrete examples of this soon, so don’t worry too much if
that doesn’t make complete sense right now.)

Remark.
There’s actually a little white lie hiding in the axioms of probability
above. Normally the way we’ll want to calculate probabilities – i.e., the
way we want to define the function Pr – won’t satisfy all three axioms
above for all possible subsets of the sample space Ω. It’s not at all
obvious, but for lots of “natural” choices of Ω and probability function
Pr you will get contradictory calculations (e.g., you could wind up
saying things like 0 = 1). Giving an example of this is a bit technical,
but there’s a nice explanation in the video How the Axiom of Choice
Gives Sizeless Sets on YouTube (https://youtu.be/hcRZadc5KpI).

We can get around this issue by asking that the three axioms of
probability not apply to all possible subsets of Ω, but instead to a
special collection of subsets called a σ-algebra (sigma algebra), which
is just a fancy-sounding term for a collection of sets satisfying some
nice properties.

Example 4.7.
Suppose you throw a dart at a round board – this is an experiment
where the outcomes are the points on the board we can hit, but no
matter how good you are at darts, you don’t know with 100% certainty
exactly which point on the board you’ll hit. The sample space here is
the collection of all points on the dart board,

Ω

The events of this experiment are subsets of the board, regions of the

https://youtu.be/hcRZadc5KpI
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board we may want to hit. (I.e., if you’re playing an actual game of
darts you may want to hit the “bullseye” in the center of the board to
score 50 points, or land in a particular “wedge” of the board to score
15 points, etc.)

E

Ω

What is the probability a given E takes place? That is, what is the
probability a dart lands in a given region E? Assuming for simplicity
that every point of the dart board is just as likely to be hit as every
other point (e.g., maybe you’re really bad at darts and it doesn’t really
matter where you aim at), then we claim that the correct probability
function Pr is simply the area of the region E, divided by the area of
the entire sample space (the dart board) Ω:

Pr(E) =
Area(E)

Area(Ω)
.

Let’s check that this really does satisfy the axioms of probability stated
above:

1. Since areas are never negative, it’s clear that for every E we
have Pr(E) = Area(E)

Area(Ω)
≥ 0. As E ⊆ Ω (i.e., E is contained inside

of Ω), the area of E can’t be any bigger than the area of Ω:
Area(E) ≤ Area(Ω). Thus in our fraction for Pr(E), we must
have that the numerator is no bigger than the denominator, and
so Pr(E) ≤ 1.

2. Plugging Ω into our Pr function gives Pr(Ω) = Area(Ω)
Area(Ω)

= 1.

3. The third property relies on a similar property for areas: if two
regions in the plane, call them Ei and Ej for the moment, don’t
overlap, then Area(Ei ∪ Ej) = Area(Ei) + Area(Ej). If we have
infinitely-many such non-overlapping regions, E1, E2, E3, ..., this
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extends to the infinite union:

Area

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

Area(Ei).

(If this feels a little hand-wavy, you can make it precise using
properties of integrals, since the area of a region is equal to the
double-integral of the constant function 1 over that region.)

Plugging this into our formula for the Pr function, we can show
the third axiom is satisfied:

Pr

(
∞⋃
i=1

Ei

)
=

Area (
⋃∞
i=1Ei)

Area(Ω)

=

∑∞
i=1 Area(Ei)

Area(Ω)

=
∞∑
i=1

Area(Ei)

Area(Ω)

=
∞∑
i=1

Pr(Ei).

Now, keeping our dart board example above in mind, let’s notice that if
we had two events E,F ⊆ Ω which did overlap (i.e., they were not disjoint,
E ∩ F 6= ∅), then

Pr(E ∪ F ) 6= Pr(E) + Pr(F )

because the region in the overlap, E∩F , gets counted twice in the expression
Pr(E)+Pr(F ): once for the Pr(E) term and once for the Pr(F ) term. This
is easy to see if we think of these regions as subsets of the plane and the
probabilities as essentially the areas of the regions:

E F

We’ll see later that even if two events overlap we can express the prob-
ability of their union as a sum of the probabilities of the individual events,
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but we’ll have to compensate for this “double-counting” of the overlapping
region. Before we explain how that formula works, it will be convenient if
we discuss some simpler consequences of the probability axioms.

4.3 Consequences of the axioms

A common theme in advanced mathematics is to start off with a few sim-
ple assumptions, and then from those simple assumptions try to derive
more useful conclusions. In Euclidean geometry, for example, there are
five assumptions (usually called the postulates): every pair of points can be
connected by a line segment; all line segments can be extended indefinitely
in both directions; all right angles are congruent; given any two distinct
points, there exists a circle whose center is one of the points and where the
other point lives on the edge of the circle; given any line and a point not on
that line, there is one line which goes through the given point and never in-
tersects the given line. From these given simple assumptions, thousands of
other geometric statements (such as the congruence theorems for triangles
(side-angle-side, side-side-side, etc.), the Pythagorean theorem, the law of
cosines, ...) can be deduced.

Similarly, from our three simple axioms of probability stated above, we
can deduce many other useful statements. Here we go ahead and collect a
few, starting with simple things and working our way up to more interesting
statements.

Remark.
For the sake of completeness we will try to prove as many of these
statements as possible. If you want to understand why a statement is
true, then you should make an effort to sit down and understand the
proof, and this is probably something you should really try to do if
you’re a math major.

However, you’ll never be asked to regurgitate any of these proofs on
a quiz or exam, so you don’t need to try to memorize them. You defi-
nitely do need to know the statements of the propositions and theorems
below, but you don’t need to invest time and energy in memorizing
the proofs.

Our first proposition is that the empty set must always have probability
zero.
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Proposition 4.1.
For any experiment with sample space Ω, Pr(∅) = 0.

Proof.
Notice that ∅ = ∅ ∪ ∅ ∪ ∅ ∪ · · · , or written another way,

∅ =
∞⋃
i=1

∅.

Furthermore all of these copies of the empty set are disjoint from one
another: ∅ ∩ ∅ = ∅. Thus our third axiom of probability tells us

Pr

(
∞⋃
i=1

∅

)
=
∞∑
i=1

Pr(∅).

Since ∅ =
⋃∞
i=1 ∅, however, we can write this as

Pr (∅) =
∞∑
i=1

Pr(∅).

On the right-hand side, notice that if Pr(∅) > 0, then
∑∞

i=1 Pr(∅)
would be infinite since we would be adding some positive number to
itself infinitely-many times. This would mean that Pr(∅) is infinite,
but this is impossible since probabilities are never bigger than 1. Hence
the only possibility – the only option for Pr(∅) that doesn’t contradict
the axioms – is that Pr(∅) = 0.

At first glance the proposition above may not seem very interesting, but
we’re only using it as a stepping stone to more interesting things.

Our next consequence of the axioms says that in the third axiom, that
the probability of an infinite disjoint union of events is the infinite sum
of the probability of the individual events, applies also for finitely-many
disjoint events. Before stating the proposition and giving the proof, let’s
realize that from the axioms we only know this statement for infinitely-many
disjoint events. To get a comparable statement for finitely-many events, we
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somehow need to turn a finite disjoint union into an infinite disjoint union
and then apply the axiom. The trick for doing this will be to extend our
finite list of events with infinitely-many copies of the empty set.

Proposition 4.2.
If E1, E2, ..., En is a finite collection of mutually disjoint events (i.e.,

if Ei ∩ Ej = ∅ when i 6= j), then

Pr(E1 ∪ E2 ∪ · · · ∪ En) = Pr(E1) + Pr(E2) + · · ·+ Pr(En).

Proof.
We extend our initial finite list to an infinite list E1, E2, E3, ... by
setting En+1 = ∅, En+2 = ∅, En+3 = ∅, and so on. Notice this is still a
mutually disjoint collection of events, but now that we have infinitely-
many events we can apply the third axiom. However, notice that since
the union of any set E and the empty set is just E, we have

∞⋃
i=1

Ei = E1 ∪ E2 ∪ E3 ∪ · · · ∪ En ∪ ∅ ∪ ∅ ∪ · · ·

= E1 ∪ E2 ∪ E3 ∪ · · · ∪ En.

Thus when we apply the third axiom we have

Pr(E1 ∪ E2 ∪ E3 ∪ · · · ∪ En) = Pr

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

Pr(Ei).

If we write out the right-hand side, though, we have

∞∑
i=1

Pr(Ei)

= Pr(E1) + Pr(E2) + Pr(E3) + · · ·+ Pr(En) + Pr(∅) + Pr(∅) + Pr(∅) + · · ·

By our previous proposition, we know Pr(∅) = 0, and so the sum above
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becomes

∞∑
i=1

Pr(Ei) = Pr(E1) + Pr(E2) + Pr(E3) + · · ·+ Pr(En).

Plugging this into the equation above we have the desired result:

Pr(E1∪E2∪E3∪· · ·∪En) = Pr(E1) + Pr(E2) + Pr(E3) + · · ·+ Pr(En)

The above proposition will be used many, many times later in the course:
it is our basic tool for breaking up complicated calculations into simpler
ones.

Now we mention one more proposition which, at first glance, may seem
like it should be obvious, but actually requires our previous propositions to
prove.

Proposition 4.3.
If E ⊆ F , then Pr(E) ≤ Pr(F ).

Proof.
Let G be the set difference between E and F – i.e., G consists of of
everything “between” E and F , G = F \ E. Then F = E ∪ G and
E ∩ G = ∅. Consider the picture below where everything in the big
circle is an element of F , everything in the small circle is an element
of E, and G consists of the the ring between the big and small circles.
Putting the small circle (E) and the ring (G) together, we reconstruct
the original big circle (F ), so F = E ∪ G. Since there’s no overlap
between the small circle and ring, though, they are disjoint, E∩G = ∅.
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E G F

Since E and G are disjoint sets, Pr(E ∪ G) = Pr(E) + Pr(G). Since
F = E ∪G, though, we can write this as Pr(F ) = Pr(E) + Pr(G). As
Pr(G) ≥ 0 (probabilities are always non-negative), the probability fo F
is the probability of E plus “a little bit more,” and so Pr(F ) ≥ Pr(E).

The idea that if E is “smaller” than F (i.e., E ⊆ F ), then the proba-
bility of E should be less than the probability of F should seem reasonably
intuitive. However, there is an odd consequence that the next example
highlights.

Example 4.8.
Suppose we randomly select a point from the unit disc in the plane
(or, equivalently, randomly throw a dart at a perfectly circular dart
board that’s one unit in radius). What is the probability we select the
origin (i.e., the dart lands in the exact middle of the board)?

Before we compute this probability, let’s notice that it is possible
this could happen: it is conceivable we could by just random, dumb
luck land right in the exact middle of the disc. The question we’re
trying to answer, though, is how likely is this to happen.

Notice that if E is any little “subdisc” containing the origin, then
the probability of landing at the origin must be less than the prob-
ability of E: the origin is a single point inside of E, so the set that
contains just the origin is a subset of E, so by Proposition 4.3 the
probability we hit the origin must be less than the probability we land
in E.

However, the probability of landing in E is just the area of E. By
making this little disc E smaller and smaller, we can make this proba-
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bility arbitrarily small. For each of these little discs with small areas,
the probability of selecting the origin must be even smaller. Since the
probability of E can be made arbitrarily small, the probability of land-
ing at the origin must be smaller than every arbitrarily small number.
The only possibility, then, is that the probability of selecting that one
single point is zero.

Remark.
Notice that the probability in the previous example is zero, even
though the event in question can still happen. That is, having proba-
bility zero does not mean an event is impossible! Rather, the proba-
bility is so astonishingly small – the event is so profoundly unlikely –
that we can’t assign any positive number to it.

We have one more important consequence of the axioms to consider be-
fore we take a break from stating propositions and look at concrete examples
and compute probabilities. The next proposition is much more useful than
you might think at first: as we will see, it will sometimes give us a trick for
turning difficult calculations into easier ones.

Proposition 4.4.
For any event E, the probability of the complement Ec is one minus

the probability of E: Pr(Ec) = 1− Pr(E).

Proof.
Notice for any event E ⊆ Ω, we have Ω = E ∪ Ec and E ∩ Ec = ∅.
Thus Pr(Ω) = Pr(E ∪ Ec) = Pr(E) + Pr(Ec). One of the axioms of
probability stated, however, that Pr(Ω) = 1. Plugging this into the
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equation above and solving for Pr(Ec) gives us our desired result:

Pr(Ω) = Pr(E) + Pr(Ec)

=⇒ 1 = Pr(E) + Pr(Ec)

=⇒ 1− Pr(E) = Pr(Ec)

The above proposition is surprisingly useful: it says that computing the
probability of an event’s complement is basically just as good as computing
the probability of the original event. That may not sound very helpful for
interesting, but there are some problems where it’s easier to think in terms
of the complement.

Example 4.9.
Suppose we flip a coin ten times. What is the probability that a head
appears at least once during those ten flips?

At first glance this looks like a pretty hard problem based on what
we’ve discussed thus far, but it becomes very easy if we think about the
complement. Say H is the event we flip at least one heads (whether
it’s one head, two heads, three heads, ...). We want to find Pr(H),
which seems hard to do directly, but maybe finding the probability
Pr(Hc) is easier.

If H is the probability we flip at least one heads, then Hc is the
probability we flip no heads. That is, we would have to flip tails on
each of our ten flips. There are 1024 ways we can flip a coin ten times
(i.e., 1024 different sequences of heads and tails – don’t worry if you
don’t know where this number came from, we’ll explain how to count
things like this soon, but for right now I’m just telling this to you as a
fact), but only one of those corresponds to flipping all tails. That is,

Pr(Hc) =
1

1024
.

By our proposition above, this means

Pr(H) = 1− Pr(Hc) = 1− 1

1024
=

1023

1024
≈ 0.99902.
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So there’s about a 99.902% chance we would flip at least one head if
we flipped a coin ten times.

Exercise 4.1.
Show that for any event E, Pr(E) = 1− Pr(Ec).

In this section we’ve mostly stated and proved some propositions, but
haven’t used them to do any calculations. In the next section we’ll switch
gears and focus on doing several examples, and in the process we will need
to use the propositions above.

4.4 Examples

In the simplest possible examples, the sample space Ω consists of finitely-
many events and each event is equally likely. The axioms of probability
will be satisfied then only if the probability of each simple event (any one
particular outcome) is one over the number of elements in the sample space.

To be more precise, suppose Ω contains n elements:

Ω = {ω1, ω2, ..., ωn}.

Let’s suppose that each element is equally likely. That is, for some value
of c which we will determine in a minute, we have Pr({ωi}) = c for each
ωi ∈ Ω. Writing Ω as the disjoint union of sets which each contain one
element,

Ω = {ω1} ∪ {ω2} ∪ · · · ∪ {ωn},
we must have

Pr(Ω) = Pr({ω1}) + Pr({ω2}) + · · ·+ Pr({ωn}).

We know that Pr(Ω) = 1, however, and that each Pr({ωi}) = c. The above
then becomes

1 = nc.

Solving for c = 1/n, we have that the probability of each event must by 1/n.
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Remark.
The discussion above is admittedly a verbose and pedantic way of
stating something that should seem obvious. The point of the discus-
sion, though, is simply to illustrate that we can always boil everything
down to the axioms; the axioms of probability justify what we might
intuitively guess.

Example 4.10.
Suppose a standard deck of fifty-two poker cards is shuffled and you
draw a random card. What is the probability you draw 3♦, the three
of diamonds?

Supposing that all cards are equally likely, since there are 52 cards
in the deck and we know that the probability of drawing some card
is 1 (by the axiom of probability which stated Pr(Ω) = 1), each card
must have probability 1/52. In particular, the probability of drawing
the three of diamonds is 1/52.

We can combine the observation above, that the probability of a simple
event when the sample space contains n elements and all are equally likely,
with the propositions and axioms from earlier to compute probabilities of
compound events.

Example 4.11.
Again suppose one card is drawn from a shuffled deck of fifty-two poker
cards. What is the probability of drawing a diamond, regardless of its
rank? (I.e., the probability we draw 2♦ or 3♦ or 4♦, ...)

Let’s let E denote the event that we draw a diamond. Notice there
are thirteen different diamonds in the deck, and we can write this event
as

E = {2♦, 3♦, 4♦, ..., 10♦, J♦, Q♦, K♦, A♦}.

We can then break up this one “complicated” event into several smaller
ones; let Ei be the simple event containing just the i of diamonds,
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whatever i is. That is, we write

E = E2 ∪ E3 ∪ E4 ∪ · · · ∪ E10 ∪ EJ ∪ EQ ∪ EK ∪ EA
= {2♦} ∪ {3♦} ∪ {4♦} ∪ · · · ∪ {10♦} ∪ {J♦} ∪ {Q♦} ∪ {K♦} ∪ {A♦}

Now we can use Proposition 4.2 to compute the probability of E:

Pr(E) = Pr(E2 ∪ E3 ∪ · · · ∪ EQ ∪ EK ∪ EA)

= Pr(E2) + Pr(E3) + · · ·+ Pr(EQ) + Pr(EK) + Pr(EA)

= 1/52 + 1/52 + · · ·+ 1/52 + 1/52 + 1/52

= 13/52

= 1/4

In general, assuming the sample space is finite and each simple event is
equally likely, the probability of any event is the cardinality of the event
divided by the cardinality of the entire sample space.

Proposition 4.5.
If Ω is the sample space of an experiment with finitely-many possible

outcomes and every outcome (simple event) is equally likely, then for
any event E

Pr(E) =
#E

#Ω
.

Proof.
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Simply note that if E = {e1, e2, ..., en}, then

Pr(E) = Pr

(
n⋃
i=1

{ei}

)

=
n∑
i=1

Pr({ei})

=
n∑
i=1

1/#Ω

= n/#Ω

= #E/#Ω

Example 4.12.
Suppose an urn contains sixteen marbles, eight of which are blue, six

of which are green, and two of which are red. If you reach into the
urn and randomly select one marble, what’s the probability you select
a green marble?

Here it’s helpful if we imagine that the blue marbles are distin-
guishable – i.e., there’s some way of telling the blue marbles apart and
so we can so one of them is the first blue marble, one’s the second blue
marble, and so on. We do the same for the green and blue marbles.

We can then imagine the sample space as being

Ω = {b1, b2, ..., b8, g1, g2, ..., g6, r1, r2}

where b1 is the first blue marble, b2 is the second blue marble, and so
on.

Let’s let G denote the event where we get some green marble,
whichever one it is. Then

G = {g1, g2, g3, g4, g5, g6}.
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The probability we select a green marble, whichever one we happen to
get, is then

Pr(G) =
#G

#Ω
=

6

16
=

3

8
.

The argument for the example above may seem like overkill: it seems
completely obvious that if there are 16 marbles in the urn and 6 are green,
then the probability of selecting a green one is 6/16. However, not all the
problems we are going to do are going to have “obvious,” intuitive answers.
Worse yet, sometimes the “obvious” answer is actually incorrect. Hence it’s
important for us to have a way of making our reasoning about calculating
probabilities very precise – i.e., we need to know how to boil problems down
to where we can apply the axioms or propositions we’ve developed. Right
now we’re showing how to do this with relatively straight forward exam-
ples just to get the basic ideas down, but will start doing more interesting
examples soon.

Example 4.13.
Continuing with the same setup as in Example 4.12, what is the prob-
ability of drawing a non-green (either red or blue) marble?

We could do this by counting up all ways we could get a non-
green marble (i.e., the number of ways to get a blue marble, plus the
number of ways to get a red marble) and do something similar to
what we did in finding the probability in Example 4.12, but we can
also use Propsition 14 and note that getting a non-green marble is the
complement of getting a green marble, so

Pr(Gc) = 1− Pr(G) = 1− 3/8 = 5/8.

In the next example we’ll start to see why the issue of “overlapping”
sets we alluded to before makes our calculations more complicated.

Example 4.14.
Suppose a survey is sent to 1000 students living in a residence hall at a
university, and this survey contains two questions which are answered
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simply as “yes” or “no.” The questions are

1. Do you own a Playstation 4? Yes or no.

2. Do you own an Xbox One? Yes or no.

Suppose that of the 1000 students, 350 indicated they own a Playsta-
tion 4 (regardless of whether or not they also owned an Xbox One),
475 indicated they own an Xbox One (regardless of whether or not
they also owned a Playstation 4), and 100 owned both.

Given the information above, if you pick a student at random, what
is the probability that you will pick a student that owns at least one
console?

Let’s use P to denote the set of students owning a Playstation 4
and X the set of students owning an Xbox. Then P ∪ X is the set
of students owning at least one console, and so we want to compute
Pr(P∪X). If these sets were disjoint we could simply compute Pr(P )+
Pr(X) and we’d be done. However, the sets are not disjoint, and so
students owning both consoles would get counted twice (once for Pr(P )
and once for Pr(X)). That is, the students in P ∩X are the ones that
get counted twice.

One way to fix this would be to try to set everything up so that
we did have a disjoint union. If we let B be the set of students that
owned both consoles, so B = P ∪X, then we could write

P ∪X = (P \B)︸ ︷︷ ︸
Own only PS4

∪ (X \B)︸ ︷︷ ︸
Own only Xbox One

∪ (B)︸︷︷︸
Own Both

.

We could then compute the probability with our rule that says we can
add probabilities of disjoint unions:

Pr(P ∪X) = Pr(P \B) + Pr(X \B) + Pr(B)

= 250/1000 + 375/1000 + 100/1000

= 725/1000.

The example above showed one way to calculate probabilities where
there’s an overlap, but there is another way using a formula called the
inclusion-exclusion formula. Intuitively, the inclusion-exclusion formula will
say “if we overcounted by adding something twice, then subtract off one over
overcounted terms.” To make everything as precise as possible, we’ll prove
this intuitive-sounding proposition with the help of two simpler lemmas.
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Remark.
A lemma is like a stepping stone for proving a more interesting propo-
sition or theorem.

Lemma 4.6.
For any two sets E and F ,

E ∪ F = E ∪ (F \ E)

and these two sets, E and F \ E, are disjoint.

Proof.
We simply write out the definition of E ∪ F and rewrite the pieces
bit-by-bit:

E ∪ F = {x
∣∣x ∈ E or x ∈ F}

= {x
∣∣x ∈ E, or x ∈ F but x /∈ E}

= {x
∣∣x ∈ E or x ∈ F \ E}

= E ∪ (F \ E).

Now we just need to verify these are disjoint:

E ∩ (F \ E) = {x
∣∣x ∈ E and x ∈ F \ E}

= {x
∣∣x ∈ E, and x ∈ F but x /∈ E}

= ∅

The above lemma was completely about sets and had nothing to do with
probability, but we can use it to prove a convenient fact about probabilities.
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Lemma 4.7.
If E and F are events in some sample space Ω and if E ⊆ F , then

Pr(F \ E) = Pr(F )− Pr(E).

Proof.
Notice that since E ⊆ F , F = F ∪E. (Intuitively, F already contains
E, so “adding” E to F with the union doesn’t actually add anything.)
Now we can use the lemma above to turn this into a disjoint union:
F ∪E = E ∪ (F \E). Keeping in mind F = F ∪E, however, we have

Pr(F ) = Pr(E) + Pr(F \ E)

=⇒ Pr(F )− Pr(E) = Pr(F \ E).

And now we are in a position to prove the inclusion-exclusion formula,
which we will need to use at various points throughout the course.

Proposition 4.8 (Inclusion-Exclusion).
For any two events E and F in a sample space Ω, whether they are
disjoint or not,

Pr(E ∪ F ) = Pr(E) + Pr(F )− Pr(E ∩ F ).

Proof.
We simply use both lemmas above. First we write E ∪F as a disjoint
union E ∪ (F \ E); since these are disjoint the probabilities of each
add together; we then rewrite F \E as F \ (E ∩ F ); since E ∩ F ⊆ F
we then use the second lemma above to turn this into a difference of
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probabilities.

Pr(E ∪ F ) = Pr(E ∪ (F \ E))

= Pr(E) + Pr(F \ E)

= Pr(E) + Pr(F \ (E ∩ F ))

= Pr(E) + Pr(F )− Pr(E ∩ F ).

Example 4.15.
Applying inclusion-exclusion to our example of students with Playsta-
tions and Xbox’s (What’s the correct plural of Xbox? Xboxes? Xboxs?)
We have

Pr(P ∪X) = Pr(P ) + Pr(X)− Pr(P ∩X)

= 350/1000− 475/1000− 100/1000

= 725/1000

Example 4.16.
Suppose a card is drawn from a shuffled deck of 52 playing cards.
What is the probability the drawn card is a King or a Heart?

Notice there is overlap between the set of Kings and the set of
Hearts (because there’s a King of Hearts). But inclusion-exclusion
applies even when there’s overlap.

Letting K denote the event we draw a King,

K = {K♠, K♥, K♣, K♦}

and H the event we draw a Heart,

H = {2♥, 3♥, ..., 10♥, J♥, Q♥, K♥, A♥}
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we want to find the probability of getting a King or a Heart – this
means the event we’re interested in is the union K ∪H, whose proba-
bility we can easily calculate with inclusion-exclusion:

Pr(K ∪H) = Pr(K) + Pr(H)− Pr(K ∩H)

= 4/52 + 13/52− 1/52

= 16/52

= 4/13.

(Here we used the following standard facts: there are four Kings in
the deck; there are thirteen Hearts in the deck; and there is only one
King of Hearts.)

Example 4.17.
Suppose a card is drawn from a shuffled deck of 52 playing cards.
What is the probability the card is either a face card (Jack, Queen, or
King), or a Club?

Let’s let C be the event we draw a club,

C = {2♣, 3♣, ..., 10♣, J♣, Q♣, K♣, A♣},

and F the event we draw a face card,

F = {J♥, J♣, J♠, J♦,
Q♥, Q♣, Q♠, Q♦,
K♥, K♣, K♠, K♦}.

Notice that #C = 13, #F = 12 and #(C ∩ F ) = 4. By inclusion-
exclusion, the probability of getting a Club or a face card (i.e., the
even C ∪ F ) is

Pr(C ∪ F ) = Pr(C) + Pr(F )− Pr(C ∩ F )

= 13/52 + 12/52− 4/52

= 21/52.
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Example 4.18.
Suppose a card is drawn from a shuffled deck of 52 playing cards.
What is the probability the card is neither a face card (Jack, Queen,
or King), nor a Club?

There are two ways we could do this problem: a hard way and an
easy way. The hard way would be to count up all of the possible cards
that are neither face cards nor Clubs. (Maybe this isn’t actually hard,
but it is tedious.) The better (easier) way to do this is to notice that
getting neither a face card nor a Club is the complement of getting a
face card or a club. That is, we want Pr((C ∪ F )c). Since we already
know Pr(C ∪ F ) from the previous example, Proposition 14 tells us

Pr((C ∪ F )c) = 1− Pr(C ∪ F ) = 1− 21/52 = 31/52.

Example 4.19.
Suppose an urn contains 16 marbles: 8 blue, 6 green, and 2 red. Sup-
pose you randomly select two marbles one after the other without
replacing the first marble. What is the probability at least one marble
is blue?

Let’s first just think about what the sample space Ω of this exper-
iment is. If we were just drawing a single marble, the sample space
would be something like

{b1, b2, ..., b8, g1, g2, ..., g6, r1, r2}.

How does this change if we draw two marbles?
We’ll think of the two marbles as forming an ordered pair. E.g.,

we think of the pair (b3, r2) as meaning we first pulled out the third
blue marble, b3, and then pulled out the second red marble, r2.

If we replaced the first marble we drew before drawing the second
one (so we could potentially draw the same marble twice), then the
sample space would be the set of all pairs. Since we are not doing
that, however, we have to remove those pairs where we have the same
element twice.

We’ll explicitly write the sample space out here and then soon see
there’s a better way to do this kind of calculation. So, the set of all
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pairs of marbles where we don’t have the same marble appear twice is

{(b1, b2), (b1, b3), ..., (b1, b8), (b1, g1), (b1, g2), ..., (b1, g6), (b1, r1), (b1, r2),

(b2, b1), (b2, b3), ..., (b2, b8), (b2, g1), (b2, g2), ..., (b2, g6), (b2, r1), (b2, r2),

...

(b6, b2), (b6, b3), ..., (b6, b8), (b6, g1), (b6, g2), ..., (b6, g6), (b6, r1), (b6, r2),

(g1, b1), (g1, b2), ..., (g1, b8), (g1, g2), (g1, g3), ..., (g1, g6), (g1, r1), (g1, r2),

(g2, b1), (g2, b2), ..., (g2, b8), (g2, g1), (g2, g3), ..., (g2, g6), (g2, r1), (g2, r2),

...

(g6, b1), (g6, b2), ..., (g6, b8), (g6, g1), (g6, g2), ..., (g6, g5), (g6, r1), (g6, r2),

(r1, b1), (r1, b2), ..., (r1, b8), (r1, g1), (r1, g2), ..., (r1, g6), (r1, r2),

(r2, b1), (r2, b2), ..., (r2, b8), (r2, g1), (r2, g2), ..., (r2, g6), (r2, r1) }

Let’s take a minute to decipher what’s happening above. We’ve tried
to write out the sample space as a kind of table where the rows corre-
spond to the choice of first marble, and the columns correspond to the
choice of second marble, being careful to eliminate those pairs that
would have the same marble picked twice (again, because we don’t
replace the first marble before picking the second).

Writing the sample space out in this table gives us a convenient
way to figure out how big the sample space is. Let’s jut notice there
are 16 rows and 15 columns, so the size of the sample space is #Ω =
16 · 15 = 240. (In case the 16 rows and 15 columns isn’t clear, notice
that we could choose any marble first and there are 16 marbles to
choose from. For our second marble there are only 15 marbles we can
choose since, no matter what marble we picked first, we can’t pick the
first marble twice.)

Now, our goal is to find the probability of getting at least one
blue marble. We could sit down and go through our table above and
manually count out how many pairs have at least one bi in them –
but this is extremely tedious. A better way to answer the problem is
to apply Proposition . Instead of computing probability directly, let’s
instead compute the probability of the complement.

The reason we’re doing this is because the complement of a com-
plement is the original set. (Sort of like how the negative of a negative
cancels out to give you back the original value: −(−x) = x.) If B is
the event we get at least one blue marble, then Bc would be the event
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we do not get at least one blue marble – i.e., Bc is the event we get
no blue marbles. Using the fact (Bc)c = B and Proposition , we have
Pr(B) = 1−Pr(Bc), so computing Pr(Bc) is basically just as good as
computing Pr(B).

But, what is Pr(Bc)? Well, we just said Bc is the event we get
no blue marbles, so how many ways could this happen? If we don’t
get a blue marble first, then there are eight possibilities for the first
marble (six green plus two red). Now when we pick the second marble
we want to pick one of the seven remaining non-blue marbles. This
means #Bc = 8 · 7 = 56.

Putting all of this together, the probability we draw at least one
blue marble is

Pr(B) = 1− Pr(Bc) = 1− 56

240
=

184

240
≈ 0.7666.

4.5 Limits of Events

The last bit of material in this section is a little more technical than what
we’ve seen thus far, but will be useful later when we discuss random vari-
ables. We won’t actually need the next few results for a while, so you could
safely skip over this section of material on a first reading if you feel that
it’s too technical and then come back to it later when needed.

Suppose we have a non-decreasing sequence of events in our sample
space. That is, we have a sequences of subsets E1, E2, E3, ... of the sample
space Ω with one additional requirement: to be non-decreasing we require

E1 ⊆ E2 ⊆ E3 ⊆ · · ·

Notice that each event is contained in the next event. When we have a
sequence like this, we can make sense of the limit of the probabilities of the
events,

lim
n→∞

Pr(En).

Notice this is really just a sequence of real numbers, and because the events
are non-decreasing, the probabilities are also non-decreasing. I.e.,

Pr(E1) ≤ Pr(E2) ≤ Pr(E3) ≤ · · ·

Now, let’s notice that this sequence must have a limit because it is bounded
above by 1.
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Proposition 4.9.
If E1, E2, E3, ... is a non-decreasing sequence of events in a sample

space Ω, then

lim
n→∞

Pr(En) = Pr

(
∞⋃
n=1

En

)
.

Proof.
The trick to proving this proposition is to rewrite the union

⋃∞
n=1 En

as a disjoint union. If we do this, then we can rewrite the probability
of the union as the sum of probabilities, and this might be something
we can more easily manipulate.

To turn the union above into a disjoint union, we want to split the
En events up into pieces that start off with E1, then whatever we need
to add to E1 to get E2, then whatever we need to add to E2 to get E3,
and so on.

To do this, define F1 = E1 and for each n > 1 define Fn = En\En−1.
By construction, the Fn are disjoint events and

En = F1 ∪ F2 ∪ · · · ∪ Fn.

Since this is a disjoint union, however, we can write

Pr(En) = Pr(F1) + Pr(F2) + · · ·+ Pr(Fn).
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If we also write F =
⋃∞
n=1 Fn, then E = F . Notice, however

Pr(E) = Pr(F )

= Pr

(
∞⋃
n=1

Fn

)

=
∞∑
n=1

Pr(Fn)

= lim
n→∞

n∑
m=1

Pr(Fn)

= lim
n→∞

Pr(F1 ∪ · · · ∪ Fn)

= lim
n→∞

Pr(En)

We have a similar proposition for limits of non-increasing events. Here
we say a sequence of events E1, E2, E3, ... is non-increasing if

E1 ⊇ E2 ⊇ E3 ⊇ · · · .

This means
Pr(E1) ≥ Pr(E2) ≥ Pr(E3) ≥ · · ·

and so the sequence of probabilities is a non-increasing sequence of real
numbers bounded below by zero, and hence it must have a limit. The
next proposition says that we can find this limit as the probability of the
intersection of the events.

Proposition 4.10.
If E1, E2, E3, ... is a non-increasing sequence of events in a sample

space Ω, then

lim
n→∞

Pr(En) = Pr

(
∞⋂
n=1

En

)
.
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Exercise 4.2.
Prove Proposition 4.10 by applying de Morgan’s laws to turn the non-
increasing sequence of events into a non-decreasing sequence and ap-
plying Proposition 4.9.
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4.6 Practice problems

Problem 4.1.
Suppose a large bag of loose change contains the following coins: nine
pennies, sixteen nickels, twelve dimes, and thirteen quarters. If you reach
into the bag without looking and randomly pull out one coin, what is the
probability you pull out a quarter?

Problem 4.2.
Suppose, as in the previous problem, a large bag of loose change contains
the following coins: nine pennies, sixteen nickels, twelve dimes, and thirteen
quarters. If you reach into the bag without looking and randomly pull out
two coins, what is the probability that at least one of those coins is a
quarter? (Hint: You can think that you pull the coins out one at a time,
but after you pull the first coin out of the bag you don’t put it back in the
bag.)

Problem 4.3.
Suppose that two fair, six-sided dice are rolled. What is the probability
that the sum of the dice is nine?

Problem 4.4.
Suppose a coin jar contains the following twenty coins: eight pennies, six
nickels, four dimes, and two quarters. If you reach into the coin jar and
randomly pull out four coins, what is the probability you pulled out at least
ten cents?

? Problem 4.5.
Alice and Bob play the following game: Alice and Bob take turns flipping
a fair, two-sided coin. I.e., Alice flips, then Bob flips, then Alice flips, then
Bob flips, ... The game continues until a head is flipped, and whoever
flips the head is the winner of the game. If Alice goes first, what is the
probability she wins the game?
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We do not want to count; we want to think
counting.

Alain Badiou
Number and Numbers

In the last chapter we saw that many probability problems boil down
to counting: Proposition 4.5 said that if we had a finite sample space and
all simple events were equally likely, then the probability of any compound
event is the number of elements in the event divided by the number of
elements in the sample space. Thus to answer these types of problems we
need to be able to count the number of elements in the sample space, and
the number of elements in a given event.

In particular, we want to be able to count in a very precise and sys-
tematic way. That is, we want to develop some tools that will turn what
could be a very tedious to do by hand (e.g., counting the number of possi-
ble 7-character license plates) to something very simple (multiplying some
numbers based on what characters are allowed in the license plate).

5.1 Permutations

Sometimes we may care about the total number of ways to order all of the
elements in a set. For example, suppose that we have the following six
letters

A, E, L, R, S, W

etched onto wooden tiles. If we were to put the tiles into a bag and randomly
pull them out one at a time, what is the probability we’d pull them out in
the order spelling the word RAWLES? To answer this we need to know the
number of elements in the sample space – i.e., the number of arrangements
of the six letters.

In general, if a set contains n distinct elements (in the above, n = 6),
the number of different arrangements of those n elements is given by the
product

n · (n− 1) · (n− 2) · (n− 3) · . . . · 4 · 3 · 2 · 1.

The reason for this is that when we choose the first element of the arrange-
ment, we can choose any element of the set; there are n elements in the

78
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set, so n possible choices. When we choose the second element of the ar-
rangement, we must choose from the remaining elements of the set. We’ve
already used up one element when we chose the first entry in the arrange-
ment, so we have one fewer, n − 1, possibilities for the second element.
Similarly, there are n − 2 options for the third element, and so on, down
until there’s only one option (whatever happens to remain) for the very last
element.

This quantity comes up many times in mathematics and is tedious to
write out by hand each time, but luckily there’s some notation for it. The
product defined above is denoted n! and is called n factorial . For example,

5! = 5 · 4 · 3 · 2 · 1 = 120.

One convenient property of factorials is that they can be written in
terms of factorials of smaller numbers. In particular, if you already know
what n! is, then it’s easy to compute (n+ 1)!. By definition, (n+ 1)! is the
product

(n+ 1)! = (n+ 1) · n · (n− 1) · (n− 2) · . . . · 2 · 1.
Notice the n factors appearing to the right of (n+ 1) on the right-hand side
above exactly give us n!:

(n+ 1)! = (n+ 1) · n · (n− 1) · (n− 2) · . . . · 2 · 1︸ ︷︷ ︸
n!

.

Thus we can write
(n+ 1)! = (n+ 1) · n!

or equivalently,
n! = n · (n− 1)!.

Thus if we’ve already calculated 5! = 120, then it’s easy to compute 6!:

6! = 6 · 5! = 6 · 120 = 720.

Example 5.1.
Suppose six wooden tiles have the letters A, E, L, R, S, W etched on
them. If these tiles are placed in a bag and randomly pulled out one-
by-one, laying the tiles from left-to-right on a table as they’re pulled
out, what is the probability the tiles spell out RAWLES?

There are six tiles, so 6! = 720 possible words we could spell out.
Of these, only one is RAWLES, so the probability we spell out RAWLES
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is 1/720.

Remark.
By convention 0! is defined to be 1. Using the interpretation that
n! tells us the number of arrangements of n things, this convention
makes sense: there is one way to arrange zero things, the “empty”
arrangement.

More generally, if we are constructing a finite ordered sequence of r
objects, let’s momentarily call this sequence

σ1 σ2 · · ·σr

where σi denotes the entry in the i-th position, the number of possible
sequences is the product of the number of options for σ1 times the number
of options for σ2 times the number of options for σ3, and so on, up through
the number of options for σr.

Example 5.2.
Suppose instead of using all of the letters from A, E, L, R, S, W we only

use three letters. That is, we put all six of our tiles with these letters
in a bag, and randomly pull out three, placing them in front of us from
left-to-right as they are pulled out. How many three-letter sequences
can we spell out?

There are still six options for the first letter, five options for the
second letter, and four options for the third letter. This means there
are

6 · 5 · 4 = 120

possible three-letter sequences we can spell out.
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Example 5.3.
With the same setup as in Example 5.2, what is the probability the
word SAW is spelt?

From Example 5.2 we know there are 120 distinct three-letter se-
quences we can construct, and SAW there’s only one of them that spells
SAW, so the probability of spelling out SAW is 1/120.

Exercise 5.1.
Again suppose we randomly draw three tiles one at a time, without
replacement, from a bag containing six tiles with the letters A, E, L, R,
S, W.

(a) What is the probability we construct a three letter sequence that
beings with the letter L?

(b) What is the probability we construct a three letter sequence whose
first two letters are LA in that order?

(c) What is the probability our three letter sequence ends in W?

The idea above that we should just multiply the number of options for
each entry in our sequence together works even if we allow repetition.

Example 5.4.
Suppose a four-digit code on a bike lock is made up of the digits
zero through nine and digits may be repeated (e.g., 1122 is a valid
combination). How many possible combinations are there? If you
forgot your combination and randomly guessed a combination, what
is the probability you’d guess the right combination?

For each digit in our combination there are ten options (0 through
9 gives ten possibilities). Hence the number of combinations is 10 ·
10 · 10 · 10 = 104 = 10000. Of these ten-thousand combinations, only
one is the right one that opens the lock. If you randomly guessed one
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combination, the probability it’d be the correct combination is 1/10000.
So, moral of the story: don’t forget the combination to your bike

lock unless you want to manually enter ten-thousand combinations
until you find the right one.

Example 5.5.
Suppose license plates in a certain state follow the following pattern:
three letters followed by a dash followed by four digits. How many
possible license plates are there? (Assume letters and digits may be
repeated.)

For each of the letters we have twenty-six options because there are
twenty-six letters in the English alphabet, A through Z. For the digits,
we again have ten options each time (0 through 9). Thus the number
of combinations is

26 · 26 · 26 · 10 · 10 · 10 · 10 = 263 · 104 = 175, 760, 000.

(Notice this is more than four times the number of people in the
most populous state: California has about 40-million residents. So
even if each resident of California owned four cars, there would still
be enough license plates using the pattern above for each car to have
a unique license plate.)

5.2 Combinations

Notice that in the examples we’ve seen thus far the order of our sequences
mattered. For example, the bike lock combination 1327 is very different
from the combination 7312, even though they both have the same digits.
But there are some problems where the order does not matter. For instance,
maybe you have seven friends and you want to choose four of them with
which to play frisbee. Here, the order in which you select the friends doesn’t
matter.

For example, say your seven friends are Alice, Bob, Cassandra, Eric,
Danielle, Fred, and George. It doesn’t matter if you choose to Alice, Eric,
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Danielle and George versus George, Eric, Alice, and Danielle – you’re still
playing frisbee with the same people.

So, continuing with the frisbee example, how many different ways can
you choose four of these seven friends to play frisbee with? If the order did
matter, then we from what we discussed in the previous section there would
be 7 ·6 ·5 ·4 ways to choose your four friends. However, this number is going
to be too big when the order doesn’t matter, and the reason it’s too big
is that you over-count. For example, the two orderings mentioned above
(Alice, Eric, Danielle, George and George, Eric, Alice, Danielle) would be
counted as two separate things, which is what we don’t want.

So, how should we fix this over counting? Let’s try to reason our way
through what to do by considering a smaller example: let’s say you only
wanted to pick two of the seven friends. If order mattered, there would be
7 ·6 options. This is too big because Alice & Bob, for example, gets counted
as something distinct from Bob & Alice, and likewise for any collection of
two people. I claim this means that 7 · 6 is exactly twice as big as what
we want: for each choice (e.g., Alice & Bob) there’s an “equivalent” choice
(Bob & Alice) that 7 · 6 counts. That is, 7 · 6 “sees” two options where we
really only have one. To fix this, let’s cut the number in half to get

7 · 6
2

= 21.

So there are 21 different ways we can select two friends from our seven
friends above, if the order in which we select them doesn’t matter.

Exercise 5.2.
Explicitly write out all of the ways to select two friends from the seven
above if order doesn’t matter to convince yourself there are twenty-one
options.

Now, let’s try to extend this to three friends. If order mattered there
would be 7 · 6 · 5 possibilities. Since order doesn’t matter, however, we’re
overcounting. When there were two friends we were overcounting by a factor
if 2 because there were two “arrangements” of the two chosen friends. For
three friends, by how much is 7 · 6 · 5 overcounting? Well, if we picked
three friends – say Alice, Bob, Cassandra – there are 3! = 6 ways we could
arrange them:
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Alice, Bob, Cassandra
Alice, Cassandra, Bob
Bob, Alice, Cassandra
Bob, Cassandra, Alice
Cassandra, Alice, Bob
Cassandra, Bob, Alice

these six arrangements are counted as distinct possibilities in our 7 · 6 · 5
calculation, and something similar happens for any grouping of three friends
that we pick: there will be six ways to arrange them which are counted as
distinct in the 7 · 6 · 5 calculation. That is, 7 · 6 · 5 overcounts the ways we
can choose three of our seven friends, if order doesn’t matter, by a factor
of 6. Hence the correct number of ways we can choose three friends from
our seven is

7 · 6 · 5
6

= 35.

Now we should see how this extends to choosing four friends: the cal-
culation 7 · 6 · 5 · 4 includes the ordering of the friends, there are 4! = 24
orderings for any grouping of four friends, so we need to divide this calcu-
lation by 24 to get

7 · 6 · 5 · 4
24

= 35.

Remark.
Notice the number of ways to choose four friends from seven is the
same as the number of ways to choose three from seven. This isn’t a
coincidence: choosing which four friends you want to play frisbee with
is the same as choosing which three friends you don’t want to play
frisbee with.

Extending the argument above to choosing r elements from a collection
of n distinct things, where order does not matter, we see that the number
of possibilities is

n · (n− 1) · (n− 2) · . . . · (n− r + 2) · (n− r + 1)

r!
.

Let’s compare this to the cases we’ve already discussed:
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• If we were to choose two of our seven friends, then in the expression
above we would have n = 7 and r = 2. In the numerator we would
start the product at 7 and continue down to n− r+1 = 7−2+1 = 6,
giving us just two factors. The expression then becomes

7 · 6
2!

= 21

as before.

• If we were to choose three of our seven friends, then we would have
n = 7 and r = 3. The numerator would start at 7 and continue down
to n− r + 1 = 7− 3 + 1 = 5. This gives us

7 · 6 · 5
3!

= 35

• Choosing four of seven friends, n = 7, r = 4, and n − r + 1 = 4, so
the expression is

7 · 6 · 5 · 4
4!

= 35.

This is a little bit tedious to write out, especially if n is a very large
number, but luckily there’s some notation for this expression. To explain
the notation, let’s first make an observation. If we only want part of n!,
say we only want the first r factors, then what we can do is take n! and
divide out the factors we don’t want. For example, say we only want the
first four factors of 10!; i.e., 10 · 9 · 8 · 7. We can write this in terms of
factorials by dividing out the portion of 10! that we don’t want: we don’t
want everything from 6 down to 1, aka 6!, so we can just divid it out:

10!

6!
=

10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1
6 · 5 · 4 · 3 · 2 · 1

= 10 · 9 · 8 · 7.

Notice that the 6 in 6! equals 10− 4 and we wanted the first four factors of
10!.

In general, the first r factors of n!,

n · (n− 1) · (n− 2) · . . . · (n− r + 2) · (n− r + 1)

can be written as
n!

r!
.

For instance, the 7 · 6 · 5 that appeared when we selected three of our
seven friends can be written as 7!/(7− 3)!. Keeping in mind we then divided
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this quantity by 3! to account for all of the ways we could arrange the three
friends we selected, we see our expression above may be written as

(7!/(7− 3)!)

3!
=

7!

(7− 3)! 3!

These types of expressions come up a lot in probability and other areas of
mathematics, and so they have a special notation. The expression

7!

(7− 3)! 3!

is often written as (
7

3

)
and is called “seven choose three”.

More generally, we define
(
n
r

)
as the expression n!

(n−r)! r! and call this n
choose r: (

n

r

)
=

n!

(n− r)! r!
.

Extending the discussion we had above about choosing friends to play fris-
bee with proves the following proposition:

Proposition 5.1.
If n ≥ r ≥ 0, then the number of ways to choose r elements from a
collection of n distinct elements where order does not matter is equal
to
(
n
r

)
.

Before reading any more in this section, you should try to do the compu-
tations in the following exercise to be sure you understand how to compute(
n
r

)
.

Exercise 5.3.
Compute the following:

(a)
(

5
3

)
(b)

(
9
2

)
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(c)
(

9
7

)
(d)

(
37
37

)
(e)

(
37
0

)
.

(The last two aren’t as bad as you might think: just write out the
expression and cancel out what you can and something nice will hap-
pen.)

The notation
(
n
r

)
is convenient, but if you actually want to do the compu-

tation it can require a little bit of work since you have to compute factorials.
It would be convenient, then, to know at least a couple of simple properties
of
(
n
r

)
which will sometimes make work a little bit easier. We’ll state three

of the properties as a proposition whose proof is left as an exercise, but it
will be a straight-forward exercise (that you should try to complete!): just
write out the definitions of the quantities described by the proposition and
cancel out what you can.

Proposition 5.2.
If n ≥ 0 is an integer, then we have the following:

1.
(
n
0

)
= 1

2.
(
n
n

)
= 1

3. For any integer k with n ≥ k ≥ 0,
(
n
k

)
=
(

n
n−k

)
.

Exercise 5.4.
Prove Proposition 5.2.
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5.3 Examples

Now that we have some tools for counting, let’s use them to answer some
question.

Example 5.6.
How many five-card poker hands are there?

Here we imagine we have a shuffled deck of fifty-two playing cards
and we select five of the cards without replacement. Let’s notice that
the order we select the cards in doesn’t matter: if you’re playing poker,
you don’t care if the first card you get is the King of Hearts and the
second is the Ace of Spades, versus the first one being the Ace of
Spades and the second one being the King of Hearts. The important
thing is the collection of cards you have, not the order in which you
received them.

There are fifty-two cards we can choose and we’re choosing five of
them, so the number of possible choices is

(
52
5

)
. If we do this computa-

tion on a calculator or computer (it’s a bit too tedious to do by hand
– 52! is a huge number), we’d find(

52

5

)
= 2, 598, 960.

So a little more than 2.5-million possible five-card poker hands.

Example 5.7.
How many ways are there to get a four-of-a-kind in a five-card poker
hand? (A four-of-a-kind means we have all four cards of one rank, and
then any other fifth card. For example, (7♣, 7♠, 7♥, 7♦, 3♣) is such a
hand.)

So, if we’re going to “construct” a four-of-a-kind, what information
do we have to determine? Well, we have to determine which rank we’ll
have all four cards of (e.g., will we have all four two’s, or all four three’s,
or all four four’s, ...), and then we have to pick one more card.

There are thirteen ranks we can choose for the four cards where we
have all four cards of that rank, so

(
13
1

)
= 13 ways we can select that
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portion of our hand. And since we can choose any of the remaining
forty-eight cards (there were fifty-two, but we’ve just up four of them),
we have

(
48
1

)
= 48 choices for the remaining card.

Now we think of this information as having two parts: the rank of
the four cards, and then the rank and suit of the one remaining card.
We now know there are 13 possibilities for the rank, and 48 possibilities
for the one remaining card, so the total number of four-of-a-kind’s we
can have is

13 · 48 = 624.

Example 5.8.
What’s the probability a random five-card poker hand will be a four-

of-a-kind?
From the previous two examples we know there are 2, 598, 960 pos-

sible five-card poker hands, but of these only 624 are are a four-of-a-
kind. Hence the probability a random poker hand will be a four-of-a-
kind is

624

2598960
= 0.0002401.

That is, there’s only a 0.02% chance a random hand is a four-of-a-kind.
It is precisely because such a hand is so unlikely why this is considered
a good hand in poker: the best poker hands are the ones that are the
least likely.

In the examples above it has been clear, either because it was explicitly
stated or obvious from the context, whether order mattered in our count
or not. Sometimes this may not be quite so obvious, however, as the next
example illustrates.

Example 5.9.

(a) Suppose you roll two distinguishable, fair six-sided dice – suppose
one die is blue and one die is red – how many possible outcomes
are there?
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(b) Suppose you roll two indistinguishable, fair six-sided dice – say
both are white – how many possible outcomes are there?

(a) Let’s imagine that after we roll the dice, we record the outcome
as an ordered pair (b, r) where b is the value on the blue die and
r is the value on the red die. There are six possibilities for b, and
six possibilities for r, so the number of possible rolls for these two
dice is 6 · 6 = 36.

(b) When rolling the two white dice, let’s record the outcome of again
as an ordered pair. But this time we’ll call the value (M,m) where
M ≥ m – so, first we write down the larger value, then we write
down the smaller value. (We can’t distinguish the dice, so we can’t
say one of the dice is “first” like we did when we had the blue and
red dice.)

Now how many possible values are there for M and m? This is
a little trickier than our earlier problems because what values are
available for m depends on what M is. Notice that M could take
on any possible value, so there are six possibilies for M . However,
once we know what M is, there are M possibilities for m: since
M ≥ m, m must be one of 1, 2, ..., M .

Putting all of this together, we have

1 + 2 + 3 + 4 + 5 + 6 = 21

possible ways to roll two indisguishable dice.

Exercise 5.5.
Suppose you’re considering possible European vacations, and there
are eight different cities you’re interested in visiting: Athens, Brussels,
Coppenhagen, Dublin, Eindhoven, Florence, Glasgow, and Helsinki.
However, you only have enough time and money to visit three of these
eight cities.

Let’s suppose an itinerary for your trip consists of an ordered list of
the three cities you will visit, given by the order in which you visit the
cities. For example, one itinerary might be Brussels, Dublin, Athens.
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To save ourself some writing, let’s just list this by the first letter of
each city, so this itinerary is BDA. This means we first visit Brussels,
then we go to Dublin, then finally visit Athens before heading home.

(a) How many possible three-city itineraries are there?

(b) How many itineraries include Eindhoven as the first city?

(c) How many itineraries include Helsinki, regardless of order?

(d) If we decided we didn’t care about the order in which we visited the
cities, just the cities we visit, how many possible trips are there?

(e) How many unordered trips include Helsinki?

Example 5.10.
How many ways are there to get a two-pair in a five-card poker hand?

(A two-pair consists of a hand where we have two cards of the same
rank (such as two 2’s), two cards of a different rank (e.g., two 7’s), and
then one card of yet a third rank (say King of Clubs). For example,
(2♥, 2♣, 7♦, 7♥, K♣), is a two-pair.)

To build a two-pair we first need to choose the two different ranks
which will appear in our pairs. There are 13 ranks and we choose 2, so
there are

(
13
2

)
ways to do this. Now for each of those ranks we have to

choose two of the four possible suits, and there are
(

4
2

)
ways to do this.

Notice we need to do this twice, once for each pair. Finally, we choose
one more card that can be any card as long as it’s of a different rank.
There are 11 remaining ranks and for each one we have 4 possible
suits, so there are

(
11
1

)
·
(

4
1

)
ways to choose that last card. Putting all

of this together, there are(
13

2

)
·
(

4

2

)
·
(

4

2

)
·
(

11

1

)
·
(

4

1

)
= 123552

possible two-pair hands.
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Example 5.11.
How many ways are there to arrange the letters A, E, H, O, P, R, R, R,
T, T, Y to spell distinct 11-letter sequences of the letters? I.e., if we
swap two identical letters, this should still count as the same spelling.
What is the probability a randomly constructed 11-letter sequence
spells HARRYPOTTER?

If all of our letters were distinct, there would 11! possible arrange-
ments. Since the letters are not distinct, however, this count is too big.
The issue is that we are over-counting because in the 11! we are sup-
posing swapping two different R’s or T’s is a different spelling, which
it is not. To compensate for this we need to divide out all of the ways
we could swap R’s or T’s and still spell the same word.

Once we’ve chosen the order of our letters, we have 3! ways we
could re-arrange the R’s to still spell the same word, and 2! ways to
re-arrange the T’s. Thus the number of distinct 11-letter sequences is

11!

3!2!
= 3, 326, 400.

As for computing the probability we spell HARRYPOTTER, there are
two ways we could approach the problem. We could notice that of all
the distinct 11-letter words, only one spells out HARRYPOTTER and so
the probability is

1(
11!
3!2!

) =
1

3326400
.

Alternatively, we could consider the 11! arrangements assuming
we can distinguish the R’s and T’s, but then count up the number
of arrangements spelling HARRYPOTTER. Here the position the only H,
the only A, Y, P, O, and E are all fixed: to spell out HARRYPOTTER

these characters must be in positions one, two, five, six, seven, and
ten, respectively. However, we can rearrange the three R’s as much as
we like among the second, third, and eleventh positions: there are 3!
ways to do this. We can also swap which T’s are in the eigth and ninth
positions: there are 2! ways to do this. Hence the probability is

3!2!

11!
=

12

39, 916, 800
=

1

3362400
.
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Example 5.12.
Suppose a special three-character code is required by each user of

a certain website. This code must consist of exactly one upper case
letter and two digits. How many possible codes are there?

To do this problem we first think about choosing the “format” of
the code. Using U as a placeholder for an uppercase letter and D as a
placeholder for a digit, we see there are three possible formats: UDD,
DUD, DDU. A more sophisticated way of counting this (instead of just
writing down an exhaustive list of all possible formats) is to notice that
our string specifying the format has three letters, but two of them are
repeated because we have two digits. Dividing out the number of ways
to swap the two D’s in the format, there are 3!

2!
= 3 possible formats.

Once we’ve chosen a format, we then choose the letter and two
digits. (Notice the digits may repeat, but don’t have to. This does
not affect our count for the number of formats above. The two D’s
above are just placeholders for arbitrary digits.) In each case there
are 26 · 102 codes in the desired format, and so the total number of
codes is

3!

2!
· 26 · 102 = 7800.

An alternative way to think about this, if you’re worried we might
be over- or under-counting because we may or may not repeat the digits
is to divide each format into two cases: one where the digit repeats
and one where the digits are distinct. Let’s compute the number of
codes this way as well and see this gives the same value.

Here we’ll break each format up into two cases. When the digits
are distinct we will write D for the first digit and D2 for the second
digit, which must be different from the digit we have in D. When digits
repeat we’ll write D for the first digit, and use R as a placeholder for
the second digit to indicate this second digit must be the same as the
first digit. There are now six formats we consider:

UDD2, UDR, DUD2, DUR, DD2U, DRU.

For the formats with two distinct digits there are 26 · 10 · 9 possible
codes. (Since we have different digits the second digit can’t match up
with the first digit, so we have one fewer choice). For the formats with
repeate digits there are 26 · 10 · 1 possible codes. Adding all of these
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possible codes together for our formats above gives

26 · 10 · 9 + 26 · 10 · 1 + 26 · 10 · 9 + 26 · 10 · 1 + 26 · 10 · 9 + 26 · 10 · 1
=26 · 10(9 + 1) + 26 · 10(9 + 1) + 26 · 10(9 + 1)

=26 · 102 + 26 · 102 + 26 · 102

=3 · 26 · 102

=7800.

Example 5.13.
Suppose passwords for a website must satisfy the following conditions:

• Passwords consist of uppercase letters, lowercase letters, one of
five symbols (@, #, !, $, &), and digits.

• Each password is exactly four characters long.

• Each password has exactly one uppercase letter.

• Each password has exactly one lowercase letter.

How many possible passwords are there?
As in Example 5.12, we first choose the format of our password then

count the number of passwords which conform to the chosen format.
Here there are several possible formats, so let’s first count the number
of formats.

Each password format belongs to one of three possible “families”
of formats:

1. One uppercase letter, one symbol, one lowercase letter, one digit.

2. One uppercase letter, one symbol, two lowercase letters.

3. One uppercase letter, one symbol, two digits.

Consider one possible member of each family, where we use U as a
placeholder for the uppercase letter, S as a placeholder for the symbol,
L as a placeholder for the lowercase letter, and D as a plceholder for
the digit. So, our representative formats from each family might be
USLD, USLL, and USDD.
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Now let’s count the number of formats from each family by count-
ing the number of ways to rearrange the letters in our representative
format. (This suffices to count the number of formats in the family
since each format in a family is just a rearrangement of another format
in the same family.)

The number of USLD formats is 4!; the number of USLL formats is
4!
2!

; and the number of USDD formats is 4!
2!

. Once we choose a format, we
can easily count the number of passwords conforming to that format.

For a USLD format there are 26 · 5 · 26 · 10 passwords; for a USLL

format there are 26 · 5 · 262 passwords; and for a USDD format there are
26 · 5 · 102 passwords.

Multiplying the number of passwords in each format by the num-
ber of similar formats in the same family, then adding up all of the
possibilities, the number of passwords is

4! · 262 · 10 · 5 +
4!

2!
263 · 5 +

4!

2!
26 · 102 · 5 = 2, 021, 760.

5.4 Trees

Sometimes it can be helpful to visualize the number of possible outcomes
to an experiment by drawing a “tree” where we have one branch of the tree
for each possible choice. Here a tree refers to a particular type of diagram
where we have one special vertex called a root , and attached to this root
we have several line segments called branches . At the other end of each
branch we have another vertex, called a child of the root, and from that
we may have more branches down to more children. If a particular child
does not have any more branches below it, we call it a leaf .

Usually when drawing trees we draw them with the root at the top, its
children below it, then any children of the children below those, and so on.
For example, the diagram below is a tree.
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•

•

•

• • •

•

•

• •

•

• •

Trees are an extremely common and convenient way of organizing hier-
archical information that come up in many branches of mathematics and
computer science. Right now what we’re trying to do is use trees to count
and compute probabilities in a situation where we have to make several
consecutive choices.

Example 5.14.
Suppose that in a large classroom children play a game where the

children are divided into groups of three, and the teams are chosen as
follows. First, a random team captain is chosen, and this team captain
is either a boy or a girl. The team captain then chooses the second
member of the team, who is again a boy or a girl. And finally, the
second member of the team chooses the third member of the team,
who is either a boy or a girl. Create a tree showing the possible ways
a team could be selected.

We’ll explain how to construct the tree one level at a time. First,
the root has two children corresponding to the choices of a boy or a
girl for the team captain, which we’ll label as B or G.

•

B G

Now the team captain chooses the second member of the team, who
could be a boy or a girl. Here we will label children of B and G with
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two-letter strings indicating the members of the team thus far. For
example, the children of B (a team captain whose a boy) will be BB

and BG indicating whether the team captain (the first B for boy) chose
another boy (the second B) or a girl (the G) for the second team mem-
ber.

•

B

BB BG

G

GB GG

Finally, each of these nodes has two children for the third member of
the team which the second member of the team gets to choose.

•

B

BB

BBB BBG

BG

BGB BGG

G

GB

GBB GBG

GG

GGB GGG

In the example above, the leaves of the tree (the three-letter strings at
the bottom of the tree) are what we care about. The leaves of the tree
above show us the all of the possible ways we could choose a three-person
team of school children according to whether they are a boy or a girl, where
the position of a B or G indicates the order in which a boy/girl was chosen.

We can also use trees to help us compute probabilities. Thinking of
the branches of the tree as representing subsequent choices we make in
going from the root to a leaf (for instance, each time we choose a boy or
girl as the next member of the time), we might decide that choice will
be made randomly, but with some known probability. We can label the
corresponding edge of the tree with that probability, and then to compute
the probability we would land at a given leaf, we multiply the probabilities
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along the branches connecting the root to that leaf.
This is a wordy description of a simple idea which will probably make

more sense after seeing an example.

Example 5.15.
Suppose, as in Example 5.14 we build a tree describing all three-

student teams of boys or girls where each member of the team selects
the next member. Suppose, though, that boys are more likely to select
boys as the next team member, and similarly girls are more likely to
select girls. In particular, suppose that the probability a boy chooses
the next team member to be a boy is 3/4, and the probability he chooses
a girl is 1/4. Suppose that girls will select another girl as the next team
member with probability 2/3 and will select a boy with probability
1/3. Suppose the teacher chooses team captains for the teams with
probability 1/2 for both boys and girls.

What is the probability a randomly selected team will consist of a
girl team captain, a boy as the second team member, and a girl as the
third team member?

We simply take our tree from before, but put a label on each edge,
the label telling us the probability of making each choice. According
to the rules above, this tree would be as follows:

•

B

BB

BBB

3/4

BBG

1/4

3/4

BG

BGB

1/3

BGG

2/3

1/4

1/2

G

GB

GBB

3/4

GBG

1/4

1/3

GG

GGB

1/3

GGG

2/3

2/3

1/2

We’re trying to find the probability the randomly selected team is
GBG. The tree tells us the probability the team captain is a girl is 1/2;
this girl will select a boy as the second team member with probability
1/3 (this is the edge labelled 1/3 from G to GB); and the boy will choose
a girl for the third team member with probability 1/4 (this corresponds
to the edge between GB and GBG which has label 1/4). Multiplying these
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values together, we see the probability of the desired team, GBG, is

1

2
· 1

3
· 1

4
=

1

24
≈ 0.04

There are a few things to notice about the probabilities computed by
multiplying values along the branches of the tree described in the last ex-
ample. Perhaps the most obvious question is why does this work? Thus far
we’ve said this “rule” will give the correct probabilities without justifying
why that’s the case (e.g., why multiply the values instead of add them or
divide them or do something else?). This will be easiest to explain after we
discuss conditional probability in the next section, so for now we’re going
to take this on faith, but we will come back and justify it later.

The second thing to point out is that there are eight possible teams,
but not all teams will occur with the same probability. For example, the
probability of an all boy team, BBB, is

1

2
· 3

4
· 3

4
=

9

32
≈ 0.28

whereas the probability of an all girl team, GGG, is

1

2
· 2

3
· 2

3
=

4

18
=

2

9
≈ 0.22.

This is our first example where we have a finite sample space, but the
probability of any given event is not simply the number of elements in the
event divided by the number of elements in the sample space. We’ll see
many other examples like this throughout the course, but since this is the
first time we’ve seen such a thing, it’s worthwhile to point it out.

Example 5.16.
With the same setup as Example 5.15, what is the probability a ran-
domly selected team contains at least two girls?

Let’s let E denote the event where we construct a team containing
at least two girls. Looking at the leaves of the tree above, we see that
E consists of the following teams:

E = {BGG, GBG, GGB, GGG}.
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We can write E as the disjoint union of simple events,

E = {BGG} ∪ {GBG} ∪ {GGB} ∪ {GGG},

then the probability of E is the sum of the probabilities of the simple
events,

Pr(E) = Pr({BGG}) + Pr({GBG}) + Pr({GGB}) + Pr({GGG}).

Each of these probabilities we can compute by multiplying the values
indicated by the tree:

Pr({BGG}) =
1

2
· 1

4
· 2

3

1

12

Pr({GBG}) =
1

2
· 1

3
· 1

4
=

1

24

Pr({GGB}) =
1

2
· 2

3
· 1

3
=

1

9

Pr({GGG}) =
1

2
· 2

3
· 2

3
=

2

9

Adding all of these together we have that the probability a randomly
constructed team has at least two girls is

Pr(E) =
1

12
+

1

24
+

1

9
+

2

9
= 11/24 ≈ 0.46

Exercise 5.6.
Using the same setup as Example 5.15, answer the following two ques-
tions.

(a) What is the probability a randomly selected team has at least one
boy and at least one girl?

(b) What is the probability a randomly selected team has at least one
boy?
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5.5 Practice Problems

Problem 5.1.
Suppose a bag contains eleven wooden tiles which have letters etched on
them, one tile each for each of the letters A, D, E, F, G, I, L, N, O, R, S. If you
pull the tiles out of the bag randomly one at a time and lay them across a
table from left-to-right as you draw them, what is the probability you wind
up spelling the word DRAGONFLIES?

Problem 5.2.
Suppose a bag contains eleven wooden tiles with letters etched into them
where there are two tiles with A, two tiles with M, two tiles with T, and one
tile each for the letters H, E, I, C, and S.

If you draw the eleven tiles out of the bag one at a time and lay them out
across the table from left-to-right as you draw them, what is the probability
that you spell out MATHEMATICS?

Problem 5.3.
Imagine that you won a set of four movie tickets, so you decided to take
three of your friends with you to the movies this weekend, and suppose you
have six friends that you are considering taking: Alice, Bob, Claire, Daniel,
Erica, and Fred. Since you have a hard time picking who to take, you decide
to put the six friends’ names in a hat and randomly draw three.

(a) What is the probability that Claire is one of the three friends you select?

(b) What is the probability that both Erica and Fred are selected?

(c) What is the probability that all three selected friends have the same
gender? (Alice, Claire and Erica are girls; Bob, Daniel, and Fred are
boys.)

Problem 5.4.
Imagine an urn contains sixteen marbles, and of these eight are blue, six are
green, and two are red. If you reach into the urn and pull out three marbles,
one after the other and without replacing the marbles you’ve pulled out,
what is the probability that you grabbed at least two marbles of the same
color?

Problem 5.5.
In a five card poker hand, a full house occurs when you have three cards
of one rank, and two cards of another rank. For example, three Jacks and
two Aces is a full house.
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If you were to be dealt five random cards from a shuffled deck of 52
standard playing cards, what is the probability you would get a full house?

Problem 5.6.
Suppose that one morning while getting ready for class you are in a hurry,
not paying attention to what you’re doing, and simply reach into your sock
drawer and pull out two random socks. Supposing your sock drawer has
twelve white socks, six black socks, four brown socks, and four blue socks.
(These are individual socks, not pairs.)

What is the probability both socks are the same color?

Problem 5.7.
Twelve students have iPhones, and eight students have Android phones.
Three students are selected at random. Find the probability that exactly
one student has an Android phone and not all students have the same type
of phone.



6Conditional Probability

C’est une très certaine vérité que, lorsqu’il
n’est pas en notre pouvoir de discerner les
opinions les plus vraies, nous devons suivre
le plus probable.
It is a very certain truth that when it is not
in our power to discern the most true
opinions, we must follow the most probable.

René Descartes
Discours de la Méthode

Sometimes we may have partial information about the outcome of an
experiment and we can use ths information to help us compute probabilities.

6.1 Motivating example: Texas Hold ’Em

For example, suppose you have already been dealt two cards from a five-
card poker hand; say you received J♥ and 7♦. What is the probability
that, after receiving the other three cards, you will have a four-of-a-kind?

Remark.
There are poker games where you have this type of information, by the
way. In Texas Hold ’Em each player is first dealt two cards, and then
in subsequent rounds more cards are added to the middle of the table
for all players to use. Players then use their two private cards (which
only they know) together with the cards in the center of the table to
build the best possible hand. However, betting starts after players
receive their first two cards, but before the cards in the middle of the
table have been revealed. Thus the players have partial information
about what type of hand they might be able to build, and might like
to use this information to determine the probabilities of various types
of poker hands.

There are fifty cards left in the deck (we’ve already received two cards),
and we’re going to receive three more of those cards. So, given our two

103
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initial cards, J♥ and 7♦, there are
(

50
3

)
possible hands we can build. Of

these, how many will result in us having a four-of-a-kind? If we’re able
to build a four-of-a-kind, that means we’ll have four of one of these cards.
That is, our only options for a four-of-a-kind are

(7♦, J♥, J♣, J♦, J♠) and (J♥, 7♥, 7♣, 7♦, 7♠).

There are only two of the possible
(

50
3

)
hands, given we already have 7♦

and J♥, that result in a four-of-a-kind. Thus the probability of us being
able to build a four-of-a-kind is(

2
1

)(
50
3

) =
2(
50
3

) ≈ 0.000102.

Remark.
Notice the probability calculated above is less than half the probability
for getting a four-of-a-kind we calculated in Example 5.8. The partial
information we had really helped us winnow down the probability we
could get a four-of-a-kind.

Let’s now make a simple observation about the probability we calculated
above. If we multiply and divide the fraction above by 1/

(
52
5

)
we would be

multiplying by one (since we multiply and divide by the same thing), which
doesn’t change the value of the fraction. I.e.,(

2
1

)(
50
3

) =

(
2
1

)
/
(
52
5

)(
50
3

)
/
(
52
5

) .
Now notice the numerator

(
2
1

)
/
(
52
5

)
is the probability of a five-card poker hand

which is a four-of-a-kind containing both J♥ and 7♦. (This is because, as
we noted above, there are only two five-card hands which are four-of-a-kind
and contain both J♥ and 7♦). The denominator,

(
50
3

)
/
(
52
5

)
is the probability

of five-card poker hand containing J♥ and 7♦, regardless of what the other
cards are. (This is because we’ve already selected these two cards and just
need to select the other three from the remaining fifty.)

If we let E be the event we get a four-of-a-kind and F the event that
our five-card hand contains J♥ and 7♦, notice that E ∩ F is the event
we have a four-of-a-kind which contains J♥ and 7♦. Thus the

(
2
1

)
/
(
52
5

)
in
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the numerator is Pr(E ∩ F ), and the
(
50
3

)
/
(
52
5

)
is Pr(F ). So the probability

that we get a four-of-a-kind given that we already have 7♦ and J♥ can be
written as

Pr(E ∩ F )

Pr(F )
.

6.2 Definition of conditional probability

These types of calculations are extremely common in probability theory,
and the discussion above motivates the next definition. In general, the
probability an event E takes place given that we already know the event
F will take place is called the conditional probability of E given F
which is denoted Pr(E|F ). We can calculate this probability with the same
formula as in the example above:

Pr(E|F ) =
Pr(E ∩ F )

Pr(F )
.

You should interpret these conditional probabilities as being the proba-
bility of some sort of “subexperiment” within our original experiment. Let’s
draw a Venn diagram to better understand what’s happening.

Imagine that the sample space Ω of our experiment is a rectangle, and
E and F are two events that live inside of Ω:

Ω

E

F

When we say that F is given, that means we know that the outcome of
our experiment will live in F . We may still not know exactly which point
in F it is, but it will be some element of F . So, we can consider the
“subexperiment” where the original sample space is replaced by F , and the
events are subsets of F instead of arbitrary subsets of the original Ω.

If we replace our original experiment with one where the outcomes are
constrained to F , then we also need to change the way we calculate prob-
abilities. Our Pr function won’t work anymore because the probability of
our sample space (which is now F ) won’t be 1, it’ll be Pr(F ). To fix this,
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let’s just divide everything by Pr(F ): this will make it so the probability
of the entire sample space (now F in our “subexperiment”) is 1. This gives
us a new probability function for the events inside of F which is denoted
Pr(–|F ) where the dash means this is where we’d write the event inside of
F whose probability we want to calculate. For example, the probability of
the event G ⊆ F is Pr(G|F ) and is calculated by Pr(G|F ) = Pr(G)

Pr(F )
because

of the scaling described above.
Now, if E an event that is not contained in F and we’re given that F is

going to occur, the only option if E occurs as well is that the outcome of
the experiment is in the overlap between E and F which is precisely E∩F .

F

E ∩ F

As another example to explain the idea, imagine that you’ve been practc-
ing at playing darts for the last several weeks and have gotten to be very
good at getting the dart to land more-or-less where you’re intending it to
land. Your skill at darts is the “partial information” that we can use to
update our probabilities. Recall that earlier when we discussed throwing
darts, we treated the point where the dart landed as a random point on
the board, and so the probability you hit the bullseye on the board, for
instance, was

Pr(Bullseye) =
Area(Bullseye)

Area(Dart Board)
.

But given that you’ve practiced enough that you can, say, always land in
the middle third of the board, the probability you hit the bullseye becomes

Area(Portion of Bullseye in Middle Third of Board)

Area(Middle Third of Board)
.

Multiplying and dividing the numerator and denominator by the area of
the entire board, we can write this as

Area(Portion of Bullseye in Middle Third of Board)/Area(Board)

Area(Middle Third of Board)/Area(Board)
.

This is equal to

Pr(Bullseye in Middle Third of Board)

Pr(Middle Third of Board)
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which in terms of conditional probability is

Pr(Bullseye |Middle Third of Board).

Remark.
If this idea of conditional probability seems a little bit strange right
now, don’t worry too much about it: it will eventually start to make
sense as we see more examples and as you do some calculations on
your own.

6.3 Examples

Let’s consider a few concrete examples to help solidify the idea of conditional
probability.

Example 6.1.
Suppose a congressional of subcomittee is randomly selected from a
committee which already contains six Republicans and four Democrats.
If the sub committee consists of three members and is required to be
bipartisan (i.e., must consist of both Republicans and Democrats),
what is the probability the committee contains two Democrats?

Here the “partial information” we are given is that the commit-
tee must be bipartisan. Let B denote the event a randomly selected
subcommittee is bipartisan, and let D be the event the subcommittee
contains two Democrats. Then the probability the submittee contains
two Democrats given that it is bipartisan is

Pr(D|B) =
Pr(D ∩B)

Pr(B)

Let’s first think about Pr(B). If the subcommittee is not bipartisan,
then that means it contains all Republicans or all Democrats, and it
might be easier to find Pr(Bc) than to find Pr(B) directly.

If we had a non-bipartisan subcommittee, we would have to choose
our three Republican members or our three Democratic members. Di-



CHAPTER 6. CONDITIONAL PROBABILITY 108

viding by all the ways we can choose three members from the 10-
member committee we have

Pr(Bc) =

(
6
3

)
+
(

4
3

)(
10
3

)
and so

Pr(B) = 1− Pr(Bc) = 1−
(

6
3

)
+
(

4
3

)(
10
3

)
As for the numerator, Pr(D ∩B), we want the probability of con-

taining two Democratic members and being bipartisan. Since the
committee consists of only three members, this means there are two
Democrats and one Republican. So let’s simply choose the two Democrats
and the one Republican, divided by all the ways to choose a 3-member
subcommittee:

Pr(D ∩B) =

(
4
2

)
·
(

6
1

)(
10
3

) .

Putting all fo this together, and simplifying a little, we have

Pr(D|B) =

(
4
2

)
·
(

6
1

)(
10
3

)
−
(

6
3

)
−
(

4
3

) =
36

96
= 0.375.

Example 6.2.
Suppose a family has two children. What is the probability the family
has two girls if the oldest child is a girl?

Let’s write the possible outcomes of our experiment as two-character
strings where each character is B or G, indicating if a child is a boy or
a girl, where the gender of the oldest child is the character on the left,
and th gender of the youngest child is the character on the right. E.g.,
BG would mean the oldest child is a boy and the youngest child is a
girl.

The sample space of this experiment is then

{BB, BG, GB, GG}.

Now let T be the event the family has two girls, and G the event the
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oldest child is a girl. So, T = {GG} and G = {GB, GG}. Notice that,
assuming all possibilities are equally likely,

Pr(T ) = 1/4, Pr(G) = 1/2.

Now we compute

Pr(T |G) =
Pr(T ∩G)

Pr(G)
=

Pr({GG})
Pr(G)

=
1/4
1/2

=
1

2
.

The solution to the previous example should seem very intuitive, but
let’s modify the example just a little bit and we’ll see that we get a very
counter-intuitive result.

Example 6.3.
Suppose a family has two children. If we ask one of the parents “Do

you have a daughter?” and they simply answer “Yes.”, then what is
the probability both children are girls?

As in Example 6.2 the sample space still consists of four elements,
and we’ll let T be the event the family has two girls. However, now G
is the event the family has at least one girl: we only know they have
a girl, not whether she is the oldest child or not. So, G is the event

G = {BG, GB, GG}.

Now when we compute the probability both children are girls we have

Pr(T |G) =
Pr(T ∩G)

Pr(G)
=

Pr({GG})
Pr(G)

=
1/4
3/4

=
1

3
.

Notice that even though Example 6.2 and Example 6.3 seem almost like
identical experiments, they have different answers. This is entirely because
we have different partial information in the two problems.

6.4 Consequences of the definition

Let’s now make some simple observations about our definition of conditional
probability and see some useful consequences of the definition.
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We defined the conditional probability of E given F as

Pr(E|F ) =
Pr(E ∩ F )

Pr(F )
.

Notice that if we multiply both sides of this equation by Pr(F ) we have

Pr(E ∩ F ) = Pr(E|F ) · Pr(F ).

That is, we can use conditional probability to give us a formula for proba-
bilities of intersections. This is sometimes useful because you may already
know the conditional probability from the context of a problem and want
to use that information to calculate other probabilities.

Exercise 6.1.
Show that we can also write Pr(E∩F ) as Pr(F |E) ·Pr(F ) by a simple

manipulation of the above equation.

Example 6.4.
Suppose a student applying to their preferred college has an 80%
chance of being accepted, and that 60% of students at this college live
on campus. What is the probability the student both gets accepted to
the school and then also lives on campus?

Let A be the event the student is accepted, and L the event they
live on campus. We’re already told Pr(L|A) = 0.6, but what we want
is Pr(A ∩ L). Using the formula above (and Exercise 6.1 which tells
us how to swap the order of the events), we have

Pr(A ∩ L) = Pr(L|A) · Pr(A) = 0.6 · 0.8 = 0.48,

and so there is a 48% chance the student will both get accepted to the
school and live on campus.
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Exercise 6.2.

(a) Show that for any two events E and F , Pr(Ec|F ) = 1− Pr(E|F ).

(b) Is it true that Pr(E|F ) = 1− Pr(E|F c)?

Example 6.5.
Suppose a certain high school has 400 students, 120 of which are boy
sand the remaining 280 are girls. Suppose that of the 120 boys, 72
(60%) are enrolled in a math course; and of the 280 girls, 224 (80%)
are encrolled in a math course.

(a) What is the probability a randomly selected student is a girl en-
rolled in a math course?

(b) What is the probability a randomly selected student is a boy who
is not enrolled in a math course?

Let’s let G be the event a randomly selected student is a girl, B
the event a randomly selected student is a boy, and M the event a
randomly selected student is enrolled in a math course. We are told
that

Pr(B) =
120

400
= 0.3

Pr(G) =
280

400
= 0.7

Pr(M |G) =
224

280
= 0.8

Pr(M |B) =
72

120
= 0.6

(a) We are interested in the event M ∩G. Using the expression above
we compute

Pr(M ∩G) = Pr(M |G) · Pr(G) = 0.8 · 0.7 = 0.56
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so there is a 56% chance a randomly selected student is a girl
enrolled in a math calss.

(b) We are interested in M c ∩ B. We are told Pr(M |B) = 0.6, and
by part (a) of Exercise 6.2 we know Pr(M c|B) = 0.4. Now we can
compute

Pr(M c ∩B) = Pr(M c|B) · Pr(B) = 0.4 · 0.3 = 0.12,

and so there is only a 12% chance a randomly selected student is
a boy who is not enrolled in a math class.

Let’s notice our observation that

Pr(E ∩ F ) = Pr(E|F ) · Pr(F )

can be extended to intersections with more than two events. For example,
by the definition of conditional probability we know

Pr(E|F ∩G) =
Pr(E ∩ F ∩G)

Pr(F ∩G)

which we can rewrite as

Pr(E ∩ F ∩G) = Pr(E|F ∩G) · Pr(F ∩G).

We can then rewrite Pr(F ∩G) as Pr(F |G) · Pr(G) to turn the above into

Pr(E ∩ F ∩G) = Pr(E|F ∩G) · Pr(F |G) · Pr(G).

Remark.
Since E ∩ F ∩ G = F ∩ E ∩ G = F ∩ G ∩ E = · · · , we can actually
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rewrite the probability of E ∩ F ∩G in many different ways:

Pr(E ∩ F ∩G) = Pr(E|F ∩G) · Pr(F |G) · Pr(G)

= Pr(F |E ∩G) · Pr(E|G) · Pr(G)

= Pr(F |E ∩G) · Pr(G|E) · Pr(E)

= Pr(G|E ∩ F ) · Pr(E|F ) · Pr(F )

...

In general, we have the following “chain rule” for probabilities intersec-
tions:

Proposition 6.1.
For any events E1, E2, E3, ..., En in a sample space Ω we may rewrite
the probability of the intersection of all of the events as a product of
conditional probabilities using the following formula:

Pr(E1 ∩ E2 ∩ · · · ∩ En)

= Pr(E1|E2 ∩ · · · ∩ En) · Pr(E2|E3 ∩ · · · ∩ En) · . . . · Pr(En−1|En) · Pr(En)

Proof.
We will prove this proposition with a proof technique called induction
where we prove the simplest possible scenario first, and then show how
the more complicated scenarios can be expressed in terms of simpler
ones.

The base case (simplest scenario) here is the case when n = 2. In
this case the proposition claims

Pr(E1 ∩ E2) = Pr(E1|E2) · Pr(E2)

which we already know is true from the definition of conditional prob-
ability.

We now assume the proposition has been proven for n− 1 events,
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in which case the proposition says

Pr(E1∩E2∩· · ·∩En−1) = Pr(E1|E2∩· · ·∩En−1)·. . .·Pr(En−2|En−1)·Pr(En).

Supposing this is true, we can now easily extend the formula for n
events by rewriting this as an intersection of two events, then applying
the base case and the induction hypothesis:

Pr(E1 ∩ E2 ∩ · · · ∩ En)

= Pr(E1 ∩ [E2 ∩ · · · ∩ En])

= Pr(E1|E2 ∩ · · · ∩ En) · Pr(E2 ∩ · · · ∩ En)

= Pr(E1|E2 ∩ · · · ∩ En) · Pr(E2|E3 ∩ · · · ∩ En) · . . . · Pr(En−1|En) · Pr(En).

Example 6.6.
Suppose an urn contains thirty marbles. Of these, seven are blue and
twenty-three are red. If three marbles are randomly selected from the
bag without replacement, what is the probability all three marbles are
red?

Let Ei denote the event the i-th marble is red. Then the event all
three are red is E3 ∩ E2 ∩ E1. Using our proposition above for the
probability of intersections we can write this as

Pr(E3 ∩ E2 ∩ E1) = Pr(E3|E2 ∩ E1) · Pr(E2|E1) · Pr(E1).

Notice Pr(E1) = 23
30

since there are twenty-three red marbles out of the
thirty marbles in the urn. Now, for Pr(E2|E1) we are interested in the
event where the second marble is red assuming the first marble was
red as well. Since the first marble was red, by assumption, that means
that twenty-two of the remaining twenty-nine marbles are red and so
Pr(E2|E1) = 22

29
. Similarly, Pr(E3|E2∩E1) is easy to compute because

we are assuming that the first two marbles were red (this is the given
partial information, the E2 ∩ E1). Thus Pr(E3|E2 ∩ E1) = 21

28
.
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Multiplying everything together we have

Pr(E3 ∩ E2 ∩ E1) =
21

28
· 22

29
· 23

30
=

10626

24360
≈ 0.436.

So, there’s a little more than a 43% chance of getting three red mar-
bles.

6.5 The law of total probability

We now want to discuss a simple technique for computing probabilities of
events in terms of “simple” events. In order to discuss this, though, we
have to make a quick set-theoretic definition.

A (finite) partition of a set Ω is a finite collection of subsets F1, F2,
..., Fn that satisfy the following two conditions:

1. The sets are pairwise disjoint. This means that for any two sets Fi and
Fj, where i 6= j (so they are two distinct subsets from our collection),
the sets are disjoint: Fi ∩ Fj = ∅.

2. The union of these subsets is the entire set: Ω =
⋃n
i=1 Fi.

What this means is that we can take our set Ω, and chop it up into finitely-
many pieces such that the pieces don’t overlap and every element of the
original, big set is contained in one of the smaller pieces.

Now, if F1, F2, ..., Fn is a partition of a sample space, then for any
event E we can consider the overlap of E with each of the partition sets F1

through Fn. I.e., we can consider E ∩F1, E ∩F2, ..., E ∩Fn. Notice this is
actually a partition of E.

Exercise 6.3.
Show that if F1, F2, ..., Fn is a partition of Ω, then for any E ⊆ Ω, the
sets E ∩ F1, E ∩ F2, ..., E ∩ Fn form a partition of E.

Since the E ∩ Fi form a partition of E, we can write

Pr(E) = Pr(E ∩ F1) + Pr(E ∩ F2) + · · ·+ Pr(E ∩ Fn).
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Writing each Pr(E∩Fi) as Pr(E|Fi)·Pr(Fi) we have the following expression,
called the law of total probability :

Pr(E) =
n∑
i=1

Pr(E|Fi) · Pr(Fi)

The simplest examples of this come from the simplest type of partition.
If F is any event, then F and F c form a partition of the sample space Ω.
For any event E the law of total probability then tells us the probability of
E may be written as

Pr(E) = Pr(E|F ) · Pr(F ) + Pr(E|F c) · Pr(F c).

Example 6.7.
Suppose sore throat is present in 70% of people with the flu, and is

present in 15% of people without the flu. If 10% of people in a given
population have the flu, what is the probability a randomly selected
person has a sore throat?

To apply the law of total probability we need a partition, and one
easy way to get a partition is to have two complementary events. If
we let F be the set of people with the flu, so F c is the set of people
without the flu, then we have our partition. Letting E be the set of
people with a sore throat, the law of total probability tells us

Pr(E) = Pr(E|F ) Pr(F ) + Pr(E|F c) Pr(F c).

We know each probability on the right-hand side from the problem.
Since 10% of people have the flu, we know Pr(F ) = 0.1; this also
means 90% of people don’t have the flu, so Pr(F c) = 0.9. We know
that of the people that have the flu, 70% have a sore throat and so
Pr(E|F ) = 0.7; and only 15% of people without the flu have sore
throat, so Pr(E|F c) = 0.15. Putting all of this together we have

Pr(E) = 0.7 · 0.1 + 0.15 · 0.9 = 0.205

So there’s a 20.5% chance a randomly selected person has a sore
throat.
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Example 6.8.
Imagine there are three urns containing colored marbles. The first urn
contains 14 blue marbles and 6 red marbles; the second urn contains
10 blue marbles and 15 green marbles; the third urn contains 5 blue
marbles, 5 green marbles, and 10 red marbles. If you randomly select
one urn , and from that urn randomly select one marble, what is the
probability you draw a blue marble?

Let B be the event we get a blue marble; our goal is to compute
P (B). Letting U1 denote the event where we select a marble from
the first urn, U2 the event where we select a marble from the second
urn, and U3 the event where we select a marble from the third urn,
the three events U1, U2, and U3 form a partition of the sample space.
By the law of total probability we can then compute P (B) as follows,
assuming the probability of choosing each urn is equally likely and
the probabilitiy of drawing a blue marble from a given urn using the
proportion of blue marbles described above we have

P (B) = P (B|U1)P (U1) + P (B|U2)P (U2) + P (B|U3)P (U3)

=
14

20
· 1

3
+

10

25
· 1

3
+

5

20
· 1

3

=
9

20
= 0.45

6.6 Bayes’ formula

In Example 6.7 we wanted to know the probability a randomly selected
person had a sore throat. That was a silly question because it’s not really
something anyone cares about, so let’s modify that problem to answer a
more interesting question. Using the same values as before (10% of the
population has the flu; 70% of people with the flu have a sore throat; and
15% of people without the flu have a sore throat), consider the following:
If someone has a sore throat, what is the probability they have the flu?

Remark.
This is a question that someone might genuinely want to know the
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answer to, and it is also indicative of a more general type of real-world
question. If a given symptom can be caused by several different dis-
eases, you might want to know the likelihood someone has a particular
disease if they have that symptom. For instance, if the symptom is
severe headaches, the causes might be allergies, stress, caffeine with-
drawal, or brain cancer. A doctor may be very interested in knowing
which of these causes is the most likely as that may influence the type
of treatment they recommend.

Let’s again let F be the event the person has the flu, and E the event
they have a sore throat. Earlier we used the law of total probability to
compute Pr(E), but now we want to compute Pr(F |E): the probability
someone has the flu, given they have a sore throat.

By the definition of conditional probability we know

Pr(F |E) =
Pr(F ∩ E)

Pr(E)
.

We do not know what Pr(F ∩ E) is directly from the information we are
given, but we can compute it as

Pr(F ∩ E) = Pr(E ∩ F ) = Pr(E|F ) · Pr(F ).

We also are able to compute Pr(E) using the law of total probability:

Pr(E) = Pr(E|F ) · Pr(F ) + Pr(E|F c) · Pr(F c).

Plugging this into the right-hand side of our expression for Pr(F |E) above
we have

Pr(F |E) =
Pr(E|F ) · Pr(F )

Pr(E|F ) · Pr(F ) + Pr(E|F c) · Pr(F c)
.

And if we plug in the values for Pr(E|F ), Pr(F ), etc. that we have from
before this is

Pr(F |E) =
Pr(E|F ) · Pr(F )

Pr(E|F ) · Pr(F ) + Pr(E|F c) · Pr(F c)

=
0.7 · 0.1

0.7 · 0.1 + 0.15 · 0.9

=
0.07

0.205
≈ 0.34146.
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Thus there is about a 34% chance that someone with the sore throat has
the flu.

The calculation above is an example of a more general formula called
Bayes’ formula , and was first described by the 18th century English
statistician Thomas Bayes. (Interestingly, Bayes never actually published
Bayes formula. The formula was found in unpublished notes of Bayes by
Richard Price sometime after Bayes’ death.)

In general, Bayes’ says that if F1, F2, ..., Fn is a partition of a sample
space Ω, then for any event E ⊆ Ω, the probability of Fi given E can be
compute as

Pr(Fi|E) =
Pr(Fi ∩ E)

Pr(E)

=
Pr(E|Fi) · Pr(Fi)

Pr(E)

=
Pr(E|Fi) · Pr(Fi)∑n
j=1 Pr(E|Fj) · Pr(Fj)

The first line above is simply the definition of conditional probability; the
second line is our “trick” for rewriting the probability of an intersection in
terms of conditional probability; and the last line is applying the law of
total probability to compute the denominator.

Bayes’ formula has numerous real-world applications, a few of which we
will touch on in the examples below. But first let’s consider an example
where we can use Bayes’ formula to determine the likelihood a patient has
a disease given that a test for the disease came back positive.

Example 6.9.
Suppose that you have been feeling very ill lately and so you decide

to go to the doctor. The doctor determines from your symptoms that
there’s a chance you may have very rare, but serious illness. The
disease in question affects only 1 in every 1000 people, but because
the disease very serious if you do have it, the doctor decides to run
a blood test. No test is completely perfect, but this particular test is
known to be reasonably accurate: it correctly identifies someone with
the disease as having the disease 99% of the time, and gives a false
positive (saying you have the disease when you don’t) only 1% of the
time.
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Unfortunately, the blood test comes back positive. Given the ac-
curacy of the test described above, what is the probability that you
actually have the disease?

Let’s let D denote the event that you really do have the disease,
and T the event that the test comes back positive. Our goal is to
compute Pr(D|T ) and we can use Bayes’ formula for this. From the
information given about the rarity of the disease and the accuracy of
the test known the following:

Pr(T |D) = 0.99

Pr(T |Dc) = 0.01

Pr(D) = 0.001

Pr(Dc) = 0.999

(The last two probabilities come from the fact the disease affects only
1/1000 of the population.)

Applying Bayes’ formula we compute

Pr(D|T ) =
Pr(T |D) · Pr(D)

Pr(T |D) · Pr(D) + Pr(T |Dc) · Pr(Dc)

=
0.99 · 0.001

0.99 · 0.001 + 0.01 · 0.999

=
0.00099

0.00099 + 0.00999

=
0.000999

0.01098
= 0.0901639

That is, there is about a 9% chance you actually have the disease given
that the test came back positive.

The first time you see an example like the one above, you’re probably
very surprised by the low probability. If the test is 99% accurate, shouldn’t
that probability be more like 99% instead of 9%? This is a common miscon-
ception, so let’s take the time to slowly think through what’s happening.

If we had a group of 1000 people, we would expect only 1 of them to
actually have the disease. However, the blood test is known to give false
positives 1% of the time. So, if we gave the blood test to everyone in our
group of 1000% people, it would probably correctly say that one person had
the disease (since the test does this 99% of the time), but it would also say
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that 1% of those remaining 999 people without the disease actually have
it. Now, 1% of 999 is 9.99, and let’s round that up to 10 just to have nice
numbers. So, our test would tell 11 people they have the disease (1 person
with the disease, and then the 10 false positives). That is, if you were one of
the 11 people that had a the positive blood test, there’s only a 1/11 ≈ 0.091
(or about 9%) chance you’re actually the person with the disease.

Example 6.10.
Continuing with Example 6.9 and the ensuing discussion, suppose

you’re a mathematically enlightened person and so you realize the
chance you have the disease given a positive blood test isn’t actually
that high and so you go get a second opinion, and another doctor
runs the same test again and it comes back positive. What is the
probability you really have the disease?

In our earlier calculation we had assumed Pr(D) = 0.001 since
one in 1000 people have the disease. When getting a second opinion,
however, we should not use the same probability. We are now part
of a much smaller group of people, those who tested positive for the
disease. As discussed above, for those people there’s about a 9% chance
of actually having the disease (being that one person with the disease
in the eleven people that tested positive for the disease), so in applying
Bayes’ formula again we will “update” our Pr(D) value from 0.0001
to 0.09. (Notice this also chance Pr(Dc) to 0.091.) Now we compute

Pr(D|T ) =
Pr(T |D) · Pr(D)

Pr(T |D) · Pr(D) + Pr(T |Dc) · Pr(Dc)

=
0.99 · 0.09

0.99 · 0.09 + 0.01 · 0.91

=
0.0891

0.0982
= 0.90733

That is, if our test comes back positive when we get a second opinion,
there’s about a 90% chance we really do have the disease.
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Remark.
The examples above are shamelessly stolen from the YouTube channel
Veritasium’s video on Bayes’ formula: https://youtu.be/R13BD8qKeTg.

Exercise 6.4.
Continuing the discussion from Example 6.9 and Example 6.10, sup-
pose you insisted on a third opinion. Using the the fact that you’ve
already had two tests come back positive, if a third test also comes
back positive, what is the probability you have the disease?

In computing Pr(Fi|E) using Bayes’ formula for a partition F1, F2, ...,
Fn, the value of Pr(Fi) used is sometimes called the prior probability of
Fi and is the probability Fi occurs without having any additional informa-
tion. The value of Fi given some additional information, i.e. Pr(Fi|E), is
called the posterior probability and represents our “updated” probabil-
ity calculation once we have some additional information. For instance, in
the examples above the prior probability Pr(D) is the probability you have
a certain disease having no additional information that might indicate you
have the disease or not, such as the blood test. The posterior probability,
Pr(D|T ), is our updated calculation that you may have the disease, given
that you had a positive blood test.

In many real-life applications the prior probability may not be known,
and so we may need to use an “educated guess” at what this probability is.
In the disease example, you either have the disease or you don’t – there’s not
really anything random or probabilistic about it. However, since we don’t
know if you have the disease or not, without any additional information
we may estimate the probability you have the disease by the proportion
of people in the population with the diease. However, as we gain more
information (e.g., positive blood tests) we are able to update the prior
probability over time. The hope, of course, is that as we gain more and
more information our prior probability becomes closer and closer to the
true value.

Let’s have another example of using Bayes’ formula with a simple exam-
ple from an area of computer science called machine learning, where we try

https://youtu.be/R13BD8qKeTg
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to train a computer to solve a problem without explicitly telling the com-
puter how to solve it. One common family of problems in machine learning
are classification problems, where we want to take given input data and cat-
egorize it into different types. There may be too many features of the data
for a human to realisitically describe how all possible features fit together
to solve the classification problem, so we might try to get the computer
to figure out how those features fit together by feeding the computer data
that has already been classified. When presented with new, unclassified
data later, we want the computer to be able to automatically decide how
to classify it.

One simple example of such a classification problem is spam filtering in
email. Apps like Gmail are able to automatically determine if an incoming
message is spam or not and decide whether to put the message in your
inbox, or into a spam folder, and they are (usually) extremely good at
discerning spam messages for legitimate emails. In the 90’s, however, spam
filtering wasn’t nearly as good and it was not uncommon for your inbox to be
completely filled with spam you didn’t care about. After some researchers at
Stanford and Microsoft published a paper in 1998 about how to use Bayes’
formula to determine if an email was spam or not, spam filtering started
to improve dramatically. At this point spam filtering is so good that it’s
relatively rare that spam pops up in your inbox or that legitimate emails
get marked as spam. In the example below we work through a simplified
version of this using Bayes formula to determine the probability a newly
arrived email is spam or not.

Example 6.11.
Suppose we are given a list of phrases which we know are common

in spam and uncommon in legitimate emails. (We might have such a
list by compiling data about which emails users mark as spam if spam
happens to make it into their mailbox, or which legitimate emails they
remove from their spam folder.) For the sake of example, let’s say we
have three particularly spammy phrases,

“You’ve been approved”, “Meet your soulmate”, and “Unclaimed
assets”.

Now suppose a new email has arrived, and we want to determine if
the email is spam or not. We might write a line or two of code to
have the computer scan through the email and see if it contains any of
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our known spammy phrases. Let’s let Y , M , and U denote the events
where the email contains the three phrases above (the first letter of the
phrases telling us the “name” of the event). We now imagine the set
of all emails we receive as being partitioned into two complementary
pieces: S is the set of spam emails, and Sc the set of legitimate emails.
We want to determine the probability an email is spam (the event S
occurs) or legitimate (the event Sc occurs), given that the new message
contains one of our spammy phrases.

Let’s suppose that from previous data we’ve collected about email
we know the following:

• 75% of all emails are spam, so 25% of emails are legitimate;

• 50% of spam emails contain the phrase “You’ve been approved”,
and only 15% of legitimate emails contain this phrase;

• 30% of spam emails contain the phrase “Meet your soulmate”,
but only 1% of legitimate emails contain that phrase;

• 70% of spam emails mention “Unclaimed assets”, compared to
only 1% of legitimate emails.

That is, we know the following probabilities:

Pr(S) = 0.75 Pr(Sc) = 0.25

Pr(Y |S) = 0.5 Pr(Y |Sc) = 0.15

Pr(M |S) = 0.3 Pr(M |Sc) = 0.01

Pr(U |S) = 0.7 Pr(U |Sc) = 0.01

If a newly arrived message contains the phrase “Unclaimed assets”,
what’s the probability that email is spam? To answer this, we want
to compute Pr(S|U) and we can find this with Bayes’ formula:

Pr(S|U) =
Pr(U |S) · Pr(S)

Pr(U |S) · Pr(S) + Pr(U |Sc) · Pr(Sc)

=
0.75 · 0.75

0.7 · 0.075 + 0.01 · 0.025

=
0.525

0.5275
= 0.995
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So there’s a 99.5% chance this message is spam. We may then have
the computer automatically put such a message in the spam filter if
the probability of it being spam is greater than, say 99%.

Exercise 6.5.
Continuing the discussion from Example 6.11, suppose a message

contains multiple spammy phrases. From experience we may know
that emails with several spammy phrases are more likely to be spam
than those with a single spammy phrase, and legitimate emails very,
very rarely contains multiple spammy phrases. For example, suppose
know that 40% of spam conatins both phrases “Unclaimed assets” and
“You’ve been approved”, but only 0.1% of legitimate emails contain
both phrases.

If a new email contains both of these phrases, what is the proba-
bility it is spam?

6.7 Independence

Recall that we motivated conditional probability by saying that having some
“partial information” (this is the F in Pr(E|F )) can be useful in computing
probabilities. E.g., knowing that two of the cards in a five-card poker hand
are J♥ and 7♦ helps us determine the likelihood that we will get a five-card
poker hand with four-of-a-kind.

However, sometimes the partial information doesn’t actually help us:
sometimes knowing that event F must happen doesn’t change the prob-
ability the event E will happen. Intuitively, not all events influence one
another. For example, if you roll two distinguishable dice – say one is blue
and one is red – knowing the red die rolls a three doesn’t tell you anything
about the blue die will roll. In situations like this, we say the two events
are independent.

To be more precise, we say that two events E and F are independent
if Pr(E|F ) = Pr(E). That is, the “partial knowledge” from the event F
tells us nothing about E. Before giving any concrete examples, let’s make a
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simple observation about this definition: it is symmetric in E and F . That
is, if Pr(E|F ) = Pr(E), then we also have Pr(F |E) = Pr(F ).

To see this is true, let’s suppsoe we already know Pr(E|F ) = Pr(F ) and
try to show that Pr(F |E) must equal Pr(F ). To do this we will write down
the definition of the conditional probabilitiy Pr(F |E) and try to use some
of the knowledge we’ve developed earlier in this chapter, together with our
assumption Pr(E|F ) = Pr(E), to show this must equal Pr(F ):

Pr(F |E) =
Pr(F ∩ E)

Pr(E)

=
Pr(E ∩ F )

Pr(E)

=
Pr(E|F ) · Pr(F )

Pr(E)

=
Pr(E) · Pr(F )

Pr(E)

= Pr(F ).

Intuitively, this means that if knowledge of F doesn’t tell you anything
about E, then likewise knowledge of E doesn’t tell you anything about F .

Example 6.12.
Suppose two distinguishable, fair, six-sided dice are rolled; say one die
is red and the other is blue. For each i and j between 1 and 6, let Bi

denote the event we roll i on the blue die regardless of what happens
with the red die; and Rj is the event we roll j on the red die, regardless
of what the blue die rolls. (E.g., writing the result of the dice roll as a
pair (i, j) where i is the value of the die and j the value of the red die,
the event B3 is the event {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}, and
R1 is the event {(1, 1), (2, 1), ..., (6, 1)}.) Are Bi and Rj independent
events?

Intuitively we would expect these events to be independent since
one does not influence the other, but let’s check this is the case using
our definition of conditional probability. Notice no matter what i and
j are, Pr(Bi) and Pr(Rj) are both 6/36 = 1/6 since there are 36 possible
outcomes of rolling the two dice, and six of them correspond to rolling
i on blue or j on red. Similarly, for all values of i and j we have
Pr(Bi ∩ Rj) = 1/36 since there’s only one way to get i on blue and j
on red.
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Now, for all i and j we have

Pr(Bi|Rj) = Pr(Bi ∩Rj)/Pr(Rj) =
1/36

1/6
= 6/36 = 1/6.

That is, Pr(Bi|Rj) = Pr(Bi) and so the events are independent.

It’s always good to have some intuition when trying to solve problems,
but you have to be careful because sometimes your intuition can lead you
astray. The next example shows us that two events can still satisfy our
definition of independence, even when the events do seem like they should
influence one another.

Example 6.13.
Let F be the event we roll four or less on a fair, six-sided die, and let
E be the event we roll an even number. Are E and F independent?

Note first that Pr(F ) = 4/6 = 2/3, Pr(E) = 1/2, and Pr(E ∩ F ) =
2/6 = 1/3. (For the last probability, notice E ∩F is the event we roll an
even number and we roll four or less. The only options are rolling 2 or
4, so two of the six possible outcomes.) Now applying the definition
of conditional probability,

Pr(E|F ) =
Pr(E ∩ F )

Pr(F )
=

1/3
2/3

= 1/2

But Pr(E) = 1/2, so Pr(E|F ) = Pr(E) and the events are indepen-
dent.

Exercise 6.6.
Suppose E and F are two events which each have non-zero probability
(Pr(E) > 0 and Pr(F ) > 0), but which are disjoint E ∩ F = ∅. Are E
and F independent?

It is sometimes convenient in mathematics to know that one concept
can be described in several equivalent ways. For example, you know from
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calculus that saying is a differentiable function is increasing is equivalent to
saying the derivative of the function is positive. This means that if you’re
interested in seeing where a function is increasing, you have two options:
you can either try to find intervals where for every x1 and x2 in the interval
which satisfy f(x2) ≥ f(x1) whenever x2 ≥ x1, or you can find the values of
x that solve f ′(x) ≥ 0. I.e., you can use the definition of increasing, or you
can use some equivalent fact. Being aware of these equivalent facts gives
you more tools you can use to solve problems, and this is nice because some
tools might be easier to use than others.

For independents events in a same space, we have the following condition
which is equivalent to our original definition of independence:

Lemma 6.2.
Two events E and F in a sample space Ω are independent if and only

if
Pr(E ∩ F ) = Pr(E) · Pr(F ).

Proof.
Since the statement here is if and only if, there are actually two things
we have to check. We must first show that if E and F are independent,
then it follows that Pr(E∩F ) = Pr(E) ·Pr(F ); and we must also show
that if Pr(E∩F ) = Pr(E)·Pr(F ), then E and F must be independent.

Suppose first that E and F are independent. By definition, this
means Pr(E|F ) = Pr(E). Now, even if E and F weren’t independent,
we know that Pr(E ∩ F ) = Pr(E|F ) · Pr(F ) by doing some algebra
to the definition of conditional probability. Hence if E and F are
independent, then

Pr(E ∩ F ) = Pr(E|F ) · Pr(F ) = Pr(E) · Pr(F )

because Pr(E|F ) = Pr(E).
For the other direction, suppose we know Pr(E ∩ F ) = Pr(E) ·

Pr(F ) and we want to show Pr(E|F ) = Pr(E). We again use the fact
Pr(E∩F ) = Pr(E|F ) ·Pr(F ) (this always works whether E and F are
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independent or not). We then have the following string of implications:

Pr(E ∩ F ) = Pr(E) · Pr(F )

=⇒ Pr(E|F ) · Pr(F ) = Pr(E) · Pr(F )

=⇒ Pr(E|F ) · Pr(F )

Pr(F )
=

Pr(E) · Pr(F )

Pr(F )

=⇒ Pr(E|F ) = Pr(E).

Exercise 6.7.
Can an event be independent of itself? If this is possible, what can be
said about the events which are independent of themselves?

The lemma above tells us that checking if Pr(E∩F ) equals Pr(E)·Pr(F )
or not is just as good as checking if E and F are independent events. Thus,
we can actually take Pr(E ∩ F ) = Pr(E) · Pr(F ) as our definition of inde-
pendence. This is useful if we want to extend the definition of independence
to more than two events.

We say a finite collection of events E1, E2, ..., En are mutually inde-
pendent if for every collection of 1 ≤ k ≤ n subsets of {E1, E2, ..., En} –
say Ei1 , Ei2 , ..., Eik – we have

Pr(Ei1 ∩ Ei2 ∩ · · · ∩ Eik) = Pr(Ei1) · Pr(Ei2) · . . . · Pr(Eik).

This definition looks a little strange the first time you see it, so let’s write
down explicitly what this means for two events, three events, and four
events.

In the case of n = 2, so we are only considering a collection of two events
E1 and E2, this definition simply says the events are mutually independent
if

Pr(E1 ∩ E2) = Pr(E1) · Pr(E2).

That is, for two events this is really just our normal notion of independence.
If we have three events, E1, E2, and E3, then the definition says the

following four conditions have to be satisfied for those three events to be
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mutually independent:

Pr(E1 ∩ E2) = Pr(E1) · Pr(E2)

Pr(E1 ∩ E3) = Pr(E1) ∩ Pr(E3)

Pr(E2 ∩ E3) = Pr(E2) ∩ Pr(E3)

Pr(E1 ∩ E2 ∩ E3) = Pr(E1) · Pr(E2) · Pr(E3).

So, for three events to be mutually independent we need that each pair of
events is independent (this is the first three equations above), but addition-
ally the probability of the intersection of all of the events must equal the
product of the probabilities of the three individual events.

In the case of four events E1, E2, E3, and E4, we have the following
eleven conditions:

Pr(E1 ∩ E2) = Pr(E1) · Pr(E2)

Pr(E1 ∩ E3) = Pr(E1) · Pr(E3)

Pr(E1 ∩ E4) = Pr(E1) · Pr(E4)

Pr(E2 ∩ E3) = Pr(E2) · Pr(E3)

Pr(E2 ∩ E4) = Pr(E2) · Pr(E4)

Pr(E3 ∩ E3) = Pr(E3) · Pr(E4)

Pr(E1 ∩ E2 ∩ E3) = Pr(E1) · Pr(E2) · Pr(E3)

Pr(E1 ∩ E2 ∩ E4) = Pr(E1) · Pr(E2) · Pr(E4)

Pr(E1 ∩ E3 ∩ E4) = Pr(E1) · Pr(E3) · Pr(E4)

Pr(E2 ∩ E3 ∩ E4) = Pr(E2) · Pr(E3) · Pr(E4)

Pr(E1 ∩ E2 ∩ E3 ∩ E4) = Pr(E1) · Pr(E2) · Pr(E3) · Pr(E4)

A succinct way to say this is that for four events to be mutually independent,
we need that all collections of three events are mutually independent (this
is the first ten conditions), and then there’s one more condition that the
probability of the quadruple intersection is the product of the probabilities
of all of the events.

Example 6.14.
Imagine we have two distinguishable fair, six-sided dice, say one is
blue and one is red. We roll both dice simultaneously and record the
values on each die. Let B3 be the event that we roll three on the blue
die; R4 the event we roll four on the red die; and S7 the event that the
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sum of the two dice is seven.

(a) Are all pairs of two events (B3 and R4; B3 and S7; R4 and S7)
independent?

(b) Are all three events mutually independent?

(a) Let’s first note that Pr(B3) = 1/6 and Pr(R4) = 1/6, and making a
table of all the ways to roll two dice and get a sum of seven will
show Pr(S7) = 1/6 as well:

Blue Red
6 1
5 2
4 3
3 4
2 5
1 6

So, of the thirty-six ways to roll the two dice, six correspond to
having a sum of seven, and Pr(S7) = 6/36 = 1/6. Now let’s compute
conditional probabilities to see if the events are independent or
not:

Pr(B3|R4) =
Pr(B3 ∩R4)

Pr(R4)
=

1/36

1/6
=

1

6
= Pr(B3)

Pr(B3|S7) =
Pr(B3 ∩ S7)

Pr(S7)
=

1/36

1/6
=

1

6
= Pr(B3)

Pr(R4|S7) =
Pr(R4 ∩ S7)

Pr(S7)
=

1/36

1/6
=

1

6
= Pr(R4)

Thus all pairs of the three events are independent: each of our
three events is independent for each other one.

(b) Mutual independence requires the three conditions from part (a)
to be satisfied, and one more condition. We need to see if Pr(B3∩
R4 ∩ S7) equals Pr(B3) · Pr(R4) · Pr(S7) or not. Notice

Pr(B3 ∩R4 ∩ S7) =
1

36
,
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however

Pr(B3) · Pr(R4) · Pr(S7) =
1

6
· 1

6
· 1

6
=

1

216

Hence the three events are not mutually independent!

6.8 Relating probabilities of intersections

and unions

At this point we have some formulas for computing probabilities of unions
and intersections of events, provided the events satisfy some special condi-
tions.

For example, we know that if a collection of events E1, E2, ..., En are
pairwise disjoint (i.e., if Ei ∩ Ej = ∅ for any two distinct indices i and j),
then

Pr(E1 ∪ E2 ∪ · · · ∪ En) = Pr(E1) + Pr(E2) + · · ·+ Pr(En).

We also know that if a collection of events E1, E2, ..., En are mutually
independent, then

Pr(E1 ∩ E2 ∩ · · · ∩ En) = Pr(E1) · Pr(E2) · . . . · Pr(En).

It can sometimes be convenient to relate these two different formulas, and
de Morgan’s laws (see Section 2.6) give us a way to relate unions and inter-
sections by taking complements.

First we note that we can use de Morgan’s laws to show that if E and
F are independent events, then Ec and F c must be independent as well.

Lemma 6.3.
If E and F are two independent events in a sample space Ω, then

their complements Ec and F c are independent as well.
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Proof.
Assume E and F are independent. We want to show Ec and F c are
independent by checking if Pr(Ec|F c) equals Pr(Ec). We will simply
write out the definition of conditional probability, use de Morgan’s
laws to turn the intersection into a union, and then apply inclusion-
exclusion to find the probability of that union, and finally just do some
basic algebra to manipulate this expression.

Pr(Ec|F c) =
Pr(Ec ∩ F c)

Pr(F c)

=
Pr((E ∪ F )c)

Pr(F c)

=
1− Pr(E ∪ F )

Pr(F c)

=
1− (Pr(E) + Pr(F )− Pr(E ∩ F ))

Pr(F c)

=
1− (Pr(E) + Pr(F )− Pr(E) · Pr(F ))

Pr(F c)

=
1− (Pr(F ) + Pr(E) · (1− Pr(F )))

Pr(F c)

=
1− Pr(F )− Pr(E) · (1− Pr(F ))

Pr(F c)

=
Pr(F c)− Pr(E) Pr(F c)

Pr(F c)

=
Pr(F c) · (1− Pr(E))

Pr(F c)

= 1− Pr(E)

= Pr(Ec)

The previous lemma extends to mutually independent events and the
proof is simply induction with the base case being independence of two
events, which is supplied by Lemma 6.3. We won’t give the proof here
because it’s tedious to write down, but that’s the basic idea.
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Lemma 6.4.
If E1, E2, ..., En are mutually independent events in a sample space Ω,

then the complements Ec
1, Ec

2, ..., Ec
n are also mutually independent.

This is convenient because de Morgan’s laws tell us that unions become
intersections when we take complements, and if the events are mutually
independent then we can calculate the probability of the intersection easily.

Corollary 6.5.
If E1, E2, ..., En are mutually independent events in a sample space

Ω, then

Pr(E1 ∪ E2 ∪ · · · ∪ En) = 1− Pr(E1)c · Pr(E2)c · . . . · Pr(En)c

Exercise 6.8.
Prove Corollary 6.5 by writing Pr(E1 ∪ E2 ∪ · · · ∪ En) in terms of its
complement, applying de Morgan’s law, and then using Lemma 6.4.

Example 6.15.
Suppose a seam on the wing of a certain type of aircraft has twenty-five
rivets. For safety reasons, if any one of the rivets is defective then the
whole seam has to be reworked. Assume the event a rivet is defective is
mutually independent from all the other rivets being defective. If 20%
of seams have to be reworked, what is the probability an individual
rivet is defective?

Let Ri denote the event the i-th rivet (1 ≤ i ≤ 25) is defective.
We’re told in the statement of the problem that the probability any
one rivet on the seam is defective (i.e., if rivet 1 is defective, or rivet
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2 is defective, or rivet 3 is defective, ...) is 0.2:

Pr(R1 ∪R2 ∪ · · · ∪R25) = 0.2.

From this we want to compute Pr(Ri). Since the rivets are mutually
independent, we can apply Corollary 6.5 to rewrite Pr(R1 ∪ · · · ∪R25)
as

Pr(R1 ∪ · · · ∪R25) = 1− Pr([R1 ∪ · · · ∪R25]c)

= 1− Pr(Rc
1 ∩ · · · ∩Rc

25)

= 1− Pr(R1)c · . . . · Pr(Rc
25)

Now, assuming all rivets have the same probability of being defective,
we can write this as

Pr(R1 ∪ · · · ∪R25) = 1− (Pr(Ri)
c)25

for any rivet. We know this equals 0.2, however, and so

1− (Pr(Rc
i ))

25 = 0.2

=⇒ − (Pr(Rc
i ))

25 = −0.8

=⇒ (Pr(Rc
i ))

25 = 0.8

=⇒ Pr(Rc
i ) =

25
√

0.8

=⇒ Pr(Ri) = 1− 25
√

0.8 ≈ 0.008886

So, an individual rivet is defective about 0.89% of the time.

Remark.
Notice that the probability of a defective rivet in the example above
is not 0.008, which would be 0.2/25. That is, Pr(R1 ∪ · · · ∪ R25) 6=
25 Pr(Ri). The issue of course is that these events are not mutually
disjoint: rivet 1 and rivet 2 can both be defective, meaning R1∩R2 6= ∅.
In fact, if two events are independent (such as our Ri events in the
example above) and have positive probability, they can not be disjoint
by Exercise 6.6.
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6.9 Practice problems

Problem 6.1.
Suppose that one morning while getting ready for class you are in a hurry,
not paying attention to what you’re doing, and simply reach into your sock
drawer and pull out two random socks. Supposing your sock drawer has
twelve white socks, six black socks, four brown socks, and four blue socks.
(These are individual socks, not pairs.)

What is the probability both socks are blue, given that you grabbed two
socks of the same color?

Problem 6.2.
Suppose that E and F are two events in some sample space S where P (E) =
2/5, P (F ) = 3/10, and P (E ∪ F ) = 1/2. What is P (E|F )?

Problem 6.3.
Suppose an urn contains 100 marbles which are labelled 1 through 100. You
reach into the urn and pull out one marble. Let E be the event that the
marble you pulled out has a label which is an even number, and F the event
the marble you pull out has a label which is a multiple of five. Are E and
F independent events?

Problem 6.4.
At a certain high school, 30% of students play soccer, 10% play football, and
25% play basketball. Suppose that, of the students that play both football
and soccer, 5% also play basketball; of the students that play soccer, 10%
play football.

What is the probability a randomly selected student plays all three
sports?

Problem 6.5.
Suppose that the population of the United Kingdom is split up as follows:
60 percent of the population is English, 20 percent is Scottish, 15 percent is
Northern Irish, and 5 percent is Welsh. Of these, 15% of the English have
red hair, 75% of the Scottish have red hair, 65% of the Northern Irish red
hair, and 30% of the Welsh have red hair.

If a random redhead from the UK is selected, what is their nationality
most likely to be? What is the second most likely nationality?

Problem 6.6.
Suppose a particular course is a requirement for all math majors, but can
not be taken by freshmen. Suppose that 20% of math majors are freshmen,
30% are sophomores, 25% are juniors, and 25% are seniors. Suppose also
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that one third of sophomores are currently enrolled in the course, half of
juniors are currently enrolled in the course, and one fourth of seniors are
enrolled in the course.

(a) What percentage of math majors are currently enrolled in the course?

(b) What is the probability a randomly selected student in the course is a
junior?

Problem 6.7.
Suppose 15% of mathematics majors at a given university go on to work in
finance; 5% of computer science majors at this university go into finance;
10% of physics majors go into finance; and 3% of students from other ma-
jors ultimately go into finance. Assume that 5% of the students at this
university major in mathematics, 10% major in computer science, and 3%
major in physics. If a random graduate of this university working in finance
is selected, what is the probability they were a mathematics major?

Problem 6.8.
A manufacturer of running shoes has plants in South Korea, Australia, and
Venezuela. South Korea produces 60 percent of the shoes, Australia 20
percent, and Venezuela 20 percent. They make 2 types of shoes at each
plant, a racing shoe and a training flat. The production at each plant is
allocated as shown in the table. Suppose that these shoes are randomly
distributed in stores in the United States and that you go into a store and
buy a training flat. What is the probability that is came from South Korea?

Plant Racing Training
South Korea 0.5 0.5
Australia 0.25 0.75
Venezuela 0.4 0.6
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7
Introduction to Random Variables

La mathématique est l’art de donner le
même nom à des choses différentes.
Mathematics is the art of giving the same
name to different things.

Henri Poincaré
L’avenir des mathématiques

7.1 The idea of a random variable

In many experiments we don’t really care about the exact outcome of the
experiment, but rather some quantitative value determined by that out-
come. For example, if we imagine playing a game of darts on a normal dart
board which is divided up into regions worth various points, we don’t really
care what exact point our dart hits; what we care about is the number
of points we get. In a game where you roll dice, you may not care about
the exact values of the dice you roll, but only the sum of those values.
(E.g., if you roll three dice you may care that you roll a total of 13, but
whether that’s from rolling (6, 3, 4), or (5, 2, 6), or (1, 6, 6) doesn’t really
matter.) The mathematical formulation of this idea of having a numerical
value determined by a random experiment is called a random variable.

To be precise, a random variable associated to an experiment with
sample space Ω is simply a function whose domain (the set of inputs to the
function) is Ω and whose codomain (the set of possible outputs) is the set of
real numbers, R. We usually denote random variables with capital letters
towards the end of the alphabet like X, Y , or Z.

The name random variable may seem strange as there is nothing “ran-
dom” about the function itself – it’s a normal, deterministic function. The
idea, though, is that we will perform our experiment and plug the outcome
of that experiment (which is random) into the function. In this way we
have a random number that depends on the outcome of our experiment.

Example 7.1.
Suppose three coins are flipped simultaneously. The sample space of
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this experiment consists of eight simple events,

Ω = {TTT, TTH, THT, THH, HTT, HTH, HHT, HHH}.

Consider the function X : Ω → R which associates to each simple
event the number of heads:

X(TTT) = 0

X(TTH) = 1

X(THT) = 1

X(THH) = 2

X(HTT) = 1

X(HTH) = 2

X(HHT) = 2

X(HHH) = 3

Thus we have a function which takes an outcome of our experiment
and associates to that outcome a number. Since we don’t know what
the outcome of the experiment will be beforehand, we don’t know what
the output of our function will be. In this way the function gives us a
random number.

Example 7.2.
Suppose we take one coin and flip it repeatedly until we get a heads on
the coin, and consider the random variable that tells us the number
of flips required to get that first heads. The sample space of this
experiment is

Ω = {H, TH, TTH, TTTH, TTTTH, ...}
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Our random variable X : Ω→ R in this case would be

X(H) = 1

X(TH) = 2

X(TTH) = 3

X(TTTH) = 4

X(TTTTH) = 5

...

Example 7.3.
The acidity of soil can affect the health of any vegetables grown in

that soil, and for this reason a farmer may be interested in measuring
how acidic the soil in their field is. To test this, the farmer may go
into their field, take a sample sample of soil, and then determine the
pH of the soil using a pH meter. We can interpret this as a random
variable: the experiment being performed is taking a random sample
of soil from the field, and the number we associate to the outcome of
this experiment is the measured pH. (By definition, pH is a number
between 0 and 14.)

Example 7.4.
Imagine a factory produces lightbulbs which fail after a certain life-

time. (That is, the lightbulbs don’t last forever. They burn for a while,
and then go out. The amount of time the lightbulb lasts, meaning the
number of hours the lightbulb is turned on before it burns out, is the
lifetime.) We may perform an experiment where we select a random
lightbulb produced by this factory, turn it on, and then record how
long it the lightbulb lasts before burning out. The sample space of
this experiment would be the set of all lightbulbs produced by the
factory, and the random variable is the function which associates to
each lightbulb its lifetime.
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7.2 Discrete versus continuous

For our purposes, we will think about random variables being separated
into two basic types called discrete and continuous. The difference between
the two depends on the range of the random variable.

Remark.
The codomain of our random variables is always the set of all real
numbers, but the range is the set of real numbers that area actually
acheived as outputs of the function.

A random variable X : Ω→ R is called discrete if either of the follow-
ing conditions is satisfied:

• The range of X is finite, or

• The range of X is infinite, but the values in the range can be ordered
as the first value, second value, third value, and so on.

The random variables in Example 7.1 and Example 7.2 are both discrete. In
Example 7.1 the range is finite, whereas in Example 7.2 the range is infinite
but there’s a well-defined first outcome, second outcome, third outcome,
and so on.

A random variable X : Ω → R is called continuous if the range of
the function is an interval of the real line. Here we allow the interval to be
closed (such as [a, b]), or open (such as (a, b)), or half-open (such as [a, b));
it can be bounded (such as [a, b]), or unbounded (such as (a,∞), (−∞, b],
(−∞,∞), ...). The important thing is that there is an infinite range of
values, and this range is too big to say there’s a first element, a second
element, and so on.

In Example 7.3, the pH measured can be anything in the interval [0, 14],
and so this is a continuous random variable. In Example 7.4, the lifetime
of a lightbulb is a continuous random variable with values in the interval
[0,∞) if we believe the lifetime of a lightbulb could be arbitrarily long. If
we had some reason to know that a lightbulb can’t last more than, say, 10
years, then we could limit the range of values to [0, 87600]. Either way, this
is also a continuous random variable. We

Ultimately we are interested in computing the probability a random
variable will take on a given value or a range of values. E.g., we may want
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to know the probability we flip at least two heads, or the probability the
pH of a soil sample is between 5.8 and 6.8. We will first discuss how to
compute these probabilities in principle, in a way that will work for both
discrete and continuous random variables. Later on we will see there are
often simpler methods for specific types of random variables, but let’s get
the basic idea out of the way first.

Recall from Section 3.4 that given any function f : A→ B between two
sets, we can associate a subset of A to each subset of B. In particular, if
E ⊆ B, the preimage of E under the function f : A → B is the set of
all elements in A which f maps to an element of E. This set is (somewhat
unfortunately) denoted f−1(E):

f−1(E) = {a ∈ A
∣∣ f(a) ∈ E}.

To have a concrete example, consider the random variable from Exam-
ple 7.1. To each outcome, we associate a number by counting the number
of heads. We can think of this as a function X : Ω → R. The preimage of
the set {2, 3} ⊆ R, denoted X−1({2, 3}), is the set of outcomes which result
in two or three heads.

In the figure below, the red region represents the set {2, 3}, and the blue
region represents its preimage.

TTT

TTH

THT

THH

HTT

HTH

HHT

HHH

0

1

2

3
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Remark.
Notice that the preimage could be empty! In the example above,
X−1({4}) would be the empty set since there’s no way to flip three
coins and get four heads.

Now notice that X−1({2, 3}) is a subset of the sample space Ω, and
so it’s something we can calculate the probability of. The probability the
output of X is 2 or 3 is Pr(X−1({2, 3}) which we know is 1/2.

7.3 Probability the random variable takes

on a given value

Given a random variable X associated to an experiment with sample space
Ω, the probability X gives us a value in the set E ⊆ R is Pr(X−1(E)).
Thus we convert sets of real numbers we are interested in into events in the
sample space whose probabilities we can compute.

Sometimes we will be a little bit lazy with the notation and write
Pr(X−1(E)) simply as Pr(X ∈ E), or Pr(X = k) for Pr(X−1({k})), or
Pr(a ≤ X ≤ b) for Pr(X−1([a, b])), but the idea is always the same: to find
the probability our random variables gives us a number in a given subset
of the real line, we look at the preimage of that set to get an event in
our sample space and then calculate the probability of that event. That
is, to find the probability the random variable X gives us a value in the
interval [a, b] (i.e., the probability a ≤ X ≤ b) we look at the set of all out-
comes of the experiment which X sends into the interval (i.e., the preimage
X−1([a, b])), and compute the probability of this event. Technically should
be denoted Pr(X−1([a, b])), but sometimes it’s convenient to write this as
Pr(a ≤ X ≤ b) since this really describes what we’re interested in: the
probability the random variable X takes on a value between a and b.

Example 7.5.
Consider throwing darts randomly at a dart board where the board

is separated into regions and if the dart lands in a given region, the
player is awarded a specified number of points. Suppose the dart board
is broken into these regions as indicated below.
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The player scores four points, for example, if they land in either of the
two sectors labelled by 4 (one is a large blue region and one is a small
purple region). How do we find the probability the player scores a
particular value? Assuming the player is just as likely to hit any point
on the dartboard as any other point, we find the area of the region
which gives the the given number of points, divided by the total area
of the board.

To be concrete, let’s suppose the dart board has a radius of one
unit, and the inner purple circle has a radius of

√
1/3 units. Since

the board is divded into twelve sectors, the area of each sector (which
consists of a blue part and a purple part) is π/12. Thus the area of each
purple region is π/36, and the area of each blue region is π/18. (Since
the purple and blue regions are 1/3 and 2/3 of each sector, respectively.)

The probability the player scores four points is then equal to

π/36 + π/18

π
=

3

36
=

1

12
,
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and the probability the player scores three points is

π/18

π
=

1

18
,

and the probability the player scores twenty points is

π/36

π
=

1

36
.

Here the random variable is the function that associates to each
point on the board the number of points the player scores when their
dart lands at that point. To find the probability of getting a certain
score, we look at the the set of all points on the board which give us
that score (these are the blue and purple wedges above). These wedges
are some special events in our sample space, and so we can compute
the probability of these events, and this gives us the probability of
getting a particular score.

Exercise 7.1.
Is the random variable indicated in Example 7.5 discrete or continu-
ous?
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7.4 Practice problems

Problem 7.1.
Consider the following experiment: we roll a ball down a road and measure
how far the ball travels. This measurement of the distance the ball travels
is a random variable. Is this random variable discrete or continuous?

Problem 7.2.
Suppose we roll a ball down a road and measure how far the ball travels,
rounded to the nearest integer. For instance, if the ball rolls 15.6723 feet,
we round that up to 16. Is this random variable discrete or continuous?

Problem 7.3.
Imagine a game of darts where you score points based on how close the dart
lands to the bullseye of the dart board. If the dart lands at the bullseye
you are awarded 100 points, and the points scored decrease linearly down
to 0 points if the dart hits the edge of the board. (If the board has radius
r and your dart lands distance d from the origin, this means the number of
points scored is 100 r−d

r
.) Is this random variable discrete or continuous?



8
Discrete Random Variables

There should be no such thing as boring
mathematics.

Edsger Dijkstra

In the last chapter we mentioned that, for our purposes in this class,
we think of random variables as coming in two different flavors: discrete
and continuous. Though the basic ideas of random variables are the same
regardless of which type of random variable we have, in practice the way
we do computations with these random variables often depends on whether
the random variable is discrete or continuous. In this chapter we focus on
discrete random variables and will turn our attention to continuous random
variables later.

8.1 The probability mass function

Suppose X : Ω → R is a discrete random variable. If we only care about
the value of the random variable and not the underlying experiment, we
can think of the random variable as giving us a way of choosing a ran-
dom real number, and we might like to know the probability of choosing a
particular real number. We can introduce a function called the probability
mass function of X which tells us exactly this information. To be precise,
the probability mass function , often abbreviated pmf , of a discrete
random variable X : Ω→ R is a function p : R→ R defined as follows:

p(x) = Pr(X = x) = Pr(X−1(x)).

That is, p(x) tells us the probability the random variable X will output a
given real number x.

Example 8.1.
Consider the random variable which counts the number of heads that

are seen when a fair coin is flipped three times, as in Example 7.1
from the previous chapter. We have already seen that if Ω is the set
of all possible three-flip sequences of the coin, then X : Ω→ R is the
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function

X(TTT) = 0

X(TTH) = 1

X(THT) = 1

X(THH) = 2

X(HTT) = 1

X(HTH) = 2

X(HHT) = 2

X(HHH) = 3

The probability mass function is the function which tells us how likely
each possible output is. Since the sample space consists of eight
equally-likely simple events, we can determine the pmf by simply
counting the number of times each output appears above. That is,
p(0) = 1/8 since only one of the eight possible simple events has zero
heads; p(1) = 3/8 since there are three ways to get one head; p(2) = 3/8
since there are three ways to get two heads; and p(3) = 1/8 since there’s
only one possible way to get three heads.

How many ways are there to get four heads? Since there are only
three coins being flipped, we can’t get four heads so the probability
of getting four heads is zero, and hence p(4) = 0. Similarly, p(5) = 0,
p(6) = 0, p(−2) = 0, p(π) = 0, and so on.

The probability mass function of the random variable is thus the
following function:

p(x) =



1/8 if x = 0
3/8 if x = 1
3/8 if x = 2
1/8 if x = 3

0 otherwise

Example 8.2.
Consider an experiment where a fair coin is tossed repeatedly until it

first lands on heads. Let X be the random variable which counts the
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number of required flips until getting heads. What is the pmf of X?
For each natural number n ∈ N, the pmf is defined by p(n) =

Pr(X−1(n)). I.e., p(n) is the probability of getting the first heads on
the n-th flip. Since there are 2n ways a coin can be flipped n times
(two possible outcomes for each of the n flips), and only one one of
these corresponds to getting the first heads. Thus the probability we
get the first heads on the n-th flip is 1/2n. Thus

p(x) =

{
1/2x if x ∈ N
0 otherwise

Exercise 8.1.
Suppose a coin is weighted so that its probability of coming up heads is
different from its probability of coming up tails; say the probability of
heads is 2/3 and the probability of heads is 1/3. This coin is repeatedly
flipped until the first heads comes up, and the random variable X
records the number of required flips until the first heads. What is
the pmf of X? (Hint: Start off by thinking of small values of X.
What is the probability X = 1? What about X = 2 and X = 3?
Once you understand the small values, see if there’s a pattern you can
generalize.)

Example 8.3.
In Example 7.5 we considered throwing darts at a dart board which

was divided into regions worth various points as indicated below.
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To find the pmf of this random variable we consider the area of the
regions which can score a given number of points. As discussed in
Example 7.5, if the board has radius 1, then the area of each blue
region is π/18 and the area of each purple region is π/36. Hence the
probability of scoring a number that is represented by only a blue
region (this consists only of the odd numbers 1, 3, 5, ..., 11) is 1/18; the
probability of scoring a number that is represented by a blue region
and a purple region (these are the even numbers 2, 4, 6, ..., 12) is
1/12; and the probability of scoring a number that is represented only
by a purple region (these are the values 14, 16, 18, ..., 24) is 1/36. Of
course, we can not score points equal to a number not represented on
the board, so the probability of any such number is zero. Putting all of
this together, the pmf of the random variable which associates scores
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to points on the board is

p(x) =



1/18 if x = 1
1/12 if x = 2
1/18 if x = 3
1/12 if x = 4
1/18 if x = 5
1/12 if x = 6
1/18 if x = 7
1/12 if x = 8
1/18 if x = 9
1/12 if x = 10
1/18 if x = 11
1/12 if x = 12
1/36 if x = 14
1/36 if x = 16
1/36 if x = 18
1/36 if x = 20
1/36 if x = 22
1/36 if x = 24

0 otherwise

Notice that if the pmf of a random variable is known, we can essentially
forget about the underlying experiment: everything you need to know about
the random variable is contained in its pmf. It is very common for us to work
with random variables in this way, discussing only the pmf and completely
ignoring any underlying experiment. For this reason it would be helpful to
know some basic properties of the pmf that apply for all discrete random
variables regardless of what that underlying experiment may be.

Before giving some basic properties, let’s extend our definition of the
pmf to subsets of R instead of just individual numbers. By definition, the
pmf of a discrete random variable X is given by the equation

p(x) = Pr(X−1(x)).

We can easily extend this to subsets of R by computing the probability of
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the preimage of the subset. That is, for any E ⊆ R we define

p(E) = Pr(X−1(E)).

The way we should interpret this number is that it is the probability the
random variable will give us some value in the set E. For example, using
the pmf in the dart example above, p([1, 5]) should be the probability that
we score between 1 and 5 points. Adding up the areas of the blue and
purple sectors which correspond to one, two, three, four, or five points, we
see this is

p([1, 5]) = 1/3.

The way we calculated this number was by looking at the probability of
scoring one, two, three, four, or five points and adding these probabilities
together – this is exactly the same as adding up the areas of the correspond-
ing blue and purple sectors and dividing by the total area of the board.

The next theorem says, among other things, this type of calculation
works for all discrete random variables and their pmf’s.

Theorem 8.1.
Suppose X : Ω→ R is a discrete random variable with pmf p(x). We

then have the following properties:

1. For every x ∈ R, 0 ≤ p(x) ≤ 1.

2. For any infinite sequence of distinct real numbers x1, x2, x3, ...,
we have

p

(
∞⋃
n=1

{xn}

)
=
∞∑
n=1

p(xn).

3. p(R) = 1

Proof.

1. Recall that for any event E in a sample space Ω, Pr(E) is al-
ways between 0 and 1. Since for each real number x, X−1(x)
is an event, we must have Pr(X−1(x)) is between 0 and 1. But
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Pr(X−1(x)) is exactly p(x) – this is the definition of p(x) – and
so 0 ≤ p(x) ≤ 1.

2. Using our extended definition of p(x),

p

(
∞⋃
n=1

{xn}

)
= Pr

(
X−1

(
∞⋃
n=1

{xn}

))
.

Since the elements of the sequence are assumed to be distinct,
the events X−1({xn}) are disjoint. Using the property that

X−1

(
∞⋃
n=1

{xn}

)
=
∞⋃
n=1

X−1({xn}),

we have a disjoint union of events in Ω. One of the axioms of
the probability function Pr is that the probability of a disjoint
union of events equals the sum of the probabilities of the events,
and so

Pr

(
∞⋃
n=1

X−1({xn})

)
=
∞∑
n=1

Pr(X−1({xn})).

The expression on the left equals p (
⋃∞
n=1{xn}) while the expres-

sion othe right equals
∑∞

n=1 p(xn), and so the result is proved.

3. By our extended definition of the pmf, p(R) is Pr(X−1(R)). No-
tice that X−1(R) = Ω since X sends every element of Ω to some
real number. Thus

p(R) = Pr(X−1(R)) = Pr(Ω) = 1.

Corollary 8.2.
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For the pmf p(x) of any discrete random variable X,∑
x∈R

p(x) = 1.

Proof.
This is really just the third property of Theorem 8.1 but rewritten:

∑
x∈R

p(x) =
∑
x∈R

Pr(X−1(x)) = Pr

(⋃
x∈R

{x}

)
= Pr(R) = 1.

Exercise 8.2.
Suppose X is a random variable with the following pmf:

p(x) =



1/15 if x = −2
1/3 if x = −1
2/15 if x = 0
4/15 if x = 1
1/5 if x = 2

0 otherwise

What is the probability X is positive?

Exercise 8.3.
Verify the pmf from Exercise 8.1 satisfies

∑
x∈R p(x) = 1.

(Hint: Recall there’s a nice formula for the sum of a geometric
series.)
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8.2 The cumulative distribution function

The probability mass function of a discrete random variable tells us the
probability the random variable takes on a given value. Sometimes we are
instead interested in the probability the random variable takes on a range
of values. To determine these probabilities we introduce a new function
similar to the probability mass function called the cumulative distribution
function of the random variable.

The cumulative distribution function , or cdf , of a discrete random
variable X is the function F : R→ R which tells us the probability X ≤ x
for each x ∈ R. That is,

F (x) = Pr(X ≤ x) = Pr(X−1(−∞, x]).

Again, this means that F (x) tells us the probability X is at most equal to
x.

Example 8.4.
In the experiment where a coin is flipped three times and the number
of heads is counted, we had seen in Example 8.1 that the pmf was

p(x) =



1/8 if x = 0
3/8 if x = 1
3/8 if x = 2
1/8 if x = 3

0 otherwise

From this we can determine the cumulative distribution function, F (x).
Notice first that if x < 0, then F (x) = 0: the probability we have less
than zero heads is zero. At x = 0, however, the value of F (x) sud-
denly jumps to 1/8 as F (0) is the probability X ≤ 0 and X = 0 with
probability 1/8.

For values of x in the interval (0, 1), F (x) still equals 1/8 since for
each x satisfying 0 ≤ x ≤ 1, the probability X ≤ x includes the case
X = 0 which has probability 1/8.

Once x reaches 1, value of F (x) instantly jumps again to 1/2. This
is because if X ≤ 1, that includes the both cases X = 0 and X = 1 and
these occur with probabilities 1/8 and 3/8, respectively. Thus Pr(X ≤ 1)
equals 1/8 + 3/8 = 4/8 = 1/2.
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The value of F (x) stays constant for x beween 1 and 2, then at
x = 2 suddenly jumps to F (2) = 7/8 since if X ≤ 2, then X could be
0, 1, or 2 and these possibilities occur with probabilities 1/8, 3/8, and
3/8, and 1/8 + 3/8 + 3/8 = 7/8.

The value of F (x) again remains constant for x between 2 and 3,
then jumps at x = 3 to F (3) = 1. Note that for all x ≥ 3 we have
F (3) = 1 since if x ≥ 3, X ≤ 3 includes all possible values of X.

Putting all of the above together we have

F (x) =



0 if x < 0
1/8 if 0 ≤ x < 1
1/2 if 1 ≤ x < 2
3/8 if 2 ≤ x < 3

1 if x ≥ 3

Example 8.5.
In the experiment of Example 8.2, a coin is flipped until heads appears
and the random variable X counts the required number of flips. We
saw in that example that the pmf was given by 1/2n for X = n, where n
was a positive integer, and zero everywhere else. This tells us that the
cdf will be zero everywhere to the left of 1, and then instantly jumps
to 1/2 at x = 1. The cdf remains constains between 1 and 2, and then
jumps to 1/2 + 1/4 = 3/4 at x = 2. Similarly, the cdf remains constant
between 2 and 3, then instantly jumps to 1/2 + 1/4 + 1/8 = 7/8 at x = 3.

Continuing this pattern, we see the cdf jumps up by smaller and
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smaller amounts at each positive integer, and in fact

F (x) =



0 if x < 1
1/2 if 1 ≤ x < 2
3/4 if 2 ≤ x < 3
7/8 if 3 ≤ x < 4
15/16 if 4 ≤ x < 5
...
2n − 1/2n if n ≤ x < n+ 1
...

Exercise 8.4.
Compute the cdf of the random variable from Example 8.3.

Just as the pmf has some nice properties that hold for every discrete
random variable, the cdf also has properties that always hold.

Theorem 8.3.
Let X be any discrete random variable and let F : R→ R denote the

cdf of X. Then we have the following:

1. F is an increasing function,

2. lim
x→−∞

F (x) = 0,

3. lim
x→∞

F (x) = 1, and

4. F is continuous from the right; i.e., F (x) = lim
a→x+

F (a).
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Remark.
The proof of Theorem 8.3 is a bit technical, so this is just a quick
reminder that you can skip over reading the proofs if you feel they’re
too difficult: you’ll never be asked to recite one of these proofs on a
quiz or exam. The proofs are provided so that if you’re the kind of
student that’s curious about why these theorems are true, the details
are provided if you’re willing to wade through them.

In the proof below we use a fact from calculus that you may not
be aware of: if a limit exists, it is unique. In particular, to calculate
a limit like lim

x→a
f(x), it suffices to consider a sequence of numbers x1,

x2, x3, ... which approach a (so, lim
n→∞

xn = a) and calculate the limit

of f(x) along the values in this sequence:

lim
x→a

f(x) = lim
n→∞

f(xn).

This also works for one-sided limits, where for a left-hand limit lim
x→a−

f(x)

we would want a sequence xn which increases to a, and for a right-hand
limit lim

x→a+
f(x) we would want a sequence which decreases to a.

The reason we’re rewriting our limits in terms of sequences like
this is so we can take advantage of Propositions 4.9 and 4.10 which
are stated in terms of sequences.

Proof.

1. Recall that a function F : R → R is called increasing if for
every pair of real numbers x1 and x2 where x1 ≤ x2, we have
F (x1) ≤ F (x2). (In calculus you learned that for differentiable
functions this is the same as saying the derivative is non-negative.
However, the cdf of a discrete random variable is not differen-
tiable, so we have to resort to the definition of increasing given
above.)

We need to show the cdf F of a discrete random variable X is
increasing. Notice that if x1 ≤ x2, then (−∞, x1] ⊆ (−∞, x2].
This meansX−1((−∞, x1]) ⊆ X−1((−∞, x2]). By Proposition 4.3,
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this means Pr(X−1((−∞, x1])) ≤ Pr(X−1((−∞, x1])), but this
exactly means F (x1) ≤ F (x2).

2. By definition,

lim
x→−∞

F (x) = lim
x→−∞

Pr(X−1((−∞, x])).

Notice that since x decreases to −∞, X−1((−∞, x]) forms a
non-increasing sequence of events. By Proposition 4.10 we can
write

lim
x→−∞

Pr(X−1((−∞, x])) = Pr

(
∞⋂
x=1

X−1((−∞,−x])

)

(We reversed the order above to agree with the way Proposi-
tion 4.10 was written.) Now writing

∞⋂
x=1

X−1((−∞,−x]) = X−1

(
∞⋂
x=1

(−∞,−x]

)

and noting
⋂∞
x=1(−∞,−x] = ∅, we see

lim
x→−∞

F (x) = Pr(∅) = 0.

3. The proof of part (3) of the theorem is identical to the proof of
part (2), except that we have a non-decreasing sequence and so
apply Proposition 4.9 and use that Pr(Ω) = 1.

4. Since we’re taking the limit as a goes to x from the right, the
a values are decreasing to x. Letting a1, a2, a3, ... be a de-
creasing sequence of numbers that approaches x, we can apply



CHAPTER 8. DISCRETE RANDOM VARIABLES 161

Proposition 4.10 to write

lim
a→x+

F (a) = lim
n→∞

F (an)

= lim
n→∞

Pr(X−1(−∞, an])

= Pr

(
X−1

(
∞⋂
n=1

(−∞, an]

))
= Pr(X−1((−∞, x]))

= F (x).

What is perhaps more interesting than Theorem 8.3 is that any function
satisfying the three conditions described in that theorem is actually the cdf
of some random variable. In general that random variable may not be
discrete, but the point is that the cdf actually encodes everything about
the random variable: if you know the cdf, you know everything there is to
know about the random variable. In particular, you can recover the pmf of
a discrete random variable from its cdf.

Proposition 8.4.
Suppose F is the cdf of a discrete random variable X. Then the pmf
p of X is given by

p(x) = F (x)− lim
a→x−

F (a).

Remark.
Before proving Proposition 8.4, let’s notice that at the points where
F is continuous, the above expression is equal to zero since the left-
and right-hand limits will equal one another where the function is
continuous. Thus all the non-zero values of the pmf must occur at
discontinuities of F (x). Since F is continuous from the right, this
means the expression above actually measures the “jumps” at these
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discontinuities.

Proof.
In the expression lim

a→x−
F (a), let a1, a2, a3, ... be an increasing sequence

which converges to x. Thus

lim
a→x−

F (a) = lim
n→∞

F (an) = lim
n→∞

Pr(X−1((−∞, an])).

Since an is an increasing sequence, by Proposition 4.9, we have

lim
n→∞

Pr(X−1((−∞, an])) = Pr(X−1

(
∞⋃
n=1

(−∞, an])

)
= Pr(X−1((−∞, x))).

That is,

F (x)− lim
a→x−

F (a) = Pr(X−1(−∞, x])− Pr(X−1(−∞, x)),

but this is the probability of X giving some value less-than-or-equal-
to x minus the probability of X giving a value strictly less-than x,
all that’s left over is the probability X equals exactly x, but this is
precisely p(x).

Example 8.6.
Suppose X is a discrete random variable with the following cdf,

F (x) =



0 if x < −1
1/4 if − 1 ≤ x < 1
3/4 if 1 ≤ x < 2
7/8 if 2 ≤ x < 3

1 if x ≥ 3

What is the pmf of X?
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As stated above, the pmf of X will be zero everywhere except at
the discontinuities of F . The discontinuities of F occur at −1, 1, 2,
and 3. At these values we apply Proposition 8.4 to calculate p(x):

p(−1) = F (−1)− lim
x→−1−

F (x) = 1/4− 0 = 1/4

p(1) = F (1)− lim
x→1−

F (x) = 3/4− 1/4 = 1/2

p(2) = F (2)− lim
x→2−

F (x) = 7/8− 3/4 = 1/8

p(3) = F (3)− lim
x→3−

F (x) = 1− 7/8 = 1/8

Thus the pmf is

p(x) =



1/4 if x = −1
1/2 if x = 1
1/8 if x = 2
1/8 if x = 3

0 otherwise

Exercise 8.5.
Suppose the cdf F of a discrete random variable X is given as follows:

F (x) =



0 if x < 0
1/2 if 0 ≤ x < 1
3/5 if 1 ≤ x < 2
4/5 if 2 ≤ x < 3
9/10 if 3 ≤ x < 3.5

1 if x ≥ 3.5

Compute the pmf p(x) of the random variable.
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8.3 Expected value

As already mentioned, we often think of random variables as giving us a
random real number and forget about the underlying experiment. Some-
times we may want to know what the “average” random number determined
by the random variable is. Notice that, depending on the random variable,
some real numbers may be much more or less likely than others, and so
our notion of average should somehow be aware of these likelihoods. By
weighing the numbers in the average by the likelihood of that number, we
obtain the expected value of the random variable.

If X is a discrete random variable with probability mass function p(x),
the expected value of X, denoted E[X], is the value

E(X) =
∑
x∈R

x p(x).

As p(x) is the probability that the random variable X spits out the value
x, this is the sum of each real number x times the probability we see that
value.

Example 8.7.
Consider again the random variable X which counts the number of
heads obtained in flipping a fair coin three times. We saw in Exam-
ple 8.1 the pmf of this random variable was

p(x) =



1/8 if x = 0
3/8 if x = 1
3/8 if x = 2
1/8 if x = 3

0 otherwise

Since “most” real numbers have p(x) = 0, these don’t contribute to
the sum since x · p(x) will be zero for those terms. This means the
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expected value can be written as

E[X] =
∑
x∈R

x p(x)

= 0 · 1/8 + 1 · 3/8 + 2 · 3/8 + 3 · 1/8

= 3/8 + 6/8 + 3/8

= 12/8

= 3/2

= 1.5

So the “average” output of this random variable is 3/2.

As the previous example shows, this “average” value of a random vari-
able does not need to be a value that the random variable actually takes on.
This might seem odd the first time you see it, so how should you interpret
such a value. Looking at the pmf in the example above, notice that one
heads and two heads are the most likely scenarios, and these each have the
same probabilities. The expected value is right in between these two most
common possibilities since 3/2 = 1.5. If we modified the pmf above so that
X = 1 was more likely than X = 2, this would pull the expected value
down closer to 1 to compensate for the more likely X = 1.

Example 8.8.
Compute the expected value of the random variable with the following
pmf:

p(x) =



1/8 if x = 0
1/2 if x = 1
1/4 if x = 2
1/8 if x = 3

0 otherwise
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Computing E[X] as before we have

E[X] =
∑
x∈R

x p(x)

= 0 · 1/8 + 1 · 1/2 + 2 · 1/4 + 3 · 1/8

= 1/2 + 1/2 + 3/8

= 11/8

= 1.375

Notice how the expected value got pulled down closer to 1 when we
modified the pmf so that X = 1 is more likely than X = 2.

Exercise 8.6.
Suppose X is the random variable which tells you the value of a roll
of a fair, six-sided die. What is the expected value of X?

Exercise 8.7.
Consider an experiment where again a fair, six-sided die is rolled. How-
ever, the sides of this die have values 1, 2, 3, 4, 5, and 100. What is
the expected value of a roll of the die?

Example 8.9.
The grand prize for the PowerBall lottery in February 2018 was

$203,000,000. According to the PowerBall website, the odds of win-
ning the grand prize are one in 292, 201, 388. If this was the only prize
value (so we’re assuming no other prizes, just to make the computa-
tion simpler), what would the expected value of a $2 PowerBall ticket
be?

Here we have two possibilities, we either win the grand prize or we
win nothing. Since we have to spend $2 to buy a ticket, this means
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we either lose two dollars (if we win nothing), or we win $202,999,998
(if we win the grand prize, minus the cost of the ticket). Multiplying
these by the probabilities of each possibility we have

202999998 · 1

292201388
+ (−2) · 292201387

292201388
≈− 1.31

You should interpret the expected value from Example 8.9 as follows: if
you were to play the PowerBall lottery over and over and over again, each
time buying a two dollar ticket and either winning the grand prize (which
is very unlikely) or simply losing your two dollars (much more likely), then
on average you will lose $1.31. That is, you lose your two dollars much
more often than you win the two-hundred million dollars. Of course, if you
played the lottery enough (meaning almost three-hundred million times)
you’d occassionally win, and this balances out all of the times you lost
money so that on average you’re losing $1.31 instead of $2.00.

Exercise 8.8.
Compute the expected value of the random variable X with the fol-
lowing pmf:

p(x) =



7/15 if x = −4
2/15 if x = −2
1/5 if x = 0
1/15 if x = 1
2/15 if x = 3

8.4 Functions of random variables

Before we move on and discuss standard deviation and variance in the next
section, let’s go ahead and make an observation about random variables
which will be helpful later. If X is a random variable defined on a sample
space Ω, then X is by definition a function X : Ω → R. How, suppose
you had another function f : R→ R – just a good, ol’ fashioned “normal”
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function like you’re used to from algebra or calculus, maybe something like
f(x) = x2, f(x) = sin(x), or f(x) = log(|x| + 1). Notice that we could
compose X and f to get a new function: we take a point ω ∈ Ω, plug
it into X to get a real number X(ω), and then we could take that real
number and plug it into f to get another real number, f(X(ω)). Chaining
the functions X and f together like this results in a new function which
takes inputs in Ω and ultimately gives you back a real number – that is,
this is a new random variable! Technically this random variable should be
written as f ◦X, but usually we’ll just denote it f(X) (note the capital X
in the parentheses).

To help this make a little more sense, let’s consider a concrete example.

Example 8.10.
Suppose X is a discrete random variable with the following pmf:

p(x) =


1/2 if x = 1
1/3 if x = 2
1/6 if x = 3

0 otherwise

(Here we take the point of view that the underlying experiment doesn’t
matter: as long as we know the pmf, we know everything we need to
know about the random variable.)

Now suppose f(x) is some “traditional” function, say f(x) = x2 −
3x + 2. Our random variable X above spits out either 1, 2, or 3.
Whatever X gives us we’ll plug into f to get a new value f(X). Notice
if X = 1 or X = 2, the value of f(X) will be zero (since 12−3 ·1+2 =
22 − 3 · 2 + 2 = 0). If X = 3, then the value of f(X) will be 2.

So, f(X) is a random variable that spits out either 0 or 2. Notice
the probability f(X) = 0 would be the probability X = 1 or X =
2, since these are the only outputs of X which give f(X) equal to
zero. From the pmf above, this means the probability f(X) = 0 is
1/2 + 1/3 = 5/6. Similarly, the probability f(X) = 2 would be the
probability X = 3 and so must equal 1/6. That is, the pmf of the
random variable f(X), which we’ll denote pf (x) to distinguish it from
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the pmf of X above, is

pf (x) =


5/6 if x = 0
1/6 if x = 2

0 otherwise

Once we have a random variable, we may want to know what its expected
value is.

Example 8.11.
What is the expected value of the random variable f(X) from Exam-

ple 8.10?
Since we computed the pmf of f(X) in Example 8.10, we can easily

compute the expected value:

E[f(X)] = 0 · 5/6 + 2 · 1/6 = 1/3.

Based on what we’ve done thus far, you might reasonably assume that
to find the expected value of f(X) you’d need to determine the pmf of
f(X). In the example above this wasn’t too hard, but in more involved
examples this can actually be really difficult. In particular, to find the pmf
of f(X), for each possible output x we’d have to find the probability f(X)
equals x (by definition of the pmf). In general, to do this we would have
to find all possible outputs of X which when plugged into f give us x, and
this is usually very hard.

In particular, if p(x) is the pmf of the original random variable X and
we wanted to find the pmf pf (x) of the “new” random variable f(X) we get
after composing with f , we would have to compute the following:

pf (x) = Pr(f(X) = x) = Pr(X ∈ f−1(x)) = Pr(X−1(f−1(x)).

The issue is that f−1(x) could consist of several possible values. Say, for
the sake of example, f−1(x) = {w1, w2, ...} for some (possibly infinite) set
of values of wi. Now we still have to find the values of Ω which X maps to
each wi:

X−1(f−1(x)) = X−1({w1, w2, ...}) =
⋃

w∈f−1(x)

X−1(w)
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Now supposing this collection of w values is not “too infinite”1, we have
that the pmf of f(X) is

pf (x) =
∑

y∈f−1(x)

p(y).

This might lead you to believe that finding E[f(X)] is going to be hard in
general since it’s usually going to be difficult to compute pf (x) using the
expression above. Luckily, however, there’s a trick that let’s us sidestep
having to compute the pmf of f(X).

Theorem 8.5.
If X is a discrete random variable with pmf p(x) and f is any function
f : R→ R, then

E[f(X)] =
∑
x∈R

f(x)p(x)

Before giving the proof of Theorem 8.5, let’s notice why this is such a
nice theorem to have. As we indicated before the theorem, finding the pmf
of a function f(X) of a random variable X is generally going to be difficult.
Theorem 8.5 says that we don’t have to do that hard work, however. In
fact, we can compute E[f(X)] with a formula very similar to the formula
for E[X]: all we have to do is change the factor of x in

∑
x∈R x p(x) to an

f(x).

Proof of Theorem 8.5.
Since X is a discrete random variable, so is f(X), and so f(X) must
have some pmf which we’ll denote pf (x). As noted above, this pf (x)
is given by the formula

pf (x) =
∑

y∈f−1(x)

p(y)

where p is the pmf of X. Plugging this into the “usual” equation for

1In particular, assuming for each x ∈ R, X−1(w) is a countable set. This is a
technical assumption we need; don’t worry about it if it doesn’t make sense to you.
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the expected value gives us

E[f(X)] =
∑
x∈R

x pf (x)

=
∑
x∈R

x
∑

y∈f−1(x)

p(y)

=
∑
x∈R

∑
y∈f−1(x)

xp(y)

Now we do something very simple, but a little bit clever. Since y is in
the preimage of x, this means f(y) = x and so we can rewrite the x
above as f(y) to obtain

E[f(X)] =
∑
x∈R

∑
y∈f−1(x)

f(y)p(y).

Now simply notice that each y occurs exactly once in the sums above:
in particular, y occurs once in the inner sum when x in the outer
sum equals f(y). That is, the above double sum can be written more
simply as a single sum,

E[f(X)] =
∑
y∈R

f(y)p(y).

Of course, whether we call the variable y or x or , or anything else
doesn’t really matter, and hence writing the y above as x gives the
result.

Example 8.12.
To verify the formula from Theorem 8.5 above works, let’s recompute
the expected value from Example 8.11 using the expression from The-
orem 8.5.
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Recall X was the discrete random variable with pmf

p(x) =


1/2 if x = 1
1/3 if x = 2
1/6 if x = 3

0 otherwise

and f(x) = x2 − 3x+ 2. Now we compute

E[f(X)] =
∑
x∈R

f(x)p(x)

= f(1) p(1) + f(2) p(2) + f(3) p(3)

= 0 · 1/2 + 0 · 1/3 + 2 · 1/6

= 1/3

which was the same as the expected value computed in Example 8.11
using the pmf of f(X).

For some very simple types of functions f(x) we can actually give an
even simpler shortcut for computing E[f(X)]. If f(x) is a function whose
graph is a line (such functions are called affine functions2), i.e., if f(x) has
the form

f(x) = mx+ b

for some constants m and b, then

E[f(X)] = E[mX + b] = mE[X] + b.

That is, we can split up expected values by breaking up sums and pulling out
constants. If you write out the for E[f(X)] using Theorem 8.5 and perform
the tiniest bit of algebra and one earlier property of random variables, you
can easily justify the expression above, and so we leave the proof of this
fact as an exercise.

2You might be tempted to call such an f(x) a linear function since its graph is a line,
but in some areas of math, such as linear algebra, the expression “linear function” would
mean something more specific, so it’s best if we avoid calling this a linear function.
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Exercise 8.9.
Show that for any discrete random variable X and any constants m

and b,
E[mX + b] = mE[X] + b.

(Hint: Use Theorem 8.5 and Corollary 8.2.)

8.5 Variance and standard deviation

The expected value of X tells us what the “center” of the values of X is;
one way to think of E[X] is that it is the center of mass of points spread
out on the real line where each point has weight p(x). However, the actual
values that X takes on can be very different from this “center of mass,” as
the next example illustrates.

Example 8.13.
Consider random variables X, Y , and Z with the following pmf’s:

pX(x) =

{
1/2 if x = −1
1/2 if x = 1

pY (x) =


1/4 if x = −2
1/4 if x = −1
1/2 if x = 3/2

pZ(x) =



1/5 if x = −15
1/10 if x = −5
1/2 if x = −3
1/10 if x = 20
1/10 if x = 30

A simple calculation shows that each random variable has the same
expected value of 0.
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Even though each random variable in Example 8.13 has the same ex-
pected value (the same “center of mass”), the actual values the random
variable takes on are distributed around that expected very differently. We
would like to have some way of measuring how far the values the random
variables takes on differ, on average, from the expected value. There are
two related notions of this, the variance and the standard deviation.

Let’s notice that we’re trying to find how far the values of X are from
the expected value E[X]. One natural thing to consider would simply be
the difference, X −E[X]. Note that this quantity is actually a new random
variable. To see this, let’s make one notational simplification: the value
E[X], whatever it happens to be, is just some number, and let’s call that
number µ for the moment. So, we’re interested in X−µ. Notice this is just
the composition f(X) where f(x) = x− µ, and so by the discussion in the
previous section we have a random variable.

Now, we want to know the average of value X − µ, so we might try to
take the expected value of this new random variable and compute E[X−µ].
By Exercise 8.9, we can easily compute this quantity:

E[X − µ] = E[X]− µ.

Keeping in mind µ is really just shorthand for E[X], however, we see this
quantity will always be zero, and so it’s not very helpful for us.

The issue is that X − µ will sometimes be a little bigger than µ (so
X−µ > 0) and sometimes a little bit smaller than µ (so X−µ < 0). Since
µ is the “center” of the data, these positives and negatives perfectly balance
out and always give zero. We can easily fix this by squaring X − µ, since
this forces everything to be positive. That is, we consider the expected
value of (X − µ)2, and this is what we define the variance of X to be.

The variance of a random variable X is the expected value of (X −
E[X])2, and denote this quantity Var(X):

Var(X) = E[(X − E[X])2].

Since it’s easy to get confused with lots of E’s floating around, we often
write µ for E[X] so that we can write the variance as

Var(X) = E[(X − µ)2].

By Theorem 8.5, we can compute the variance using the formula

Var(X) = E[(X − µ)2] =
∑
x∈R

(x− µ)2p(x).
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So, computing the variance is easy to do if we have the pmf of X. Note,
though, that we need to compute µ = E[X] before we can compute Var(X).

As a few first easy examples, let’s go ahead and compute the variance of
the random variables X, Y , and Z from Example 8.13 since we’ve already
computed µ = 0 for each random variable.

Example 8.14.
The variance of the random variable X from Example 8.13 is

Var(X) =
∑
x∈R

(x− 0)2pX(x)

= (−1)2 · 1/2 + 12 · 1/2

= 1/2 + 1/2

= 1

This means the average square of the difference between an output of
X and the expected value 0 is 1, which seems completely obvious from
the pmf.

The variance of the random variable Y from Example 8.13 is

Var(Y ) =
∑
x∈R

(x− 0)2pY (x)

= (−2)2 · 1/4 + (−1)2 · 1/4 + (3/2)2 · 1/2

= 1 + 1/4 + 9/8

= 19/8

So the square of the distance between X and 0 is, on average, 19/8.
The variance of the random variable Z from Example 8.13 is

Var(Z) = (−15)2 · 1/5 + (−5)2 · 1/10 + (−3)2 · 1/2 + 202 · 1/10 + 302 · 1/10

= 182

Now, let’s notice something about the variances calculated above. Even
though you may not have a lot of intuition about what these numbers are,
you should notice that the more spread out our data was, the bigger the
variance was. To put this in perspective, let’s consider two more simple
examples.



CHAPTER 8. DISCRETE RANDOM VARIABLES 176

Example 8.15.
Consider the random variable X with pmf

p(x) =

{
2/3 if x = 0.9
1/3 if x = 1.2.

To compute the variance of this random variable, we first need to know
its expected value,

E[X] = 0.9 · 2/3 + 1.2 · 1/3 = 1.

The variance can now be computed as

Var(X) = (0.9− 1)2 · 2/3 + (1.2− 1)2 · 1/3 = 0.02

Example 8.16.
Consider the random variable X with pmf

p(x) =

{
2/3 if x = −99
1/3 if x = 201

To compute the variance, we need the expected value,

E[X] = −99 · 2/3 + 201 · 1/3 = 1.

The variance is thus

Var(X) = (−99− 1)2 · 2/3 + (201− 1)2 · 1/3 = 20000.

Again, the random variables in Examples 8.15 and 8.16 had the same
expected value, but in Example 8.15 the values of X were very close to
that expected value, while in Example 8.16 the values were very far away.
Correspondingly, the variance of Example 8.15 was very small, and the
variance of Example 8.16 was very large. This is the whole point: the
variance gives us a way of comparing two random variables to see if their
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outputs are tightly packed together near the expected value, or if they’re
more spread out.

The variance is often given by another equivalent formula, which we
can get by simply doing some algebra and applying some basic properties
of expected values and pmf’s.

Lemma 8.6.
If X is a discrete random variable with pmf p(x) and expected value
E[X] = µ, then the variance of X is equal to

Var(X) = E[X2]− E[X]2 = E[X2]− µ2.

Proof.

Var(X) =
∑
x∈R

(x− µ)2p(x)

=
∑
x∈R

(
x2 − 2xµ+ µ2

)
p(x)

=
∑
x∈R

(
x2p(x)− 2xµp(x) + µ2

)
p(x)

=
∑
x∈R

x2p(x)−
∑
x∈R

2xµp(x) +
∑
x∈R

µ2p(x)

=
∑
x∈R

x2p(x)− 2µ
∑
x∈R

xp(x) + µ2
∑
x∈R

p(x)

= E[X2]− 2µE[X] + µ2

= E[X2]− 2µ2 + µ2

= E[X2]− µ2

Just to convince ourselves both formulas for the variance give the same
result, let’s compute the variance of a discrete random variable with each
formula.
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Example 8.17.
Consider the random variable X with pmf

p(x) =


1/10 if x = 1
1/4 if x = 4
1/2 if x = 8
3/20 if x = 10

Compute the variance Var(X) using both formulas,

E[(X − µ)2] and E[X2]− µ2.

For each formula we need to first compute µ = E[X]:

µ = E[X] = 1 · 1/10 + 4 · 1/4 + 8 · 1/2 + 10 · 3/20 = 33/5.

Now we compute the variance with each formula:

Var(X) = E[(X − µ)2]

= E[(X − 33/5)2]

= (1− 33/5)2 · 1/10 + (4− 33/5)2 · 1/4 + (8− 33/5)2 · 1/2 + (10− 33/5)2 · 3/20

= 377/50.

Var(X) = E[X2]− µ2

=
(
12 · 1/10 + 42 · 1/4 + 82 · 1/2 + 102 · 3/20

)
− (33/5)2

= 511/10− 1089/25

= 377/50.

Though the numbers in the arithmetic above are ugly, we see that the
two formulas give us the same value in the end.

Since the variance is defined as an expectation (using our earlier for-
mula), we can adapt the formula for expected value of a function of a
random variable,

E[f(X)] =
∑
x∈R

f(x)p(x),
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to get a formula for the variance of f(X):

Var(X) = E[(f(X)− E[f(X)])2]

=
∑
x∈R

[f(x)− E[f(X)]]2 p(x).

This formula is admittedly not as nice as our formula for the expectation of
f(X), although if our function f is simple enough, then the formula above
will simplify nicely.

Proposition 8.7.
If X is a discrete random variable with pmf p(x), then for any con-

stants m and b,
Var(mX + b) = m2Var(X).

Notice that in Proposition 8.7 we are composing the random variable X
with the function f(x) = mx + b. The proposition says two things about
such a composition: if we slide all of the values of X over by a constant,
it doesn’t chance the variance; and if we multiply all the values of X by a
constant, the variance changes by the square of that constant.

Proof of Proposition 8.7.

Var(mX + b) =
∑
x∈R

(mx+ b− E[mX + b])2 p(x)

=
∑
x∈R

(mx+ b−mE[X]− b)2 p(x)

=
∑
x∈R

m2(x− E[X])2p(x)

= m2
∑
x∈R

(x− E[X])2p(x)

= m2E[(X − E[X])2]

= m2Var(X)
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Example 8.18.
If X is the discrete random variable from Example 8.17, then

Var(
√

50X + π
√
e) = 377.

In computing variance, recall that we had to introduce a square in order
to avoid having all of the terms cancel. Because of this square, the numbers
that appear in variance calculations are often much bigger than the kinds
of numbers you might intuitively guess measure the spread of the values
of X. To compensate for this we can do the obvious thing: let’s take the
square root. That is, we often consider the quantity

√
Var(X) instead of

Var(X) directly. This is called the standard deviation of X, and in
many real-world applications people tend to discuss the standard deviation
more than the variance. Even though variance and standard deviation are
essentially the same thing, because of the square root the numbers that
appear as standard deviations are usually more intuitive than the numbers
that appear in variance calculations – but all you’re doing is calculating the
variance first and then taking the square root, so there’s not really any new
math in computing standard deviations.

We often use the lowercase Greek letter sigma, σ, to denote standard
deviations and correspondingly use σ2 to denote the variance. If we are
considering several random variables at once, we may want to keep track
of which standard deviation (or variance) is associated with which variable,
and we may use subscripts to do this. E.g., σX is the standard deviation of
a random variable X, and σ2

Y is the variance of a random variable Y . When
there’s no risk for confusion (i.e., when we’re only discussing one random
variable), we often don’t bother with the subscripts.

Exercise 8.10.
Show that if X is a discrete random variable and if m and b are any
two constants, then

σmX+b = |m|σX .
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8.6 Practice problems

Problem 8.1.
What value of k makes the function below the cdf of a discrete random
variable?

F (x) =



0 if x < 0

k if 0 ≤ x < 1

k + k/3 if 1 ≤ x < 2

k + k/3 + k/9 if 2 ≤ x < 3

k + k/3 + k/9 + k/27 if 3 ≤ x < 4
...∑n−1

j=0
k/3j if n− 1 ≤ x < n where n is a positive integer

...

Problem 8.2.
Suppose that X is a random variable with expected value µ. Compute
E[X − µ].

Problem 8.3.
Suppose X is a discrete random variable with the following probability mass
function:

p(x) =



1/10 if x = 1
1/5 if x = 2
2/5 if x = 3
3/10 if x = 4

0 otherwise

Let f(x) = x2 − 5x+ 4. Compute the expected value of f(X).

Problem 8.4.
Suppose X is a random variable with the following cumulative distribution
function. What is the expected value of X?

F (x) =



0 if x < 0
1/4 if 0 ≤ x < 1
3/8 if 1 ≤ x < 3
3/4 if 3 ≤ x < 5

1 if x ≥ 5
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Problem 8.5.
Suppose X is a random variable with the following cumulative distribution
function. What is the probability mass function of X?

F (x) =



0 if x < 0
1/4 if 0 ≤ x < 1
3/8 if 1 ≤ x < 3
3/4 if 3 ≤ x < 5

1 if x ≥ 5

Problem 8.6.
Compute the variance in the random variable obtained by summing the
rolls of two “normal,” fair six-sided dice.

Problem 8.7.
Consider rolling two six-sided dice which are special in the following way:
one die has three red sides, two blue sides, and one green side; the other
die has two red sides, two blue sides, and two green sides. The two dice are
rolled and then a numerical value is associated to the roll in the following
way: if the same color is rolled on both dice we assign the value 10; if one
die rolls red and one rolls green we assign 8; if one die rolls red and one rolls
blue we assign 4; and if one die rolls blue and one rolls green, we assign 3.
In this way we have a random variable assigned to the roll of the two dice.

(a) Compute the pmf of this random variable.

(b) Compute the expected value of this random variable.

Problem 8.8.
Suppose a car insurance company divides claims from automobile accidents
into four categories: trivial claims where the damage incurred in the ac-
cident is $0; minor claims where the damage incurred is $1000; moderate
claims where the damage is $5000; and serious claims where the damage
is $10,000. Suppose also that 80% of claims are trivial, 10% of claims are
minor, 8% of claims are moderate, and 2% of claims are serious. If each
customer has a $500 deductible, what premium should the company charge
if it wants to average $100 in profit per customer?

Problem 8.9.
Compute the expected value of the random variable X which has the fol-
lowing pdf:

p(x) =

{
1/2n if x = 2n for some positive integer n

0 otherwise
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Problem 8.10.
Suppose that a certain toll bridge charges $1 for each car and $2.50 for each
truck that passes over the bridge. Suppose also that 60% of the vehicles
travelling over the bridge are cars. If twenty-five vehicles cross the bridge
during some given interval of time, what is the expected revenue of the toll?



9
Families of Discrete Random
Variables

Ein Mathematiker, der nicht etwas Poet ist,
wird nimmer ein vollkommener
Mathematiker sein.
A mathematician who is not something of a
poet will never be a good mathematician.

Karl Weierstrass

Many, though not all, of the discrete random variables we often care
about in “the real world” are members of one of several families of random
variables. By a “family” of random variables here, what we mean is that
the random variables have almost the same pmf, but with some minor
differences that depend on a parameter we must specify. I.e., the random
variables in a given family all have the same pmf if we write part of the
pmf as a variable, and the different members of these families correspond
to different values of that variable.

If this all seems a little strange, don’t worry about it right now: the
ideas will become clearer after we’ve seen a few examples.

9.1 Bernoulli

The simplest family of discrete random variables are the Bernoulli random
variables, named after Jacob Bernoulli, a Swiss mathematician that studied
games of chance in the 17th century.

Remark.
Two fun facts: For a long time I assumed that the Bernoulli the
Bernoulli random variables were named after was the same as the
Bernoulli as the Bernoulli principle in physics (the phenomenon that
pressure in a fluid decreases as its speed increases – the principle that
allows airplanes to fly). These are in fact, different people – Daniel
Bernoulli was the physicists. Apparently there was actually a whole
family of Bernoullis, mathematicians, physicists, and engineers that

184
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were all related to each other.
The other fun fact is that the mathematical constant e is named

after another Swiss mathematician, Leonhard Euler, although Jacob
Bernoulli was the first person to study this number, which he realized
popped up in the limit when you look at interest that’s compounded
over smaller and smaller intervals of time.

A Bernoulli random variable is any random variable X that only
takes on one of two values, 0 or 1. The only thing that distinguishes one
Bernoulli random variable from another is the probability of 0 and of 1.

For example, the random variable X with the following pmf,

pX(x) =


1/2 if x = 0
1/2 if x = 1

0 otherwise

is a Bernoulli random variable. So is the random variable Y with pmf

pY (x) =


1/4 if x = 0
3/2 if x = 1

0 otherwise

and so is the random variable Z with pmf

pZ(x) =


3/10 if x = 0
7/10 if x = 1

0 otherwise

In each case our random variable can only take on the values 0 or 1, so
these are the only numbers the pmf gives a non-zero probability to. The
only difference between these random variables is the probability of 0 and 1.
In fact, we only need to know one of these probabilities, since probabilities
have to add up to 1. In particular, if the probability a Bernoulli random
variable X equals 1 is p, for some number 0 ≤ p ≤ 1, then the probability
X equals 0 must be 1− p.

That is, if we X is a Bernoulli random variable and we also know this
value of p, we know the pmf of X must be

pX(x) =


1− p if x = 0

p if x = 1

0 otherwise
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We denote that X is this Bernoulli random variable with parameter p by
writing X ∼ Bernoulli(p).

Remark.
Unfortunately we’re now using the letter p to mean two different
things: sometimes it means the pmf, and sometimes it means the
parameter above. It will usually be clear from context when you see
a p whether it refers to a pmf of a parameter, but if we want to make
things crystal clear we may write pX instead of simply p when we refer
to the pmf of a random variable X.

Since the value of the parameter p tells us everything we need to know
about a Bernoulli random variable, we should be able to express the ex-
pected value and variance of X ∼ Bernoulli(p) in terms of p.

Proposition 9.1.
If X ∼ Bernoulli(p), then E[X] = p and Var(X) = p(1− p).

Proof.
We simply compute the expected value and variance using our formulas
from the previous chapter.

E[X] = 0 · (1− p) + 1 · p = p.

Now that we know E[X] is p, we can compute the variance:

Var(X) = E[X2]− E[X]2

= E[X2]− p2

=
(
02 · (1− p) + 12 · p

)
− p2

= p− p2

= p(1− p).
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In some sense, the Bernoulli random variables are the simplest (and
most boring) random variable imaginable, so you may wonder why we even
bother discussing them. In many applications we only care about whether
an outcome of an experiment occurs or not, and this is easily translated
into a Bernoulli random variable if we agree 1 means the outcome occurred
and 0 means the desired outcome did not occur.

Example 9.1.
Consider the following silly game: A normal, six-sided die is rolled. If
the value that appears on the die is 3 or higher, you win $1, but if
the value that appears is 2 or lower, you win nothing. If you were to
play this game many times, on average how much would you win per
game? What is the standard deviation in your winnings?

This is of course a Bernoulli random variable where success (win-
ning one dollar) corresponds to rolling 3, 4, 5, or 6 on the die, and
failure (winning nothing) corresponds to rolling 1 or 2. The proba-
bility of success is 4/6 = 2/3. That is, the random variable indicating
whether we win or lose the game is X ∼ Bernoulli(2/3).

The average winnings per game, if we were to play several games,
is the expected value. By the formula in the proposition above, the
average winnings per game is 2/3 of a dollar, or (approximately) 66¢.
The variance is p(1− p) = 2/3 · 1/3 = 2/9, so the standard deviation

√
2/3

of a dollar, which is about 47¢.

We’ll see later that many more complicated random variables can be
broken up into Bernoulli random variables. For example, the next family of
random variables we’ll discuss, binomial random variables, can be thought
of as sums of Bernoulli random variables. Once we realize this, we can
often derive properties of these complicated random variables by thinking
of them in terms of Bernoulli random variables. This is a little ways from
where we are right now, but that’s where we’re ultimately heading.

Exercise 9.1.
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Suppose X ∼ Bernoulli(p). Write down the cdf F of X.

9.2 Binomial

The next family of random variables we’ll discuss are the binomial random
variables. A binomial random variable is a discrete random variable
that counts the number of “successes” in a fixed number of independent
trials where each trial is classified as a success or failure, and each trial has
the same probability of success.

We have actually already seen an example of a binomial random variable
earlier in these notes, even though we didn’t refer to it as “binomial” at the
time. In Example 7.1 we considered flipping three coins and counted the
number of heads. If we think of the heads as successes and tails as failures,
then this means our random variable counting the number of heads must
have been a binomial random variable.

Notice that when discussing a binomial random variable there are two
pieces of information we need: the number of trials, and the probability of
success on each trial. In our earlier example counting the number of heads
when flipping three coins, the number of trials is 3 and the probability of
success (heads) is 1/2. When talking about a binomial random variable in the
abstract, we’ll often refer to the number of trials as n and the probability
of success in each trial as p. When then write X ∼ Binomial(n, p) to
indicate X is a binomial random variable where we count the number of
success among n trials, where the probability of success is p. The random
variable counting the number of heads in three flips, for instance, is X ∼
Binomial(3, 1/2).

Given this description of a binomial random variableX ∼ Binomial(n, p),
we can determine what the pmf pX of X must be. Of course, we can’t have
fewer than zero success and we can’t have more than n success since there
are only n trials. So suppose that x is an integer between 0 and n. What
is the probability there are exactly x success in our n trials?

If there are x successes among our n trials, then we must choose which
of the n trials were the successes; i.e., we must choose x of the n trials to
be successes, and the remaining trials will be failures. There are

(
n
x

)
ways

we can make this choice. For each choice we need to get success x times
and failure n − x times; since the probability of each success is p and the
probability of failure is (1 − p), the probability of x successes and n − x
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failures is px(1 − p)n−x, but we have to add up all the ways we could get
those x successes.

Putting all of this together, for an integer 0 ≤ x ≤ n, the probability of
x successes is (

n

x

)
px(1− p)n−x.

Thus the pmf of X ∼ Bernoulli(n, p) is

pX(x) =

{(
n
x

)
px(1− p)n−x if x is an integer, 0 ≤ x ≤ n

0 otherwise

Remark.
Notice that a binomial random variable with one trial is the same as
a Bernoulli random variable: Binomial(1, p) = Bernoulli(p).

Example 9.2.
Suppose the probability of a given basketball player scoring on a free
throw is 0.7. If the player makes free throws, what is the probability
they score on exactly eight of those shots? What’s the probability
they score on at least eight shots?

Here we have a random variable X counting the number of shots
scored when ten shots are made, where each shot is scores with proba-
bility 0.7. This is a binomial random variable with n = 10 and p = 0.7:
X ∼ Bernoulli(10, 0.7). From the formula for the pmf of a binomial
above, the probability of scoring exactly eight of the ten free throws
is thus

Pr(X = 8) = pX(8)

=

(
10

8

)
· (0.7)8 · (0.2)2

≈ 45 · 0.0576 · 0.09

≈ 0.2335

So there is about a 23.35% chance of scoring exactly eight shots.
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To compute the probability of scoring on at least eight shots, we
have to consider the chance that the player scores on eight shots, nine
shots, and ten shots. Plugging these into the pmf for X we have

Pr(X ≥ 8) = Pr(X = 8 or X = 9 or X = 10)

= Pr(X = 8) + Pr(X = 9) + Pr(X = 10)

= pX(8) + pX(9) + pX(10)

=

(
10

8

)
· 0.78 · 0.32 +

(
10

9

)
· 0.79 · 0.31 +

(
10

10

)
· 0.710 · 0.30

≈ 0.2335 + 0.1211 + 0.0285

≈ 0.3831

With any random variable we often want to know the expected value
and the variance of that random variable. If X ∼ Binomial(n, p), then the
pmf of X depends on these parameters n and p, and so it shouldn’t be too
surprising that we ought to be able to find formulas for the expectation and
variance in terms of n and p.

Proposition 9.2.
If X ∼ Binomial(n, p), then E[X] = np.

Proof.
This is just a calculation using our formulas for expectation and vari-
ance, although there are a few bits of algebraic trickery in the com-
putation. We begin by writing out the definition of expected value,
then writing out the definition of

(
n
x

)
in terms of factorials and do one
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simple cancellation to obtain the following:

E[X] =
∑
x∈R

xpX(x)

=
n∑
x=0

x

(
n

x

)
px(1− p)n−x

=
n∑
x=1

x

(
n

x

)
px(1− p)n−x

=
n∑
x=1

x
n!

x!(n− x)!
px(1− p)n−x

=
n∑
x=1

x
n!

x · (x− 1)!(n− x)!
px(1− p)n−x

=
n∑
x=1

n!

(x− 1)!(n− x)!
px(1− p)n−x

Note in the third line above we switched our sum from starting at
x = 0 to x = 1, since the term corresponding to x = 0 gets multiplied
by zero. We then cancelled the x above with one of the x factors in
x! = x · (x− 1)!.

Now we will write n! as n · (n− 1)!, px as p · px−1, and we will write
n−x (which appears twice, once in (n−x)! and once in (1−p)n−x) as
n−1−(x−1). Plugging all of this into the last line of our computation
above gives us

E[X] =
n∑
x=1

n!

(x− 1)!(n− x)!
px(1− p)n−x

=
n∑
x=1

n · (n− 1)!

(x− 1)!(n− 1− (x− 1))!
p · px−1 · (1− p)n−1−(x−1).

This looks complicated, but we will see in a moment that things will
simplify nicely. First we distribute out any constants that don’t de-
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pend on x to write

n∑
x=1

n · (n− 1)!

(x− 1)!(n− 1− (x− 1))!
p · px−1 · (1− p)n−1−(x−1)

=np
n∑
x=1

(n− 1)!

(x− 1)!(n− 1− (x− 1))!
px−1 · (1− p)n−1−(x−1).

Notice that we never have any isolated x’s in the terms above: all x’s
occur as x − 1. If we introduce a new variable w and set w = x − 1,
then we can rewrite the sum above in terms of w and this sum will
start at w = 0 since w = x − 1 and x starts at 0. Since x ends at n,
w will end at n− 1:

np
n∑
x=1

(n− 1)!

(x− 1)!(n− 1− (x− 1))!
px−1 · (1− p)n−1−(x−1)

=np
n−1∑
w=0

(n− 1)!

w!(n− 1− w)!
pw · (1− p)n−1−w

Let’s also introduce a variable m = n− 1, so all the n− 1 terms in our
sum can be replaced by m,

np

n−1∑
w=0

(n− 1)!

w!(n− 1− w)!
pw · (1− p)n−1−w

=np
m∑
w=0

m!

m!(m− w)!
pw · (1− p)m−w.

Now recall the binomial theorem from basic algebraic which states for
any two real numbers a and b,

(a+ b)n =
n∑
i=0

(
n

i

)
aibn−i.

By the binomial theorem, the sum in our expression above can be
rewritten as

m∑
w=0

m!

m!(m− w)!
pw · (1− p)m−w = (p+ (1− p))m = 1m = 1.
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Plugging this into the above we have

E[X] = np.

Proposition 9.3.
If X ∼ Binomial(n, p), then Var(X) = np(1− p).

Proof.
The proof of this is similar to the proof for the expected value of a bi-
nomial random variable, except there’s one little trick that’s required.
Recall that Var(X) = E[X2] − E[X]2, and we’ve already computed
E[X] = np. So all we need to do is to compute E[X2], but in order to
do this we are going to write X2 as X(X − 1) +X. This, obviously, is
a function of X, and so we can compute

E[X2] = E[X(X − 1) +X]

=
∑
x∈R

(x(x− 1) + x)pX(x)

=
n∑
x=0

(x(x− 1) + x)

(
n

x

)
px(1− p)n−x

=
n∑
x=0

(
x(x− 1)

(
n

x

)
px(1− p)n−x + x

(
n

x

)
px(1− p)n−x

)

=
n∑
x=0

(
x(x− 1)

(
n

x

)
px(1− p)n−x +

n∑
x=0

x

(
n

x

)
px(1− p)n−x

)

Notice the second summation in the last line is exactly E[X], so we
already know this equals np. To compute the first summation we
perform exactly the same sort of manipulation we did in the proof of
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Proposition 9.2:

n∑
x=0

x(x− 1)

(
n

x

)
px(1− p)n−x

=
n∑
x=0

x(x− 1)
n!

(n− x)!x!
px(1− p)n−x

=
n∑
x=2

x(x− 1)
n!

(n− x)!x!
px(1− p)n−x

=
n∑
x=2

n(n− 1)(n− 2)!

(n− 2− (x− 2))!(x− 2)!
p2px−2(1− p)n−2−(x−2)

=n(n− 1)p2

n∑
x=2

(n− 2)!

(n− 2− (x− 2))!(x− 2)!
px−2(1− p)n−2−(x−2)

=n(n− 1)p2

n−2∑
x=0

(
n− 2

x

)
px(1− p)n−2−x

=n(n− 1)p2

Plugging this into the above we have

E[X2] = n(n− 1)p2 + np = n2p2 − np2 + np.

Thus the variance is

Var(X) = E[X2]− E[X]2

= n2p2 − np2 + np− n2p2

= np− np2

= np(1− p).

Corollary 9.4.
If X ∼ Binomial(n, p), then the standard deviation of X is

√
np(1− p).
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9.3 Geometric

Geometric random variables arise from the following type of experiment.
Suppose we perform trials which are classified as success or failure, and all
trials are independent of one another. In the case of a binomial random
variable we perform some fixed number of trials, then count the successes.
In a geometric random variable, however, we repeatedly perform the trials
until we achieve a first success, and then count the number of trials which
were required. For example, we may flip a coin repeatedly until it first lands
on heads. If the first heads occurred on the fifth flip, then the value of our
random variable would be five. Of course, there is a parameter hiding in
this description of the geometric random variable: the probability of success
on each trial, which we denote by p.

So, suppose X was such a random variable. What should the pmf of X
be? If we get our first success on the x-th trial, then our previous x − 1
trials must have been failures. Each of these failures has probability 1− p,
and the probability of success on that x-th trial is p, so the pmf is

pX(x) =

{
(1− p)x−1p if x ∈ N
0 otherwise.

A random variable X with such a pmf is called a geometric random
variable with parameter p, and we write X ∼ Geom(p).

Example 9.3.
When rolling a six-sided die, the probability of getting a particular
number, say 5, is 1/6. What is the probability if you roll the die re-
peatedly the first time you roll a 5 is on the ninth roll?

Here we have a geometric random variable with parameter p =
1/6 which counts the number of required rolls to obtain a 5; X ∼
Geom(1/6). The probability the five first appears on the ninth roll is

pX(9) = (1− 1/6)8 · 1/6 =
58

69
=

390625

10077696
≈ 0.0388.

Of course, we want to know what the expected value of X ∼ Geom(p)
is as a function of p. To do this we will need to evaluate a geometric series
(and this is why this is called a geometric random variable). Recall that
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if a is any real number and r is a real number satisfying |r| < 1, then the
geometric series

∞∑
n=0

arn

converges to a
1−r . You should have seen this in a second semester calculus

class, but just for the sake of completeness we’ll provide a proof.

Lemma 9.5.
If a is any real number and r is a real number satisfying |r| < 1, then

∞∑
n=0

arn =
a

1− r
.

Proof.
We first note that since there is an a in each term of the series,

∞∑
n=0

arn = a+ ar + ar2 + ar3 + · · ·

we can factor the a out:

∞∑
n=0

arn = a
∞∑
n=0

rn = a(1 + r + r2 + r3 + · · · ).

So it suffices to see that
∑∞

n=0 r
n = 1

1−r , then we can just multiply
through by a. To see this series converges to claimed sum, recall that
a convergent series equals the limit of partial sums,

∞∑
n=0

rn = lim
N→∞

N∑
n=0

rn = lim
n→∞

(
1 + r + r2 + · · ·+ rN

)
.

To determine this limit, let SN denote the N -th partial sum,

SN = 1 + r + r2 + · · ·+ rN .
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If we multiply both sides by r have

rSN = r + r2 + r3 + · · ·+ rN+1.

Now consider the difference between SN and rSN ,

SN − rSN = (1 + r + · · ·+ rN)− (r + r2 + rN+1) = 1− rN+1.

Factoring SN from the left and dividing we have

SN − rSN = 1− rN+1

=⇒ SN(1− r) = 1− rN+1

=⇒ SN =
1− rN+1

1− r
.

That is,
N∑
n=0

rn =
1− rN+1

1− r
.

Now we take the limit as N goes to infinity. Obviously, since only one
term in the expression above depends on N we only need to compute
limN→∞ r

N+1. Since |r| < 1, however, rN+1 goes to zero as N goes to
infinity.

Proposition 9.6.
If X ∼ Geom(p), then E[X] = 1/p.

Proof.
We begin by writing out the definition of the expected value and fac-
toring out the p that appears in each term,

E[X] =
∑
x∈R

xpX(x) =
∞∑
x=1

x(1− p)x−1p = p

∞∑
x=1

x(1− p)x−1
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Now we do something a little unexpected. Recall that the derivative of
tn, with respect to t, is d

dt
tn = ntn−1. Differentiating (1− t)n likewise

results in d
dt

(1− t)n = −n(1− t)n−1 because of the chain rule. Notice
this is very similar to the x(1 − p)x−1 we are summing above, except
that we’re missing a negative sign, but that’s easy to compensate for.

What we’ll do, then, is think of the terms x(1− p)x−1 as being the
derivative of −(1 − p)x with respect to p. (Notice we’re treating p as
the variable, not x, so we don’t have to do logarithmic differentiation
to compute the above derivative.) Thus

E[X] = p

∞∑
x=1

x(1− p)x−1

= p
∞∑
x=1

− d

dp
(1− p)x

= −p d
dp

∞∑
x=1

(1− p)x

= −p d
dp

(
∞∑
x=0

(1− p)x − 1

)

= −p d
dp

(
1

1− (1− p)
− 1

)
= −p d

dp

(
1

p
− 1

)
= −p d

dp

(
p−1 − 1

)
= −p ·

(
−p−2

)
=

p

p2

=
1

p

Exercise 9.2.
Show that geometric random variables have the following “memory-
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less” property: if X ∼ Geo(q), then for any integers m > n > 0,

P (X > m|X > n) = P (X > m− n).

9.4 Hypergeometric

A hypergeometric random variable, like a binomial random variable, counts
the number of “successes” observed from a collection of n trials. Unlike the
binomial, however, the probability of successes changes from trial to trial.

Imagine, for example, a collection of 500 students is given and 30 of these
students are math majors. If we choose ten students at random, we may
want to know how many of the selected students are math majors (these are
the “successes” in our trials). In such an example we have a population
(the 500 students), from which we select a sample (the 10 randomly chosen
students), and we want to know the number of selections which satisfied
some criterion (being a math major). What makes this different from the
binomial is that the probabilities change: the first student we select has
chance 30/500 of being a math major, but what about the second student?
If our first student was a math major, the chance the second one is as well
is 29/499, but if the first student was not a math major, then the probability
will be 30/499.

Let’s reason our way through the probability there will be exactly one
math major among the ten students we pick. Of the thirty math majors
we have to choose one, and there are

(
30
1

)
ways to do this. Now we need

to choose the remaining students. Since we want to only have one math
major, the other nine students must be non-math majors. Since 30 of our
500 students were math majors, 470 are non-math majors and we need to
choose nine of them. Of course, there

(
470
9

)
ways to do this. So, the number

of ways we can choose ten students with exactly one math major is
(

30
1

)(
470
9

)
.

The total number of ways we can choose ten students from the 500 students
is
(

500
10

)
. Hence the probability of exactly one math major when we choose

ten students is (
30
1

)(
470
1

)(
500
10

) .

Similarly, the probability we choose exactly two math majors when we
choosen ten students from a population of 500 students containing a total
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of 30 math majors is (
30
2

)(
470
8

)(
500
10

) .

A general hypergeometric random variable simply generalizes this situ-
ation. Note we have a few parameters here:

• The population size, say N .

• The sample size, say n.

• The number of “successes” in the population, say k.

To denote that X is a random variable counting the number of successes
in a sample of size n coming from a population of size N which contains k
total successes, we write X ' Hyp(N, n, k) and call X a hypergeometric
random variable . Generalizing the argument above about picking math
majors, we see that the pmf of such a random is

pX(x) =


(kx)(

N−k
n−x)

(Nn)
if x ∈ Z ∩ [max(0, n+ k −N),min(n, k)]

0 otherwise

Most of the formula for the pmf above should make sense, except possible
the conditions given for the first part of the pmf, the Z ∩ [max(0, n + k −
N),min(n, k)]. What we’re saying here is that in order for pX(x) to have
any hope of not being zero, we need that x is an integer which is no smaller
than max(0, n+k−N), and no larger than min(n, k). Since we’re counting
the number of successes, of course x needs to be an integer (e.g., we can’t
have

√
2 successes). The number of successes can’t exceed the number of

samples we take (i.e., x can be no larger than n), nor can it exceed the
total number of successes in the population (x can not be larger than k);
together these mean x can be no larger than the minimum of n and k.

To understand the max(0, n + k − N) part, notice that if our sample
size is large enough we may be forced to have at least a few successes. For
example, if we had a population of size 10 and 8 elements of the population
were successes, then any sample of size 3 or more must have at least one
success. So, what’s the fewest number of successes we can possible have in
general, when the population has size N , the sample has size n, and the
number of successes in the population is k? Notice that if the number of
failures (non-successes) in the population is smaller than our sample size, we
must have some successes in any sample. The number of failures is N − k,
so if we have a sample of size n > N − k we must have at least n− (N − k)
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successes, which can rewrite as n + k − N . Of course, when n ≤ N − k
this quantity is negative which doesn’t make sense when we’re counting the
number of successes. If we want x to be no smaller than zero and no smaller
than n+ k −N , a succinct way to write this is x ≥ max(0, n+ k −N).

Example 9.4.
In Texas Hold ’Em, each player receives two cards and then three cards
are turned face up on the table. If the player received two 2’s, and the
face-up cards are 3, J , and A, what is the probability we will be able
to make two pair with our two 2’s and one of the face-up cards when
two more face-up cards are added to the three currently on the table?

Here the population we are interested in is the remaining 47 cards
(52 cards to start, minus the 5 that have been dealt). Our sample size
is 2 since two more cards will be revealed, and the number of successes
(the cards which will allow us to make two pair) is 9 since there are
three remaining 3’s, three J ’s, and three A’s. That is, we have a
hypergeometric random variable with N = 47, n = 2, and k = 9.
Hence the probability one of the two cards will give us a two-pair is(

9
1

)(
38
1

)(
47
2

) =
342

1041
≈ 0.3285.

(Here we’re considering the situation where exactly one of the two
remaining revealed cards allows us to build a two pair. To make the
calculation easier we are ignoring a few situations, such as if two cards
of the same rank, other than the ranks already revealed, appeared.
Adding those cases into our calculation, the probability of making a
two pair is actually higher than the number calculated above. This is
why getting two cards of the same rank is a very nice hand in Texas
Hold ’Em.)

9.5 Negative binomial

In the case of a geometric random variable we said the underlying experi-
ment was that trials are repeated until a success is obtained. In the negative
binomial something similar happens: we again repeat independent trials
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which are success with probability p and failture with probability 1 − p,
but we repeat the trials until some fixed number of successes, say r, are ob-
tained, and count the the number of failures that occurred before obtaining
the r-th success.

(In the binomial we fix the number of trials and count the number of
successes, whereas in the negative binomial we fix the number of successes
and count the number of failures before seeing the prescribed number of
successes.)

Suppose it took x failures before obtaining r successes. Notice that the
very last trial is a success since we stop the experiment once we have r
successes. So all we need to do is determine which x of the earlier x +
r − 1 trials were failures, then multiply the probabilities of that number
of successes and failures. That is, the probability of x failures before r
successes is (

x+ r − 1

r − 1

)
pr(1− p)x

In such a situation we say that X is a negative binomial random
variable with parameters p and r and write X ∼ NegBin(p, r), and the pmf
of such a random variable is

pX(x) =

{(
x+r−1
r−1

)
pr(1− p)x if x ∈ N ∪ {0}

0 otherwise

Example 9.5.
Suppose a paleontologist wants to collect fossils of dinosaurs until they
find three fossils with evidence of dinosaur feathers. If only 1/10 of of
fossils have evidence of feathers, what is the probability the paleontol-
ogist finds 15 fossils without evidence of feathers before finding three
fossils with evidence?

Here we have a negative binomial with parameters p = 1/10 and
r = 3. By the above we know

pX(15) =

(
15 + 3− 1

15

)(
1

10

)3(
9

10

)15

≈ 0.028
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9.6 Poisson

Imagine that you are interested in counting the number of times some ran-
dom phenomenon occurs over a given length of time. For example, maybe
you count the number of fish that swim under a bridge over the course of
ten minutes; or you count the number of students that walk by the Sample
Gates over an hour; or you count the number of traffic accidents that occur
in a city over the course of a month.

Now suppose that the events you’re counting are independent of one
another. That is, one car accident on one day doesn’t imply anything
about whether there will be any more car accidents that day.

A reasonable way to try to compute the probability of k of these random
occurences in a length of time as follows. Say that from previous observa-
tions you know the average number of occurences in the given length of
time. For example, maybe from past experience you know on average fif-
teen fish swim under the bridge evern ten minutes; or 230 students walk by
the Sample Gates every hour on average; or there are an average of twenty
two traffic accidents per month. Call this average value λ.

Now suppose that you break your time interval up into n discrete chunks
(e.g., seconds, minutes, or days), and you mark each “chunk” of time as
either a success or failure depending on whether the random occurence
we’re interested in occurred or not. For example, if we are interested in the
number of fishing swimming under a bridge over the course of ten minutes,
we might break our ten minutes up into ten one-minute chunks and count
each chunk as being a success if a fish swam by during that minute, and a
failure otherwise.

By marking each chunk of time as success or failure, we turn our original
experiment into a binomial random variable. Our n chunks of time become
n trials marked as success or failure. Recall that each trial in a binomial has
equal probability p of being a success. What should p be in our situation?
Since a binomial with parameters n and p has expected value np and since
we know the average number of occurences is λ, we must have λ = np and
so p = λ/n.

Now the probability of k of our n chunks of time being marked as suc-
cesses is (

n

k

)
pk(1− p)n−k =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k
.

Notice there’s a bit of a problem with our counting the number of
random occurrences using binomial random variables in the way outlined
above: when we mark each chunk of time as success or failure, we don’t
have any way of distinguishing one success during that chunk of time from
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two successes or three successes or four successes ... That is, our binomial
random variable is really more of a very rough estimate for counting the
number of occurrences. We can improve our estimate, though, by using
more (and hence smaller) chunks of time.

For example, when counting fish swimming under the bridge, if we break
our ten minute interval up into ten one minute chunks and three fish swim
under the bridge during one of those minutes, just marking the chunk as
success or failure doesn’t include this information. If we break into smaller
chunks, say 600 seconds, then our three fish swimming by are more likely
to be distinguished as three different successes (as long as they don’t swim
by during the same second) than before. Of course it could happen that
multiple fish swim by in one second, so we get an even better estimate by
using even smaller intervals.

Ultimately what we want to do is have infinitesimally small units of time
by taking the limit as the number of chunks of time goes to infinity. We
can actually do this, but we’ll need to do some algebraic manipulations and
recall a basic fact from calculus in order to actually make all of this precise.

First let’s take our expression for the probability of k successes when we
divide our unit of time into n equal pieces,(

n

k

)(
λ

n

)k (
1− λ

n

)n−k
and rewrite it follows just by writing out

(
n
k

)
in terms of factorials and

rewriting the other two factors raised to powers with basic properties from
algebra:

n!

(n− k)!k!
· λ

k

nk
· (1− λ/n)n

(1− λ/n)k
.

Now let’s cancel out terms in the n!
(n−k)!

above and also swap the nk and k!
in the denominators of the first two factors to obtain

n · (n− 1) · (n− 2) · . . . · (n− k + 1)

nk
· λ

k

k!
· (1− λ/n)n

(1− λ/n)k
.

Now we want to take the limit of this as n goes to infinity. We’ll do this
factor by factor.

For the first factor, note that if we multiply out

n · (n− 1) · (n− 2) · . . . · (n− k + 1)

then we’d have an expression of the form

nk + (stuff of degree less than k).
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This is simply because there are k factors in the expression above and they
all have the form (n − something). We could work out exactly what all of
the “stuff” alluded to above is, but it won’t matter because in the limit we
will have

lim
n→∞

n · (n− 1) · (n− 2) · . . . · (n− k + 1)

nk
= lim

n→∞

nk + (stuff of degree less than k)

nk
.

As n goes to infinity, the nk term in the numerator grows so much faster
than the other terms that the other terms become irrelevant. (If you want
to be precise, multiply and divide by 1/nk or apply l’Hôpital’s rule k times.)

That is, as n gets really big, the fraction essentially becomes nk

nk
, and so in

the limit this is just 1.
The next factor λk

k!
has no n’s in it, so nothing happens to this as n goes

to infinity.
For the last factor we take the limit of the denominator and numerator

separately. For the denominator notice that

lim
n→∞

(
1− λ

n

)k
= 1

since λ/n→ 0 as n→∞.
Finally for limit of the numerator of the last factor we need the following

factoids from calculus.

Lemma 9.7.
For any real number x,

lim
n→∞

(
1 +

x

n

)n
= ex.

Proof.
First recall that the Taylor series for ex is

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ · · ·

So we want to show that as n gets very large, (1 + x/n)n looks like this
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Taylor series. To do this we recall that the binomial theorem states

(a+ b)n =
n∑
k=0

(
n

k

)
an−kbk.

Applying this to (1 + x/n)n we have(
1 +

x

n

)n
=

n∑
k=0

(
n

k

)
1n−k

(x
n

)k
=

n∑
k=0

n!

(n− k)!k!

xk

nk

=
n∑
k=0

n!

nk(n− k)!

xk

k!
.

Above we already discussed what happens to n!
nk(n−k)!

as n goes to
infinity: this approaches 1. That is, for very, very large values of n we
have (

1 +
x

n

)n
≈

n∑
k=0

xk

k!
.

So as n goes to infinity, (1 + x/n)n goes to the Taylor series of ex.

With Lemma 9.7 at our disposal, we now easily see

lim
n→∞

(
1− λ

n

)n
= lim

n→∞

(
1 +
−λ
n

)n
= e−λ.

Putting all of this together, we see that the probability of k random
occurences over a length of time where all occurences are independent and
the average number of occurences in the time interval is λ is

e−λ
λk

k!
.

This gives the pmf of a family of random variables called the Poisson
random variables . We write X ∼ Poisson(λ) when X has pmf

pX(x) =

{
e−λ λ

x

x!
if x = 0, 1, 2, 3, ...

0 otherwise
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Example 9.6.
Suppose the number of typos on a single page of a book is, on aver-
age, one typo per page. Modelling the number of typos by a Poisson
random variable, what is the probability of exactly two typos? What
is the probability of at least one typo on a given page?

The number of typos on a page is counted by the random variable
X ∼ Poisson(1). The probability of exactly two typos is

Pr(X = 2) = pX(2) = e−2 12

2!
=

1

2e
≈ 0.1839.

The complement of at least one typo is zero typos. The probability
of zero typos is

Pr(X = 0) = pX(0) = e−1 10

0!
=

1

e
≈ 0.3679,

so the probability of at least one typo is

Pr(X ≥ 1) = 1− Pr(X = 0) = 1− 1

e
≈ 0.6321.

Exercise 9.3.
Suppose X ∼ Poisson(λ) for some λ > 0. Verify that E[X] = λ.

Example 9.7.
Suppose the number of automobile accidents in a certain city is on

average three per week. Modelling this as a Poisson random variable,
what is the probability there are no accidents in a given week?

The number of accidents is counted by X ∼ Poisson(3), and so the
probability of zero accidents is

Pr(X = 0) = pX(0) = e−3 30

0!
= e−3 ≈ 0.04978.
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So there’s just shy of a 5% chance there will be no accidents in a given
week.

Exercise 9.4.
Suppose X ∼ Poisson(λ) for some λ > 0. Verify that Var[X] = λ.

When we use a Poisson random variable we make a choice about how
big our unit of time should be, and the parameter λ represents the average
number of occurences in this length of time. If we want to use a different
length of time, we need to scale λ appropriately. For example, if as in
Example 9.7, the number of accidents per week is Poisson(3), then the
number of accidents per two weeks is given by Poisson(6), the number of
accidents per day is Poisson(3/7), and the number of accidents per year is
Poisson(156).

In general, if the number of random occurences our Poisson random
variable counts is on average λ per unit time, then the number of random
occurences in an interval of time of length t is Poisson with parameter λt.

Example 9.8.
What is the probability that in a city with an average of three auto-
mobile accidents per week there are zero accidents on any given day.

As noted above this is counted by X ∼ Poisson(3/7), and so the
probability of zero accidents on any given day is

e−
3/7 (3/7)0

0!
= e−

3/7 ≈ 0.6514.

Notice that when we have one Poisson random variable X ∼ Poisson(λ),
there’s a natural way to define an infinite family of Poisson random vari-
ables: for each t > 0 we define Xt ∼ Poisson(λt).
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Remark.
An infinite family of random variables like this is called a stochastic
process , and the study of stochastic processes is an interesting realm
of modern mathematics that has applications to finance, physics, com-
puter science, and other disciplines.

You may have seen another type of stochastic process in other
probability classes before: a Markov chain represents the state of a
system at a point in time, where the probability of the system’s next
state depends only on the current state. Letting X1, X2, X3, ... denote
the state of the system at time 1, time 2, time 3, ... gives a stochastic
process.
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9.7 Practice problems

Problem 9.1.
Suppose a multiple choice exam has five questions, and each question has
three possible answers. If a student were to randomly guess the answers to
each question (assuming each of the three possibilities is equally likely to
be selected by the student), what is the probability the student would get
at least four answers correct?

Problem 9.2.
Suppose that a factory produces piston heads for car engines. In order for
the piston to work correctly, the head must be very close to circular: the
engine will not work correctly if the piston head is not within a certain
tolerance of being a perfect circle. Suppose eight piston heads are selected
from a batch of fifty and it is known that three of the fifty heads are not cir-
cular enough to work in a particular type of engine. What is the probability
that exactly six of the selected heads will work in the engine?

Problem 9.3.
A Hamming code is a type of error-correcting code often used in telecom-
munications to reduce the likelihood of receiving a corrupted message. For
example, a four-bit message can be encoded using seven bits in such a way
that if one of the bits is corrupted (e.g., a transmission error causes a 1
to flip to a 0 or vice versa), the original, intended message can still be re-
constructed. If two or more bits are corrupted, however, then the entire
message is corrupted.

If the probability any one bit is corrupted is 1/10, what’s the proba-
bility the original four-bit message can be reconstructed from a seven bit
Hamming code?



10Continuous Random Variables
“Obvious” is the most dangerous word in
mathematics.

E. T. Bell

10.1 Introduction

When we discussed discrete random variables we saw that probabilities
could be computed using a probability mass function, pX , whose value pX(x)
told us the probability Pr(X = x). There are some random variables where
Pr(X = x) will be zero for every value of x, however. For example, imagine
our underlying experiment is throwing a random dart at a circular dart
board of radius 1. Now associate a random variable X to this experiment
where X associates to each point on the board the distance from that
point to the origin. To find the probability Pr(X = 1/2), we would need
to find the probability a dart lands distance exactly 1/2 from the origin.
That is, the dart would need to land on the circle of radius 1/2. What’s
the probability this happens? We compute the probability of landing in a
region on the board by dividing the area of that region by the area of the
entire board. The circle, however, has zero area, and so the probability is
zero. Of course, there’s nothing magical about 1/2 in this example: for any
value of x, Pr(X = x) will be zero. That is, for a random variable such as
this the idea of a probability mass function isn’t very helpful: the function
would just be constant zero everywhere!

If we can’t make sense of a probability mass function here, how should
we try to compute probabilities? Recall that we had another function we
could associate to discrete random variables: the cumulative distribution
function F was defined by F (x) = Pr(X ≤ x). Would this function be
helpful in our dart board example? Notice that F (1/2) is Pr(X ≤ 1/2) which
would be the area of the disc of radius 1/2 divided the area of the whole
board:

F (1/2) = Pr(X ≤ 1/2) =
π/4

π
=

1

4
.

So, even though a probability mass function doesn’t make sense for our
random variable above, the cumulative distribution function does.

Now let’s make an observation about this cumulative distribution func-
tion. Notice for any value of x between 0 and 1, the cdf for our random

211



CHAPTER 10. CONTINUOUS RANDOM VARIABLES 212

variable above is

F (x) = Pr(X ≤ x) =
πx2

π
= x2.

Additionally, F (x) = 1 for any x ≥ 1 (since the dart board only has radius
1) and F (x) = 0 for any x ≤ 0 (since our distance to the origin of the board
will never be negative). So the cdf is

F (x) =


0 if x ≤ 0

x2 if 0 < x < 1

1 if x ≥ 1

Notice this is a continuous function (it’s not differentiable at x = 0 or x = 1,
but it’s still continuous). If a random variable X has a continuous cdf, then
we call X a continuous random variable .

Remark.
Notice that discrete random variables are never continuous (using this
definition of continuous random variable): the cdf of a discrete random
variable has a jump discontinuity at every value of x for which the pmf
pX(x) is non-zero.

Let’s notice too that even though our cdf F (x) above is not differentiable
everywhere, it’s differentiable everywhere except at two distinct points. So,
we can define its derivative, which we’ll call f(x), at every point except
x = 0 and x = 1. This gives us

f(x) = F ′(x) =


0 if x < 0

2x if 0 < x < 1

0 if x > 1

Notice that, because of the fundamental theorem of calculus, we can calcu-
late probabilities by integrating f :

Pr(a ≤ X ≤ b) =

∫ b

a

f(x) dx = F (b)− F (a).

Even though f is not defined at every point, this integral still makes sense:
you could fill in the “holes” and define f(0) and f(1) to be anything you’d
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like and it wouldn’t affect the value of the integral. (This is not true for
arbitrary functions because we could have vertical asymptotes and might
worry about having an improper integral. However, if a function is are the
derivative of the cdf of a random variable, this won’t happen because the
0 ≤ F (x) ≤ 1 for every x.)

10.2 Probability density and cumulative

distribution

A function, such as our f in the discussion above, which has the property
that

Pr(a ≤ X ≤ b) =

∫ b

a

f(x) dx

is called a probability density function (pdf) for the random variable
X.

Notice the pdf f of a continuous random variable X must have the
following two properties:

1. f(x) ≥ 0 for all x, and

2.
∫∞
−∞ f(x) dx = 1.

These properties follow simply from the fact that probabilities are never
negative, and Pr(Ω) = 1 for any sample space Ω and probability function
Pr.

Just as we can specify a discrete random variable by giving its pmf, we
can specify a continuous random variable by giving its pdf. That is, any
integrable function f(x) satisfying the two properties above is the pdf of
some random variable X. Said another way, if we know the pdf of X then
we know everything we need to know about X; we don’t need to know
anything about the underlying experiment or sample space, we only need
the pdf.

Example 10.1.
Verify that the function

f(x) =

{
3x2

8
if 0 ≤ x ≤ 2

0 otherwise
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is the pdf of some random variable X, then compute Pr(1 ≤ X ≤ 3/2).
First we must verify the two conditions above. Obviously f(x) ≥ 0

for all x, and integrating the function gives∫ ∞
−∞

f(x) dx

=

∫ 0

−∞
0 dx+

∫ 2

0

3x2

8
dx+

∫ ∞
2

0 dx

=
x3

8

∣∣∣∣2
0

=1.

Now to compute Pr(1 ≤ X ≤ 3/2, we simply integrate f(x):

Pr(1 ≤ X ≤ 3/2) =

∫ 3/2

1

f(x) dx

=

∫ 3/2

1

3x2

8
dx

=
x3

8

∣∣∣∣3/2
1

=
27

64
− 1

8

=
27− 8

64

=
19

64
≈ 0.2969

Example 10.2.
What choice of constant k makes the function

f(x) =

{
k[1− (x− 3)2] if 2 ≤ x ≤ 4

0 otherwise

a pdf?
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Notice that k[1− (x− 3)2] is non-negative for x ∈ [2, 4], so as long
as k ≥ 0, f(x) will be non-negative everywhere. We need to find the
choice of k that makes the function f(x) above integrate to 1. First
we compute this integral as a function of k:∫ ∞

−∞
f(x) dx =

∫ 4

2

k[1− (x− 3)2] dx.

Performing the substitution u = x− 3, du = dx the integral becomes

k

∫ 1

−1

(1− u2) du = k

(
u− u3

3

)∣∣∣∣1
−1

= k

(
1− 1

3

)
− k

(
1− −1

3

)
=

4k

3
.

Setting this equal to 1 and solving for k gives k = 3
4
.

The cumulative distribution function (cdf) of a continuous ran-
dom variable, just as for a discrete random variable, is defined to be the
function F (x) determined by

F (x) = Pr(X ≤ x).

In terms of the pdf f(x), the cdf can be calculated as

F (x) =

∫ x

−∞
f(t) dt.

By the fundamental theorem of calculus, this means the cdf is an antideriva-
tive of the pdf.

In the case of our random variable X with pdf

f(x) =

{
3x2

8
if 0 ≤ x ≤ 2

0 otherwise

the cdf is

F (x) =


0 if x < 0
x3

8
if 0 ≤ x ≤ 2

1 if x > 2.
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Example 10.3.
What is the cdf of the continuous random variable X with pdf

f(x) =


0 if x < −2
5x4

64
if − 2 ≤ x ≤ 2

0 if x > 2

We simply need to integrate f(x) to find the cdf F (x). Notice that
since the pdf is a piecewise function defined on three particular in-
tervals, (−∞,−2), [−2, 2], and (2,∞), we should expect the cdf to
likewise be a piecewise function defined on these three intervals.

For x ∈ (−∞,−2), we have

F (x) =

∫ x

−∞
f(t) dt =

∫ x

−∞
0 dt = 0.

For x ∈ [−2, 2] we have

F (x) =

∫ x

−∞
f(t) dt

=

∫ −2

−∞
f(t) dt+

∫ x

−2

f(t) dt

=

∫ −2

−∞
0 dt+

∫ x

−2

5t4

64
dt

=
t5

64

∣∣∣∣x
−2

=
x5

64
− (−2)5

64

=
x5 + 32

64
.
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Finally, for x > 2 we have

F (x) =

∫ x

−∞
f(t) dt

=

∫ −2

−∞
f(t) dt+

∫ 2

−2

f(t) dt+

∫ x

2

f(t) dt

= 0 + 1 +

∫ x

2

0 dt

= 1

Putting all of this together, the cdf is

F (x) =


0 if x < −2
x5+32

64
if − 2 ≤ x ≤ 2

1 if x > 2

10.3 Percentiles

Since the cdf of a continuous random variable is continuous and has the
properties that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1, the intermediate
value theorem tells us that for every value of p in the interval (0, 1), there
must exist a value of η such that F (η) = p. Of course, η depends on p so
we should this as η(p). This value of η for a given choice of p is called a
percentile.

More precisely, for each p ∈ (0, 1) we define the (100 · p)-th percentile
of a continuous random variable X to be the real number η(p) such that
F (η(p)) = p. For example, when p = 0.5, the 50-th percentile is the value
of η(p) such that F (η(p)) = 0.5; when p = 0.3 the 30-th percentile is the
value of η(p) such that F (η(p)) = 0.3. The 50-th percentile of a continuous
random variable is often called the median .

Remark.
Notice that the notion of percentile doesn’t really make sense for dis-
crete random variables, at least not for all choices of p, since the cdf
can “jump over” values of p. For instance, suppose X is a discrete
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random variable with pmf p(x)

p(x) =


0.3 if x = 1

0.7 if x = 2

0 otherwise

The cdf is then

F (x) =


0 if x < 1

0.3 if 1 ≤ x < 2

1 if x ≥ 2.

Here there is no value of η such that F (η) = 0.5, for example, and so
there is no notion of a 50-th percentile.

Example 10.4.
Consider the continuous random variable X with pdf

f(x) =

{
3x2

8
if 0 ≤ x ≤ 2

0 otherwise

What is the 90-th percentile of X?
Since percentiles are defined in terms of the cdf, we first need to

compute the cdf of this random varible. We had already done this
above, however, and found the cdf was

F (x) =


0 if x < 0
x3

8
if 0 ≤ x ≤ 2

1 if x > 2.

We need to find the value of η such that F (η) = 0.9. Since F (0) = 0
and F (2) = 1, it’s clear that this η must occur between 0 and 2, and
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so F (η) = η3

8
. Now this is a simple algebra problem:

F (η) = 0.9

=⇒ η3

8
= 0.9

=⇒ η3 = 0.9 · 8 = 7.2

=⇒ η =
3
√

7.2 ≈ 1.931.

So the 90-th percentile is 3
√

7.2 ≈ 1.931.

10.4 Expected value

Recall that for a discrete random variable X we defined the expected value
of X as a weighted average of the values X could take on times the proba-
bility X takes on those values: E[X] =

∑
x∈R xp(x). In the case of discrete

random variables the sum above is well-defined since p(x) equals zero for
“most” values of x and the sum becomes either a simple sum of finitely-
many terms or an infinite series.

For continuous random variables we would like to define something sim-
ilar, but there are two issues. First, we don’t have a probability mass
function. The density function for a continuous random variable is similar
to the mass function for a discrete random variable, however, so this issue
shouldn’t bother us too much. The more serious issue is that the density
function could be non-zero for uncountably many values of x, and so it’s
not really clear what a simple summation of xf(x) taken over all values of
x should be.

Since we know how to compute expected values for discrete random vari-
ables and are trying to figure out what expected values are for continuous
random variables, maybe we should try to approximate a continuous ran-
dom variable by a discrete random variable, and then compute the expected
value of that discrete random variable. We may then try to update improve
our approximation and compute the expected value of this new, improved
approximation. If we keep doing this over and over, do our expected val-
ues of the approximations converge to any one number? If so, maybe we
should define the expected value of our continuous random variable to be
that value the approximations converge to.
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To get started, let’s go back to our running example of the continuous
random variable X with pdf

f(x) =

{
3x2

8
if 0 ≤ x ≤ 2

0 otherwise

To approximate this continuous random variable with a discrete random
variable, maybe what we should do is chop the interval [0, 2], where the
density is non-zero, up into finitely-many subintervals, pick one point in
each subinterval, and define the probability of this point as the probability
X takes on a value in that subinterval.

For example, maybe we chop [0, 2] up into four subintervals all of width
1/2 and pick one point in each interval, say the left-hand endpoint of that
interval. That is, we’ll build a discrete random variable whose probability
mass function is non-zero at x = 0, x = 1/2, x = 1, and x = 3/2. We need
to assign probabilities to these values, though, so let’s define them to be
the probability the original random variable took on a value in the interval
[0, 1/2), [1/2, 1), [1, 3/2), and [3/2, 2]. We of course compute these values by
integrating the density function over these intervals:

Pr(0 ≤ X < 1/2) =

∫ 1/2

0

3x2

8
dx = 1/64

Pr(1/2 ≤ X < 1) =

∫ 1

1/2

3x2

8
dx = 7/64

Pr(1 ≤ X < 3/2) =

∫ 3/2

1

3x2

8
dx = 19/64

Pr(3/2 ≤ X < 2) =

∫ 2

3/2

3x2

8
dx = 37/64

This random variable has probability mass function

p(x) =


1/64 if x = 0
7/64 if x = 1/2
19/64 if x = 1
37/64 if x = 3/2

and the expected value is

0 · 1/64 + 1/2 · 7/64 + 1 · 19/64 + 3/2 · 37/64 = 39/32 = 1.21875
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Let’s momentarily call this discrete random variable we’ve construct X4

since it was built from 4 subintervals where the density of X was non-zero.
We could now construct a random variable X8 using the same procedure,

but using eight different intervals of equal width and this would give us a
discrete random variable with pmf

1/512 if x = 0/4
7/512 if x = 1/4
19/512 if x = 2/4
37/512 if x = 3/4
61/512 if x = 4/4
91/512 if x = 5/4
127/512 if x = 6/4
169/512 if x = 7/4

The expected value of this random variable is

E[X8] =
175

128
= 1.3671875.

Our goal is keep producing these discrete random variables, whose expected
values we know how to compute, which approximate our continuous random
variable, and see if the expected values converge.

Let’s suppose we kept doing this process forever, letting Xn denote the
discrete random variables constructed as above but using n subintervals of
equal width. Let’s let xi denote the left-hand interval of the i-th interval.
The expected value of Xn can then be written as

E[Xn] =
n∑
i=1

xi Pr(xi ≤ X < xi+1) =
n∑
i=1

xi

∫ xi+1

xi

f(t) dt.

Recall the mean value theorem for integrals says that if f(t) is contin-
uous on an interval [a, b], then there exists a value of c such that f(c) =

1
b−a

∫ b
a
f(t) dt. Letting ci be the corresponding value for the integral

∫ xi+1

xi
f(t) dt

above we can write the expected value as

E[Xn] =
n∑
i=1

xif(ci)(xi+1 − xi).

Now we write ∆xi = xi+1 − xi to write

E[Xn] =
n∑
i=1

xif(ci)∆xi.
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Notice that if f is continuous then xi ≈ f(ci) when the intervals are very
small and so

E[Xn] ≈
n∑
i=1

xif(xi)∆xi.

Finally, taking the limit as n goes to infinity we see

lim
n→∞

E[Xn] = lim
n→∞

n∑
i=1

xif(xi)∆xi =

∫ 2

0

xf(x) dx.

The limits of integration are 0 to 2 because we were breaking the interval 0
to 2 up into n subintervals to construct our random variables above. Since
f(x) was zero outside of [0, 2], we see this is equal to∫ ∞

−∞
xf(x) dx

and in general for a continuous random variable X with probability density
function f(x), we define the expected value of X as

E[X] =

∫ ∞
−∞

xf(x) dx.

Example 10.5.
For the continuous random variable X with density

f(x) =

{
3x2

8
if 0 ≤ x ≤ 2

0 otherwise



CHAPTER 10. CONTINUOUS RANDOM VARIABLES 223

the expected value is

E[X] =

∫ ∞
−∞

xf(x) dx

=

∫ 0

−∞
xf(x) dx+

∫ 2

0

xf(x) dx+

∫ ∞
2

xf(x) dx

= 0 +

∫ 2

0

x
3x2

8
dx+ 0

=
3x4

32

∣∣∣∣2
0

=
3 · 24

32
− 0

=
3

2
= 1.5

Example 10.6.
The expected value of the continuous random variable X with pdf

f(x) =


0 if x < −2
5x4

64
if − 2 ≤ x ≤ 2

0 if x > 2
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is

E[X] =

∫ ∞
−∞

xf(x) dx

=

∫ −2

−∞
xf(x) dx+

∫ 2

−2

xf(x) dx+

∫ ∞
2

xf(x) dx

= 0 +

∫ 2

−2

x · 5x4

64
dx+ 0

=
5x6

384

∣∣∣∣2
−2

=
5 · 26 − 5 · (−2)6

384

=
320− 320

384
= 0.

The expected value of a continuous random variable has a very physical
interpretation. Suppose the pdf f(x) of a continuous random variable X is
non-zero only on inside interval [a, b]. Interpreting f(x) as the density (in
the sense of mass divided by length) of a rod of length b − a, E[X] is the
center of mass of the rod: it is the point on the rod where a fulcrum could
be placed and the rod would be perfectly balanced. Notice, however, this
is usually not the same as the median of X (aka the 50-th percentile), as
the next example illustrates.

Example 10.7.
Consider the random variable X with pdf

f(x) =


9/10 if 0 ≤ x ≤ 1
1/10 if 10 ≤ x ≤ 11

0 otherwise
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It is easy to check that 5/9 is the median:∫ 5/9

−∞
f(x) dx =

∫ 5/9

0

9

10
dx

=
9x

10

∣∣∣∣5/9
0

=
9

10
· 5

9

=
1

2
.

However, 5
9

is not the expected value:

E[X] =

∫ ∞
−∞

xf(x) dx

=

∫ 1

0

x
9

10
dx+

∫ 11

10

x
1

10
dx

=
9x2

20

∣∣∣∣1
0

+
x2

20

∣∣∣∣11

10

=
9

20
+

21

20

=
3

2

10.5 Functions of random variables

Just as in the case of discrete random variables, we can compose a continu-
ous random variable X : Ω→ R with a function g : R→ R to obtain a new
random variable denoted g ◦ X or g(X). With discrete random variables
such a composition always produces a discrete random variable, but this
not necessarily the case for a continuous random variable! That is, even
if X is a continuous random variable, it could be the composition g(X) is
discrete!

Example 10.8.
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Suppose X is the continuous random variable with pdf

f(x) =

{
x+1

2
if − 1 ≤ x ≤ 1

0 otherwise

and let g be the function

g(x) =

{
−1 if x ≤ 0

1 if x > 0

Notice the range of g(X) is finite, and so g(X) is a discrete random
variable; in particular the pmf of g(X) is

p(x) =


1/4 if x = −1
3/4 if x = 1

0 otherwise

If you feel that the example above is cheating a little bit since the
function g is not continuous, consider replacing the g in the example by
a constant function, say g(x) = 1. This g is certainly continuous, but again
produces a discrete random variable, although a very boring one.

Although composing a continuous random variable with a continuous
function does not necessarily give us a new continuous random variable,
there are a few cases where this is guaranteed.

Theorem 10.1.
If X : Ω → R is a continuous random variable and g : R → R is

a strictly increasing continuous function, then g(X) is a continuous
random variable.

Proof.
Recall that a random variable is continuous if its cdf is continuous.
Let F be the cdf of the original random variable X, and let G be
the cdf of the new random variable g(X). We want to show that
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G(x) = Pr(g(X) ≤ x) is a continuous function. Notice that since g
is strictly increasing, it is invertible. Thus g(X) ≤ x if and only if
X ≤ g−1(x). That is, G(x) = F (g−1(x)). Now we use a slightly non-
obvious fact: if g is a strictly increasing continuous function, then its
inverse is also continuous. This means G is the composition of two
continuous function, and so is continuous.

If the function g in Theorem 10.1 above is also differentiable, then we
can in fact compute the pdf of g(X) in terms of the pdf of X.

Theorem 10.2.
If X : Ω → R is a continuous random variable with pdf f(x) and if
g : R→ R is a strictly increasing differentiable function with g′(x) > 0
for all x, then g(X) has pdf

h(x) =

{
f(g−1(x))
g′(g−1(x))

if x is in the range of g

0 otherwise

Proof.
Recall the pdf of a continuous random variable is the derivative of its
cdf. From Theorem 10.1 we know the cdf of g(X) is G(x) = F (g−1(x)).
Now we simply differentiate this to obtain

G′(x) = F ′(g−1(x)) · d
dx
g−1(x)

= F ′(g−1(x)) · 1

g′(g−1(x))

=
f(g−1(x))

g′(g−1(x))
.

Where above we used the the chain rule to differentiate g−1(x) as
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follows:

g(g−1(x)) = x

=⇒ d

dx
g(g−1(x)) =

d

dx
x

=⇒ g′(g−1(x)) · d
dx
g−1(x) = 1

=⇒ d

dx
g−1(x) =

1

g′(g−1(x))
.

Remark.
Notice that while g′(x) > 0 for all x certainly implies g is strictly in-
creasing, g can be differentiable and strictly increasing without having
g′(x) > 0 everywhere. For example, g(x) = x3 is strictly increasing,
though g′(0) = 0.

We need this stronger condition that g′(x) > 0 because we divide
by g′(g−1(x)) in the formula for the pdf of g ◦X above.

Example 10.9.
Suppose X is a continuous random variable with pdf

f(x) =

{
3x2

8
if 0 ≤ x ≤ 2

0 otherwise

Now suppose we compose X with the function

g(x) =

{
3x+ 1 if x < 0

(x+ 1)3 if x ≥ 0
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Notice the derivative of this function is

g′(x) =

{
3 if x < 0

3(x+ 1)2 if x ≥ 0.

This derivative is obviously positive everywhere, so we can apply our
theorem above to compute the pdf of g ◦X.

We will also need the inverse of g, but this is easy to compute.
Notice that our function g(x) transitions between two rules when x =
0, and g(0) = 1. This means the inverse will transition between two
rules at x = 1.

g−1(x) =

{
x−1

3
if x < 1

3
√
x− 1 if x ≥ 1.

By Theorem 10.2, we can compute the pdf of g ◦X as

f(g−1(x))

g′(g−1(x))
.

Keeping in mind f(x) is non-zero only when 0 ≤ x ≤ 2, we see the
function above is non-zero only when 0 ≤ g−1(x) ≤ 2.

Notice that g−1(x) < 0 if x < 1, and g−1(x) > 2 if x > 27. On the
interval 1 ≤ x ≤ 27 we have

f(g−1(x))

g′(g−1(x))
=
f( 3
√
x− 1)

g′( 3
√
x− 1)

=
3( 3
√
x− 1)2

24
3
√
x2

This means the pdf of g ◦X is

h(x) =

{
3( 3√x−1)2

24
3√
x2

if 1 ≤ x ≤ 27

0 otherwise

Of course, it’s not a big jump to modify the discussions above from
increasing functions to decreasing functions, although there is one slightly
subtle point. If g(x) is increasing, then g(X) ≤ x if and only if X ≤ g−1(x).
If g(x) is decreasing, however, then g(X) ≤ x if and only if X ≥ g−1(x).
This means if G(x) is the cdf of g ◦X, then

G(x) = Pr(g(X) ≤ x) = Pr(X ≥ g−1(x)) = 1−Pr(X < g−1(x)) = 1−F (g−1(x)).
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Differentiating both sides of G(x) = 1− F (g−1(x)) tells us the pdf is

G′(x) = −F ′(g−1(x)) · d
dx
g−1(x) =

−f(g−1(x))

g′(g−1(x))
.

Notice that since g is decreasing, g′(x) < 0 so the negative that appears
actually insures our pdf is positive. These observations prove the following
corollary.

Corollary 10.3.
If X : Ω → R is a continuous random variable with pdf f(x) and if
g : R→ R is a strictly decreasing differentiable function with g′(x) < 0
for all x, then g(X) has pdf

h(x) =

{∣∣∣ f(g−1(x))
g′(g−1(x))

∣∣∣ if x is in the range of g

0 otherwise

More generally, if we can break the real line up into a collection of
intervals where g(x) is strictly increasing or strictly decreasing with g′(x) >
0 or g′(x) < 0, then on each of those segments we can compute the pdf
of g ◦ X as on each interval with the formulas from Theorem 10.2 and
Corollary 10.3. Although now we have to worry about the fact that our
function g is not bijective, and so we actually need to sum up the values
computed on increasing intervals with Theorem 10.2 and on decreasing
intervals with Corollary 10.3. That is, if g is a differentiable function whose
derivative has finitely-many roots, then the pdf of g(X) is

h(x) =
∑

y∈g−1({x})

∣∣∣∣ f(y)

g′(y)

∣∣∣∣ .
where we adopt the convention the sum is zero if f−1({x}) = ∅, and we
only sum at points where g′(y) 6= 0.

(Notice if f−1({x}) contains only one point, then we get back the equa-
tions from Theorem 10.2 and Corollary 10.3.)

You may worry that we can’t define the pdf at a few particular points
(those points where g′(x) = 0), but this isn’t really a big deal. The only
thing we ever do with pdf’s is integrate them, so if there’s a few places the
pdf isn’t define it doesn’t really matter because those points won’t affect the
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integral. More precisely, if we know that g is differentiable and for every x0

with g′(x0) = 0 there exists some interval (x0−δ, x0 +δ) where g′(x) 6= 0 for
all x in this interval, then our pdf h(x) will be defined at “enough” points
for the integral of h(x) to be well-defined.

Example 10.10.
Suppose X is a continuous random variable with pdf

f(x) =

{
3x2

2
if − 1 ≤ x ≤ 1

0 otherwise

Now suppose we compose X with the function g(x) = x2. Notice that
g is strictly decreasing on (−∞, 0) and strictly increasing on (0,∞).

Notice that for each x ∈ (−∞, 0), g−1(x) is not defined since squar-
ing a negative number produces a positive number. This means the
pdf h(x) = 0 on (−∞, 0).

It’s also clear that h(x) = 0 on (1,∞) since the outputs of the
original random variable X are between −1 and 1, and g squares those
values: g ◦X can only take on values in (0, 1).

If x ∈ (0, 1), then x has two preimages under g: ±
√
x. At such

point a point h(x) is equal to∣∣∣∣ f(−
√
x)

g′(−
√
x)

∣∣∣∣+

∣∣∣∣ f(
√
x)

g′(
√
x)

∣∣∣∣
=

∣∣∣∣ 3x

4(−
√
x)

∣∣∣∣+

∣∣∣∣ 3x

4
√
x

∣∣∣∣
=

3x

2
√
x

The pdf h(x) of g ◦X is thus

h(x) =

{
3x

2
√
x

if 0 < x < 1

0 else

It’s nice to know there are formulas we can use the compute the pdf
of a composition of a continuous random variable with a (nice enough)
continuous function, but these computations can pretty tedious. Luckily, if



CHAPTER 10. CONTINUOUS RANDOM VARIABLES 232

all we’re concerned with is the expected value of the composition, we can
forego computing the pdf.

Theorem 10.4.
If X is a continuous random variable with pdf f , and if g : R→ R is

a function such that g ◦X is a continuous random variable, then

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx.

Proof.
We’ll prove this only in the case where g is differentiable and g′(x) > 0
everywhere. The proof when g′(x) < 0 is basically identical, and the
proof when g′(x) = 0 only at isolated points follows from breaking
up into intervals where the function is strictly increasing or strictly
decreasing, it’s just a little tedious to write down precisely.

For any interval (−b, b), performing the substitution u = g(x),
du = g′(x)dx we may write x = g−1(u) and dx = du

g′(x)
= du

g′(g−1(u))
and

thus ∫ b

−b
g(x)f(x) dx =

∫ g(b)

g(−b)
u
f(g−1(u))

g′(g−1(u))
du.

Of course, the u on the right-hand side above is a “dummy variable,”
and we can rewrite it as x. Before doing that, though, notice the
pdf of g ◦ X has appeared in our integral (computing the pdf using
Theorem 10.2). That is,∫ b

−b
g(x)f(x) dx =

∫ g(b)

g(−b)
x
f(g−1(x))

g′(g−1(x))
dx =

∫ g(b)

g(−b)
xh(x) dx.

Taking the limit as b goes to infinity we have∫ ∞
−∞

g(x)f(x) dx = lim
b→∞

∫ g(b)

g(−b)
xh(x) dx.

Notice the limits limb→∞ g(b) and limb→∞ g(−b) exist (or are ∞ and
−∞, respectively) since g is increasing. In the event these limits are
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not ±∞, we define h(x) = 0 for all x < limb→∞ g(−b) and all x >
limb→∞ g(b) and we have∫ ∞

−∞
g(x)f(x) dx =

∫ ∞
−∞

xh(x) dx = E[X].

Let’s now compute the expected values of the random variable from
Example 10.10 both using the pdf and the formula from Theorem 10.4 and
see they are the same values.

Example 10.11.
Using the pdf

h(x) =

{
3x

2
√
x

if 0 < x < 1

0 else

from Example 10.10, we calculate the expected value

E[X] =

∫ ∞
−∞

xh(x) dx

=

∫ 1

0

3x2

2
√
x
dx

=
3

2

∫ 1

0

x
3/2 dx

=
3

2
· 2

5
x

5/2

∣∣∣∣1
0

=
3

5
.

Using Theorem 10.4 to compute the expected value with the orig-
inal pdf

f(x) =

{
3x2

2
if − 1 ≤ x ≤ 1

0 otherwise
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gives

E[X] =

∫ ∞
−∞

g(x)f(x) dx

=

∫ 1

−1

x2 · 3x2

2
dx

=
3

2

∫ 1

−1

x4 dx

=
3

2
· 1

5
x5

∣∣∣∣1
−1

=
3

10

(
15 − (−1)5

)
=

3

10
· 2

=
3

5
.

10.6 Variance and standard deviation

Variance and standard deviation are defined for continuous random vari-
ables in exactly the same way they are defined for discrete random variables:
if X is a continuous random variable, then the variance of X is

Var(X) = E[(X − E[X])2],

and the standard deviation is

σ =
√

Var(X).

Though the definitions are the same, the actual computation is of course
different since we must integrate to find the expected value above. Aside
from the fact the computations are done differently, everything we know
about variance and standard deviation for discrete random variables carries
over to continuous random variables.

Exercise 10.1.
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Show that if X is a continuous random variable, then

Var(X) = E[X2]− E[X]2.

Example 10.12.
Recall our running example of the continuous random variable X with
pdf

f(x) =

{
3x2

8
if − 1 ≤ x ≤ 1

0 otherwise

We computed earlier that the expected value of this random variable
was 3/2. We can thus compute the variance as

Var(X) = E[X2]− E[X]2

=

∫ ∞
−∞

x2f(x) dx−
(

3

2

)2

=

∫ 2

0

3x4

8
dx− 9

4

=
3x5

40

∣∣∣∣2
0

− 9

4

=
96

40
− 9

4

=
96− 90

40

=
6

40

=
3

20
.

The standard deviation is
√

3/20.
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10.7 Practice problems

Problem 10.1.
Suppose the cumulative distribution function of a continuous random vari-
able X is the following:

F (x) =



0 if x ≤ 0
x2

16
if 0 ≤ x < 2

1
4

if 2 ≤ x < 4
x−3

4
if 4 ≤ x < 7

1 if x ≥ 7

What is the probability density function, f(x), of this random variable?

Problem 10.2.
Let X be a continuous random variable with the following probability den-
sity function,

f(x) =

{
10
x2

if x > 10

0 otherwise

(a) Verify that f(x) is a probability density function.

(b) Compute the cumulative distribution function, F (x), of X.

Problem 10.3.
Suppose X is a continuous random variable whose probability density func-
tion is given by

f(x) =

{
k(4x− 2x2) if 0 ≤ x ≤ 2

0 otherwise

for some constant k.

(a) What value of k makes f(x) a probability density function?

(b) What is P (1/2 < X < 3/2)?

(c) What is E[X]?
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Problem 10.4.
Suppose the cumulative distribution function of a continuous random vari-
able X is the following:

F (x) =



0 if x ≤ 0
x2

16
if 0 ≤ x < 2

1
4

if 2 ≤ x < 4
x−3

4
if 4 ≤ x < 7

1 if x ≥ 7

What is the probability density function, f(x), of this random variable?

Problem 10.5.
Suppose X is a continuous random variable with the following pdf:

f(x) =

{
4x3 if 0 < x ≤ 1

0 otherwise

Compute P (X ≤ 2/3
∣∣X ≥ 1/2).

Problem 10.6.
Suppose X is a continuous random variable with the following probability
density function:

f(x) =

{
2(1− x) if 0 ≤ x ≤ 1

0 otherwise

(a) Compute the median of X.

(b) Compute the variance of X.



11Families of Continuous Random
Variables

Wahrlich es ist nicht das Wissen, sondern
das Lernen, nicht das Besitzen sondern das
Erwerben, nicht das Da-Seyn, sondern das
Hinkommen, was den grössten Genuss
gewährt.
It is not knowledge, but the act of learning,
not possession but the act of getting there,
which grants the greatest enjoyment.

Carl Friedrich Gauß

Just as we have families of discrete random variables which come up
over and over again, like the Bernoulli, binomial, and Poisson, we also have
families of continuous random variables. In this chapter we discuss three
particular families. The uniform random variable is perhaps the simplest
possible continuous random variable. The exponential random variable cor-
responds to times between independent random occurences, and is closely
related to the Poisson random variables we discuss earlier. The normal
random variable is in some sense the grand daddy of all continuous random
variables. Its definition is considerably more complicated than the previous
random variables we’ve discussed, but as we’ll see later the normal random
variables model many natural real-world phenomena.

11.1 Uniform

Intuitively, a uniform random variable represents a choice of a random num-
ber in some interval [A,B] where all numbers are equally likely to be se-
lected. This is only an intuitive description, however, since for any contin-
uous random variable the probability of selecting any one particular value
is always zero. To be more precise, a uniform random variable means the
probability of selecting a value inside a subinterval [C,D] of [A,B] depends
only on the size of [C,D]: all intervals of the same size are equally likely to
contain the randomly selected point.

From this description we can determine the pdf of a uniform random
variable. For the moment let’s restrict ourselves to the interval [0, 1]. Our

238
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goal is to find the pdf, or equivalently cdf, of a random variable with the
following properties:

• The pdf is non-zero only on [0, 1]. Equivalently, for the cdf we require
F (0) = 0 and F (1) = 1.

• For any two intervals [a, b] and [c, d] contained in [0, 1] such that d−c =
b− a, we require

F (b)− F (a) =

∫ b

a

f(x) dx =

∫ d

c

f(x) dx = F (d)− F (c).

As [0, 1] = [0, 1/2]∪ [1/2, 1], if we let x = F (1/2)−F (0) = F (1)−F (1/2), then
2x = 1. Note, though, x = F (1/2) by the first equation. Similarly, writing
[0, 1] = [0, 1/3]∪ [1/3, 2/3]∪ [2/3, 1] shows that each interval has probability 1/3
since the three intervals all have the same size and the sum of probabilities
adds to 1. This means F (1/3) = 1/3 as Pr(X ∈ [0, 1/3]) = F (1/3) − F (0).
Notice this also means F (2/3) = 2/3 since

F (2/3) = Pr(X ∈ [0, 2/3])

= Pr(X ∈ [0, 1/3] ∪ [1/3, 2/3])

=2F (1/3).

More generally, for any rational number p/q in [0, 1] we see F (p/q) = p/q, thus
F (x) = x for all rational numbers x in [0, 1], and by continuity F (x) = x
for all real numbers in x.

That is, for the random variable taking on values in [0, 1] where all
subintervals of the same size are equally likely, the cdf is

F (x) =


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

Differentiating, we see the pdf is

f(x) =


0 if x < 0

1 if 0 < x < 1

0 if x > 1.

We can of course define the function to be zero at x = 0 and x = 1 to
make sure the function is defined everywhere and this does not affect any
integrals we would calculate.
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The continuous random variable X defined with the cdf and pdf above is
called the uniform random variable supported on [0, 1] and we write
X ∼ Uni([0, 1]) to indicate this.

We can easily define this random variable on any arbitrary interval [A,B]
without repeating the entire discussion above by doing a change of coordi-
nates. That is, we can calculate probabilities by integrating the function
f(x) above over subintervals of [0, 1]. If we would like to do the calculation
over an interval [A,B], we will just perform the u-substitution which trans-
forms [0, 1] to [A,B]. This means we a linear function which sends 0 to A
and sends 1 to B, which is given by u = (B −A)x+A, so du = (B −A)dx
or dx = 1

B−Adu. Since f(x) is 1 on [0, 1], the transformed pdf will be 1
B−A

on [A,B].
That is, a random variable X is called the uniform random variable

supported on [A,B], denoted X ∼ Uni([A,B]), if the pdf of X is

f(x) =


0 if x < A

1
B−A if A ≤ x ≤ B

0 if x > B

Once the pdf is known, it is of course a simple calculation to compute
the cdf. If X ∼ Uni([A,B]), then the cdf of X is

F (x) =


0 if x < A
x−A
B−A if A ≤ x ≤ B

1 if x > B

The uniform random variable is particularly simple, so we leave the
verification of basic properties as exercises.

Exercise 11.1.
Let X ∼ Uni([A,B]) and compute E[X].

Exercise 11.2.
Let X ∼ Uni([A,B]) and compute Var(X).
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Exercise 11.3.
For each p ∈ (0, 1), compute the (100·p)-th percentile ofX ∼ Uni([A,B]).

11.2 Exponential

The second family of continuous random variables we will discuss are the ex-
ponential random variables, which are closely related to the discrete Poisson
random variables we discussed earlier. We will first just give the definition
and mention some basic properties of exponential random variables, and
then describe the relationship to the Poisson.

We say a continuous random variable X is an exponential random
variable with parameter λ > 0, denoted X ∼ Exp(λ), if the pdf of X is

f(x) =

{
λe−λx if x ≥ 0

0 otherwise

From this we can easily compute the cdf of X. Notice first that since
f(x) = 0 for x < 0, the cdf F satisfies F (x) = 0 for x < 0 as well. For
x ≥ 0 we compute

F (x) = Pr(X ≤ x)

= Pr(0 ≤ X ≤ x)

=

∫ x

0

λe−λt dt

Performing the substitution u = −λt, du = −λdt we have

F (x) =

∫ x

0

λe−λt dt

=

∫ −λx
0

−eu du

=

∫ 0

−λx
eudu

= eu
∣∣∣∣0
−λx

= e0 − e−λx

= 1− e−λx
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The cdf is thus

F (x) =

{
0 if x < 0

1− e−λx if x ≥ 0.

We can now prove one of the most important properties of exponential
random variables, which is that they are memoryless. What this means
is that if we already know X > s, then the probability X > t (for some
t > s) is equal to the probability X > t−s. That is, the random variable is
always, continually “resetting” itself. For example, memorylessness means
Pr(X > 5|X > 2) = Pr(X > 3). For example, perhaps you measure
the amount of time between random occurences of some event – say the
time between consecutive cars taking an exit on the highway. If you know
that two minutes have already passed since the last car took the exit, the
probability it will be more than five minutes between cars is the same as the
probability of waiting another three minutes. Because the cars are assumed
to be independent of one another, knowledge of when the last car took an
exit tells you nothing about when the next car will take the exit, and so
you can imagine that you are continually restarting the experiment at every
instance of time.

Theorem 11.1.
Exponential random variables are memoryless. That is, if X ∼ Exp(λ),
then for any t > s > 0,

Pr(X > t|X > s) = Pr(X > t− s).

Proof.
First notice that

Pr(X > x) = 1− Pr(X ≤ x) = 1− (1− e−λx) = e−λx.

Now we simply compute Pr(X > t|X > s) using the definition of
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conditional probability:

Pr(X > t|X > s) =
Pr([X > t] ∩ [X > s])

Pr(X > s)

=
Pr(X > t)

Pr(X > s)

=
e−λt

e−λs

= e−λt−(−λs)

= e−λ(t−s)

= Pr(X > t− s).

As always, any time we have a random variable we might want to know
its expected value and variance.

Theorem 11.2.
If X ∼ Exp(λ), then E[X] = 1/λ and Var(X) = 1/λ2.

Exercise 11.4.
Prove Theorem 11.2.

Relation to Poisson random variables

Recall that a Poisson random variable with parameter λ counts the number
of occurences of a random phenomenon in a given time interval, where the
average number of occurences is known to be λ. For example, counting the
number of fish that under a bridge over the course of an hour. The time be-
tween two consecutive such occurences (e.g., the time we have to wait after
one fish swims by until the next fish swims by) is itself a random variable,
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and in fact is precisely an exponential random variable with parameter the
same λ as in the Poisson random variable.

To prove that the interarrival times between random occurences
counted by the Poisson are exponential random variables, we first need
to recall that each Poisson random variable gives rise to a Poisson process.
That is, if the number of occurences in a unit time interval is λ on average,
the number of occurences in a time interval of length t is λt on average.
For example, if on average the number of fish that swim by a bridge over
an hour is 42, then the number of fish swimming by per three hours is on
average 42 · 3 = 126, the number of fish swimming by every fifteen minutes
(quarter of an hour) is on average 42 · 1/4 = 10.5, and so on.

Now let N(t) be our Poisson process counting the number of occurences
up to time t, so N(t) ∼ Poisson(λt). For each t, let T (t) denote the remain-
ing time until the next random occurrence. To make this more explicit,
let’s consider an explicit example.

Suppose as above we’re counting the number of fish swimming by a
bridge, and let t be measured in hours. Then N(1) is the number of fish
we’ve counted over the course of one hour, N(2), is the number of fish we’ve
counted over two hours, N(2.75) is the number of fish over two hours and
forty-five minutes, etc. For concreteness, suppose that a fish swims by at
t = 0.75 (45 minutes after we start counting), and so far our count of fish
is maybe 30: N(0.75) = 30. Now suppose no more fish swim by until time
t = 0.875 (52.5 minutes after our count starts). That is, N(t) = 30 for
0.75 ≤ t < 0.875, but then N(t) = 31 at t = 0.875 and stays at 31 until
another fish swims by, whenever that happens to be. The T (t) measures the
time between consecutive fish. For example, T (0.75) = 0.125 since at time
t = 0.75 we don’t see another fish until t = 0.875; similarly, T (0.8) = 0.075
since, again, we won’t see another fish for 0.075 hours from the current
time. Because the times that the fish swim by are random (we don’t know
when the next fish will swim by), T (t) is a random variable, and our goal
is to figure out what type of random variable it is. The claim we’re trying
to prove is that if we somehow know N(t) is Poisson, then T (t) must be
exponential.

Suppose that we knew we had to wait some given amount of time,
call it τ , until the next random occurrence from time t. That is, suppose
we knew T (t) > τ . What does this tell us about our counting process,
N(t)? Since we don’t see another random occurence for another τ units
of time, our count must remain the same. That is, if T (t) > τ , then
N(t) = N(t + τ). Conversely, if we somehow knew N(t) = N(t + τ), then
the next random occurence doesn’t occur before an additional τ units of
time, and so T (t) > τ . This is a convenient observation because it allows
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us to translation statements about T (t), which we don’t yet know and are
trying to understand, into statements about N(t), which we are assuming
is Poisson.

In terms of probability, the above observations justify the following
string of equalities:

Pr(T (t) ≤ τ) = 1− Pr(T (t) > τ) = 1− Pr(N(t+ τ) = N(t))

So, determining the distribution of T (t) is equivalent to determining the
probability N(t + τ) = N(t), or equivalently the probability N(t + τ) −
N(t) = 0. Notice this means our Poisson process counted no additional
random occurences over a time interval of length τ . But the number of
random occurences is itself a Poisson random variable with parameter λτ .
That is, N(t + τ) − N(t) ∼ Poisson(λτ), and we can easily calculate the
probability this is zero:

Pr(N(t+ τ)−N(t) = 0) =
(λτ)0

0!
e−λτ .

Plugging this into our string of equalities above we have

Pr(T (t) ≤ τ) = 1− e−λτ ,

but this is exactly the cdf of an exponential random variable with parameter
λ. That is, we have proven the following theorem.

Theorem 11.3.
The interarrival times between random occurences counted by a Pois-

son random variable with parameter λ is an exponential random vari-
able with parameter λ.

Example 11.1.
Suppose the number of potholes per mile of roadway in Indiana is mod-
eled by a Poisson random variable with an average of three potholes
per mile. What is the average distance between two consecutive pot-
holes? What is the probability the distance between two consecutive
potholes is at most half a mile? What is the probability the distance
between two consecutive potholes is at least one mile?

In the notation above, N(t) counts the number of potholes per
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t miles of roadway. We are told N(1) ∼ Poisson(3), so in general
N(t) ∼ Poisson(3t). By Theorem 11.3, we know the distance between
consecutive potholes is D ∼ Exp(3) (we’ll call this D instead of T since
here we are measuring distance instead of time). Hence the average
distance between consecutive potholes is E[D] = 1/3 by Theorem 11.2.

The probability the distance between consecutive potholes is at
most half a mile is Pr(D ≤ 1/2) = 1− e−3·1/2 ≈ 0.7769.

The probability the distance between consecutive potholes is at
least one mile is Pr(D > 1/2) = e−3·1 ≈ 0.0498.

11.3 Normal

The normal random variables, also sometimes called Gaussian ran-
dom variables , are some of the most important ones in all of probability
and statistics, although the reasons for this will have to wait until we dis-
cuss jointly distributed random variables and the central limit theorem to
see why this is the case, and now simply treat the normal random variables
as another example of continuous random variables.

The formulas involved in defining the normal random variables below
may look complicated, but they are important for many reasons. Many
natural phenomena can be accurately modelled by normal random variables
and there is some serious theory behind why this is the case. We’re not
quite ready for the general theorey just yet, so we’ll take it on faith for
the moment that normal random variables model real-world phenomena of
interest.

Normal random variables depend on two parameters, µ and σ, which will
turn out to be the expected value and standard deviation. We say that a
continuous random variable X is normally distributed with parameters
µ and σ > 0, denoted X ∼ N(µ, σ) if the pdf of X is

f(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2

The graph of such a function this function has the form
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µ

(This function never actually touches the x-axis, but the y-values get so
small that it appears to in the picture above.)

Note first that this is defined for all x. It’s clear from the definition
that f(x) > 0 for all x since σ is positive and the exponential function ex is
always positive. It is not at all obvious that the f(x) above will integrate to
1, however, nor is it even immediately obvious how to go about integrating
the function above. It turns out we can actually verify the function above
integrates to 1, though it requires some non-obvious trickery.

Proposition 11.4.
For any real number µ and any σ > 0,∫ ∞

−∞

1

σ
√

2π
e
−(x−µ)2

2σ2 dx = 1.

Proof.
We’ll first prove this in the special case when µ = 0 and σ = 1, and
then perform a u-substitution to transform any other choice of µ and
σ into the µ = 0 and σ = 1 case.

When µ = 0 and σ = 1, we are trying to evaluate the integral∫ ∞
−∞

1√
2π
e
−x2
2 dx.

Let’s first notice that the integrand is an even function: the integrand
evaluates to the same value for x and −x because of the squaring
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involved. Thus we can rewrite the integral as∫ ∞
−∞

1√
2π
e
−x2
2 dx = 2

∫ ∞
0

1√
2π
e
−x2
2 dx =

2√
2π

∫ ∞
0

e
−x2
2 dx.

Now we write the integral as the square root of its square,

2√
2π

∫ ∞
0

e
−x2
2 dx =

2√
2π

√(∫ ∞
0

e
−x2
2 dx

)2

=
2√
2π

√∫ ∞
0

e
−x2
2 dx

∫ ∞
0

e
−x2
2 dx.

We now rewrite this as an iterated integral,

2√
2π

√∫ ∞
0

e
−x2
2 dx

∫ ∞
0

e
−x2
2 dx =

2√
2π

√∫ ∞
0

∫ ∞
0

e
−(x2+y2)

2 dy dx.

Performing the substitution u = y
x

(so, y = ux and dy = u dx) this
becomes

2√
2π

√∫ ∞
0

∫ ∞
0

e
−(x2+u2x2)

2 x du dx =
2√
2π

√∫ ∞
0

∫ ∞
0

e
−x2(1+u2)

2 x dx du

We now integrate with respect to x to obtain

2√
2π

√∫ ∞
0

(
−1

1 + u2
e
−x2(1+u2)

2

∣∣∣∣∞
0

)
du

Notice that as x goes to infinity, the factor e
−x2(1+u2)

2 goes to zero and
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so the integral becomes

2√
2π

√∫ ∞
0

1

1 + u2
du =

2√
2π

√
arctan(u)

∣∣∣∣∞
0

=
2√
2π

√
π/2

=

√
2√
π
·
√
π√
2

= 1.

In the computation above we supposed µ = 0 and σ = 1. For any
other choice of µ and σ > 0, we simply perform the u-substitution

u =
x− µ
σ

du =
1

σ
dx

to obtain ∫ ∞
−∞

1

σ
√

2π
e
−(x−µ)2

2σ2 dx =

∫ ∞
−∞

1√
2π
e
−u2
2 du.

The latter integral is simply the integral we computed above, however,
and so this is just 1.

In fact, the f(x) above has the odd property that its integral can not
be written in any simpler form; such functions are sometimes called non-
elementary . That is, the fundamental theorem of calculus promises us
that the f(x) above has an antiderivative, but it’s impossible to write the
antiderivative of this function as anything simpler than

F (x) =

∫ x

−∞

1

σ
√

2π
e
−(t−µ)2

2σ2 dt.

As a consequence, we can’t really directly evaluate this integral – i.e., we
can’t compute the probabilities given to us by normal random variables!

We can, however, numerically approximate these values. (Think of doing
something like a Riemann sum with a very large number of very skinny
rectangles.) This is extremely tedious to do by hand, but luckily there’s a
little trick we can use to make these computations a little more tractable.
To explain the trick we need to discuss one special choice of µ and σ.

The standard normal random variable , often denoted Z, is the
normal random variable with parameters µ = 0 and σ = 1, Z ∼ N(0, 1),
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and so has pdf

f(x) =
1√
2π
e
−x2
2 .

The cdf of the standard normal is often denoted Φ:

Φ(z) = Pr(Z ≤ z) =

∫ z

−∞

1√
2π
e
−x2
2 dx.

Though we can’t directly compute Φ(z), several values of Φ(z) have been
approximated numerically by other people nad these values can be looked
up in a book or on a computer, and we can thus use those approximations
of Φ(z) to estimate probabilities Pr(a ≤ Z ≤ b).

For instance, it’s known that Φ(1.3) = Pr(Z ≤ 1.3) ≈ 0.9032 and
Φ(−0.5) = Pr(Z ≤ −0.5) ≈ 0.3085. From this we can estimate Pr(−0.5 ≤
Z ≤ 1.3) as

Pr(−0.5 ≤ Z ≤ 1.3) = Φ(1.3)− Φ(−0.5)

≈ 0.9032− 0.3085

= 0.5947.

Since we can only calculate integrals of the pdf of Z approximately, you
may think we can only approximate the expected value and variance of Z,
but the presence of an extra x in E[X] and an x2 in Var(X) actually make
the integrals easier because we can then use u-substitution and integration
by parts.

Theorem 11.5.
If Z ∼ N(0, 1) is the standard normal, then E[Z] = 0 and Var(Z) =

1.

Proof.
To compute the expected value we need to calculate

E[Z] =

∫ ∞
−∞

x · 1√
2π
e
−x2
2 dx.
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Now let’s notice that we can rewrite this integral as∫ ∞
−∞

x · 1√
2π
e
−x2
2 dx =

1√
2π

∫ 0

−∞
xe
−x2
2 dx+

1√
2π

∫ ∞
0

xe
−x2
2 dx+

Now perform the substitution u = −x2
2

, du = −x dx in each integral
to obtain

− 1√
2π

∫ 0

−∞
eu du+− 1√

2π

∫ −∞
0

eu du

We can now flip the change the order of integration in the second

− 1√
2π

∫ 0

−∞
eu du+− 1√

2π

∫ −∞
0

eu du

=− 1√
2π

∫ 0

−∞
eu du+

1√
2π

∫ 0

−∞
eu du

and obviously this cancels out to give zero.
Since E[Z] = 0, we know Var(Z) = E[Z2] which we compute as∫ ∞

−∞
x2 · 1√

2π
e
−x2
2 dx.

We again break the integral up into two parts,

E[Z2] =
1√
2π

∫ 0

−∞
x2 · e

−x2
2 dx+

1√
2π

∫ ∞
0

x2 · e
−x2
2 dx. (11.1)

Now we perform integration by parts on each of these. For the first
integral we take

u = x dv = xe−
x2

2 dx

du = dx v = e−
x2

2

the first integral above then becomes

1√
2π

∫ 0

−∞
x2 · e

−x2
2 dx+ = xe−

x2

2

∣∣∣∣0
−∞
−
∫ 0

−∞
e−

x2

2 dx
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Writing the first term as a limit and using l’Hôpital’s rule we have

lim
x→−∞

x

e−
x2

2

= lim
x→−∞

1

xe−
x2

2

= 0.

The second term of the first integral we’ll leave alone for the moment.
Performing the same integration by parts and l’Hôpital’s calculation
to the second integral in Equation 11.1 above will likewise show that
the first part of the integral (after rewriting with integration by parts)
is zero, while the second integral remains.

Altogether, we now have

E[Z2] =
1√
2π

∫ 0

−∞
e−

x2

2 dx+
1√
2π

∫ ∞
0

e−
x2

2 dx =
1√
2π

∫ ∞
−∞

e−
x2

2 dx

Notice this is simply the integral of the pdf for the standard normal,
and so equals one.

Transforming normal random variables

In the above we placed treated the standard random normal Z ∼ N(0, 1) as
special: we gave it a special symbol, Z; we gave its cdf a special name, Φ;
and in showing the pdf of a normal random variable integrated to 1, we first
proved this for Z. There’s not really anything magical about Z versus any
other normal random variable, but it is often convenient to eliminate µ and
σ from our calculations by assuming they are 0 and 1, respectively. More
importantly, we can transform any normal random variable X ∼ N(µ, σ).
The trick for doing this is hinted at in the proof of Proposition 11.4, but
now we make it precise.

Proposition 11.6.
If X ∼ N(µ, σ), then X−µ

σ
= Z. That is, for any a and b,

Pr(a ≤ X ≤ b) = Pr

(
a− µ
σ
≤ Z ≤ b− µ

σ

)
= Φ

(
a− µ
σ

)
−Φ

(
b− µ
σ

)
.

We’ll prove Proposition 11.6 in just a moment, but first let’s think about
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what the proposition tells us. This proposition says that if we have any
normal, we can do a simple manipulation to get a standard normal. In
particular, if we are able to compute (or look up) values of Φ in a book or
on a computer, then we can use that information to calculate probabilities
for any other normal random variable. So, in some way, the only normal
random variable we really need to know how to work with is the standard
normal, since we can transform any other normal into the standard normal.

Proof of Proposition 11.6.
Performing the u-substitution,

u =
x− µ
σ

du =
1

σ
dx

the integral ∫ b

a

1

σ
√

2π
e
−(x−µ)2

2 dx

becomes ∫ b−µ
σ

a−µ
σ

1√
2π
e
−u2
2 du

but this is precisely the integral of the pdf of the standard normal from
a−µ
σ

to b−µ
σ

.

Example 11.2.
If X ∼ N(12, 3), what is Pr(8 ≤ X ≤ 13)?

By Proposition 11.6, we have

Pr(8 ≤ X ≤ 13) = Pr

(
8− 12

3
≤ Z ≤ 13− 12

3

)
= Pr

(
−4

3
≤ Z ≤ 1

3

)
.

This probability is of course given by Φ (1/3)− Φ (− 4/3) which we can
look up are is approximately 0.631−0.091 = 0.54, and so Pr(8 ≤ X ≤
13) ≈ 0.54.

We can also go backwards to convert Z values into X values, as shown
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in the following example.

Example 11.3.
Given Pr(Z ≤ 2) ≈ 0.977 and X ∼ N(5, 2), for what value of x do we
have Pr(X ≤ x) ≈ 0.977?

As

Pr(X ≤ x) = Pr

(
X − 5

2
≤ x− 5

2

)
= Pr

(
Z ≤ x− 5

2

)
we want to find the value of x such that x−5

2
= 2, since we know

Pr(Z ≤ 2) ≈ 0.977. Of course this is a simple algebra problem, and
solving for x gives x = 9.

Thus if X ∼ N(5, 2), then Pr(X ≤ 9) ≈ 0.977.

In general, if Pr(Z ≤ z) = p, then for the random variable X ∼ N(µ, σ)
we have Pr(X ≤ x) = p when x solves the equation x−µ

σ
= z; i.e., x = zσ+µ.

That is, Pr(Z ≤ z) = Pr(X ≤ zσ + µ).

Example 11.4.
Suppose scores on an IQ test are normally distributed with mean 100
and standard deviation 15. What is the 90-th percentile of these IQ
scores?

Here, our random variable X is an IQ score and we’re told X ∼
N(100, 15). We want to find the value of η such that Pr(X ≤ η) = 0.9.
Notice that it suffices for us to find the 90-th percentile for the standard
normal, since we can convert X into Z and vice versa. Looking up that
Pr(Z ≤ 1.282) = 0.9, the above tells us Pr(X ≤ 1.232 ·15+100) = 0.9
and so Pr(X ≤ 119.23) = 0.9. That is, the 90th percentile on these
IQ tests is 119.23.

We can now easily extend Theorem 11.5 to compute the expected value
and variance of any normal random variable by using our knowledge of
the standard normal random variable and the transformations mentioned
above.
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Theorem 11.7.
If X ∼ N(µ, σ), then E[X] = µ and Var(X) = σ2.

Proof.
Recall that for any m and b, E[mX + b] = mE[X] + b. Thus

E
[
X − µ
σ

]
= E

[
1

σ
X − µ

σ

]
=

1

σ
E[X]− µ

σ
=

E[X]− µ
σ

.

Since X−µ
σ

= Z and E[Z] = 0, however, we have E[X]−µ
σ

= 0 and solving
for E[X] gives µ.

For any m and b, Var(mX + b) = m2Var(X). Now we simply note

1 = Var(Z) = Var

(
X − µ
σ

)
=

1

σ2
Var(X),

and solving for Var(X) gives σ2.
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11.4 Practice problems

Problem 11.1.
Suppose that X is a uniformly distributed continuous random variable on
the interval [−1, 1]. Consider the random variable obtained by taking the
absolute value, |X|.

(a) What is P (|X| > 1/2)?

(b) What is the cumulative distribution function of |X|?

Problem 11.2.
Suppose the number of automobile accidents in Monroe county each month
is modeled by a normal random variable with a mean of 45 accidents per
month and a standard deviation of 10. What is the probability there are
more than sixty accidents in a given month?

Problem 11.3.
Suppose weights of newborn babies in the United States is normally dis-
tributed with an average of 8 pounds and standard deviation of 0.5 pounds.
Estimate the 70-th percentile of these weights.



12Jointly Distributed Random
Variables

Probability is too important to be left to the
experts.

Richard Hamming

In this chapter we start working on making the transition from probabil-
ity to statistics. We extend our theory of random variables developed thus
far to work with several random variables at once. This is necessary for
statistics because later we will view the data points obtained in a sample as
individual random variables, and will want to work with all of the random
variables simultaneously.

12.1 Joint discrete random variables

Many times we have several random variables that we are simultaneously
interested in. For example, an insurance company may be interested in
several different quantities associated to an automobile accident, such as
the number of cars involved; the cost of damage to the cars; medical costs
of passengers; the age of drives involved in the accident; and the number
of occupants in each car. Each of these quantities is a different random
variable associated to one accident, and the insurance company might be
interested in each one, and also in any relationships between those pieces of
data. For example, the age of the drive might be related to the number of
occupants: young drivers might be more likely to ride around with several
friends, while older drivers might primarily drive alone.

In general, if X and Y are two random variables defined on the same
sample space Ω, then we might be interested in the probability that X takes
on one value while simultaneously Y takes on another value. If X and Y
are both discrete random variables, then we define the joint probability
mass function of X and Y as the following function of two variables,

p(x, y) = Pr(X = x and Y = y) = Pr(X−1({x}) ∩ Y −1({y})).

In the schematic picture below, the red oval represents all of the points
which the random variable X maps to x, and the blue oval represents all

257
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of the points which Y maps to y. If we want both of these events to take
place, then we are interested in the intersection of the two events.

Rx y

X

Y

Let’s notice that we could think of X and Y as giving us the (x, y)-
coordinates of a point in the plane.

x

y

X

Y

More generally, we may want to know the probability (X, Y ) gives us
a point inside some region E of the plane, instead of a particular point. If
the joint probability mass function is know, however, we can compute the
probability (X, Y ) ∈ E by summing up the probabilities for all (x, y) points
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inside E:
Pr((X, Y ) ∈ E) =

∑
(x,y)∈E

p(x, y).

For instance, suppose p(x, y) is the joint pmf for two random variables
given by the table below.

x
y

1/4 1/2 3/4 1

1 0.02 0.13 0.07 0.03
2 0.1 0 0.02 0.005
3 0.2 0.15 0.01 0.015
4 0.05 0.05 0.025 0
5 0 0 0.125 0

That is, this table tells us

Pr(X = 2, Y = 3/4) = p(2, 3/4) = 0.02.

Implicitly, for any (x, y)-point not in the table above, p(x, y) = 0. For
example, p(1, 7/8) = 0.

Given a region in the plane such as E = [2, 4]× [1/2, 1] (notice this means
all of the (x, y) points where 2 ≤ x ≤ 4 and 1/2 ≤ y ≤ 1), we compute the
probability (X, Y ) ∈ E by summing up p(x, y) for all (x, y) values in our
region. Of course, p(x, y) will be zero for “most” of these points, so we only
need to worry about summing over the points in the table above. In this
particular case we have

Pr((X, Y ) ∈ E)

=p(2, 1/2) + p(2, 3/4) + p(2, 1)+

p(3, 1/2) + p(3, 3/4) + p(3, 1)+

p(4, 1/2) + p(4, 3/4) + p(4, 1)

=0.275

Notice that we can recover the pmf’s of the original random variable
X and Y from the joint pmf. In this context, the pmf of a single random
variable is called a marginal pmf , and is denoted pX(x) or pY (y) depend-
ing on whether we’re computing the pmf of X or of Y . We compute these
marginal pmf’s by summing over all choices of the other variable. That is,

pX(x) =
∑
y∈R

p(x, y)

pY (y) =
∑
x∈R

p(x, y).
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What’s happening here is we’re saying we want to find the probability
X = x, regardless of what Y is. Since the pmf tells us the probability that
X = x and Y = y, but we don’t care about Y , we look at all possible values
of Y for our fixed value of X, and this tells us pX(x). For the joint pmf in
the table above this gives us

pX(x) =



0.25 if x = 1

0.125 if x = 2

0.375 if x = 3

0.125 if x = 4

0.125 if x = 5

0 otherwise

pY (y) =



0.37 if y = 1/4

0.33 if y = 1/2

0.25 if y = 3/4

0.05 if y = 1

0 otherwise

As p(x, y) represents probabilities, there are a few obvious properties that
must be satisfied:

1. 0 ≤ p(x, y) ≤ 1 for all (x, y), and

2.
∑

(x,y)∈R2

p(x, y) = 1.

12.2 Joint continuous random variables

If X and Y are continuous random variables, their joint probability den-
sity function is the function of two variables f : R2 → R that satisfies
the following property: for any E ⊆ R,

Pr((X, Y ) ∈ E) =
x

E

f(x, y) dA.

Geometrically, this means the probability above is given by the volume
between the surface z = f(x, y) and the region E in the xy-plane.
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Remark.
If you have not seen integration in several variables before, or if you
need a refresher, the details are typed up in detail in Appendix A. The
end result of this, however, is that if you can integrate in one variable,
then you can integrate in two variables; just integrate one variable at
a time.

In the simplest situations when the region E in the plane is a rect-
angle such as E = [a, b]× [c, d], then the double integral

s

E

f(x, y) dA

is computed as either of the iterated integrals:

x

E

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

We compute these integrals from the inside out, treating one of the
variables as a constant. For example, the integral∫ 1

0

∫ 3

2

x2y dx dy

is computed by treating y as a constant in the inner most integral to
obtain ∫ 1

0

∫ 3

2

x2y dx dy =

∫ 1

0

x3y

3

∣∣∣∣3
2

dy =

∫ 1

0

19y

3
dy

Of course, at this point this is just a “normal” integral of one variable
which we compute as∫ 1

0

19y

3
dy =

19y2

6

∣∣∣∣1
0

=
19

6
.

For more information, see the appendix at the end of these notes.

Example 12.1.
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Suppose the joint pdf of two continuous random variables X and Y is

f(x, y) =

{
x+ 3

2
y2 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

0 otherwise

Then the probability that X is between 0 and 1/2 while Y is simulta-
neously between 1/4 and 3/4 is

Pr((X, Y ) ∈ [0, 1/2]× [1/4, 3/4]) =
x

[0,1/2]×[1/4,3/4]

(
x+

3

2
y2

)
dA

=

∫ 1/2

0

∫ 3/4

1/4

(
x+

3

2
y2

)
dy dx

=

∫ 1/2

0

(
xy +

y3

2

)∣∣∣∣3/4
1/4

dx

=

∫ 1/2

0

(
3

4
x+

(3/4)3

2
−

(
1

4
x+

(1/4)3

2

))
dx

=

∫ 1/2

0

(
1

2
x+

13

192

)
dx

=

(
x2

4
− 13x

192

)∣∣∣∣1/2
0

=
1

16
− 13

384

=
24− 13

384

=
11

384
≈ 0.0287

Just as the joint pmf of two discrete random variables satisfies some
obvious properties, so does the joint pdf of two continuous random variables:

1. 0 ≤ f(x, y) ≤ 1 for all (x, y) ∈ R2, and

2.
s

R2

f(x, y) dA = 1.

We can also recover the marginal pdf of each of the random variables
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by simply integrating out the other random variable:

pX(x) =

∫ ∞
−∞

f(x, y) dy

pY (y) =

∫ ∞
−∞

f(x, y) dx.

Example 12.2.
If the joint pdf of two continuous random variables is

f(x, y) =

{
x+ 3

2
y2 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1

0 otherwise
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then the marginal pdf’s are

pX(x) =

∫ ∞
−∞

f(x, y) dy

=

{∫ 1

0

(
x+ 3

2
y2
)
dy if 0 ≤ x ≤ 1

0 otherwise

=


(
xy + y3

6

)∣∣∣∣1
0

if 0 ≤ x ≤ 1

0 otherwise

=

{
x+ 1

6
if 0 ≤ x ≤ 1

0 otherwise

pY (y) =

∫ ∞
−∞

f(x, y) dx

=

{∫ 1

0

(
x+ 3

2
y2
)
dx if 0 ≤ y ≤ 1

0 otherwise

=


(
x2

2
+ 3

2
xy2
)∣∣∣∣1

0

if 0 ≤ y ≤ 1

0 otherwise

=

{
1
2

+ 3
2
y2 if 0 ≤ y ≤ 1

0 otherwise

12.3 Independent random variables

Notice that we can always recover the marginal pmf or pdf of a random
variable from a joint pmf or pdf. In general we can not go in the opposite
direction and construct a joint pmf/pdf from marginal pmf’s/pdf’s. There
is one special case where this can be done, however.

We say two discrete random variables X and Y with joint pmf p(x, y)
and respective pmf’s pX(x) and pY (y) are independent if for all choices
of x and y we have

p(x, y) = pX(x) · pY (y).
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Similarly, two continuous random variables X and Y with joint pdf
f(x, y) and marginal pdf’s fX(x) and fY (y) are independent if for all x
and y,

f(x, y) = fX(x) · fY (y).

To motivate this definition, let’s think back to what it means to say
two events E and F are independent. If E and F are independent, then
Pr(E ∩ F ) = Pr(E) · Pr(F ). Notice that for discrete random variables,
p(x, y) is the probability X = x and Y = y, which we can write as

p(x, y) = Pr(X−1({x}) ∩ Y −1({y})),

interpreting X and Y as functions defined on a sample space Ω.
The marginal pmf’s are exactly equal to

pX(x) = Pr(X−1({x})), and pY (y) = Pr(Y −1({y})).

Thus p(x, y) = pX(x)pY (y) means

Pr(X−1({x}) ∩ Y −1({y})) = Pr(X−1({x})) · Pr(Y −1({y}))

for all x and y. That is, independent random variables correspond to saying
the events X−1({x}), Y −1({y}) ⊆ Ω are indpendent for all x and y.

(The idea is similar for continuous random variables and pdf’s, but
slightly obscured by the fact that the pdf doesn’t directly tell us probabili-
ties.)

Example 12.3.
If X and Y are continuous random variables with joint pdf

f(x, y) =

{
x+ 3

2
y2 if (x, y) ∈ [0, 1]× [0, 1]

0 otherwise

are X and Y independent?
First note we can compute the marginal pdf’s as

fX(x) =

{
x+ 1

6
if 0 ≤ x ≤ 1

0 othwerise

fY (y) =

{
1
2

+ 3y2

2
if 0 ≤ y ≤ 1

0 othwerise
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For (x, y) ∈ [0, 1]× [0, 1], note

fx(x) · fY (y) =
x

2
+

3

2
xy2 +

1

12
+
y2

4

which clearly does not equal f(x, y). Thus the random variables are
not independent.

Example 12.4.
Are the continuous random variables X and Y with joint pdf

f(x, y) =

{
1
2

(xy2 − y2) if (x, y) ∈ [1, 3]× [ 3
√

3/2, 3
√

3/2]

0 otherwise

independent?
First we must compute the marginal pdf’s. For x ∈ [1, 3] we have

fX(x) =

∫ ∞
−∞

f(x, y) dy

=

∫ 3
√

3/2

− 3
√

3/2

1

2

(
xy2 − y2

)
dy

=
1

2

(
xy3

3
− y3

3

)∣∣∣∣ 3
√

3/2

− 3
√

3/2

=
1

2

(
x

2
− 1

2

)
− 1

2

(
−x
2

+
1

2

)
=
x

2
− 1

2
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For y ∈ [− 3
√

3/2, 3
√

3/2], we have

fY (y) =

∫ ∞
−∞

f(x, y) dx

=

∫ 3

1

1

2

(
xy2 − y2

)
dx

=
1

2

(
x2y2

2
− xy2

)
dx

=
1

2

(
9y2

2
− 3y2

)
− 1

2

(
y2

2
− y2

)
= y2

Now notice for (x, y) ∈ [1, 3]× [−3/2/, 3
√

3/2] we have

fX(x)fY (y) =

(
x

2
− 1

2

)
· y2 =

1

2

(
xy2 − y2

)
= f(x, y).

Of course, for (x, y) outside the rectangle above all the functions are
zero and so f(x, y) = fX(x)fY (y) for all (x, y). Thus the random
variables are independent.

Example 12.5.
Are the discrete random variables with joint pmf

x
y −1 0 1

1 1
12

5
24

1
24

2 1
6

5
12

1
12

independent?
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First we compute the marginal pmf’s:

pX(x) =


1
3

if x = 1
2
3

if x = 2

0 otherwise

pY (y) =


1
4

if y = −1
5
8

if y = 0
1
8

if y = 1

0 otherwise

Multiplying pX(x) · pY (y) for all (x, y), we see the random variables
are independent.

We can also condition one random variable in terms of another. That
is, suppose we have two random variables X and Y and we know the value
of Y – say Y has some fixed value y0 – but we don’t know the value of
X. This gives a new random variable which we write as X|Y = y0. What
should the pmf (or pdf) of this new random variable be? I.e., how do we
compute Pr(X ∈ E|Y = y0).

Notice that if X and Y are both discrete with joint pmf p(x, y) and Y
has marginal pmf pY (y), then

Pr(X = x|Y = y0) =
Pr(X = x and Y = y0)

Pr(Y = y0)
=

Pr(X−1({x}) ∩ Y −1({y0}))
Pr(Y −1({y0}))

=
p(x, y0)

pY (y0)
.

This is the pmf of X|Y = y0, which we sometimes denote as pX|Y (x|y):

pX|Y (x|y) =
p(x, y)

pY (y)
.

For continuous random variables we have a similar definition for the pdf
of X|Y = y:

fX|Y (x|y) =
f(x, y)

fY (y)

where f(x, y) is the joint pdf of X and Y , and fY (y) is the marginal pdf of
Y .

Notice in both cases that X|Y is really a family of random variables:
we have one random variable, denoted X|Y = y, for each choice of y.
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Example 12.6.
Suppose X and Y are continuous random variables with joint pdf

f(x, y) =

{
x+ 3

2
y2 if (x, y) ∈ [0, 1]× [0, 1]

0 otherwise

The random variable X|Y = 0 is the random variable obtained by
fixing Y = 0 and allowing X to vary. This has pdf

fX|Y (x|0) =
f(x, 0)

fY (0)

=

{
x+ 3

2
·02

1
2

+ 3
2
·02 if 0 ≤ x ≤ 1

0 otherwise

=

{
2x if 0 ≤ x ≤ 1

0 otherwise

The random variable X|Y = 1/2, however, has density

fX|Y (x|1/2) =
f(x, 1/2)

fY (1/2)

=


x+ 3

2
·( 1

2)
2

1
2

+ 3
2
·( 1

2)
2 if 0 ≤ x ≤ 1

0 otherwise

=

{
x+ 3

8
1
2

+ 3
8

if 0 ≤ x ≤ 1

0 otherwise

=

{
8
7
x+ 3

7
if 0 ≤ x ≤ 1

0 otherwise

Notice that if X and Y happen to be independent, then

fX|Y (x|y) =
f(x, y)

fY (y)
=
fX(x) · fY (y)

fY (y)
= fX(x).

when X and Y are both disjoint. If X and Y are both discrete, then a
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similar calculation shows

pX|Y (x|y) = pX(x)

when X and Y are independent.

12.4 Composition with real-valued

functions

Given a function g : R2 → R and two random variables X and Y , the
composition g(X, Y ) is a new random variable. If X and Y are discrete
with joint pmf p(x, y), then g(X, Y ) will certainly be discrete and may
wonder what its pmf is.

Theorem 12.1.
If X and Y are discrete random variables with joint pmf p(x, y), then
for any function g : R2 → R, the composition g(X, Y ) is a discrete
random variable with pmf

pg(z) =
∑

(x,y)∈g−1({z})

p(x, y).

Proof.
Given z ∈ R (we’re using z just to prevent confusion with the value
of X), we need to compute Pr(g(X, Y ) = z). That is, we need to
consider the set of (x, y) points which will give z when plugged into g;
this is precisely g−1({z}). Now we simply sum p(x, y) over all points
in this preimage.

Example 12.7.
Suppose g(x, y) = (x2y + xy2)

2
, and X and Y are discrete random

variables with pmf indicated by the table below.
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x
y

1 2 3

−1 1/8 1/4 1/2
1 0 1/8 0

What is the pmf pg(z) of g(X, Y )?
Let’s first find all the values of g(X, Y ) could take on by plugging

the (x, y) values of the table above into g:

x
y

1 2 3

−1 0 4 36
1 4 36 144

For each of the four possible values g(X, Y ) could take on (0, 4, 36,
or 144), we look at what we would X and Y would have to be to get
that particular value. The table above basically tells us

g−1({0}) = {(−1, 1)}
g−1({4}) = {(−1, 2), (1, 1)}
g−1({36}) = {(−1, 3), (1, 2)}
g−1({144}) = {(1, 3)}

For each possibility we sum up the probabilities of these particular
(X, Y )-values to obtain the pmf

pg(z) =



1/8 if z = 0
1/4 if z = 4
5/8 if z = 36

0 if z = 144

0 otherwise

Since pg(144) = 0 we could of course write this in a slightly simpler
way as

pg(z) =


1/8 if z = 0
1/4 if z = 4
5/8 if z = 36

0 otherwise
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We can do something similar for compositions with continuous random
variables, but of course there’s a bit of calculus involved. First notice that
if X and Y are continuous random variables with joint pdf f(x, y), their
composition with a function g : R2 → R may not be continuous. E.g., if we
compose with the function

g(x, y) =

{
1 if x ≥ y

−1 if x < y

then we certainly will get a discrete random variable. Even if g(x, y) was
continuous, the composition g(X, Y ) may be discrete. The obvious (boring)
example would be if g(x, y) is a constant function. If g is continuous and not
constant, however, how would we go about determining the pdf of g(X, Y )?

Recalling that the pdf of a continuous random variable is the derivative
of the cdf, maybe we should first find the cdf. Let G denote the cdf of
g(X, Y ):

G(z) = Pr(g(X, Y ) ≤ z) =
x

g−1((−∞,z])

f(x, y) dA.

The pdf of g(X, Y ), which we’ll call fg(z), is then the derivative of this
function:

fg(z) = G′(z) =
d

dz

x

g−1((−∞,z])

f(x, y) dA.

This kind of calculation can be difficult in general, but at least in some
particular cases we may be able to compute this pdf.

Calculating pmf’s and pdf’s of compositions is possible, but rather te-
dious. Luckily we don’t need to do these calculations if all we’re interested
in is calculating expected values.

Theorem 12.2.
If X and Y are discrete random variables with joint pmf p(x, y) and
g(x, y) is any real-valued function, then

E[g(X, Y )] =
∑

(x,y)∈R2

g(x, y)p(x, y) =
∑
x∈R

∑
y∈R

g(x, y)p(x, y)

If X and Y are continuous random variables with joint pdf f(x, y) and
g(x, y) is any real-valued function such that the composition g(X, Y )
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is a continuous random variable, then

E[g(X, Y )] =
x

R2

g(x, y)f(x, y) dA.

One important consequence of Theorem 12.2 is the following:

Corollary 12.3.
If X and Y are any two random variables (both discrete or both con-

tinuous) on the same sample space Ω, and λ ∈ R is any constant,
then

E[λX + Y ] = λE[X] + E[Y ].

Remark.
If you’ve had linear algebra, all of the remarks above should look like
things you’ve seen before. In particular, multiplying a random variable
X by a real number λ gives a new random variable λX; and adding
two random variables X + Y together also gives a random variable.
That is, the set of all random variables on a given sample space Ω is a
real vector space. Furthermore, Corollary 12.3 says that expectation,
E, is a linear transformation from this vector space to the vector space
R.

12.5 Covariance and correlation

We now introduce a number associated to each pair of random variables
X and Y which gives us a measure of how changes in one random variable
relate to changes in the other. This number is called the covariance of X
and Y .

To be more precise, the covariance of X and Y , denoted Cov(X, Y ),
is defined to be the expected value of (X−µX) · (Y −µY ) where µX = E[X]
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and µY = E[Y ],

Cov(X, Y ) = E[(X − µX) · (Y − µY )].

Before mentioning some basic properties of this quantity, let’s try to get
some intuition for what the covariance actually measures. Notice that for
any random output of our random variable X, the factor X−µX is positive
if X is greater than its mean and negative if it is smaller than its mean.
Similarly for Y − µY . The product (X − µX) · (Y − µY ) is positive if
X − µX and Y − µY have the same sign (both positive or both negative),
and negative if they have different signs. Just paying attention to the sign
of these values and ignoring their magnitude, E[(X −µX)(Y −µY )] tells us
if the signs agree (in which case this expected value is positive) or disagree
(so the expected value is negative) on average.

We’ll see some examples of this in just a minute which should help
give some intuition for covariance, but first we mention a couple of simple
properties that will make our calculations slightly easier.

Let’s notice that the covariance of X and X (i.e., plugging in X for Y
as well) gives the variance of X:

Cov(X,X) = E[(X − µX) · (X − µX)]

= E[(X − µX)2]

= Var(X).

Just as there’s a minor shortcut for computing variance, there’s a cor-
responding shortcut for computing covariance.

Proposition 12.4.
For any two random variables X and Y ,

Cov(X, Y ) = E[XY ]− E[X]E[Y ].

Proof.
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Cov(X, Y ) = E[(X − µX)(Y − µY )]

= E[XY −XµY − µXY + µXµY ]

= E[XY ]− µYE[X]− µXE[Y ] + µXµY

= E[XY ]− E[Y ]E[X]− E[X]E[Y ] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ].

Before going any further, let’s consider a couple of very simple examples.

Example 12.8.
Suppose X and Y are discrete random variables whose joint pmf is

the following:

p(x, y) =

{
1/4 if (x, y) ∈ {(1, 1), (2, 2), (3, 3), (4, 4)}
0 otherwise

To compute the covariance we need the expected value of each of X
and Y which requires that we compute their marginals. It is easy to
check in this case the marginals are

pX(x) =

{
1/4 if x ∈ {1, 2, 3, 4}
0 otherwise

pY (y) =

{
1/4 if y ∈ {1, 2, 3, 4}
0 otherwise

Now we compute the expected values to obtain

E[X] = E[Y ] =
5

2
.

and the expected value of XY is

E[XY ] =
1 + 4 + 9 + 16

4
=

30

4
=

15

2
.
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So the covariance here is 15
2
− 5

2
· 5

2
= 5

4
.

Notice in this example that as the X values increased the Y values
increased in the same way and we had a positive covariance. What
happens if instead the Y values decrease as X decreases?

Suppose now that X and Y have joint pmf

p(x, y) =

{
1/4 if (x, y) ∈ {(1, 4), (2, 3), (3, 2), (4, 1)}
0 otherwise

Now the marginals are still

pX(x) =

{
1/4 if x ∈ {1, 2, 3, 4}
0 otherwise

pY (y) =

{
1/4 if y ∈ {1, 2, 3, 4}
0 otherwise

and so the expected value of X and Y are still E[X] = E[Y ] = 5/2.
The expected value of XY , however, is

E[XY ] =
4 + 6 + 6 + 4

4
= 5.

The covariance is now 5− 25
4

= −5
4

.

Notice in the examples above that the covariance was positive when the
X and Y values increased together, but was negative when the Y -values
decreased as X increased.

That is, covariance (or at least the sign of covariance), tells us if X
and Y increase together (equivalently, decrease together) or if one increases
while the other decreases.

Exercise 12.1.
Compute the covariance of discrete random variables X and Y whose
joint pmf is

p(x, y) =

{
1/4 if (x, y) ∈ {(1, 1), (2, 4), (3, 9), (4, 16)}
0 otherwise



CHAPTER 12. JOINTLY DISTRIBUTED RANDOM VARIABLES 277

One important property of covariance is that it is always zero for inde-
pendent random variables:

Proposition 12.5.
If X and Y independent, then Cov(X, Y ) = 0.

Proof.
We will prove this for the case when X and Y are continuous; the
discrete case is very similar. Let f(x, y) be the joint pdf of X and
Y , and fX(x) and fY (y) the marginal pdf’s. Suppose X and Y are
independent so f(x, y) = fX(x)fY (y), and we simply compute

E[XY ] =
x

R2

xyf(x, y) dA

=

∫ ∞
−∞

∫ ∞
−∞

xyfX(x)fY (y) dx dy

=

∫ ∞
−∞

xfX(x) dx ·
∫ ∞
−∞

yfY (y) dy

= E[X]E[Y ].

Now applying our formula for covariance above we have

Cov(X, Y ) = E[XY ]− E[X]E[Y ] = E[X]E[Y ]− E[X]E[Y ] = 0.

Example 12.9.
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Suppose X and Y are continuous random variables with joint pdf

f(x, y) =

{
3x if 0 ≤ y ≤ x ≤ 1

0 otherwise

What is the covariance of X and Y ?
First let’s notice we must compute E[X] and E[Y ], which requires

that we find the marginal pdf’s.
For X we have

fX(x) =

∫ ∞
−∞

f(x, y) dy

=

{∫ x
0

3x dy if 0 ≤ x ≤ 1

0 otherwise

=

3xy

∣∣∣∣x
0

if 0 ≤ x ≤ 1

0 otherwise

=

{
3x2 if 0 ≤ x ≤ 1

0 otherwise

and so

E[X] =

∫ 1

0

x3x2 dx

=

∫ 1

0

3x3 dx

=
3x4

4

∣∣∣∣1
0

=
3

4
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For Y ,

fY (y) =

∫ ∞
−∞

f(x, y) dx

=

{∫ 1

y
3xdx if 0 ≤ y1

0 otherwise

=


3x2

2

∣∣∣∣1
y

if 0 ≤ y ≤ 1

0 otherwise

=

{
3
2

(1− y2) if 0 ≤ y ≤ 1

0 otherwise

Thus

E[Y ] =

∫ 1

0

y
3

2

(
1− y2

)
dy

=

∫ 1

0

3

2

(
y − y3

)
dy

=
3

2

(
y2

2
− y4

4

)∣∣∣∣1
0

=
3

2

(
1

2
− 1

4

)
=

3

8

Now to compute the covariance we must also compute E[XY ]:

E[XY ] =
x

R2

xyf(x, y) dA
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Now we compute the covariance as follows,

Cov(X, Y ) = E[XY ]− E[X]E[Y ]

=
3

10
− 3

4
· 3

8

=
3

10
− 9

32

=
96− 90

320

=
6

320

=
3

160

We noted above that if X and Y are independent, then their covariance
must be zero. The next example illustrates that the converse is not true:
X and Y may have zero covariance without being independent.

Example 12.10.
Suppose X and Y are two discrete random variables with joint pmf

p(x, y) =

{
1/4 if (x, y) ∈ {(0, 0), (1, 1), (1,−1), (2, 0)}
0 otherwise

Are X and Y independent? If X and Y are not independent, what is
their covariance?

To determine if X and Y are independent or not we must compute
their marginal pmf’s:

fX(x) =
∑
y∈R

f(x, y)

= f(x, 0) + f(x, 1) + f(x,−1)

=


1/4 if x = 0
1/2 if x = 1
1/4 if x = 2

0 otherwise
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fY (y) =
∑
x∈R

f(x, y)

= f(0, y) + f(1, y) + f(2, y)

=


1/4 if x = −1
1/2 if x = 0
1/4 if x = 1

0 otherwise

Now we can easily see that f(x, y) 6= fX(x)fY (y). For example,
f(0, 0) = 1/4, while fX(0)fY (0) = 1/4 · 1/2 = 1/8. So, X and Y are
not independent.

For the covariance we simply compute the necessary expectations:

E[X] = 0 · 1/4 + 1 · 1/2 + 2 · 1/4 = 1

E[Y ] = −1 · 1/4 + 0 · 1/2 + 1 · 1/4 = 0

E[XY ] = 0 · 0 · 1/4 + 1 · 1 · 1/4 + 1 · (−1) · 1/4 + 2 · 0 · 1/4

= 0

Now we compute the covariance as

Cov(X, Y ) = E[XY ]− E[X]E[Y ] = 0− 1 · 0 = 0.

So Cov(X, Y ) = 0, even though X and Y are not independent.

The following theorem tells us that we can break up covariance calcu-
lations when we have a function of random variables by splitting up sums
and differences, and pulling out scalars.

Theorem 12.6.
If X, Y , and Z are any three random variables defined on the same

sample space, and if λ ∈ R is any real number, then

1. Cov(X, Y ) = Cov(Y,X)

2. Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z)
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3. Cov(λX, Y ) = λCov(X, Y )

Exercise 12.2.
Prove Theorem 12.6.

Remark.
If you’ve taken linear algebra before, the properties in Theorem 12.6
should look familiar: these are exactly the axioms for an inner product
on a real vector space. That is, covariance is an inner product on the
vector space of all random variables on a given sample space. This
has some very important consequences which we won’t have time to
discuss in this class, but it essentially means there’s a geometric way
of thinking of the space of random variables. (Inner products supply
us with a notion of angle and length.) One consequence, for example,
is that indpenendent random variables are orthogonal!

We saw earlier that the sign of covariance told us something about how
two random variables X and Y increase/decrease together. The magnitude
of the covariance is less important, though, and so we now introduce a sort
of “normalization” of the covariance which lets us ignore the magnitude.

The correlation coefficient (or simply correlation) between two
random variables X and Y , denoted Corr(X, Y ), is defined to be the quan-
tity

Corr(X, Y ) =
Cov(X, Y )

σXσY
where σX and σY are the standard deviation of X and Y , respectively.

Example 12.11.
Suppose X and Y are discrete random variables with joint pmf as
indicated below:
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x
y

1 2 3

−1 1/8 1/4 1/2
1 0 1/8 0

What is their correlation?
To find the correlation we must find the covariance, which requires

us to find the expected value of each random variable, and the standard
deviation. To do these calculations we must calculate the marginal
pmf’s of X and Y :

pX(x) =


7/8 if x = −1
1/8 if x = 1

0 otherwise

pY (y) =


1/8 if y = 1
3/8 if y = 2
1/2 if y = 3

0 otherwise

Now we find the expected value of X and Y :

E[X] = −1 · 7

8
+ 1 · 1

8
=
−3

4

E[Y ] = 1 · 1

8
+ 2 · 3

8
+ 3 · 1

2
=

19

8

Now we also need to find the variance of X and Y so we can find the
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standard deviations:

Var(X) = E[X2]− E[X]2

=

(
(−1)2 · 7

8
+ 12 · 1

8

)
−
(
−3

4

)2

= 1− 9

16

=
7

16

Var(Y ) = E[Y 2]− E[Y ]2

=

(
12 · 1

8
+ 22 · 3

8
+ 32 · 1

2

)
−
(

19

8

)2

=
49

8
− 361

64

=
2775

64

The standard deviations are thus

σX =

√
7

4
and σY =

√
2775

8
.

We also need E[XY ] to compute the covariance:

E[XY ] =
∑

(x,y)∈R2

xyp(x, y)

= (−1) · 1

8
+ (−2) · 1

4
+ (−3) · 1

2
+ 2 · 1

8
= −1/8− 4/8− 12/8 + 2/8

=
−15

8
.
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The covariance is thus

Cov(X, Y ) = E[XY ]− E[X]E[Y ]

=
−15

8
− −3

4
· 19

8
=
−15

8
+

57

32

=
−60 + 57

32

=
−3

32
.

Now we have all the pieces to compute the correlation:

Corr(X, Y ) =
Cov(X, Y )

σXσY

=
− 3/32

√
7/4 ·

√
2775/8

=
− 3/32

√
19425/32

=
−3√
19425

Computationally, all of the hard work comes from computing the co-
variance; we then just divide this covariance by some particular (which also
requires a bit of work). The basic properties of covariance thus carry over
to correlation, but we also have a few new properties:

Theorem 12.7.
Let X and Y be two random variables on the same sample space Ω.

Then we have the following four properties:

1. −1 ≤ Corr(X, Y ) ≤ 1

2. For any constants a, b, c, d ∈ R, we have Corr(aX + b, cY + d) =
Corr(X, Y ).

3. If X and Y are independent, then Corr(X, Y ) = 0.
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4. Corr(X, Y ) = ±1 if and only if Y = aX + b for some constants
a and b.

These properties are a little bit trickier to prove from first principles (i.e.,
without appealing to some slightly more advanced math), so we’ll skip the
proof but make one little observation about how to prove the first part of
Theorem 12.7 in the remark below.

Remark.
The first part of Theorem 12.7 is actually the Cauchy-Schwarz inequal-
ity for inner products. In particular, since Cov is an inner product,√

Cov(X,X) =
√

Var(X) = σX is a norm. The Cauchy-Schwarz
inequality says that for any vectors v, w in an inner product space,

|〈v, w〉| ≤ ‖v‖ ‖w‖

In our particular setting where the inner product is given by covariance
and the norm is the standard deviation, this becomes

|Cov(X, Y )| ≤ σXσY .

We can rewrite this as

−σXσY ≤ Cov(X, Y ) ≤ σXσY .

Dividing through by σXσY gives the desired inequality:

−1 ≤ Cov(X, Y )

σXσY
= Corr(X, Y ) ≤ 1.

Properties (1) and (4) from Theorem 12.7 tell us that correlation is a
measure of the linear relationship between X and Y . If |Corr(X, Y )| is
very close to one, then X and Y are very close to being related by a linear
function; the sign tells us whether X and Y are positively or negatively
proportional.
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Exercise 12.3.
Compute the correlation coefficients for the discrete random variables
X and Y with joint pmf

p(x, y) =

{
1/4 if (x, y) ∈ {(1, 1), (2, 2), (3, 3), (4, 4)}
0 otherwise

Repeat the exercise when the joint pmf is

p(x, y) =

{
1/4 if (x, y) ∈ {(1, 4), (2, 3), (3, 2), (4, 1)}
0 otherwise

12.6 Linear combinations of random

variables

There are a few other important properties of covariance we need to be
aware of, but in order to state them concisely we need to give a definition.

A linear combination of a finite number of random variables X1, X2,
..., Xn is simply a sum where each random variable Xi is multiplied by
some constant λi (we allow different λi’s for different Xi’s), then these are
all added together. For example,

2X1 −X2 + 7X3

is a linear combination, and so is

1

n
X1 +

1

n
X2 + · · ·+ 1

n
Xn =

X1 +X2 + · · ·+Xn

n
.

(This second linear combination will turn out to be very important later.)
It follows from our earlier work that expected values split up nicely for

linear combinations.

Lemma 12.8.
For any collection of n random variables X1, X2, ..., Xn and any
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collection of n real numbers λ1, λ2, ..., λn we have

E[λ1X1 + λ2X2 + · · ·+ λnXn] = λ1E[X1] + λ2E[X2] + · · ·+ λnE[Xn]

Proof.
We will prove this only in the case when the Xi are discrete; the proof
when they are continuous is similar.

Suppose p(x1, ..., xn) is the joint pmf of the random variables. For
notational convenience, let’s write ~x for (x1, x2, ..., xn). The expected
value above then becomes

E[λ1X1 + λ2X2 + · · ·+ λnXn] =
∑
~x∈Rn

(λ1x1 + · · ·+ λnxn)p(~x).

Now we split this sum up and factor out the λi’s to write the expected
value as

λ1

∑
~x∈Rn

x1p(~x) + λ2

∑
~x∈Rn

x2p(~x) + · · ·+ λn
∑
~x∈Rn

xnp(~x).

We claim each of these sums is in fact E[Xi]. To see this, note we
could rewrite the sum as∑

~x∈Rn
xip(~x) =

∑
x1∈R

∑
x2∈R

· · ·
∑
xn∈R

xip(x1, x2, ..., xn).

Rearrange this sum so the xi terms come first, and factor xi out of all
of the remaining sums to obtain

∑
xi∈R

xi

∑
x1∈R

∑
x2∈R

· · ·
∑

xi−1∈R

∑
xi+1∈R

· · ·
∑
xn∈R

p(x1, ..., xn)

 .

Notice the sum on the right is precisely the marginal pmf of Xi, so the
expression above is simply∑

xi∈R

xipXi(xi) = E[Xi].
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Plugging this into the expression above proves the lemma.

So, expected values break up nicely for a linear combination of random
variables. There is a similar way to break up variances, but it’s not quite
as simple.

Lemma 12.9.
For any collection of n random variables X1, X2, ..., Xn and any

collection of n real numbers λ1, λ2, ..., λn we have

Var (λ1X1 + λ2X2 + · · ·+ λnXn) =
n∑
i=1

n∑
j=1

λiλjCov(Xi, Xj)

Proof.
We essentially just apply properties of covariance from Theorem 12.6
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together with the fact Var(X) = Cov(X,X) to verify the claim.

Var

(
n∑
i=1

λiXi

)
= Cov

(
n∑
i=1

λiXi,
n∑
j=1

λjXj

)

=
n∑
i=1

Cov

(
λiXi,

n∑
j=1

λjXj

)

=
n∑
i=1

λiCov

(
Xi,

n∑
j=1

λjXj

)

=
n∑
i=1

λiCov

(
n∑
j=1

λjXj, Xi

)

=
n∑
i=1

λi ·

(
n∑
j=1

Cov (λjXj, Xi)

)

=
n∑
i=1

λi ·

(
n∑
j=1

λjCov (Xj, Xi)

)

=
n∑
i=1

λi ·

(
n∑
j=1

λjCov (Xi, Xj)

)

=
n∑
i=1

n∑
j=1

λiλjCov (Xi, Xj)

An important corollary is the following.

Corollary 12.10.
If X1, X2, ..., Xn are mutually independent, then for any real numbers
λ1, λ2, ..., λn,

Var

(
n∑
i=1

λiXi

)
=

n∑
i=1

λ2
iVar(Xi)
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Exercise 12.4.
Prove Corollary 12.10.

12.7 The strong law of large numbers and

central limit theorem

We now quickly mention two theorems that are arguably the most impor-
tant in all of statistics. Most of the theorems we have seen in class are
basic properties of the constructions we have introduced, but the next two
theorems are much deeper. These two theorems are the real work horses
for statistics; most of statistics would not be possible without these theo-
rems. We will, unfortunately, need to treat these theorems as blackboxes,
however: their proofs are too advanced for this class, though the results are
fundamental.

In this section we will just state the theorems, since they naturally fit
in with the material about jointly distributed random variables, though we
won’t see any significant examples until the next chapter. So, while you’ll
need to take it on faith these theorems are interesting and important for
the moment, in the next chapter we will start using these theorems to study
statistics.

Before we can state these theorems, we need one more definition. We
say a sequence of random variables X1, X2, X3, ... are independent and
identically distributed , often abbreviated IID , if the Xi are all mutually
independent and they have the same distribution (i.e., they’re all discrete or
all continuous; if they are discrete, they all have the same pmf; if continuous,
they all have the same pdf).

The strong law of large numbers says that if we have such an IID collec-
tion of random variables, then their average approaches the expected value
of any one (and hence all) of the Xi.

Theorem 12.11 (The strong law of large numbers).
Let X1, X2, X3, ... be a sequence of IID random variables, and let µ
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denote the expected value of any of the Xi. Then, with probability one,

lim
n→∞

X1 +X2 + · · ·+Xn

n
= µ.

Let’s first notice that the statement of the theorem is quantified by the
phrase with probability one. We have a random collection of numbers, and
it could happen that by sheer bad luck we actually got values for X1, X2,
... so that the limit above was not µ. For example, suppose each Xi was a
binomial random variable with parameter 1/2. That is, Pr(Xi = 1) = 1/2 and
Pr(Xi = 0) = 1/2 for each i. The strong law of large numbers tells us that
if we select longer and longer sequences of numbers, each of which is one
of these binomial random variables, then when we average these numbers
together we should get the mean of that binomial, 1/2.

It is conceivable, however, that we could select X1, X2, X3, ... so that
each equalled 0, and so the limit is zero instead of 1/2. However, the proba-
bility this happens is zero. In this particular case this is easy to see: as the
Xi are all mutually independent, we see

Pr(X1 = 0 and X2 = 0 and X3 = 0 and · · ·Xn = 0)

= Pr(X1 = 0) · Pr(X2 = 0) · Pr(X3 = 0) · · ·Pr(Xn = 0)

=
1

2n
.

As n goes to infinity, this goes to zero. In fact, for any particular sequence
of zeros and ones, the probability we get that particular sequence is zero by
the same argument. The strong law of large numbers is saying something
more, though: it is saying that when you pick these random numbers, with
probability one you will pick numbers whose average goes the value µ. It’s
not guaranteed this will happen, but the probability it doesn’t happen is
staggeringly small – so small the probability we don’t average out to µ is
zero. This is what the with probability one part of the strong law of large
numbers says. (Sometimes this is also called convergence almost surely :
the strong law of large numbers says the limit above “almost surely” con-
verges to µ.)

The take-away from the strong law of large numbers is that if we have
a sequence of random variables which we assume are IID, but we don’t
know what the pmf/pdf is and can’t compute µ, then we can estimate µ by
averaging several Xi values together.
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Notice the quantity appearing in the strong law of large numbers,

X1 +X2 + · · ·+Xn

n

is itself a random variable. The next theorem tells us something more
precise about the distribution of these random variables for large values of
n.

Theorem 12.12 (The central limit theorem).
Let X1, X2, X3, ... be a sequence of IID random variables. Let
µ = E[Xi] be the common mean of these random variables, and σ =√

Var(Xi) the common standard deviation.
For each integer n ≥ 1, define a new random variable Zn as

Zn =
√
n · X1 +X2 + · · ·+Xn − nµ

nσ
,

and let Fn denote the cdf of this random variable. Then for every
x ∈ R,

lim
n→∞

Fn(x) = Φ(x)

where Φ is the cdf of the standard normal, Z.

The central limit theorem takes a little bit of work to decipher, but once
you understand what it says, it almost seems like magic. The theorem says
that if we take any sequence of IID random variables (literally any sequence
of weird random variables you like, discrete, continuous, whatever) and then
perform a certain normalization to that sequence, your normalized random
variables approach the standard normal. This is incredible because it means
we can actually use knowledge of the standard normal to help us understand
any sequence of random variables.

We should point out that there are actually several different versions
of the central limit theorem, and if you looked in four different textbooks
you might see four slightly different variations on the theorem above. The
version above is the most correct and precise version of the theorem we can
give right now, but there’s another version that is sometimes easier to think
about.
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Theorem 12.13 (Alternative central limit theorem).
Let X1, X2, X3, ... be a sequence of IID random variables. Then for

“sufficiently large” values of n, the random variable

X1 +X2 + · · ·+Xn

n

is approximately the normal random variable N
(
µ, σ√

n

)
.

(Here, µ = E[Xi] and σ =
√

Var(Xi).)

This alternative version of the central limit theorem tells us that if
n is large enough, the random variable 1

n
(X1 + · · · + Xn) is essentially a

normal random variable. This is helpful because if we want to know the
probability this random variable takes on a value in a certain range, the
central limit theorem says we can estimate that probability by computing
the probability for the corresponding normal random variable. (Of course,
we do that by standardizing the normal. The subtraction of nµ, division
by nσ and multiplication by

√
n in the earlier version of the central limit

theorem simply has that standardization worked out.)

Remark.
In some basic statistics courses you are told the approximation from
the alternative version of the central limit theorem applies as long as
n is at least thirty. This is just a heuristic and not a mathematical
fact. That is, for many “real world” random variables n ≥ 30 seems
to be large enough that the normal is a reasonable approximation for
1
n
(X1+X2+· · ·+Xn). However, it is possible to have random variables

where n might be one-hundred billion before 1
n
(X1 +X2 + · · ·+Xn) is

well approximated by the normal. The “sufficiently large” part of our
alternative central limit theorem is sweeping this under the rug. There
does exist some large enough value of n so that 1

n
(X1 +X2 + · · ·+Xn)

is as close to a normal random variable as you’d like, although that
large enough n depends on exactly what the distribution of the Xi is.
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12.8 Practice problems

Problem 12.1.
Suppose X and Y are two discrete random variables whose joint probability
density function, p(x, y) = P (X = x and Y = y), is given by the following
table:

x
y −2 −1 1 2

0 0.1 0 0.05 0.05
1 0 0.1 0.1 0
2 0.07 0.02 0.04 0.07
3 0.1 0.05 0.03 0.02

(a) Determine the probability that X ≤ 2 and Y < 1.

(b) Compute the marginal pdf of X.

(c) Compute the marginal pdf of Y .

(d) Compute E[XY ].

(e) Compute the pdf of the random variable X + Y .

Problem 12.2.
Suppose X and Y are continuous random variables with joint pdf

f(x, y) =

{
kxy if 0 ≤ x, 0 ≤ y, and x+ y ≤ 1

0 otherwise

for some constant k.

(a) Determine which value of k makes the f(x, y) above a pdf.

(b) Compute P (Y ≥ X).

(c) Are X and Y independent?

Problem 12.3.
Suppose a point in the unit disc in the plane,

{(x, y) ∈ R2
∣∣ 0 ≤ x2 + y2 ≤ 1},

is randomly selected where the joint pdf of the x and y coordinates of the
point is given by

f(x, y) =
1

π
.
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For each 0 ≤ r ≤ 1, find the probability the randomly selected point is
distance at most r from the origin.

Problem 12.4.
Suppose X and Y are two independent Poisson random variables with pa-
rameters λX and λY . Determine the pdf of X + Y .

(Hint: Note if X + Y = n, then for some 0 ≤ k ≤ n we have X = k and
Y = n− k.)
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13Introduction to Statistics
The beauty of mathematics only shows itself
to more patient followers.

Maryam Mirzakhani
Interview in Clay Mathematics Institute

Annual Report, 2008

13.1 The idea of statistics

Statistics is the study of data, and in particular the study of how to deduce
information from data. This data is obtained from a population , which is
some collection of all of the “objects” we care about. For example, all cars
driven in the state of Indiana; all ears of corn in a farm; or all of the college
football players in the United States.

In an ideal world, we might like to have total information about all
members of a population. For example, we might want to know the tread
level of the tires on every car in Indiana; or the sugar content of every
ear of corn in a field; or the fractional anisotropy value1 of each football
player in the country. Having this kind of complete information is called a
census , but it is often impossible (or at least very impractical) to perform
a census on a given population. E.g., it is not realistic for a farmer to
actually measure the sugar content of every ear of corn in their field.

Instead of performing a census, we instead consider a more manageable
collection of values obtained from a subset of the population called a sam-
ple . The goal of statistics is to take information obtained from a sample
and use it to deduce information about the population as a whole.

Broadly, there are two basic types of statistics:

• Descriptive statistics is concerned with summarizing data. This
may be done graphically (e.g., with histograms, boxplots, pie charts,
etc.) or numerically (e.g., computation of a mean, median, mode,
and standard deviation). This sort of descriptive statistics is likely
what you’ve seen if you’ve taken any kind of statistics class before in
high-school or college.

1The fractional anisotropy is a number which indicates damage to white matter in
the brain, and requires an MRI to determine. This value might be relevant to researchers
studying the cause of chronic truamatic encephalopathy, a type of brain disease common
among people who have repeated concussions, such as football players.

298
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• Inferential statistics uses data from a sample to infer information
about the population. For example, if there is a particular parameter
of the population we are interested in, we may be able to give a range
of possible values for that parameter based on data obtained in a
sample. (This is called a confidence interval and one of the topics
we will discuss in detail soon.)

Descriptive statistics is relatively elementary material, and so we are
not going to spend any time discussing it, and will instead jump straight
into inferential statistics. It’s worth point out, though, that if you took
a class in descriptive statistics before and found it rather uninteresting
(e.g., just memorizing lots of formulas or learning how to get a computer
or calculator to generate charts or compute medians), then you may find
inferential statistics much more interesting.

Whereas descriptive statistics is basically an exercise in memorizing
definitons and formulas, inferential statistics is serious mathematics. All of
the probability theory and random variables we have discussed up to this
point are just the background material needed to make inferential statistics
precise.

In particular, when we take a sample from a population and then mea-
sure some quantity for the members of our sample, we treat these values
are random variables. For instance, if we measure the sugar content of ears
of corn in a sample of 100 ears from a field, we don’t know what the sugar
content will be until we actually measure it and for this reason think of it
as a random variable. We also assume that our sample is representative of
the population as a whole, and so assume these random variables are IID.
The goal will be to determine the distribution of the underlying random
variables based on the data we obtain from those IID random variables,
and this is where the strong law of large numbers and central limit theorem
are useful.

13.2 What is a statistic?

Before going any further, it’s worth taking the time to point out a potential
for confusion. The word “statistics” has two meanings: one is a general
study of data, but the other is a precise mathematical definition.

A statistic is a function (or sometimes the output of such a function)
that depends only on the values determined by a sample. It’s important to
realize this really depends only on sample values and not unknown param-
eters of the population! That is, we have some collection of sample data
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(aka, random variables), say X1, X2, ..., Xn, and then we have some func-
tion of these values, g(X1, X2, ..., Xn). This function g, or the output of the
function after we plug in our sample data, is a statistic. Notice that since
a statistic is a function of random variables, it is itself a random variable,
and so we can ask questions about its expected value, variance, whether it’s
discrete or continuous, what its pmf or pdf is, etc.

We have already alluded to one particular example of a statistic earlier,
though we didn’t call it a statistic at that time. The sample mean of X1,
X2, ..., Xn is the statistic

X1 +X2 + · · ·+Xn

n

and is often denoted X, where the number of samples, n, is often understood
from context.

Let’s have a simple example of this particular statistic and determine
its sampling distribution to help make all of this more concrete.

Example 13.1.
Suppose that the students at a particular university have the following
distribution of GPA’s:

• 5% of students have a GPA of 1.

• 30% of students have a GPA of 2.

• 60% of students have a GPA of 3.

• 5% of students have a GPA of 4.

Now suppose we randomly select two students from this university at
random and record their GPA’s; let X1 be the GPA of the first student,
and X2 the GPA of the second student. The statistic X is the average
of these two GPA’s, whatever they happen to be,

X =
X1 +X2

2
.

Notice this is a random variable: the values X1 and X2 are random (we
don’t know beforehand which students will select or what their GPA
will be), and so X is also random. However, there are only so many
choices for what X1 and X2 could be, and we know the probability of
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each of these possibilities, so we can work out the probability for each
possibility of X.

In the table below we look at all possibilities of X1 and X2, com-
pute the corresponding X, and then compute the probability of this
particular choice of X1 and X2. (Recall we are assuming now that X1

and X2 are IID, so we can just multiply the probability X1 equals a
given value and the probability X2 equals a given value.)

X1 X2 X = X1+X2

2
Probability

1 1 1 0.5 · 0.5 = 0.0025
1 2 1.5 0.5 · 0.3 = 0.015
1 3 2 0.5 · 0.6 = 0.03
1 4 2.5 0.5 · 0.5 = 0.0025
2 1 1.5 0.3 · 0.05 = 0.015
2 2 2 0.3 · 0.3 = 0.09
2 3 2.5 0.3 · 0.6 = 0.18
2 4 3 0.3 · 0.05 = 0.015
3 1 2 0.6 · 0.05 = 0.03
3 2 2.5 0.6 · 0.3 = 0.18
3 3 3 0.6 · 0.6 = 0.36
3 4 3.5 0.6 · 0.05 = 0.03
4 1 2.5 0.05 · 0.05 = 0.0025
4 2 3 0.05 · 0.3 = 0.015
4 3 3.5 0.05 · 0.6 = 0.03
4 4 4 0.05 · 0.05 = 0.0025

This table basically tells us the pmf of X: we just look at all the
ways we can acheive each possible value of X (1, 1.5, 2, 2.5, 3, 3.5,
and 4) and then add the probabilities together.

The pmf of X (which is often called the sampling distribution in



CHAPTER 13. INTRODUCTION TO STATISTICS 302

statistics) is thus

pX(x) =



0.0025 if x = 1

0.03 if x = 1.5

0.15 if x = 2

0.365 if x = 2.5

0.39 if x = 3

0.06 if x = 3.5

0.0025 if x = 4

The pmf of X in the last example tells, for example, that if we were to
pick two students from this university at random and average their GPA’s,
the probability the average would be 2 would be 15%. The example above is
cheating a little bit because the whole point of the statistical theory we are
about to develop will be to determine information about a population from
a sample; in the example above we were given information about the entire
population (the distribution of GPA’s) and used this to find the probability
a sample had a given value. To describe how to go the other way, we need
to develop some more tools.

13.3 A note on notation

We will sometimes use upper- and lowercase letters to mean two slightly
different things in the material to come. When discussing sample values in
the abstract, we will use Xi as a placeholder for the values to obtained in
the sample, and use xi to mean a particular value we observed. That is,
Xi is a random variable, which we think of as a random value which will
be obtained from our sample, and xi is a particular value. We extend this
convention to statistics of our sample data. For example, X is a random
variable which is a function of the random variables X1, X2, ..., Xn, but x
is the average of the observed values x1, x2, ..., xn.



14Point Estimators
I think that it is a relatively good
approximation to truth – which is much too
complicated to allow anything but
approximations – that mathematical ideas
originate in empirics.

John von Neumann
The Mathematician

Much of statistics is about determining some parameter of the entire
population, such as the average value or the variance of some quantity of
interest, from samples. In this chapter we develop one technique for con-
structing these “point estimators,” (estimates to population parameters)
using maximum likelihood estimators. The basic idea is that we should be
able to construct a statistic which for a given sample data gives us a “good”
estimate of the population parameter we are interested in. In particular,
we will treat the population parameter as an unknown variable, and con-
sider following type of maximization problem: what choice of parameter
maximizes the probability a random sample gives us the data we observed?

14.1 Point estimators in general

Suppose the population parameter we wish to estimate is denoted θ. This
is often the mean µ or the standard deviation σ, but it doesn’t have to be.
For example, with a binomial random variable where n is known, we may be
interested in the probability of success, p, and in that case our θ would be
p. That is, θ is some parameter of the distribution of our random variables
Xi which we do not know and are trying to estimate. We will adopt the
convention that for an unknown parameter θ, the same parameter with a
hat on it, θ̂, is our estimate for the parameter. Notice this is a function of
our sample data X1, X2, ..., Xn, and our goal is to find what this function
must be.

One simple example of this is the sample mean. Given a collection of
sample data X1, ..., Xn, we might estimate the true value of the population
mean (i.e., the value of µ = E[Xi]) using the sample mean,

µ̂ =
X1 + · · ·+Xn

n
.

303
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A very reasonable question to ask is whether this is really the best way to
estimate µ, and in this chapter we will prove that this really is the best we
can do. (Here “best” means maximizing the probability of getting sample
data X1, ..., Xn. In other contexts or applications you may have a different
idea of what “best” should mean.)

There are two common ways to construct these point estimators: by
using maximum likelihood estimators and the method of moments. In class
we will only discuss maximum likelihood estimators simply for the sake of
time.

14.2 Maximum likelihood estimators

Suppose our population has some unknown parameter θ and we have a
random sample (i.e., a collection of IID random variables) X1, ..., Xn from
this population. The value θ influences the pdf (or pmf) of these random
variables – that is, the function for the pmf or pdf depends on θ (for example,
the parameter λ in an exponential distribution). For this reason we will
append a θ to the pmf/pdf of our random variables. For example, if the
variables are discrete and p(x) is the pmf, we will write the pmf as p(x; θ)
to indicate that this pmf is also a function of θ. Similarly, for continuous
random variables we will write f(x; θ) for the pdf.

Since we have several random variables we are working with, X1 through
Xn, we should really be discussing the joint pmf (or pdf), so we will likewise
append a θ to that function:

p(x1, x2, ..., xn; θ) = Pr(X1 = x1, X2 = x2, ..., Xn = xn).

Notice, however, that since these random variables are assumed to be in-
dependent, we can write this joint pmf as the product of the individual
pmf’s:

p(x1, x2, ..., xn; θ) = p(x1; θ)p(x2; θ) · · · p(xn; θ).

Our goal is to find the θ that maximizes this probability: we want to find
a θ̂ such that for any other choice of θ̃,

p(x1, x2, ..., xn; θ̂) ≥ p(x1, x2, ..., xn; θ̃).

Such a θ̂, that maximizes the likelihood of a random sample being the given
values x1, x2, ..., xn is called a maximum likelihood estimator .
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Example 14.1.
What percentage of American adults have the virus which may cause
shingles? We of course can not take a blood sample of every adult
American and test it to see if they have the herpes zoster virus, so
instead we may take a sample of, say, 200.

Now imagine that we assign to each person in the population (to
each American adult) a number: 0 if they do not have the virus, and
1 if they do. When we pick a random person from the population
and test to see if they have the virus, we’re really picking a random
number that’s either 0 or 1. For a given individual there’s nothing
random about this number (they either have the virus or they don’t),
but if we pick a random person we should interpret the number we
get as random. That is, each member of our random sample gives us
a Bernoulli random variable. The probability of “success” for such a
random variable is exactly the proportion of people which have the
virus, and this is our unknown parameter θ. That is, the pmf of our
random variables is

p(x; θ) =


1− θ if x = 0

θ if x = 1

0 otherwise

For our purposes it will be convenient to rewrite this pmf slightly
as follows:

p(x; θ) =

{
θx · (1− θ)1−x if x = 0 or 1

0 otherwise

We’re rewriting the pmf this way simply because we will want to con-
sider the joint pmf for our 200 samples and this is a product of each
of these pmf’s. It will be easier to write down that product if we write
the pmf as above.
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The joint pmf of our 200 samples is thus

p(x1, x2, ..., xn; θ)

=p(x1; θ)p(x2; θ) · · · p(xn; θ)

=θx1(1− θ)1−x1θx2(1− θ)1−x2 · · · θxn(1− θ)1−xn

=θx1+x2+···+xn · (1− θ)1−x1+1−x2+···+1−xn

=θ
∑n
i=1 xi(1− θ)n−

∑n
i=1 xi

Now, given values of x1, x2, ..., xn, we want to find the value of θ that
maximizes the probability above. That is, we have a calculus problem:
find the θ that maximizes θ

∑n
i=1 xi(1− θ)n−

∑n
i=1 xi .

To maximize this function we of course need to find the critical
points, and so we have to solve the equation

d

dθ
θ
∑n
i=1 xi(1− θ)n−

∑n
i=1 xi = 0.

To make our lives a little bit easier, let’s notice that since log is an
increasing function, optimizing log(f(x)) is just as good as optimizing
f(x). This is convenient because if we take a log, then the product
above turns into a sum and is easier to differentiate. That is, we will
actually maximize

log
(
θ
∑n
i=1 xi(1− θ)n−

∑n
i=1 xi

)
= log

(
θ
∑n
i=1 xi

)
+

(
n−

n∑
i=1

xi

)
log(1−θ).

Differentiating with respect to θ and setting this equal to zero we have(
n∑
i=1

xi

)
· 1

θ
+

(
n−

n∑
i=1

xi

)
· −1

1− θ
= 0.

Multiplying through by θ · (1− θ) to clear out the denominaotrs of the
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fractions gives us

(1− θ) ·
n∑
i=1

xi − θ

(
n−

n∑
i=1

xi

)
= 0

=⇒
n∑
i=1

xi − θ
n∑
i=1

xi − nθ + θ

n∑
i=1

xi = 0

=⇒
n∑
i=1

xi − nθ = 0

=⇒ nθ =
n∑
i=1

xi

=⇒ θ =
1

n

n∑
i=1

xi =
x1 + x2 + · · ·+ xn

n
.

At this point we have a candidate for our maximum – we have a critical
point. We still need to verify if this is in fact a maximum or not. To do
that, let’s consider the second derivative of the function we’re trying
to maximize:

d2

dθ2

[
log(θ)

n∑
i=1

xi + log(1− θ) ·

(
n−

n∑
i=1

xi

)]

=
d

dθ

[∑n
i=1 xi
θ

− n−
∑n

i=1 xi
1− θ

]
=
d

dθ

[
θ−1

n∑
i=1

xi − (1− θ)−1

(
n−

n∑
i=1

xi

)]

=− θ−2

n∑
i=1

xi − (1− θ)−2

(
n−

n∑
i=1

xi

)

=−
[∑n

i=1 xi
θ2

+
n−

∑n
i=1 xi

(1− θ)2

]
.

Notice that as each xi is either zero or one, n ≥
∑n

i=1 xi, and so the
expression above is always negative. That is, our function is concave
down everywhere, so our one critical point is in fact a global maximum.

What does all of this mean in context? Suppose we take a sample
of 200 people which we test for the herpes zoster virus. The sum∑n

i=1 xi simply counting the number of people which test positive for



CHAPTER 14. POINT ESTIMATORS 308

the virus. Suppose this is 190 of our 200 samples. Then we should
estimate that the parameter θ above is

θ̂ =
190

200
= 0.95

I.e., 95% of the population has the virus. Of all possible values of θ,
this is the one that maximizes the probability a sample of 200 individ-
uals would have 190 which test positive.

The end result of the previous example is exactly what you would guess:
we’re just saying that if 95% of our sample has the virus, the most likely
scenario is that 95% of the population has the virus. Notice that it is
possible that some other proportion of the population has the virus and we
just happened to pick a “bad” sample, but the work above shows the most
likely scenario is that 95% of the population has the virus. For example, it
is conceivable that only 1% of the population has the virus and somehow
we just happened to pick a sample where 95% of the people in the sample
had the virus. However, assuming the members of our sample are IID, this
is very unlikely.

The function of θ above which we’re trying to maximize is sometimes
called the likelihood function since it tells us the probability (likelihood)
of seeing the given data for a particular choice of θ. In general, the likelihood
function is a product of of the pmf (or pdf) for the individual random
variables:

L(θ) = p(x1, x2, ..., xn; θ) =
n∏
i=1

p(xi; θ)

for discrete random variables, and

L(θ) = f(x1, x2, ..., xn; θ) =
n∏
i=1

f(xi; θ)

for continuous random variables.
We want to maximize this function and so we must take a derivative.

In the example above the function was nice enough that differentiating it
directly could be done easily, but usually this is going to be a complicated
derivative: it requires an n-fold product rule. To make this derivative easier,
we take the logarithm to convert the product into a sum. This gives the
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log likelihood function ,

log(L(θ)) = log

(
n∏
i=1

f(xi; θ)

)
=

n∑
i=1

log(f(xi; θ)).

Sometimes the distribution we are interested in involves multiple pa-
rameters. In such a situation our likelihood (and log likelihood) function
becomes a function of several variables, and we must use the techniques of
multivariable calculus to perform the optimization.

Example 14.2.
Suppose weights of adults is believed to be normally distributed.

How can we estimate the mean µ and variance σ2 from a sample of n
weights?

Our sample data in this case is given by n IID random variables
X1, X2, ..., Xn where we are assuming each Xi ∼ N(µ, σ), where µ
and σ are unknown. The likelihood function is thus

L(µ, θ) =
n∏
i=1

f(xi;µ, θ)

=
n∏
i=1

1

σ
√

2π
e
−(xi−µ)

2

2σ2

=
1(

σ
√

2π
)n e∑n

i=1
−(x−µ)2

2σ2 .

The log likelihood function can now be written as

log(L(µ, θ)) = log

((
σ
√

2π
)−n

e
∑n
i=1

−(xi−µ)
2

2σ2

)
= −n log(σ

√
2π) + log

(
e
∑n
i=1

−(xi−µ)
2

2σ2

)
= −n log(σ)− n log(

√
2π)− 1

2σ2

n∑
i=1

(xi − µ)2.

We want to maximize this function, so we need to find the critical
points. Since this is a function of two variables, this requires us to
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take the partial derivatives with respect to µ and σ:

∂

∂µ
log(L(µ, σ)) =

−1

2σ2

n∑
i=1

∂

∂µ
(xi − µ)2

=
−1

2σ2

n∑
i=1

2(xi − µ) · (−1)

=

∑n
i=1(xi − µ)

σ2

∂

∂σ
log(L(µ, σ)) =

−n
σ

+ σ−3

n∑
i=1

(xi − µ)2

Now we solve the system of equations

∂

∂µ
log(L(µ, σ)) = 0

∂

∂σ
log(L(µ, σ)) = 0
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The first equation we can directly solve for µ:

∂

∂µ
log(L(µ, σ)) = 0

=⇒
∑n

i=1(xi − µ)

σ2
= 0

=⇒
n∑
i=1

(xi − µ) = 0

=⇒
n∑
i=1

xi −
n∑
i=1

µ = 0

=⇒
n∑
i=1

xi − nµ = 0

=⇒ nµ =
n∑
i=1

xi

=⇒ µ =

∑n
i=1 xi
n

.

Solving the second equation for σ2 gives

∂

∂σ
log(L(µ, σ)) = 0

=⇒ −n
σ

+

∑n
i=1(xi − µ)2

σ3
= 0

=⇒
∑n

i=1(xi − µ)2

σ3
=
n

σ

=⇒
n∑
i=1

(xi − µ)2 = nσ2

=⇒ σ2 =

∑n
i=1(xi − µ)2

n
.

Keep in mind we already determined µ = 1
n

∑n
i=1 xi above, however,

and so we may write

σ2 =

∑n
i=1

(
xi −

∑n
i=1 xi
n

)2

n
.
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To simplify notation, we may write x for 1
n

∑n
i=1 xi and then the above

becomes

σ2 =

∑n
i=1(xi − x)2

n
.

Of course, σ is simply the square root of this.
The above is telling us that if we measure weights of adults and

record these weights as x1, x2, ..., xn, assume that weights are nor-
mally distributed, then the most likely scenario is that the mean of
the weights is

µ̂ = x =
1

n

n∑
i=1

xi =
x1 + x2 + · · ·+ xn

n
,

and the variance is

σ̂2 =

∑n
i=1(xi − x)2

n
.

14.3 Biased and unbiased estimators

A point estimator σ̂ for a population parameter σ is called unbiased if
E[σ̂] = σ, and is called biased otherwise. Keep in mind σ̂ is really a
function of the observed data; we think of this data as being given by
random variables, however, and so σ̂ is also a random variabe. Thus it makes
sense to talk about the expected value of this random variable. Saying a
point estimator is unbiased, then, means that if we looked at all possible
inputs to the function (all possible sample data that could be observed) and
averaged these together, that average would be the true value.

In our example where Xi ∼ Bernoulli(θ), for example, we computed the
maximum likelihood estimator of θ to be

θ̂ =

∑n
i=1Xi

n
=
X1 +X2 + · · ·+Xn

n
.

It is easy to see that this is an unbiased estimator by recalling that if
Xi ∼ Bernoulli(θ) then E[Xi] = θ and applying basic properties of expected
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values that we computed earlier:

E[θ̂] = E
[
X1 +X2 + · · ·+Xn

n

]
= E

[
1

n
X1 +

1

n
X2 + · · ·+ 1

n
Xn

]
=

1

n
E[X1] +

1

n
E[X2] + · · ·+ 1

n
E[Xn]

=
1

n
θ +

1

n
θ + · · ·+ 1

n
θ

= n · 1

n
θ

= θ.

When Xi ∼ N(µ, σ), we found in Example 14.2 that

µ̂ =

∑n
i=1Xi

n

σ̂2 =

∑n
i=1 (Xi − µ̂)2

n
.

Since Xi ∼ N(µ, σ) means E[Xi] = µ, we easily see that µ̂ is unbiased:

E[µ̂] = E
[∑n

i=1Xi

n

]
=

∑n
i=1 E[Xi]

n

=

∑n
i=1 µ

n

=
nµ

n
= µ.

The manipulations for computing E[σ̂2] are a little bit more involved.
To explain how these manipulations work, let’s first observe that for any
random variable X, the variance is equal to Var(X) = E[X2]−E[X]2, which
we may rewrite as E[X2] = Var(X) + E[X]2 or E[X2] = σ2 + µ2.
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Now let’s also note that by Corollary 12.10 we may write

Var(µ̂) = Var

(
1

n

n∑
i=1

Xi

)

=
n∑
i=1

1

n2
Var(Xi)

=
n∑
i=1

1

n2
σ2

= n · 1

n2
σ2

=
σ2

n
.

Combining these observations together we have

E[µ̂2] = Var(µ̂) + E[µ̂]2 =
σ2

n
+ µ2.

This last observation is the key trick for computing E[σ̂2]. We begin by
writing out the definition and doing some basic algebra:

E[σ2] = E
[∑n

i=1(Xi − µ̂)2

n

]
= E

[∑n
i=1 (X2

i − 2Xiµ̂+ µ̂2)

n

]
= E

[
1

n

n∑
i=1

X2
i −

1

n

n∑
i=1

2Xiµ̂+
1

n

n∑
i=1

µ̂2

]

= E

[
1

n

n∑
i=1

X2
i − 2µ̂

1

n

n∑
i=1

Xi +
1

n
· nµ̂2

]

= E

[
1

n

n∑
i=1

X2
i − 2µ̂ · µ̂+ µ̂2

]

= E

[
1

n

n∑
i=1

X2
i − µ̂2

]

=
1

n

n∑
i=1

E
[
X2
i

]
− E

[
µ̂2
]
.
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Now we apply the observations above:

E[σ2] =
1

n

n∑
i=1

E
[
X2
i

]
− E

[
µ̂2
]

=
1

n

n∑
i=1

(
σ2 + µ2

)
−
(
σ2

n
+ µ2

)
= σ2 + µ2 − σ2

n
− µ2

= σ2 − σ2

n

=
nσ2 − σ2

n

=
σ2(n− 1)

n

= σ2n− 1

n
.

Notice that n−1
n
6= 1, and so E[σ̂2] 6= σ2, and so this is a biased estimator.

Having a biased estimator is not necessarily “bad” (the name biased
might have some negative connotations, but mathematically there is noth-
ing wrong with a biased estimator), although it is soemtimes desirable to

have unbiased estimators. Though our maximum likelihood estimator σ̂2 is
biased, we can actually perform one simple manipulation to get an unbiased
estimator.

Given n IID random variables X1, X2, ..., Xn where µ̂ is the maximum
likelihood estimator for E[X], we define the sample variance , denoted
S2, as

S2 =

∑n
i=1 (Xi − µ̂)2

n− 1
.

That is, S2 is almost the same as our σ̂2 from earlier, except we divide the
sum by n − 1 instead of n. The claim is that this minor modification will
make S2 an unbiased estimator.

Proposition 14.1.
S2 is an unbiased point estimator for the variance Var(Xi) for a col-
lection of n IID random variables, X1 through Xn.
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Proof.
We must check thtat E[S2] = σ2. First we write out the definition of
S2 in expected value, then factor out the n − 1 and move it to the
other side, and expand the square in the sum.

E[S2] = E
[∑n

i=1(Xi − µ̂)2

n− 1

]
=⇒ (n− 1)E[S2] = E

[
n∑
i=1

(
X2
i − 2Xiµ̂+ µ̂2

)]
.

Now we use our properties of expected value to split up the sum and
factor out any constants,

E

[
n∑
i=1

(
X2
i − 2Xiµ̂+ µ̂2

)]

=
n∑
i=1

E[X2
i ]− 2E[µ̂]E

[
n∑
i=1

Xi

]
+ E

[
n∑
i=1

µ̂2

]
.

Now we rewrite each E[X2
i ] as σ2 +µ2, which we had observed earlier.

We also note that since µ̂ = 1
n

∑n
i=1Xi, the E [

∑n
i=1Xi] factor in the

middle term can be rewritten as nE[µ̂]. Using these observations we
write

n∑
i=1

E[X2
i ]− 2E[µ̂]E

[
n∑
i=1

Xi

]
+ E

[
n∑
i=1

µ̂2

]

=
n∑
i=1

(
σ2 + µ2

)
− 2nE[µ̂2] + nE[µ̂2].

Combining like-terms this becomes

n∑
i=1

(
σ2 + µ2

)
− 2nE[µ̂2] + nE[µ̂2] = n(σ2 + µ2)− nE[µ̂2].

Now recalling Var(µ̂) = σ2/n and that for any random variable X we
may write E[X2] = Var(X) +E[X]2, the E[µ̂2] above can be rewritten
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to obtain

n(σ2 + µ2)− nE[µ̂2] = n(σ2 + µ2)− n
(
σ2

n
+ µ2

)
= nσ2 + nµ2 − σ2 − nµ2

= nσ2 − σ2

= σ2(n− 1)

At this point we have shown (n−1)E[S2] = σ2(n−1). Finally, dividing
both sides by n− 1 proves the proposition.



CHAPTER 14. POINT ESTIMATORS 318

14.4 Practice problems

Problem 14.1.
Suppose X1, X2, ..., Xn are IID random variables where each Xi is a uniform
random variable Xi ∼ Uni[−θ, θ], and θ is unknown. I.e., the pdf of each
Xi is

f(x) =

{
1
2θ

if − θ ≤ x ≤ θ

0 otherwise

Compute the maximum likelihood estimator θ̂ of θ.

Problem 14.2.
Suppose the lifetime of a certain type of light bulb is exponentially dis-
tributed with unknown parameter λ. Suppose a random sample of n light
bulbs is taken, and the lifetime of the i-th lightbulb is recorded as xi (in

hours, say). Find a formula for the maximum likelihood estimator λ̂ of λ.

Problem 14.3.
The Gamma function is defined for x > 0 to be

Γ(x) =

∫ ∞
0

tx−1e−tdt.

One key property of the Γ function is that for every x > 0, Γ(x+1) = x·Γ(x).
The Gamma distribution is a continuous distribution which depends on

two parameters, α > 0 and β > 0, and has the following pdf:

f(x) =

{
xα−1e−x/β

βαΓ(α)
if x ≥ 0

0 otherwise

where Γ is Gamma function defined above. If a random variable X has the
above pdf, we will write X ∼ Gamma(α, β).

(a) Suppose X ∼ Gamma(α, β). Compute the expected value E[X]. Your
answer should be a function of α and β and should not have any Γ’s!

(Hint: Write out the definition of the expected value for X using the
pdf of the Gamma distribution, pull out any terms that don’t depend
on x, and then use the definition of the Γ function, and the property of
the Γ function mentioned above.)

(b) Compute E[X2]. Again, your answer should be a function of α and β,
but should not have any Γ’s.
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(Hint: Write out the definition of E[X2]. Then multiply and divide by
the same number in such a way that, after pulling some constants out
of the integral, you have the formula for the integral of the pdf of a
random variable with distribution Γ(α + 2, β). Use the fact that pdf’s
integrate to 1, and then use a property of the Γ function defined above.)

(c) Suppose X1, X2, ..., Xn are IID random variables where each Xi ∼
Gamma(α, β), but where α and β are unknown. Use the method of
moments to construct estimators for α and β.



15
Confidence Intervals

“Reeling and Writhing, of course, to begin
with,” the Mock Turtle replied, “and then the
different branches of Arithmetic: Ambition,
Distraction, Uglification, and Derision.”

Lewis Carroll
Alice’s Adventures in Wonderland

15.1 Idea of a confidence interval

The point estimators we’ve discussed are, of course, only estimates of the
values we care about, and so a reasonable question to ask is how good of an
estimate are they? A related question is can we construct estimates that
have some pre-determined degree of accuracy?

We can do this by constructing “confidence intervals.” The idea being
that we collect sample data and from this data compute a range of possible
values for the parameter of interest.

For example, suppose we want to know the average height of students
at IU. We may reasonably suppose heights are normally distributed with
standard deviation, say, σ = 3 inches. (More on assuming we know σ later.)
We may not know the true value of the mean µ, but notice that whatever
µ happens to be, we can transform the sample mean X for some sample of
n heights to the standard normal. The key to doing this is the following
theorem:

Theorem 15.1.
If X1, X2, ..., Xn are IID random variables which are each N(µ, σ),

then their sample mean X = 1
n
(X1+X2+· · ·+Xn) is a normal random

variable: X ∼ N(µ, σ/√n).

Remark.
Notice that the theorem above is very similar to our alternative version

320
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of the central limit theorem, Theorem 12.13. The difference between
this theorem and the central limit theorem is that Theorem 15.1 says
X is exactly a normal random variable, and Theorem 12.13 says X
is approximately normal. However, Theorem 12.13 applies for any
distribution, whereas Theorem 15.1 requires the Xi are all normal.

Since X ∼ N(µ, σ/√n),

Z =
X − µ
σ/√n

is the standard normal. Notice that for the standard normal we can deter-
mine the interval where 95% of the outputs live (we can’t really compute
this by hand, but can look up approximations done on a computer):

Pr(−1.96 < Z < 1.96) = 0.95.

What this means for our X1, X2, ..., Xn random variables is that 95% of the
itme we compute a sample mean x = 1

n
(x1 + x2 + · · ·+ xn) where each xi is

the value of the random variable Xi ∼ N(µ, σ), the corresponding z-value,

z =
x− µ
σ/√n

,

we’d obtain a value in the interval (−1.96, 1.96). We can manipulate this to
get an interval for µ. In particular, let’s suppose there are n = 100 samples,
and recall we assumed σ = 3. Then 95% of the time, the value

x− µ
3/10

is between −1.96 and 1.96. That is,

− 1.96 <
x− µ

3/10
< 1.96

=⇒ 10

3
· (−1.96) < x− µ < 10

3
· 1.96

=⇒ − x− 1.96 · 10

3
< −µ < −x+ 1.96 · 10

3

=⇒ x− 1.96 · 10

3
< µ < x+ 1.96 · 10

3
=⇒ x− 6.53 < µ < x+ 6.3

That is, for a given collection of sample data x1, x2, ..., xn, 95% of the time
the true value of µ will be in the range (x− 6.53, x+ 6.53). For example. if
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our sample data is such that the sample mean is x = 68, then we are 95%
confident the true mean µ is in the interval (61.47, 74.53).

Notice that the true mean µ is not a random quantity; it is some number,
whatever it happens to be, that does not change. We’re trying to estimate
that value from sample data, however, and this sample data may change
from one sample to the next. That is, the mean doesn’t change, but the
interval we compute does. For all possible intervals we could construct in
the manner above, 95% of them will contain the true mean.

15.2 Confidence intervals in general

In general, if X1, ..., Xn are IID random variables which are normal with
unkown mean µ and known standard deviation σ, then from n sample values
x1, x2, ..., xn, the 95% confidence interval for µ is(

x− 1.96 · σ√
n
, x+ 1.96 · σ√

n

)
.

We could similarly compute 99% or 90% confidence intervals, or 87.2%
confidence intervals. The key for doing this is to know what the correspond-
ing interval for the standard normal would be. To make this precise, recall
that for each α ∈ (0, 1) we defined the z-critical value zα to be the value
of zα such that Pr(Z ≥ zα) = α. This tells us that 100 ·α% of the output of
the standard normal is to the left of zα. For our purposes we want to find
the middle 95%, or 99%, or 90%, or 87.2%. Because the standard normal’s
pdf is symmetric about zero, we thus take the percentage we care about,
cut it in half, and use that as our α.

For example, to find the interval (−ζ, ζ) containing 90% of the data
for the standard normal, we need that 10% of the data lives outside the
interval. By symmetry, 5% will be to the right of our interval and 5% will
be to the left. This means we need to take ζ to be the value z0.05 which we
can look up is 1.645:

Pr(−1.645 < Z < 1.645) = 0.9.

Standardizing a sample mean X to get the standard normal Z, we then
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work backwards to obtain the 90% confidence interval:

− 1.645 < Z < 1.645

=⇒ − 1.645 <
X − µ
σ/√n

< 1.645

=⇒ − 1.645
σ√
n
< X − µ < 1.645

σ√
n

=⇒ −X − 1.645
σ√
n
< −µ < −X + 1.645

σ√
n

=⇒ X − 1.645
σ√
n
< µ < X + 1.645

σ√
n

and so the 90% confidence interval of µ is(
X − 1.645

σ√
n
,X + 1.645

σ√
n

)
.

15.3 The effect of sample size

In general, the 100(1− α)% confidence interval for µ is(
X − zα/2

σ√
n
,X + zα/2

σ√
n

)
.

Notice that for a fixed sample size, asking for more confidence – 90%, 95%,
99%, etc. – makes the interval larger since more confidence means larger
zα/2-values.

What if we want to instead make the interval smaller? From the formula

X ± zα/2
σ√
n

we see that to make the interval smaller, we need to increase the number of
samples, n. Note that the width of the 100(1− α)% confidence interval is

2zα/2
σ√
n
.

If we want this width to be no bigger than some given value w, how large
should n be? This is a simple algebra problem:

2zα/2
σ√
n
< w

=⇒ 2zα/2
σ

w
<
√
n

=⇒ n ≥
(

2zα/2
σ

w

)2

.
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So if σ = 3, for instance, and we want a 99% confidence interval of width
at most 1/2, then the number of required samples n is

n >

(
2
z0.005 · 3

1/2

)2

= (12z0.005)2

=(12 · 2.58)2

=958.5

That is, we require at least 959 samples to have a confidence interval of
width at most 1/2. We’ll see an example of this in a moment, but first we
should address the elephant in the room.

15.4 What if the distribution is not

normal?

Previously we had assumed that the underlying distribution of our data was
normal, but this need not be the case. For example, suppose each member
of our population is classified as having some attribute or not, which we
denote by assigning the member a 1 or 0. Then each member of our sample
gives us a Bernoulli random variable Xi ∼ Bernoulli(p), where p represents
the proportion of the population having that attribute. In the case of a
Bernoulli random variable with parameter p, we know the variance is given
by p(1 − p). The central limit theorem then tells us that for a sufficiently
large sample size n, the sample mean X is a normal random variable with
mean µ = p and standard deviation p(1− p)/n. If p is unknown, we can build
a confidence interval for p use the same techniques as before.

Since X is approximately N(p, p(1−p)
n

), the random variable

X − p√
p(1−p)
n

is approximately the standard normal. Thus for any α ∈ (0, 1),

Pr

−zα/2 < X − p√
p(1−p)
n

< zα/2

 ≈ 1− α.

Now we want to manipulate the inequalities

−zα/2 <
X − p√
p(1−p)
n

< zα/2
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to get an interval centered around p. This takes a little bit of algebraic
work, so we’ll state the final result as a proposition and relegate all of that
algebra to the proof of the proposition.

Proposition 15.2.
The 100(1 − α)% confidence interval for the proportion p of the pop-
ulation having some given attribute is estimated, using a sample of
large enough size n with where the proportion of members of the same
having the attribute is x, to bex+

z2α/2
2n

1 +
z2α/2
n

− zα/2

√√√√ x(1−x)
n

+
z2α/2
4n2

1 +
zα/22

n

,
x+

z2α/2
2n

1 +
z2α/2
n

+ zα/2

√√√√ x(1−x)
n

+
z2α/2
4n2

1 +
zα/22

n



Proof.
We continue where we left off above with the inequality

−zα/2 <
X − p√
p(1−p)
n

< zα/2.

Notice this may be written as∣∣∣∣∣∣ X − p√
p(1−p)
n

∣∣∣∣∣∣ ≤ zα/2.

We now square this to write

(X − p)2(
p(1−p)
n

) ≤ zα/2.
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Now we do some algebra:

(X − p)2(
p(1−p)
n

) ≤ zα/2

=⇒ n(X − p)2 ≤ z2
α/2p(1− p)

=⇒ nX
2 − 2nXp+ np2 ≤ z2

α/2 · (p− p2)

=⇒ (n+ z2
α/2)p

2 + (−z2
α/2 − 2nX)p+ nX

2 ≤ 0.

Now we complete the square:

p2 +
−z2

α/2 − 2nX

n+ z2
α/2

p+
nX

n+ z2
α/2

≤ 0

=⇒ p2 +
−z2

α/2 − 2nX

n+ z2
α/2

p ≤ −nX
n+ z2

α/2

=⇒ p2 +
−z2

α/2 − 2nX

n+ z2
α/2

p+

(
−z2

α/2 − 2nX

2n+ 2z2
α/2

)2

≤ −nX
n+ z2

α/2

+

(
−z2

α/2 − 2nX

2n+ 2z2
α/2

)2

=⇒

(
p+
−z2

α/2 − 2nX

2n+ 2z2
α/2

)2

≤ −nX
n+ z2

α/2

+

(
−z2

α/2 − 2nX

2n+ 2z2
α/2

)2

Finally, taking the positive and negative square roots we obtain the
inequalities

p+
−z2

α/2 − 2nX

2n+ 2z2
α/2

≤

√√√√ −nX
n+ z2

α/2

+

(
−z2

α/2 − 2nX

2n+ 2z2
α/2

)2

−

(
p+
−z2

α/2 − 2nX

2n+ 2z2
α/2

)
≥ −

√√√√ −nX
n+ z2

α/2

+

(
−z2

α/2 − 2nX

2n+ 2z2
α/2

)2

Finally, simplifying the terms in the expressions above and solving the
inequalities for p gives us the result:

x+
z2α/2
2n

1 +
z2α/2
n

− zα/2

√√√√ x(1−x)
n

+
z2α/2
4n2

1 +
zα/22

n

≤ p ≤
x+

z2α/2
2n

1 +
z2α/2
n

+ zα/2

√√√√ x(1−x)
n

+
z2α/2
4n2

1 +
zα/22

n
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Example 15.1.
A researcher is interested in the proportion of people using illegal

drugs. To estimate this proportion, the researcher has 500 people
anonymously fill out a survey indicating whether they had used an
illegal drug in the last twelve months or not. Supposing 47 people
indicated they had used illegal drugs in the last year, construct a 95%
confidence interval for the proportion of the population using an illegal
drug in the last twelve months.

We are constructing a 95% confidence interval, so α = 0.05, and
α/2 = 0.025. The corresponding z-critical value is z0.025 = 1.96. In our
sample n = 500 and the proportion of people using an illegal drug is
x = 47/500 = 0.094, so 1 − x = 0.906. Plugging all of this into the
formula for the confidence interval above, the endpoints of the our
confidence interval are

x+
z2α/2
2n

1 +
z2α/2
n

± zα/2

√√√√ x(1−x)
n

+
z2α/2
4n2

1 +
zα/22

n

= 0.0971± 0.0258.

Our interval is (0.0713, 0.1229). That is, we estimate with 95% confi-
dence that between 7.13% and 12.29% of the population has used an
illegal drug, based on a sample of size 500 where 9.4% of the people
in the sample used an illegal drug.

15.5 What if the distribution is unknown?

In the previous example we assumed the distribution of our data was
Bernoulli, which made sense as each member of the population was as-
signed a 0 or 1. In that case we were then able to use the fact that the
variance σ2 of a Bernoulli random variable with parameter p was p(1− p).
In general, the numbers we assign to members of the population may not be
simply zeros or ones, and so we may not be able to assume the random vari-
ables are Bernoulli. In fact, we may not know what the distribution of our
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random variables is at all! I.e., we may only have sample data (a collection
of numbers) and no knowledge of the underlying distribution. Ultimately,
if we ’re trying to construct a confidence interval for the mean µ of the
population, the central limit theorem allows us to side-step the issue that
the distribution is not known. However, we still need to know the standard
deviation of the distribution. When we knew the distribution, as in the
Bernoulli case, we may have a nice formula for this standard deviation, but
what if we don’t know the distribution and so have no such formula?

Even though the true standard deviation is unknown, we saw in the
last chapter how to construct point estimators. In particular, we saw that
the sample variance S2 is an unbiased estimator for the variance. Taking
the square root of this we have an estimate for the standard deviation: the
sample standard deviation S is

S =

√∑n
i=1(xi − x)2

n− 1
.

So we will compute the sample standard deviation S and use this in place
of the σ in our confidence intervals above.

In general we may not know the distribution of our data: we may just
know the sample values xi and have no knowledge of how the random vari-
ables Xi are supposed to be distributed. As far as confidence intervals are
concerned, however, we don’t actually need to distribution of the individual
Xi’s: we need the distribution of the sample mean X. The central limit
theorem, however, tells us that for any distribution, for a sufficiently large
number of samples, sample mean X is “approximately” normal with mean
µ and standard deviation σ/n. Replacing σ with our approximation, the
sample standard deviation S, we have that

X − µ
S/√n

is approximately the standard normal.
Putting all of this together, if we have sample values x1, x2, ..., xn, we

compute the sample mean x as

x =
x1 + x2 + · · ·+ xn

n

and the sample standard deviation s as

s =

√∑n
i=1(xi − x)2

n− 1
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and then estimate the 95% confidence interval of µ as(
x− 1.96

s√
n
, x+ 1.96

s√
n

)
,

or the 90% confidence interval is estimated as(
x− 1.645

s√
n
, x+ 1.645

s√
n

)
.

In general, the 100(1− α)% confidence interval for the population mean µ
is approximately (

x− zα/2
s√
n
, x+ zα/2

s√
n

)
.

Example 15.2.
Repeating Example 15.1 but using the sample standard deviation gives
us a confidence interval of (0.0711, 0.1169) and so we instead estimate
the number of individuals int he population having used an illegal drug
is between 7.11% and 11.69%.

Example 15.3.
The BRCA1 and BRCA2 genes are thought to be related to tumor sup-
pression, and mutations in these genes are believed to be related to a
higher risk for developing breast cancer. An oncologist is interested in
knowing what percentage of breast cancer patients have a mutation in
these genes, and so performs genetic testing on 923 randomly selected
breast cancer patients to determine if they have a BRCA mutation or
not. Of the 923 patients, 74 have the mutation.

(a) Construct a 95% confidence interval for the proportion of all breast
cancer patients which have the mutation.

(b) If the oncologist wanted a 99% confidence interval whose width
was at most two percentage points (i.e., the interval is of the form
(X−0.01, X+0.01)), how many patients would need to be tested?
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(a) We construct a 95% confidence interval by simply plugging our
given data into the formula. Note here that the sample mean is
74
923

= 0.081. For the standard deviation we are required to use the
sample standard deviation which is

S =

√∑n
i=1(xi − x)2

n− 1

=

√∑n
i=1(xi − 74/923)2

922

=

√
74 · (1− 74/923)2 + 849 · (0− 74/923)2

922

≈
√

62.6099

922
≈ 0.2717

Using this in the same formula as the confidence interval for the
previous problem, expect with S in place of σ, we have a 95% confi-
dence interval of (0.0796, 0.0808), or, as percentages, (7.96%, 8.08%).

(b) Recall that the 100(1 − α)% confidence interval for the mean µ
of a normal population with standard deviation σ taken from a
sample of size n with sample mean X has width 2zα/2

σ√
n
. When

the standard deviation σ is unknown, we approximate it with the
sample standard deviation S. We want this interval of width at
most 0.02 when α = 0.01. Using z0.005 = 2.58 and the sample
standard deviation S = 0.2717 from part (a) (which is only an
estimate since we don’t know the true standard deviation), we
have the following:

2 · 2.58 · 0.2717√
n

< 0.02

=⇒ 2 · 2.58 · 0.2717

0.02
<
√
n

=⇒ n >

(
2 · 2.58 · 0.2717

0.02

)2

≈ 4913.81

Thus the oncologist would require a sample of at least 4914 pa-
tients.
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15.6 Practice problems

Problem 15.1.
Suppose GPA’s at a university are normally distributed with standard de-
viation σ = 0.5. You conduct an experiment where ten randomly selected
students are asked what their GPA’s are, and receive the following answers:

3.2, 3.4, 2.5, 3.7, 2.5, 3.1, 1.7, 3.9, 2.8, 1.2

Construct a 95% confidence interval for the true mean of GPA’s at the
university.

Problem 15.2.
Suppose heights of players in the NBA, measured in inches, are normallly
distributed with unknown mean µ and standard deviation σ = 1.5. A
sample of 16 random players yields a sample mean height of 78. Construct
a 95% confidence interval for the population mean height µ. (Use z0.025 =
1.96.)



16Hypothesis Testing

Hanging on in quiet desperation is the
English way
The time is gone, the song is over,
Thought I’d something more to say.

Pink Floyd
Time

16.1 Idea and motivating example

Hypothesis testing is about determining if there exists enough evidence
(e.g., data from a sample) to replace a default hypothesis with an alternative
one. The common analogy is the legal system where (ideally) someone
accused of a crime is considered innocent by default unless there is enough
evidence to make it likely they are guilty.

The “default” hypothesis is called the null hypothesis and is often
denoted H0. The alternative being tested is called the alternative hy-
pothesis and is denoted Ha. Our goal is to determine if there’s significant
data taken from a sample to reject the null hypothesis or not.

For example, a doctor may be interested in the effectiveness of a new
type of drug for high cholesterol. Suppose that among a population of
patients with high cholesterol, the amount of choloesterol in a person’s
bloodstream, measured in milligrams per deciliter, is normally distributed
with a mean of 260 and standard deviation of 30. The doctor may give a
sample of ten patients the new drug for thirty days, record their cholesterol
after being on the medication for thirty days, and then determine the sample
mean of the cholesterol is 245 with a satndard deviation of 20. We want
to determine if this is sufficient evidence to determine if the medication is
effective.

At the start of this experiment we do not yet know if the medication is
effective or not; a priori we have no reason to believe the medication is ef-
fective, so we will assume it is not effective unless there is sufficient evidence
to say otherwise. That is, our null hypothesis is that the medication is not
effective at controlling cholesterol levels, and the alternative hypothesis is
that the medication is effective. To help us determine if the medication is
effective or not, we are considereing the sample mean of cholesterol levels in
patients that have been taking the medication for thirty days. This sample
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mean is called a test statistic, and it is what will ultimately tell us if there
is sufficient evidence to reject the null hypothesis or not.

If the medicine is effective, we expect cholesterol of people in the sam-
ple to be lower than the cholesterol levels from people in our population
of high cholesterol patients. But how low is low enough to conclude the
medicine works? To answer this we may want to consider the possibility
that by random chance the people in our sample simply had slightly lower-
than-average cholesterol levels, among the people in our high cholesterol
population. That is, we know on average the cholesterol levels are 260
mg/dL – but some people will be above this average and some will be be-
low. Is it likely that just by random chance we happened to select a sample
that is below average?

Answering this question in general might not be easy, but keep in mind
we know the data is normally distributed in this example. Since we have
a non-standard normal we can standardize it and this will give us some
information about how likely it is to randomly select patients which will give
us a sample mean below the population mean. Transforming N(260, 30) to
Z ∼ N(0, 1), the value of 245 becomes

z =
x− µ
σ/√n

=
245− 260

30/
√

10
= −1.58.

How likely is it our sample is just lower than average without the medica-
tion? Well, the above tells us a random sample of ten patients would have
a sample mean of 245, just by random chance, with probability

Φ(−1.58) ≈ 0.057.

That is, there’s only a 5.7% chance we would find such a sample, and so this
may be good enough for the doctor to conclude the medicine is effective.

Normally in doing hypothesis testing we decide before-hand how strong
the data needs to be for us say whether or not the null hypothesis should
be rejected. For example, we might agree to reject the null hypothesis only
if there is less than 10% chance our collected data would contradict the
null hypothesis by random chance; or we may decide there should be only
a 1% chance of such data. This “cutoff” value is called the significance
level of the test and is often denoted α. Once we know what α is, we can
determine what the cutoff values are for the rejection region , the range
of z-values where we would reject the null hypothesis.

Notice whether we reject the null hypothesis or not depends on what
significance level we want. In the case of the cholesterol medication above,
we would reject the null hypothesis at the 10% significance level, but not
at the 5% significance level.



CHAPTER 16. HYPOTHESIS TESTING 334

16.2 Examples

Example 16.1.
A chocolatier claims an average box of their chocolates weigh 368g
with a standard deviation of 10g. A sample of 49 boxes has sample
mean x = 364g. Test the hypothesis the mean weight less than the
claimed 368g with a significance level of α = 0.05.

Here the null hypothesis is

H0 : µ = 368

and the altneriatve is
Ha : µ < 368.

For a significance level of α = 0.05, our cutoff region is the given
by the value of ζ such that Pr(Z < ζ) = 0.05. I.e., fifth percentile of
the standard normal, which we can look up is ζ = −1.645.

So, when we compute our test statistic in a moment, if z < −1.645,
then we will reject the null hypothesis. If z ≥ −1.645, then we will
fail to reject the null hypothesis. What this means is that, after nor-
malizing, there is only a 5% chance our computed z value would be
less than −1.645.

Now we compute our test statistic,

z =
x− µ
σ/√n

=
349− 368

10/sqrt49
= −2.8.

Thus we reject the null hypothesis: there is sufficient evidence to con-
clude the average weight of the chocolatier’s boxes of chocolates is less
than 368 grams.

Example 16.2.
A certain type of car is advertised as being able to average fifty miles
per gallon, and the company claims the standard deviation is σ = 5.
A sample of 20 cars are driven and their average mileage determined
to be 48 mpg. Test the hypothesis the average mileage of these cars is
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not 50 mpg with significance level α = 0.05.
The null and alternative hypotheses are

H0 :µ = 50

Ha :µ 6= 50.

For our cutoff values, since we’re only testing µ 6= 50 and not
µ < 50, we need to consider the case that µ < 50 or µ > 50. With
a significance level of 5%, this means we want to have a 2.5% chance
of µ < 50 and a 2.5% chance of µ > 50. That is, after standardizing,
we want to find the value of ζ such that Pr(−ζ < Z < ζ) = 0.95 so
Pr(Z < −ζ or Z > ζ) = 0.05. By the symmetry of the pdf of the
standard normal, this means we need to find the ζ such that Pr(Z <
ζ) = 0.025, which we can look up means ζ = 1.96. Thus we will reject
the null hypothesis if z < −1.96 or z > 1.96. (These values correspong
to a 2.5% chance that by “dumb luck” the real mean is 50 mpg but
our samples were above or below the mean.)

We compute our test statistic,

z =
x− µ
σ/√n

=
48− 50

5/
√

20
= −1.79.

This value is not in our rejection region, so we fail to reject the null
hypothesis. That is, there is not sufficient evidence to reject the car
company’s claim their cars average 50 mpg.

16.3 Tails, rejection regions, and P -values

Usually when performing the null hypothesis testing, the null hypothesis
takes the form H0 : µ = µ0. I.e., the claim we are testing is that the
population mean µ is some given value µ0. The alternative hypothesis then
takes one of the following forms:

• Ha : µ > µ0,

• Ha : µ < µ0, or

• Ha : µ 6= µ0.

These situations are called upper-tailed , lower-tailed , and two-tailed
tests , respectively.
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The rejection region is slightly different in each case. For a fixed α we
have the following rejection regions:

Upper-tailed tests For an upper-tailed test, we reject the null hypothesis
if z > zα.

Lower-tailed tests For a lower-tailed test, we reject the null hypothesis
if z < −zα.

Two-tailed tests For a two-tailed test, we reject the null hypothesis if
either z < −zα/2 or z > zα/2.

There is an alternative way of determining whether we should reject
the null hypothesis or not without computing the rejection region using a
number called a P value. The P -value is a number which indicates the
probability of our test statistic being at least as contradictory to H0 as the
observed data – notice that “at least as contradictory” depends on whether
our hypothesis test is upper-tailed, lower-tailed, or two-tailed. The P -value
in each case is computed as follows:

P =


1− Φ(z) for an upper-tailed test

Φ(z) for a lower-tailed test

2(1− Φ(|z|)) for a two-tailed test

We will reject the null hypothesis if P is less than our significance level α.
In each of our three examples thus far (the cholesterol medication, the

chocolatier, and the cars), our P values are as follows:

• Doctor example: P = 0.057 (Φ(−1.58)).

• Chocolatier example: P = 0.0025 (Φ(−2.8)).

• Car example: P = 0.0734 (Φ(1.79) = 0.9633).
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16.4 Practice problems

Problem 16.1.
A researcher is interested in whether free-range chickens produce more nu-
tritious eggs than caged chickens, and decides to test this by measuring
the amount of DHA, a type of omega-3 fatty acid, in eggs. First the re-
searcher looks up the average amount of DHA in eggs from conventional,
caged chickens and learns this is 90mg per egg on average. The researcher
then takes a sample of 50 eggs from free-range chickens and measures the
amount of DHA in each egg. From this the researcher found a sample av-
erage of 95mg of DHA in these eggs, with a sample standard deviation of
17mg of DHA.

(a) If the null hypothesis is that free-range chicken eggs are nutritionally
equivalent to those of caged eggs (as measured by the amount of DHA in
the eggs) and the alternative hypothesis is that free-range chicken eggs
are more nutritious, should the researcher reject the null hypothesis
with a significance level of α = 0.05?

(b) Should the researcher reject the null hypothesis if the significance level
is α = 0.01?

Problem 16.2.
An engineer at a company that produces batteries for smart phones believes
she can improve the battery life of phones by a simple modification of
the battery’s design. The company decides to test the engineer’s modified
design by creating a sample batch of sixteen batteries with this design. The
company knows that the battery life of a phone between charges with the old
design is normally distributed with mean 8 hours and standard deviation 15
minutes. If the sample mean of the lifetime for the modified battery design
averaged 8 hours and 15 minutes, is there enough evidence to conclude at
the α = 0.01 significance level that batteries with the new, modified design
last longer than the batteries with the old design? (Use z0.01 = 2.33.)
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AIntegration in Multiple Variables
In order to do computations with joint probability distributions, we will
need to know how to integrate functions in several variables. This set of
notes is meant to be a quick introduction for students that have not taken
multivariable calculus, or a refresher for students that need a review.

A.1 Review of Integration in One Variable

Recall that if f : [a, b]→ R is a continuous function, the (definite) inte-
gral of f is defined as a limit of Riemann sums. In particular, we choose a
partition P of [a, b]:

P = {x0, x1, x2, ..., xn},
where a = x0 < x1 < x2 < ... < xn = b.

A Riemann sum of f with respect to the partition P is the quantity

n∑
i=1

f(x∗i )∆xi,

where ∆xi = xi − xi−1 (this is the length of the i-th subinterval in the
partition) and x∗i is any point in [xi−1, xi]. Obviously the value of this sum
depends on the choice of P and the choice of each x∗i . Incredibly, if we take
the limit as the pieces of the partition get arbitrarily small, we always get
the same value, regardless of the P and x∗i ’s we choose in calculating each
of the Riemann sums.

Writing |P| = maxi ∆xi (so |P| is the length of the widest subinterval
determined by P) the integral of f over [a, b] is defined as∫ b

a

f(x) dx = lim
|P|→0

nP∑
i=1

f(x∗i )∆xi.

The number of terms in the sum depends on the partition P we choose.
Here we’re letting nP denote the number of subintervals into which [a, b] is
partitioned into by P .

Since we’re taking a limit, we always have to ask ourselves if this limit
exists or not. It is a theorem (that we won’t try to prove) that this limit
will always exist if f is continuous and [a, b] is a closed, bounded interval.

When you first learn about integration, you build the integral up for a
singular purpose: to find the area between some curve y = f(x) and the x-
axis. The idea is to approximate the area under the curve with things that
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are much simpler to work with: rectangles. In the Riemann sum, the value
f(x∗i ) acts as the height of the i-th rectangle, and the ∆xi is the width. So
we calculate the area of each rectangle and add them all up.

Of course, you realize very quickly that integrals can do much more
than simply calculate areas. Integration is ubiquitous in mathematics: from
geometry to statistics to physics, integrals are everywhere. The reason that
integrals are such a useful tool is that they can be thought of as a very
special type of infinite summation. The integral

∫ b
a
f(x) dx is, in some

sense, the result of summing up the values of f(x) for every single x in
[a, b]; it’s just that we weight the values in the sum by a very small number
(this is basically what the dx is) to keep this “sum” from blowing up to
infinity.

Calculating Volumes

To motivate integration in several variables, consider the following problem.
Suppose that f : D → R is a continuous function and that D, the domain of
f , is a rectangle in R2. Suppose also that f(x, y) ≥ 0 for all (x, y) ∈ D. We
now construct a three-dimensional object whose top is z = f(x, y), whose
bottom is D, and we fill in all of the space in-between. See the figure below.

1.01.52.02.53.0

x

1

2

3

4

y

0

1

2

3

z

Now we want to determine what the volume of this solid is. To do this
we do the same sort of thing we did to calculate the area under a curve:
approximate the volume with simpler objects. The simpler objects we’ll
use are rectangular prisms. If a prism has height h, length `, and width w,
then we know its volume is h`w.
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So what we’ll do is cram several rectangular prisms under the surface
z = f(x, y), determine the volume of each prism, and then finally sum up
these volumes. See Figure A.1.

(a) 9 prisms (b) 36 prisms

(c) 400 prisms

Figure A.1: Approximating volume with prisms.

Suppose we label these prisms P1, P2, ..., Pn and let hi, `i, and wi denote
the height, length, and width of each Pi. Then we know that the volume of
our object is approximated by

Volume ≈
n∑
i=1

hiwi`i.

Of course what we want to do is take the limit as we fill the area under
the curve with skinnier and skinnier prisms. In order to do this we need to
state precisely how these these prisms are placed beneath the surface.

Suppose the four corners of the domain D are (a, c), (b, c), (b, d), (a, d).
See Figure A.2. This means that the rectangle D consists precisely of those
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points (x, y) where a ≤ x ≤ b and c ≤ y ≤ d. So we can express D as the
set

D = [a, b]× [c, d] =
{

(x, y)
∣∣ a ≤ x ≤ b, c ≤ y ≤ d

}
.

a b

c

d

Figure A.2: The rectangle D is the domain of our function.

Our first step is to cut D into finitely many rectangular pieces; each
piece will serve as the base of a rectangular prism. To do this we’ll cut [a, b]
into subintervals by using the partition P = {x0, x1, ..., xm} where

a = x0 < x1 < ... < xm = b,

and we’ll cut [c, d] into subintervals with the partition Q = {y0, y1, ..., yn}
where

c = y0 < y1 < ... < yn = d.

This partitions D into mn subrectangles. We’ll let the rectangle in the
i-th column and j-th row (ordered left-to-right, bottom-to-top) be denoted
Dij. See Figure A.3.

Let’s denote the area of the rectangle Dij by ∆Aij. (Notice ∆Aij =
∆xi ·∆yj.)

Now that we have bases for our rectangular prisms, we just need to
determine their height. To do this we let P ∗ij denote any point inside of Dij,
and then use f(P ∗ij) as the height of the prism. Notice that since the x-
coordinates of P ∗ij are in the i-th subinterval of [a, b], and the y-coordinates
of P ∗ij are in the j-th subinterval of [c, d], we have P ∗ij = (x∗i , y

∗
j ). Thus the

volume of the ij-th prism is

f(x∗i , y
∗
j )∆Aij.
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x1 x2 x3

y1

y2

y3

y4

a b

c

d

D32

Figure A.3: The rectangle D is partitioned into subrectangles.

Summing up the volumes of each of these prisms, we have an estimate for
the volume of our solid:

Volume ≈
m∑
i=1

n∑
j=1

f(x∗i , y
∗
j )∆Aij.

To get a better approximation, stick more, skinnier, prisms underneath
the surface. To get the “best” approximation (i.e., the true volume), take
the limit as the prisms get arbitrarily skinny. To do this we need that both
the widths and lengths of our base rectangles get arbitrarily small. That
is, we require |P| → 0 and |Q| → 0.

The limit as the rectangles get arbitrarily skinny is called the (double)
integral of f over the rectangle D and is denoted as follows:

x

D

f(x, y) dA = lim
|P|→0

lim
|Q|→0

mQ∑
i=1

nP∑
j=1

f(x∗i , y
∗
j ) ∆Aij.

As always, we have to worry about whether this limit exists or not.
As in the case of one variable, there is a theorem that says that this limit
will exist as long as our function f is continuous and D is a rectangle of
finite area. (There are other, more general, conditions which guarantee the
integral exists, but this is good enough for right now.)
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Example A.1.
Calculate the volume between the surface z = 3x + 2y + 1 and the
xy-plane over the unit square, D = [0, 1]× [0, 1].

0.0

0.5

1.0

x

0.0

0.5

1.0
y

0

2

4

6

z

To make this process as easy as possible, let’s say that we partition
both the the horizontal and vertical intervals [0, 1] into n subintervals
of equal width, and use the upper, right-hand corner of each rectangle
as the point where we’ll evaluate the function to determine the height
of a prism. (As long as our function is continuous we’ll get the same
value in the end, so we can pick points that are easy to work with.)

This gives us n2 subrectangles, each of area 1/n2, and x∗i = 1/n,
y∗j = 1/n. Thus our volume is given by the limit:

x

[0,1]×[0,1]

(3x+ 2y + 1) dA = lim
n→∞

lim
n→∞

n∑
i=1

n∑
j=1

(3x∗i + 2y∗j + 1) · 1

n2

= lim
n→∞

n∑
i=1

n∑
j=1

(
3i

n
+

2j

n
+ 1

)
· 1

n2

Notice that since we cut both the horizontal and vertical intervals into
n pieces we have m = n, which is why we have two limits as n → ∞
on the first line. Of course, taking the first (inner) limit gives us a
number, and so taking the second (outer) limit doesn’t do anything,
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so we can drop one of the limits.

x

[0,1]×[0,1]

(3x+ 2y + 1) dA = lim
n→∞

n∑
i=1

n∑
j=1

(
3i

n3
+

2j

n3
+

1

n2

)

= lim
n→∞

n∑
i=1

(
n∑
j=1

3i

n3
+

n∑
j=1

2j

n3
+

n∑
j=1

1

n2

)

= lim
n→∞

n∑
i=1

(
3i

n2
+

1

n
+

2

n3

n∑
j=1

j

)

= lim
n→∞

n∑
i=1

(
3i

n2
+

1

n
+

2

n3
· n

2 + n

2

)

= lim
n→∞

(
n∑
i=1

3i

n2
+

n∑
i=1

1

n
+

n∑
i=1

n2 + n

n3

)

= lim
n→∞

(
3

n2

n∑
i=1

i+ 1 +
n2 + n

n2

)

= lim
n→∞

(
3

n2
· n

2 + n

2
+ 1 +

n2

n2
+

n

n2

)
= lim

n→∞

(
3

2
· n

2 + n

n2
+ 2 +

1

n

)
= lim

n→∞

(
2 +

3

2
+

3

2n
+

1

n

)
=

7

2

Evaluating the limit above we used two facts that you learned in single
variable calculus, but may have forgotten about: you can “distribute”
summations: ∑

i

(ai + bi) =
∑
i

ai +
∑
i

bi,

and there’s a nice formula for the sum 1 + 2 + 3 + · · ·+ n:

n∑
i=1

i =
n2 + n

2
.

So the volume between the plane 3x+ 2y + 1 and the unit square
in the xy-plane is 7/2.
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Of course, evaluating a limit such as the one above is a rather tedious
thing to do. It’d be nice we if we had some way to turn these complicated
double integrals into “normal” integrals of one variable where we could use
tools such as integration by parts and u-substitutions. We’ll see how this
can be done later. For the time being we’ll just be content with the fact
that we can, at least in principle, evaluate these double integrals by taking
limits.

Properties of the Integral

The double integral satisfies several properties analogous to properties of
integrals of single variables. Here we mention a few of the most basic ones.

(i) Letting Area(D) denote the area of a rectangle D,
x

D

1 dA = Area(D).

This is straight forward to see: the double sum we’re taking the limit
of is just

m∑
i=1

n∑
j=1

∆Aij,

where ∆Aij is the area of the ij-th subrectangle. However we’re sum-
ming this over all of the subrectangles, so we just get back the area of
D.

Note: Notationally, we sometimes write
x

D

dA =
x

D

1 dA.

(ii) If λ ∈ R is a constant and f : D → R is continuous, then
x

D

λf(x, y) dA = λ
x

D

f(x, y) dA.

This follows from the fact that we can pull the constant λ out of the
sums and limits in the definition of the integral.

(iii) If f : D → R and g : D → R are both continuous, then
x

D

(f(x, y) + g(x, y)) dA =
x

D

f(x, y) dA+
x

D

g(x, y) dA.
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This again just follows from the fact that we can split sums and limits
up across addition. Notice that this, combined with the previous
property, means that we can also split up a subtraction: write f(x, y)−
g(x, y) = f(x, y) + (−1) · g(x, y).

(iv) If f : D → R and g : D → R are both continuous and f(x, y) ≤ g(x, y)
for every (x, y) ∈ D, then

x

D

f(x, y) dA ≤
x

D

g(x, y) dA.

Once more, this follows by the analogous properties for sums and
limits.

Applications

Even though we built the double integral above for the purpose of calculat-
ing volumes, it’s clear that the definition still “makes sense” for functions
which may be negative. If the function is negative – i.e., if the surface
z = f(x, y) is below the xy-plane – then the corresponding integral we cal-

culate will be negative. This is similar to how
∫ b
a
f(x) dx < 0 if y = f(x)

stays below the x-axis. In general a function may be above the xy-plane
sometimes, and below the xy-plane at other times. When this happens,
the integral brakes up into we have positive and negative pieces, and may
cancel out. In these cases the double integral doesn’t represent a volume,
but may still have a concrete, physical meanings.

After we’ve developed some more tools for calculating integrals, we’ll
consider the more applications in detail, but it’s worthwhile to go ahead
and mention some of the things these double integrals can be used for:

Mass of an object
If we have a rectangular “sheet” of some material (metal, plastic,
cloth, ...), and if we know the know what the density of this material
is at any point, integrating the density gives us the mass of the object.
Say our rectangular “sheet” is w × `. We can think of this as the
rectangle [0, w]× [0, `] in the xy-plane. For any point (x, y) inside the
rectangle, suppose that ρ(x, y) represents the density of the material
at that particular point. Then the mass of the sheet is

m =
x

[0,w]×[0,`]

ρ(x, y) dA.



APPENDIX A. INTEGRATION IN MULTIPLE VARIABLES 348

If you consider how density is defined in physics, this is almost obvi-
ous. Density, in two dimensions, is mass divided by area: ρ = m

A
. So

over a very small subrectangle, Dij, the density is approximately

ρDij ≈
mass of Dij

area of Dij

=
mass of Dij

∆Aij
.

When we write out the limit of Riemann sums, the ∆Aij’s cancel out
and we’re just summing up the mass of little pieces of D.

Average value
If f : D → R is a continuous function on a rectangleD, then there may
be times we want to know what the average value of f is. For example,
suppose that D represents the floor in a room, and for each point in
the room, the temperature you record at that point is determined by
where you’re standing in the room – by your xy-coordinates on the
floor. (Of course, the temperature in a real room may also depend on
how high above the floor you are.) If T (x, y) gives the temperature
over the point (x, y), then the average temperature in the room is

Avg. temp =
1

Area(D)

x

D

T (x, y) dA.

Why is this the average temperature? If the temperature throughout
the entire room was constant, say T (x, y) = C, then we’d say that the
average temperature in the room was C. So to estimate the average
temperature, let’s partition the room into very small rectangles and
suppose that the temperature is constant on each of those rectangles
(possibly a different constant on different rectangles).

Now if we wanted to combine all of these average temperatures over
small regions together to get the average temperature of the whole
region, we’d have to weight those averages by the relative size of the
region; that is, by how much proportion of the room is taken up
by that region. (Why? Because a 1-inch × 1-inch region where the
temperature is 90◦F doesn’t contribute as much to the average as a
10-ft×10-ft region where the temperature is 90◦F . If the temperature
is really warm over a large region, that counts a lot more for the
average than being really warm over a very small region.)

Let’s suppose that we call the subrectangles of our partition Dij, with

area ∆Aij. The proportion of the room taken up by Dij is
∆Aij

Area(D)
.

Say the temperature we use for the constant on Dij is T (x∗i , y
∗
j ). So
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we sum up the values

m∑
i=1

n∑
j=1

T (x∗i , y
∗
j )

∆Aij
Area(D)

=
1

Area(D)

m∑
i=1

n∑
j=1

T (x∗i , y
∗
j )∆Aij.

Taking the limit gives exactly the integral described above. Notice
that it makes perfect sense to talk about an average temperature
being negative!

Of course, there’s nothing special about the fact that we’re talking
about temperature above. In general, the average value of a con-
tinuous function over a rectangle D is

Average of f =
1

Area(D)

x

D

f(x, y) dA.

A.2 Iterated Integrals

We now turn our attention to how to evaluate the integrals defined above
without having to compute a limit of Riemann sums

Motvation & “Partial Integration”

We defined the double integral of a continuous function as a limit of a
double Riemann sum above. While this definition makes intuitive sense
(approximating a quantity with simpler quantities and taking a limit to
get the “best” approximation), it’s typically extremely difficult and tedious
to use for calculations. Now we want to introduce a way of calculating
these quantities which will allow us to apply the tools and techniques from
integration in one variable. Before we describe how this is done, we need
to make one technical detour.

Recall that the partial derivatives, ∂f
∂x

and ∂f
∂y

, are calculated by keeping
one variable constant and differentiating with respect to the other variable.
Suppose we instead want a “partial antiderivative” of a function. That is,
suppose that f(x, y) is a given function. Can we find functions G(x, y) and
H(x, y) such that ∂G

∂x
= f(x, y) and ∂H

∂y
= f(x, y)? If we were considering

functions of a single variable, then we’d just integrate the function to get



APPENDIX A. INTEGRATION IN MULTIPLE VARIABLES 350

its antiderivative. Since partial derivatives are calculated by keeping one
variable constant, these “partial antiderivatives” can be calculated the same
way: integrate the function by keeping one variable constant.

That is, to calculate G(x, y) we’ll integrate f(x, y) with respect to x,
pretending that the y in our function is a constant. Similarly, to calculate
H(x, y) we integrate f(x, y) with respect to y, pretending x is constant.
This is denoted as follows:

G(x, y) =

∫
f(x, y) dx

H(x, y) =

∫
f(x, y) dy

There is one caveat here: when we calculate
∫
f(x, y) dx instead of pick-

ing up a +C, we pick up a +k(y). That is, since y’s are constant when
we calculate ∂G

∂x
, any function of y is also constant. So our +C can be any

expression that involves only y’s: from the partial derivative point of view
these are functions. Similarly, when we calculate

∫
f(x, y) dy, we pick up a

+`(x).

Example A.2.
Find a G(x, y) such that ∂G

∂x
= x2y− sin(xy). Find a H(x, y) such that

∂H
∂y

= x2y − sin(xy).
We simply integrate, pretending one variable or the other is a con-

stant.

G(x, y) =

∫ (
x2y − sin(xy)

)
dx

=
x3y

3
+

cos(xy)

y
+ k(y)

H(x, y) =

∫ (
x2y − sin(xy)

)
dy

=
x2y2

2
+

cos(xy)

x
+ `(x)
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Now let’s just double check that these are the functions we want:

∂G

∂x
=
∂

∂x

(
x3y

3
+

cos(xy)

y
+ k(y)

)
=

3x2y

3
+
− sin(xy) y

y
+ 0

=x2y − sin(xy)

∂H

∂y
=
∂

∂y

(
x2y2

2
+

cos(xy)

x
+ `(x)

)
=

2x2y

2
+
− sin(xy)x

x
+ 0

=x2y − sin(xy)

Iterated Integrals

To calculate a double integral,

x

[a,b]×[c,d]

f(x, y) dA,

we will convert the double integrals into two integrals of a single variable,
combined together in a particular way. The basic idea is the following: Ge-
ometrically, double integrals were developed for calculating volumes. How-
ever these is another way to calculate volumes, provided that you know the
cross-sectional areas of the solid you’re integrating.

Recall that if we have a solid positioned in three-dimensional space so
that the x-axis runs through the solid, like a chicken on a rotisserie, then
for each plane x = c we denote the area of the intersection of the plane
and the solid by A(x). Then the volume of the solid is given by integrating
A(x):

Volume =

∫ b

a

A(x) dx

For example, above we considered the volume of the solid whose top
was the plane 3x + 2y + 1, and whose bottom was the unit square [0, 1] ×
[0, 1]. Cutting this surface with a plane we see the blue region plotted in
Figure A.4.
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x

y

z

Figure A.4: Cutting a solid with a plane.

If we could calculate the area, A(x), of this blue slice of the surface, we’d

integrate
∫ 1

0
A(x) dx to find the volume. There’s nothing special about the

x axis here: we could just as easily consider slices of the surface given by
planes y = c, call A(y) the area of these slices, and then integrate

∫ 1

0
A(y) dy

to get the volume.
Calculating these cross-sectional areas is actually very easy because

they’re just the area under the curve. In particular, the area A(x) is given
by

A(x) =

∫ 1

0

(3x+ 2y + 1) dy.

This is just the area of the blue slice because the blue slice is the area
underneath the curve 3x + 2y + 1. Here we’ve set x to be a constant, so y
is the only quantity that changes. Performing the integration we see that
this really is just a function of x: the y’s get replaced with numbers when
we do the integration.

A(x) =

∫ 1

0

(3x+ 2y + 1) dy

=
(
3xy + y2 + y

)∣∣∣∣1
0

=3x+ 2.
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This is the cross-sectional area of our blue slice. Integrating this quantity
we get the volume.

Volume =

∫ 1

0

A(x) dx

=

∫ 1

0

(3x+ 2) dx

=

(
3x2

2
+ 2x

)∣∣∣∣1
0

=
3

2
+ 2

=7/2

Usually we don’t bother to write down A(x) as a separate function, and
instead just plug our expression for A(x),∫ 1

0

(3x+ 2y + 1) dy,

into the integral:

Volume =

∫ 1

0

∫ 1

0

(3x+ 2y + 1) dy dx.

To evaluate an expression like this we work “inside-out,” starting with the
inner-most integral and integrating piece by piece until we’ve evaluated all
of the integrals.

Volume =

∫ 1

0

∫ 1

0

(3x+ 2y + 1) dy dx

=

∫ 1

0

(
3xy + y2 + 1

)∣∣∣∣1
0

dx

=

∫ 1

0

(3x+ 2) dx

=

(
3x2

2
+ 2x

)∣∣∣∣1
0

=
3

2
+ 2

=7/2

The procedure outlined above is generalized by the following theorem.
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Theorem A.1 (Fubini’s theorem).
If f(x, y) is a continuous function defined on the rectangle D = [a, b]×
[c, d], then

x

D

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

Example A.3.
Calculate the integral

x

[2,4]×[1,2]

x2 y3

2
dA.

x

y

z
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x

[2,4]×[1,2]

x2 y3

2
dA =

1

2

x

[2,4]×[1,2]

x2 y3 dA

=
1

2

∫ 4

2

∫ 2

1

x2 y3 dy dx

=
1

2

∫ 4

2

x2 y4

4

∣∣∣∣2
1

dx

=
1

2

∫ 4

2

(
4x2 − x2

4

)
dx

=
1

2

(
4x3

3
− x3

12

)∣∣∣∣4
2

=
1

2

(
4 · 64

3
− 64

12
− 8 · 4

3
+

8

12

)
=

1

2

(
256

3
− 16

3
− 32

3
+

2

3

)
=

210

6

=
105

3
=35

Example A.4.
Calculate the integral

x

[0,1]×[0,1]

1 + x2

1 + y2
dA
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x

y

z

x

[0,1]×[0,1]

1 + x2

1 + y2
dA =

∫ 1

0

∫ 1

0

1 + x2

1 + y2
dx dy

Notice that, with respect to x, 1
1+y2

is a constant. Hence we can pull it out
of the inner-most integral:∫ 1

0

∫ 1

0

1 + x2

1 + y2
dx dy =

∫ 1

0

1

1 + y2

∫ 1

0

(
1 + x2

)
dx dy

Now once we integrate, the value
∫ 1

0
(1 + x2) dx is just a number, so we can

pull it out of the outer-most integral:∫ 1

0

1

1 + y2

∫ 1

0

(
1 + x2

)
dx dy =

∫ 1

0

(
1 + x2

)
dx ·

∫ 1

0

1

1 + y2
dy

=

(
x+

x3

3

)∣∣∣∣1
0

· tan−1(y)

∣∣∣∣1
0

=
4

3
· π

4
=π/3
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A.3 Double Integrals Over General Regions

Motivating Example

A silicon wafer is a large, circular disc made of silicon which is used in the
manufacture of computer processors and other electronic devices. Suppose
that in the process of fabricating such a wafer some impurities are intro-
duced (dust, water vapor, etc.) so that the wafer isn’t pure silicon. If we
were able to determine precisely where these impurities lie in the wafer,
then we might be able to determine the density of the wafer at a particular
point. To figure out the mass of the entire wafer we could then integrate
this density. This presents us with a problem in that the wafer is circular (so
the domain of our density function is a disc in the plane), whereas we only
know how to integrate functions with a rectangular domain. So we need
some way of extending our usual double integrals to deal with functions
with other sorts of domains.

To associate some actual numbers with the scenario described above,
suppose that our wafer has a radius of one meter, and for a point (x, y) in
the wafer, the density of the wafer at that point is

ρ(x, y) = x2 cos(y) + 1.

The domain of our function ρ is

D =

{
(x, y)

∣∣∣∣x2 + y2 ≤ 1

}
Let’s notice that if we pick an x-coordinate of a point inside this disc, the
y-coordinates we can tack onto this x-coordinate lie between the values
−
√

1− y2 and
√

1− y2. So for example, if we look at all of the (x, y)
points inside our disc where the x-coordinate is 1/2, the y-coordinates have
to be between −

√
1− 1/4 and

√
1− 1/4.

Recall from above that to evaluate the integral

x

D

ρ(x, y) dA,

we integrate a “cross-section” function, A(x). If we knew what the cross-
section was, then we’d integrate

x

D

ρ(x, y) dA =

∫ 1

−1

A(x) dx,
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since our x’s run from −1 to 1. To calculate the cross-section function last
time we just integrated our initial function ρ(x, y) with respect to y over
all of the possible y-values. Here our y-values depend on our chosen x, but
once we’ve chosen an x we expect that our cross-section function should be

A(x) =

∫ √3/2

−
√

3/2

ρ(x, y) dy =

∫ √3/2

−
√

3/2

(x2 cos(y) + 1) dy.

Of course, there’s nothing special about the choice of x = 1/2. In general,
for any x between −1 and 1, the cross-section is

A(x) =

∫ √1−x2

−
√

1−x2
(x2 cos(y) + 1) dy

=(x2 sin(y) + y)

∣∣∣∣
√

1−x2

−
√

1−x2

=x2 sin(
√

1− x2) +
√

1− x2 − x2 sin(−
√

1− x2)−
√

1− x2

=2x2 sin(
√

1− x2)

Above we used the fact that sin θ is an odd function: sin(−θ) = − sin θ.
Notice that in order to find this cross-section, the bounds of our integral

had to depend on where we were trying to find the cross-section. Aside
from this one modification, our cross-section was found exactly like before.
Notice here the bounds for our integral with respect to y were functions of
x.

Now that we have the cross-section, we can calculate the integral we
initially wanted:

x

D

ρ(x, y) dA =

∫ 1

−1

A(x) dx

=

∫ 1

−1

2x2 sin(
√

1− x2) dx

This is a hard integral to solve, so we won’t bother to explicitly solve it
right now, but just content ourselves with the fact that we can rewrite the
integral over a non-rectangular region as an iterated integral:

x

D

(x2 cos(y) + 1) dA =

∫ 1

−1

∫ √1−x2

−
√

1−x2
(x2 cos(y) + 1) dy dx.
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Integrals Over General Regions

We’ll say a subset D of the plane R2 is type I if the x-values of points in
D stay inside some fixed interval [a, b], but the y-values of points in D are
bounded by functions of x. That is, a type I region can be written as

D =

{
(x, y)

∣∣∣∣a ≤ x ≤ b, g(x) ≤ y ≤ h(x)

}
.

The integral of a continuous function f(x, y) over a type I region D is given
by

x

D

f(x, y) dA =

∫ b

a

∫ h(x)

g(x)

f(x, y) dy dx.

We say that D is type II if the roles of x and y are switched from that
of a type I region: that is, a type II region D can be written as

D =

{
(x, y)

∣∣∣∣c ≤ y ≤ d, k(y) ≤ x ≤ `(x)

}
.

The integral of a continuous f(x, y) over a type II region D is

x

D

f(x, y) dA =

∫ d

c

∫ `(y)

k(y)

f(x, y) dx dy.

(Notice that some regions are both type I and type II simultaneously.
For example, the disc considered above could be considered as type I or
type II.)

Example A.5.
Evaluate the integral x

D

e
x/y dA

where D is the region

D =

{
(x, y)

∣∣∣∣1 ≤ y ≤ 2, y ≤ x ≤ y3

}
.
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Notice that this is a type II region, so we our integral is given by

x

D

e
x/y dA =

∫ 2

1

∫ y3

y

e
x/y dx dy

=

∫ 2

1

∫ y3

y

ex·
1/y dx dy

=

∫ 2

1

(
ex/y

1/y

)∣∣∣∣y3
y

dy

=

∫ 2

1

ye
x/y

∣∣∣∣y3
y

dy

=

∫ 2

1

(
yey

2 − ye
)
dy

=

∫ 2

1

yey
2

dy −
∫ 2

1

ye dy

For the integral on the left, perform the substitution u = y2, du =
2ydy. ∫ 2

1

yey
2

dy −
∫ 2

1

ye dy =
1

2

∫ 4

1

eu du−
∫ 2

1

ye dy

=
1

2
eu
∣∣∣∣4
1

− ey2

2

∣∣∣∣2
1

=
1

2

(
e4 − e

)
−
(

4e

2
− e

2

)
=

1

2
(e4 − e− 3e)

=
e4 − 4e

2

In general a region may not be expressible as a single type I or type II
domain. In such a situation we can cut the region up into several pieces
which are type I or type II. We can do this because of the following theorem.

Theorem A.2.
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Suppose that D1 and D2 are two regions in R2 which don’t overlap.
Then, writing D = D1 ∪D2,

x

D

f(x, y) dA =
x

D1

f(x, y) dA+
x

D2

f(x, y) dA.

Example A.6.
Integrate the function x + y2 over the region indicated in the figure
below.

(1, 1)

(4, 4)

(6, 2)

(4, 1)

We’ll split this up into two regions, each of which is type I.
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(1, 1)

(4, 4)

(6, 2)

(4, 1)

D1 D2

Our regions are

D1 =

{
(x, y)

∣∣∣∣1 ≤ x ≤ 4, 1 ≤ y ≤ x

}
D2 =

{
(x, y)

∣∣∣∣4 ≤ x ≤ 6,
x

2
− 1 ≤ y ≤ 8− x

}
.

Integrating over D1 we have

x

D1

(x+ y) dA =

∫ 4

1

∫ x

1

(x+ y) dy dx

=

∫ 4

1

(
xy +

y2

2

)∣∣∣∣x
1

dx

=

∫ 4

1

(
x2 +

x2

2
− x− 1

2

)
dx

=

∫ 4

1

(
3x2

2
− x− 1

2

)
dx

=

(
x3

2
− x2

2
− x

2

)∣∣∣∣4
1

=32− 8− 2− 1

2
+

1

2
+

1

2
=22.5
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Integrating over D2,

x

D2

(x+ y) dA =

∫ 6

4

∫ 8−x

x/2−1

(x+ y) dy dx

=

∫ 6

4

(
xy +

y2

2

)∣∣∣∣8−x
x/2−1

dx

=

∫ 6

4

[(
8x− x2 +

64− 16x+ x2

2

)
−
(
x2

2
− x+

x2 − 4x+ 4

8

)]
dx

Before integrating, let’s simplify the integrand a little bit.∫ 6

4

[(
8x− x2 +

64− 16x+ x2

2

)
−
(
x2

2
− x+

x2 − 4x+ 4

8

)]
dx

=
1

8

∫ 6

4

[(
64x− 8x2 + 256− 64x+ 4x2

)
−
(
4x2 − 8x+ x2 − 4x+ 4

)]
dx

=
1

8

∫ 6

4

[(
−4x2 + 256

)
−
(
5x2 − 12x+ 4

)]
dx

=
1

8

∫ 6

4

(
−9x2 + 12x+ 252

)
dx

This simplified integral is much easier to integrate, but let’s first notice
that each term in the integrand is a multiple of 3, so we can pull the
3 out:

1

8

∫ 6

4

(
−9x2 + 12x+ 252

)
dx

=
3

8

∫ 6

4

(
−3x2 + 4x+ 84

)
dx

=
3

8

(
−x3 + 2x2 + 84x

)∣∣∣∣6
4

=
3

8
[(−216 + 72 + 504)− (−64 + 32 + 336)]

=
3

8
(360− 304)

=21
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Thus
x

D

(x+ y) dA =
x

D1

(x+ y) dA+
x

D2

(x+ y) dA

=

∫ 4

1

∫ x

1

(x+ y) dy dx+

∫ 6

4

∫ 8−x

x/2−1

(x+ y) dy dx

=22.5 + 21

=43.5



BSolutions to Exercises

B.1 Chapter 1

1.1 We begin with the set of all positive multiples of 4 less than 50,

{4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48},

then we remove everything which is not a multiple of 6, leaving

{12, 24, 36, 48}.

1.2 (a)
{x
∣∣x = 5n for some n ∈ N}

(b)
{x
∣∣x = 5n for some n ∈ Z}

1.3 Suppose A ( B. That is, A ⊆ B but A 6= B. This means B 6⊆ A.
Since B is not a subset of A, it is not the case that every element of B is
also an element of A; in other words, there exists at least one element of B
(possibly many more, but at least one) which is not an element of A.

1.4 Here’s another way to think about subsets that might make ∅ ⊆ A a
little easier to digest. By definition, B ⊆ A if every element of B is also an
element of A. Think of this like a test: you hand me an element of B and
I tell you Pass or Fail, where I say Pass if the element is an element in A,
and Fail if it’s not. To see if B ⊆ A or not, we’ll subject every element of
B to this test. If any element of B fails the test, then B is not a subset of
A. However, if no element fails the test, then B is a subset of A.

Now, for any set A let’s try to apply this test to ∅. So, for every element
of ∅ we apply our test, and if nothing fails, then ∅ ⊆ A. There are no
elements of ∅, however, so there’s nothing to fail. There’s no failure, so
∅ ⊆ A.

B.2 Chapter 2

2.1 To show A ⊆ A ∪ B, we need to show that every element of A is also
an element of A ∪ B. Let x ∈ A be any element of A; we need to show
x ∈ A ∪ B as well. Notice, however, that A ∪ B consists of all elements

365
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which are in A or B. Since x is in A, it is certainly in A or B, and so
x ∈ A ∪B. Thus A ⊆ A ∪B.

The argument that B ⊆ A∪B is exactly the same, but with B’s where
A’s appeared above.

2.2 By definition, A ∩ B contains everything that is in both A and in B.
Thus every element of A ∩ B is an element of A, and this is exactly what
it means to say A ∩B ⊆ A. By the same token, A ∩B ⊆ B.

2.3 By assumption A ⊆ B, and so every element of A is also an element of
B. Since A∩B consists of all the elements of both A and B, and everything
in A is already an element of B, we see A ∩ B doesn’t “remove” anything
from A.

2.4 The union of the Bn’s is the open interval (0, 1). To see this, let’s let
U denote the infinite union, U =

⋃∞
n=1Bn. We want to show U = (0, 1),

which means we need to show U ⊆ (0, 1) and (0, 1) ⊆ U . It is easy to see
U ⊆ (0, 1) since each Bn ⊆ (0, 1). To see (0, 1) ⊆ U , let x ∈ (0, 1) be any
arbitrary element. Since x > 0, there exists some value of m1 such that
x > 1

2m1
as 1

2n
decreases to 0 as n increases. Notice if x > 1

2m1
, then x > 1

2M

for any M > m1. Similarly, since x < 1, there exists some m2 such that
x < 1− 1

2m2
. Note also that if M > m2, then x < 1− 1

2M
.

Now let M be the maximum of m1 and m2, M = max{m1,m2}. Then
x > 1

2M
and x < 1− 1

2M
; i.e., x ∈ BM . Since BM ⊆ U , this shows x ∈ U .

Thus we have established that (0, 1) = U .

2.5 For notation convenience, let’s write D = Ec for the moment. Then D
is made up of all the x ∈ U such that x /∈ E. So what is Dc, aka (Ec)c?
By definition, Dc is the set of all x ∈ U such that x /∈ D. But what does
it mean if x /∈ D? Since D consists of everything not in E, if x /∈ D that
must mean x ∈ E. That is Dc = E.

2.6 The complement of the empty set, by definition, is the collection of
all elements of U which are not elements of the empty set. But since the
empty set has no elements, nothing in U is in the empty set, and so the
complement of ∅ is the entire universe U .

The complement of U is the set of all elements of U which are not
elements of U – of course, there are no such elements (an element can not
simultaneously be in U and not in U , and so the set of all such elements is
empty. I.e., U c = ∅.
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2.7 To show that two sets are equal, we need to show that each is a subset of
the other. That is, we must show E\F ⊆ E\(F∩E) and E\(F∩E) ⊆ E\F .

First note that if x ∈ E \ F , that means x is in E but not in F . If x is
not in F , then in particular it’s not in F ∩E (everything in F ∩E is in F ).
Thus x ∈ E \ (F ∩ E), and so E \ F ⊆ E \ (F ∩ E).

Now suppose x ∈ E \ (F ∩ E). That is, x ∈ E but x is not in F ∩ E.
This means in particular that x /∈ F : we already know x ∈ E so if x ∈ F
as well, we would have x ∈ F ∩E. Hence x ∈ E but x /∈ F , which precisely
means x ∈ E \ F . Thus E \ (F ∩ E) ⊆ E \ F .

Together these mean that the two sets are equal.

2.8 Let x ∈ (E ∩ F )c. This means x /∈ E ∩ F ; so x is not in both of E and
F (it could be in one or the other, but it is not in their overlap). If x is in
neither E nor F , then x ∈ Ec and x ∈ F c; both of which imply x ∈ Ec∪F c.
If x ∈ E but x /∈ F , then x ∈ F c and so x ∈ Ec ∪ F c. Likewise, if x ∈ F
but x /∈ E, then x ∈ Ec so x ∈ Ec ∪ F c. This means (E ∩ F )c = Ec ∪ F c.

(The above is a little bit wordy, but the idea is actually simple. If you
don’t follow the word above, try drawing a Venn diagram and marking a
point in U for each of the three situations above.)

Now suppose x ∈ Ec ∪ F c. That is, x is in Ec or x is in F c, or it could
be in both. We again consider three cases. If x is in both Ec and F c, that
means x is in neither E nor in F , and so x is not in E ∪ F . In particular,
since E ∩ F ⊆ E ∪ F , this means x /∈ E ∩ F and so x ∈ (E ∩ F )c. If x is
in Ec but not in F c, then x /∈ E but x ∈ F . Since x /∈ E, we must have
x /∈ E ∩ F and so x ∈ (E ∩ F )c. Similarly, if x /∈ Ec but x ∈ F c we have
x ∈ E and x /∈ F . Since x /∈ F , x /∈ E ∩ F , so x ∈ (E ∩ F )c.

B.3 Chapter 3

3.1 The preimage of {3, 4, 5} is the empty set, ∅.

B.4 Chapter 4

4.1 By Exercise 2.5, we know (Ec)c = E. Combining this with Proposition ,
we have

Pr(E) = Pr((Ec)c) = 1− Pr(Ec).

4.2 Let E1, E2, E3, ... be the given non-increasing sequence. Taking the
complement of each event we get a non-decreasing sequence,

Ec
1 ⊆ Ec

2 ⊆ Ec
3 ⊆ · · · .
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By Proposition 4.9,

lim
n→∞

Pr(Ec
n) = Pr

(
∞⋃
n=1

Ec
n

)
.

By de Morgan’s laws, we can rewrite each side of the above equation as

lim
n→∞

(1− Pr(En)) = 1− Pr

(
∞⋂
n=1

En

)
.

The limit on the left can be rewritten to give

1− lim
n→∞

Pr(En) = 1− Pr

(
∞⋂
n=1

En

)
.

Multiplying each side of the equation by −1 and then adding 1 to get the
1’s to cancel gives the result,

lim
n→∞

Pr(En) = Pr

(
∞⋂
n=1

En

)
.

B.5 Chapter 5

5.1 (a) This is really a question of how many three letter sequences can
we build which begin with L. If the sequence is to begin with L, then
we have to pull L out first, so there’s only one option for what the first
letter can be in our desired sequence. For the second letter, however,
we can pull out any other letter, and there are five letters left (only
five and not six because we just used up the L). Likewise, for the third
letter there are four remaining options. So the number of three letter
sequences starting with L is 1 · 5 · 4 = 20. Hence the probability of
building a sequence beginning with L is

20

120
=

1

6
.

(Another way to think of this is that there are six options for the first
letter, and only one is L, so there’s a 1/6 chance we’ll pull out an L.)

(b) Using the reasoning behind part (a) again, notice that there’s only one
way we can pull out LA: first we pull out the L then we pull out the
A. There’s only one more letter to pick, and it can be any of the four
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remaining letters. So the number of three letter sequences we can build
that start with LA is 1 ·1 ·4 = 4. Thus the probability of us constructing
a sequence beginning with LA is

4

120
=

1

30
.

(Another way to think about this: there are 6 ·5 = 30 different ways we
can select the first two letters, but only one of them corresponds to LA.
So regardless of what happens with the third letter, the probabilitiy we
start off with LA is 1/30.)

(c) Now we want to know the probability our three-letter sequence ends
with W. Notice that we don’t care what happens with the first two
letters, so there are five options for the first letter (five and not six
because we don’t want the first letter to be W, since then we can’t use
W as the third letter), and similarly four options for the second letter.
Hence there are 5 · 4 · 1 = 20 ways to get a three-letter sequence ending
in W, so the probability we build such a sequence is 20/120 = 1/6.

5.2 Let’s make a table where the columns tell us the first person we pick,
and the row tells us the second person.

Alice Bob
Alice Cassandra
Alice Danielle
Alice Eric
Alice Fred
Alice George
Bob Cassandra
Bob Danielle
Bob Eric
Bob Fred
Bob George

Cassandra Danielle
Cassandra Eric
Cassandra Fred
Cassandra George
Danielle Eric
Danielle Fred
Danielle George

Eric Fred
Eric George
Fred George
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Counting up the combinations we see that in fact there are 21.

5.3 (a) (
5

3

)
=

5!

(5− 3)! 3!
=

5 · 4 · 3
3 · 2 · 1

=
60

6
= 10

(b) (
9

2

)
=

9!

(9− 2)!2!
=

9 · 8
2 · 1

= 36

Notice the second expression could be written as 9!
7!2!

.

(c) (
9

7

)
=

9!

(9− 7)!7!

Let’s notice this can be written as 9!
2!7!

. Hence this is the same as the
previous problem and equals 36.

(d) (
37

37

)
=

37!

(37− 37)!37!
=

37!

0! · 37!
=

37!

37!
= 1

Remember 0! = 1.

(e) (
37

0

)
=

37!

37!0!
= 1.

5.4 1. (
n

0

)
=

n!

(n− 0)! 0!
=
n!

n!
= 1.

2. (
n

n

)
=

n!

(n− n)!n!
=
n!

n!
= 1.

3. (
n

k

)
=

n!

(n− k)! k!
=

n!

k! (n− k)!
=

n!

(n− (n− k))! (n− k)!
=

(
n

n− k

)
.

5.5 (a) There are eight options for the first city we visit, seven options for
the second, and six options for the third. Thus the number of possible
itineraries is

8!

(8− 3)!
= 8 · 7 · 6 = 336
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(b) If we’re dead-set that Eindhoven must be the first city, then all we have
to do is choose the other two cities. There are seven options for the
second city, and six options for the third, so the number of itineraries
with Eindhoven being first is

7!

(7− 2)!
= 7 · 6 = 42

(c) All we care about is that we visit Helsinki, regardless of whether it’s
the first, second, or third stop on our trip. If it was the first city, then
just as in part (b) there would be 7 · 6 = 42 options for the other two
cities. Similarly, if Helsinki was the second city in our trip, then we
need to choose the first city (7 options) and the third city (6 options),
and again there are 42 itineriaries where Helsinki is the second city.
Likewise, there would be 42 itineraries where Helsinki is the third city.
In total, there are then 42 + 42 + 42 = 126 total itineraries that include
Helsinki.

An alternative way to think about this is that we need to choose the
other two cities. There are

(
7
2

)
= 21 possibilities for the other cities not

considering the order of any of the cities. Now to order all three cities,
we multiply by 3! = 6 to account for all possible orderings of all three
cities (Helsinki and whatever the other two cities we chose were). This
again gives

3! ·
(

7

2

)
= 6 · 21 = 126.

(d) If we don’t care abou the order in which we visit the cities, just the
cities we visit, then there are eight cities and we choose three of them
to get (

8

3

)
= 56

(e) From part (c) we know there are 126 ordered trips that involve Helsinki.
To get the number of unordered trips we have to divide by 2 because the
order of the other two cities does matter in that 126 calculation. For
example, in the calculation above of 126 itineraries involving Helsinki,
the itinerary Brussels, Florence, Helsinki is different from the itinerary
Florence, Brussels, Helsinki. We need to divide out the ordering of
these other two cities, and there are 2! = 2 ways to order the cities, so
there are

126

2
= 63

possible unordered trips that involve Helsinki.
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5.6 (a) The event we are interested in is

E = {BBG, BGB, BGG, GBB, GBG, GGB}.

We compute the probability of each simple event:

Pr({BBG}) =
1

2
· 3

4
· 1

4
=

3

32

Pr({BGB}) =
1

2
· 1

4
· 1

3
=

1

24

Pr({BGG}) =
1

2
· 1

4
· 2

3
=

1

12

Pr({GBB}) =
1

2
· 1

3
· 3

4
=

1

8

Pr({GBG}) =
1

2
· 1

3
· 1

4
=

1

24

Pr({GGB}) =
1

2
· 2

3
· 1

3
=

1

9

Now adding all of these together we have

Pr(E) =
3

32
+

1

24
+

1

12
+

1

8
+

1

24
+

1

9
=

143

288
≈ 0.497

So just shy of half of the time, a team will contain both a boy and a
girl.

(b) We could perform a computation similar to part (a), but we could
also make this problem easier by considering the complement. The
alternative to having at least one boy is to have all girls. The probability
of the all-girl team is

Pr({GGG}) =
1

2
· 2

3
· 2

3
=

2

9
.

Hence the probability of a team having at least one boy is

1− 2

9
=

7

9
.

B.6 Chapter 6

6.1 Simply note E ∩ F = F ∩ E. Applying the above formula to compute
Pr(F ∩ E) (just swapping E’s and F ’s) we have

Pr(F ∩ E) = Pr(F |E) · Pr(E),
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but since E ∩ F = F ∩ E we must have Pr(E ∩ F ) = Pr(F ∩ E) and so

Pr(E ∩ F ) = Pr(F |E) · Pr(E),

6.2 (a) Let’s notice that E ∪Ec = Ω. Intersecting both sides of this equa-
tion with F tells us

(E ∪ Ec) ∩ F = F.

Now distributing the intersection we can write

(E ∩ F ) ∪ (Ec ∩ F ) = F.

Since E and Ec are disjoint, this is a disjoint union and so

Pr(E ∩ F ) + Pr(Ec ∩ F ) = Pr(F ).

This means
Pr(Ec ∩ F ) = Pr(F )− Pr(E ∩ F ).

Dividing both sides by Pr(F ) we have

Pr(Ec ∩ F )

Pr(F )
=

Pr(F )− Pr(E ∩ F )

Pr(F )
= 1− Pr(E ∩ F )

Pr(F )
= 1− Pr(E|F ).

(b) This is not true; Pr(E|F ) 6= Pr(E|F c). For a simple counter-example,
consider the sample space Ω = {1, 2, 3} where each simple event is
equally likely. Let E be the event E = {1, 2} and F the event {2, 3}.
Then Pr(E|F ) = 1/2 while Pr(E|F c) = 1.

6.3 Since the Fi are pairwise disjoint, the E ∩ Fi must be disjoint as well:
if (E∩Fi)∩ (E∩Fj) was not empty, that would mean there was an element
that belonged to both Fi and Fj. This is impossible, however, since we
already know that Fi and Fj are disjoint. Hence we must have that E ∩ Fi
and E ∩ Fj are disjoint.

To show the union of the E ∩ Fi give E, simply note that

(E ∩ F1) ∪ (E ∩ F2) ∪ · · · ∪ (E ∩ Fn) = E ∩ (F1 ∪ F2 ∪ · · · ∪ Fn).

But we know Ω = F1 ∪ F2 ∪ · · · ∪ Fn. Thus

E ∩ (F1 ∪ F2 ∪ · · · ∪ Fn) = E ∩ Ω = E

since E ⊆ Ω.
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6.4 We repeat the same Bayes’ formula calcuation but now using Pr(D) =
0.90733 (notice this means also Pr(Dc) = 0.09267) and compute

Pr(D|T ) =
Pr(T |D) · Pr(D)

Pr(T |D) · Pr(D) + Pr(T |Dc) · Pr(Dc)

=
0.99 · 0.90733

0.99 · 0.090733 + 0.01 · 0.09267

=
0.8983

0.8992
= 0.99899

So if the third test comes back positive, the chance of having the disease
(assuming that the first two tests were also positive) is around 99.899%.

6.5 Here we are told Pr(U ∩ Y |S) = 0.4 and Pr(U ∩ Y |Sc) = 0.001, and
we want to compute Pr(S|U ∩ Y ). Applying Bayes’ formula we have the
following:

Pr(S|U ∩ Y ) =
Pr(U ∩ Y |S) · Pr(S)

Pr(U ∩ Y |S) · Pr(S) + Pr(U ∩ Y |Sc) · Pr(Sc)

=
0.4 · 0.75

0.4 · 0.75 + 0.001 · 0.25

=
0.3

0.30025
= 0.999167

So there is a 99.9167% chance the email is spam.

6.6 By the definition of conditional probability,

Pr(E|F ) =
Pr(E ∩ F )

Pr(F )
=

Pr(∅)
Pr(F )

= 0.

Since Pr(E) > 0, however, Pr(E|F ) 6= Pr(E) and so the events are not
independent.

6.7 Consider applying Lemma 6.2. Note Pr(E ∩ E) = Pr(E), but Pr(E) ·
Pr(E) = Pr(E)2. So, if E is independent from itself, then Lemma 6.2 tells
we must have Pr(E) = Pr(E)2. This is only possible if Pr(E) is 0 or 1.

So, it is possible for an event to be independent of itself, but this only
happens for events with probability 1 or probability 0.
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6.8

Pr(E1 ∪ E2 ∪ · · · ∪ En) = 1− Pr([E1 ∪ E2 ∪ · · · ∪ En]c)

= 1− Pr(Ec
1 ∩ Ec

2 ∩ · · · ∩ Ec
n)

= 1− Pr(E1)c · Pr(E2)c · . . . · Pr(En)c

B.7 Chapter 7

7.1 The random variable is discrete because it only takes on finitely-many
values: the only outputs of the random variable are the points scored which
is one of eighteen values.

B.8 Chapter 8

8.1 The probability X = 1 is the probability our first flip is a heads, which
because of the way the coin is weighted we know is 2/3. For X to be equal
to 2 we must have one tails and then a heads. The probability of tails is 1/3
and the probability of heads is 2/3, so the probability of tails then heads is
1
3
· 2

3
= 2

9
. Similarly, if X = 3 we must have two tails and then a heads, and

this happens with probability 1
3
· 1

3
· 2

3
= 2

27
.

In general, to get our first heads on the n-th flip we must first have n−1

tails followed by a heads, and this happens with probability
(

1
3

)n−1 · 2
3

= 2
3n

.
Thus the pmf is

p(x) =

{
2/3x if x ∈ N
0 otherwise

8.2 We need to find the probability X > 0. Since the only way X can be
greater than 0 is for X = 1 or X = 2 which have probabilities p(1) and
p(2), respectively, we have

Pr(X > 0) = p(1) + p(2) =
4

15
+

1

5
=

7

15
.

8.3 Let’s first notice that p(x) is equal to zero unless x = 1, or x = 2, or
x = 3, or ... This means we can rewrite the sum as

∑
x∈R

p(x) =
∞∑
x=1

p(x).
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Plugging in the definition of p(x) for these values we have

∞∑
x=1

p(x) =
∞∑
x=1

2

3x
=
∞∑
x=1

2 ·
(

1

3

)x
.

This is almost something we can evaluate: if we modify this series so that
it starts as x = 0 instead of x = 1 we can use the formula for a geometric
series.

Recall that if |r| < 1, then there’s a nice formula for the geometric series

∞∑
n=0

arn =
a

1− r
.

To apply this formula we need to modify our series above so that it starts
at zero instead of one. To do this, let’s notice that if we start the series at

zero, we’re adding on an extra term, namely 2 ·
(

1
3

)0
= 2. This is not part

of our original series, so we need to subtract it off:

∞∑
x=1

2 ·
(

1

3

)x
=
∞∑
x=0

2 ·
(

1

3

)x
− 2.

Now we apply the formula for a geometric series to obtain

∞∑
x=0

2 ·
(

1

3

)x
− 2 =

2

1− 1/3
− 2 =

2
2/3
− 2 =

2 · 3
2
− 2 = 3− 2 = 1.
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8.4

p(x) =



0 if x < 0
1/18 if 1 ≤ x < 2
5/36 if 2 ≤ x < 3
7/36 if 3 ≤ x < 4
10/36 if 4 ≤ x < 5
12/36 if 5 ≤ x < 6
15/36 if 6 ≤ x < 7
17/36 if 7 ≤ x < 8
20/36 if 8 ≤ x < 9
22/36 if 9 ≤ x < 10
25/36 if 10 ≤ x < 11
27/36 if 11 ≤ x < 12
30/36 if 12 ≤ x < 14
31/36 if 14 ≤ x < 16
32/36 if 16 ≤ x < 18
33/36 if 18 ≤ x < 20
34/36 if 20 ≤ x < 22
35/36 if 22 ≤ x < 24

1 if x ≥ 24

0 otherwise

8.5 Recall that the probability X = x (i.e., p(x)) is given by

p(x) = F (x)− lim
t→x−

F (t).

That is, p(x) is given by the “jumps” in the cdf. Measuring these jumps in
the cdf above gives the following:

p(x) =



1/2 if x = 0
1/10 if x = 1
1/5 if x = 2
1/10 if x = 3
1/10 if x = 3.5

0 otherwise
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8.6 Here X takes on the values 1 through 6, each with probability 1/6. The
expected value is thus

E[X] = 1 · 1/6 + 2 · 1/6 + 3 · 1/6 + 4 · 1/6 + 5 · 1/6 + 6 · 1/6 = 21/6 = 3/2

8.7

E[X] = 1 · 1/6 + 2 · 1/6 + 3 · 1/6 + 4 · 1/6 + 5 · 1/6 + 100 · 1/6 = 115/6 ≈ 19.167

8.8

E[X] =
∑
x∈R

x p(x)

= −4 · 7/15 + (−2) · 2/15 + 0 · 1/5 + 1 · 1/15 + 3 · 2/15

=
−28− 4 + 3 + 1 + 6

15

=
−22

5

8.9 By Theorem 8.5, we can write

E[mX + b] =
∑
x∈R

(mx+ b)p(x)

=
∑
x∈R

(mxp(x) + b p(x))

= m
∑
x∈R

x p(x) + b
∑
x∈R

p(x)

The first factor is simply m times E[X], and by Corollary 8.2 the second
factor is b · 1 = b, and so

E[mX + b] = mE[X] + b.

8.10

σmX+b =
√

Var(mX + b) =
√
m2Var(X) = |m|

√
Var(X) = |m|σX .

B.9 Chapter 9

9.1

F (x) =


0 if x < 0

1− p if 0 ≤ x < 1

1 if x ≥ 1
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9.2 Recall that the pdf for X ∼ Geo(q) is p(k) = (1 − q)k−1q. Note that
P (X > m) is then given by

P (X > m) =
∞∑

k=m+1

(1− q)k−1q

=
∞∑
k=m

(1− q)kq

=
∞∑
k=0

(1− q)m+kq

= (1− q)m
∞∑
k=0

(1− q)kq

= (1− q)m
∞∑
k=1

(1− q)k−1q

= (1− q)m

where the last step follows from the fact that we are summing up a pdf
over all possible values and we know this sums to 1. Likewise, P (X > n) =
(1− q)n.

Now we simply write out the formula for conditional probability:

P (X > m|X > n) =
P (X > m and X > n)

P (X > n)

=
P (X > m)

P (X > n)
(as m > n)

=
(1− q)m

(1− q)n

= (1− q)m−n

= P (X > m− n)
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9.3

E[X] =
∑
x∈R

xp(x)

=
∞∑
x=0

xe−λ
λx

x!

=
∞∑
x=1

xe−λ
λx

x!

=
∞∑
x=1

xe−λ
λ · λx−1

x(x− 1)!

= e−λλ
∞∑
x=1

λx−1

(x− 1)!

= e−λλeλ

= λ.

9.4 We write X2 = X(X − 1) +X to obtain, as before

E[X2] = E[X(X − 1) +X] = E[X(X + 1)] + E[X]

and we just computed E[X] = λ, so now we compute the other term:

E[X(X − 1)] =
∞∑
x=0

x(x− 1)e−λ
λx

x!

= λ2e−λ
∞∑
x=2

λx−2

(x− 2)!

= λ2e−λ
∞∑
x=0

λx

x!

= λ2.

Thus E[X2] = λ2 + λ, and so

Var(X) = E[X2]− E[X]2 = λ2 + λ− λ2 = λ.
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B.10 Chapter 10

10.1 If the pdf of X is f(x), then

Var(X) = E[(X − E[X])2]

=

∫ ∞
−∞

(x− E[X])2f(x) dx

=

∫ ∞
−∞

(x2 − 2xE[X] + E[X]2)f(x) dx

=

∫ ∞
−∞

x2f(x) dx− 2E[X]

∫ ∞
−∞

xf(x) dx+ E[X]2
∫ ∞
−∞

f(x) dx

= E[X2]− 2E[X] · E[X] + E[X]2 · 1
= E[X2]− E[X]2.

B.11 Chapter 11

11.1

E[X] =

∫ ∞
−∞

xf(x) dx

=

∫ B

A

x

B − A
dx

=
x2

2(B − A)

∣∣∣∣B
A

=
B2 − A2

2(B − A)

=
(B + A)(B − A)

2(B − A)

=
A+B

2
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11.2

Var(X) = E[X2]− E[X]2

=

∫ B

A

x2

B − A
dx−

(
A+B

2

)@

=
x3

3(B − A)

∣∣∣∣B
A

− A2 + 2AB +B2

4

=
B3 − A3

3(B − A)
− A2 + 2AB +B2

4

=
(B − A)(A2 + AB +B2)

3(B − A)
− A2 + 2AB +B2

4

=
A2 + AB +B2

3
− A2 + 2AB +B2

4

=
4A2 + 4AB +B2 − 3A2 − 6AB − 3B2

12

=
A2 − 2AB +B2

12

=
(A−B)2

12

=
(B − A)2

12

11.3 We simply find the value of η solving F (η) = p. That is,

η − A
B − A

= p

=⇒ η = (B − A)p+ A.

11.4 For the expected value we compute

E[X] =

∫ ∞
−∞

xf(x) dx =

∫ ∞
0

xλe−λx dx.

We perform integration by parts with

u = λx dv = e−λx dx

du = λ dx v =
−e−λx

λ
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to write the integral as

E[X] =

∫ ∞
0

xλe−λx dx

= λx · −e
−λx

λ

∣∣∣∣∞
0

−
∫ ∞

0

−e−λx

λ
· λ dx

= −xe−λx
∣∣∣∣∞
0

+

∫ ∞
0

e−λx dx

= −xe−λx
∣∣∣∣∞
0

+
−e−λx

λ

∣∣∣∣∞
0

= lim
x→∞

(
−xe−λx

)
− 0 + lim

x→∞

−e−λx

λ
− −e

0

λ
.

To compute the first limit we rewrite it as

lim
x→∞

(
−xe−λx

)
= lim

x→∞

−x
e−λx

and then apply l’Hôpital’s rule to write this as

lim
x→∞

−x
eλx

= lim
x→∞

−1

λeλx
= 0.

The second limit in the calculation of expected value above is obviously
zero, leaving

E[X] = −−e
0

λ
=

1

λ
.

To compute the variance we must calculate E[X2] which proceeds simi-
larly to the above. First, by definition,

E[X2] =

∫ ∞
−∞

xxf(x) dx =

∫ ∞
0

x2λe−λx dx.

We perform integration by parts with

u = λx2 dv = e−λx dx

du = 2λx dx v =
−e−λx

λ

to write E[X2] as

λx2 · −e
−λx

λ

∣∣∣∣∞
0

−
∫ ∞

0

−e−λx

λ
· 2λx dx = −x2e−λx

∣∣∣∣∞
0

+ 2

∫ ∞
0

xe−λx dx



APPENDIX B. SOLUTIONS TO EXERCISES 384

The first term is zero by an application of l’Hôpital’s rule. The second term
is precisely 2/λ times the integral for E[X] which we had calculated above
as 1/λ. That is,

E[X2] =
2

λ
· 1

λ
=

2

λ2
.

Now we compute the variance as

Var(X) = E[X2]− E[X]2 =
2

λ2
− 1

λ2
=

1

λ2
.

B.12 Chapter 12

12.1 First we compute the marginal pmf’s which are easily seen to be

pX(x) =

{
1/4 if x ∈ {1, 2, 3, 4}
0 otherwise

pY (y) =

{
1/4 if x ∈ {1, 4, 9, 16}
0 otherwise

The expected values are thus

E[X] =
5

2
and E[Y ] =

15

2
.

The expected value of XY is

E[XY ] =
1 + 8 + 27 + 64

4
= 25.

Thus the covariance is

Cov(X, Y ) = 25− 5

2
· 15

2
=

100− 75

4
=

25

4
.

Compared to the first part of Example ??, this tells us that the magnitude
of the covariance is related to how quickly Y increases relative to X.

12.2 We simply write out the definition of covariance and perform some
simple algebraic manipulations to make the left-hand side look like the
right-hand side.

1.

Cov(X, Y ) = E[XY ]− E[X]E[Y ]

= E[Y X]− E[Y ]E[X]

= Cov(Y,X)
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2.

Cov(X + Y, Z) = E[(X + Y )Z]− E[X + Y ]E[Z]

= E[XZ + Y Z]− (E[X] + E[Y ])E[Z]

= E[XZ] + E[Y Z]− E[X]E[Z]− E[Y ]E[Z]

= E[XZ]− E[X]E[Z] + E[Y Z]−−E[Y ]E[Z]

= Cov(X,Z) + Cov(Y, Z)

3.

Cov(λX, Y ) = E[λXY ]− E[λX]E[Y ]

= λE[XY ]− λE[X]E[Y ]

= λ (E[XY ]− E[X]E[Y ])

= λCov(X, Y )

12.3 In the first case the correlation is 1, whereas in the second case it is
−1.

12.4 Simply apply Lemma 12.9 to write

Var

(
n∑
i=1

λiXi

)
=

n∑
i=1

n∑
j=1

λiλjCov(Xi, Xj).

Now note that if the Xi are mutually independent, each of the terms
Cov(Xi, Xj) is zero when i 6= j. Eliminating these terms and keeping the
ones when i = j we have

n∑
i=1

λiλiCov(Xi, Xi) =
n∑
i=1

λ2
iVar(Xi).



CSolutions to Practice Problems

C.1 Chapter 1

1.1 (a) {n2
∣∣n ∈ N}

(b) {(−1)nn2
∣∣n ∈ N}

(c) {x
y

∣∣x, y ∈ N, y 6= 0, x = y3}

(d) {(x, y)
∣∣ y = x3}

1.2 (a)

A = {15n
∣∣n ∈ N}

B = {10n
∣∣n ∈ N}

C = {20n
∣∣n ∈ N}

D = {30n
∣∣n ∈ N}

(b) A is not a subset of B because there are elements of A which are not
elements of B, such as 15.

(c) A is not a subset of C, because there are elements of A which are not
elements of C, such as 15.

(d) A is not a subset of D, because there are elements of A which are not
elements of D, such as 15.

(e) B is not a subset of A, because there are elements of B which are not
elements of A, such as 20.

(f) B is not a subset of C, because there are elements of B which are not
elements of C, such as 10.

(g) B is not a subset of D, because there are elements of B which are not
elements of D, such as 10.

(h) C is not a subset of A, because there are elements of C which are not
elements of A, such as 20.

386
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(i) C is a subset of B. Every element of C is a multiple of 20 and so may
be written as 20n for some n ∈ N. However, 20 = 10 · 2 and so if we
let m = 2n, we can also write elements of C as 10m. That is, every
multiple of 20 is also a multiple of 10.

(j) C is not a subset of D, because there are elements of C which are not
elements of D, such as 20.

(k) D is a subset of A: every multiple of 30 is a multiple of 15 as well.

(l) D is a subset of B: every multiple of 30 is a multiple of 10 as well.

(m) D is not a subset of C, because there are elements of D which are not
elements of C, such as 30.

1.3 Since the circle of radius one centered at the origin is given by the
equation x2 + y2 = 1, the set of all points inside the circle is

A =
{

(x, y)
∣∣x2 + y2 ≤ 1

}
.

We are told that B is the set

B =

{
(x, y)

∣∣x2 +
y2

4
≤ 1

}
.

We want to show that A ⊆ B, which means that every point (x, y) ∈ A is
also in B. To show this is true, we need to show that the (x, y)-coordinates

of a point in A also satisfy the inequality x2 + y2

4
≤ 1.

Notice if x2 + y2 ≤ 1 (i.e., if (x, y) ∈ A), then y2 ≤ 1− x2. If we divide
the left-hand by 4, that makes the left-hand side even smaller. I.e.,

y2

4
≤ y2 ≤ 1− x2.

So, if x2 + y2 ≤ 1, then we know y2

4
≤ 1 − x2. Moving the x2 back to the

left-hand side we have

x2 +
y2

4
≤ 1.

Thus if (x, y) ∈ A, then (x, y) ∈ B, and so A ⊆ B.

1.4 If A ⊆ ∅, that means every element of A must also be an element of
∅. Hence if A has any elements, A is not a subset of the empty set. This
means the only subset of the empty set is empty set itself: if A ⊆ ∅, then
A = ∅.
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1.5 A and B are not the same sets. The point (1, 2) is an element of B,
but is not an element of A. However, A ⊆ B. Every point in A has the
form (

x,
x2 − 1

x− 1

)
,

while every point in B has the form

(x, x+ 1).

Given a point in A written in the form above, note that as long as x 6= 1,
the fraction in the y-coordinate can be written as

x2 − 1

x− 1
=

(x+ 1)(x− 1)

x− 1
= x+ 1.

That is, with the exception of x = 1 (since this would result in division by
zero), every point in A has the same for as the points in B. I.e., every point
of A is also a point of B and so A ⊆ B.

1.6 No: if A ( B, then there must exist at least one element of B which is
not an element of A, though every element of A is an element of B.

(If, however, it was assumed that A 6⊆ B and B 6⊆ A, then it would
be true that each set must contain at least one element which is not in the
other set.)

C.2 Chapter 2

2.1 E ∩ F consists of elements of both E and F . That is, integers that
are multiples of both 2 and 5. Since 2 and 5 have no common divisors, the
only integers which are multiples of both 2 and 5 are integers which are
multiples of 2 · 5 = 10. Hence

E ∩ F = {10n
∣∣n ∈ Z}.

2.2 Since A ∩ B contains everything in both A and B, if A ⊆ A ∩ B, this
means that everything in A is also in A ∩ B – i.e., everything in A is in
contained in B, and so B is a superset of A: A ⊆ B.

2.3 The intersection is the empty set, ∅. To see this, notice that for every
x ∈ R, there exists an n such that x /∈ (−∞,−n). For example, if x = −7,
then x /∈ (−∞,−8). Thus there are no numbers in every interval (−∞,−n),
and so the intersection of all of these intervals is empty.
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2.4 This is the set of all points in the xy-plane whose y coordinate is posi-
tive, {

(x, y)

∣∣∣∣ y > 0

}
.

C.3 Chapter 3

3.1 (a) The domain is R. The range is the set of non-negative real numbers,
{x ∈ R

∣∣x ≥ 0}. The function is neither injective nor surjective.

(b) The domain and range are both R. The function is both injective and
surjective.

(c) The domain is R, and the range is [−1, 1]. The function is neither
injective nor surjective.

(d) The domain is R sans the points where sin(x) = 0; at these points
cot(x) is undefined. Thus the the domain is R \ {πn

∣∣n ∈ N}. The
range is R. The function is surjective but not injective.

(e) The domain is [0,∞) and the range is [0,∞). The function is injective,
but not surjective.

C.4 Chapter 4

4.1 The bag contains a total of 13 coins, of these thirteen are quarters, so
the probability of drawing a quarter is 13/50.

4.2 It’s easier to think of the complement of what we want: the opposite of
getting at least one quarter is to get no quarters. The probability of getting
no quarters is the product of the probability we don’t get a quarter for the
first coin, and the probability we don’t get a quarter for the second coin.

The probability we don’t get a quarter for the first coin is the number of
non-quarters over the total number of coins: 37/50. For the second coind we
again divide the number of non-quarters by the number of coins, but keep
in mind there’s one less non-quarter and one less coin since we’ve removed
one coin. I.e., the probability the second coin is also not a quarter is 36/49.
Together, the probability that neither coin is a quarter is 37/50 · 36/49. Hence
the probability that this event does not take place (i.e., we get at least one
quarter) is

1− 37

50
· 36

49
≈ 0.456.
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4.3 Notice there are 62 = 36 possible ways to roll two dice:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

Of these, only four add up to nine: (4, 5), (5, 4), (6, 3), and (3, 6). So the
probability of rolling exactly nine is 4/36 = 1/9

4.4 This problem is easier to approach by thinking of the complement:
instead of computing the probability we get at least ten cents, let’s compute
the probability of getting less than ten cents. If we pull four coins from the
coin jar, notice that if we pull a single quarter or dime, we already have
at least ten cents. Likewise if we pull two nickels, we would already have
at least ten cents. So the only way we’re going to pull four coins and get
less than ten cents is to either pull all four pennies, or one nickel and three
pennies.

We could now compute probabilitiesby thinking there are twenty coins
and we will choose four of them, so there are

(
20
4

)
possibilities. There are

(
8
4

)
ways we could choose four of the eight pennies. There are

(
6
1

)
·
(

8
3

)
ways we

could choose one of the six nickels and three of the eight pennies. Together
these give the probability of pulling out at least ten cents is

1−

( (
8
4

)(
20
4

) +

(
6
1

)(
8
3

)(
20
4

) ) =
4439

4845
≈ 0.9162.

We could alternatively do the calculation by keeping track of the order
in which we draw coins. There are 20!

(20−4)!
= 116280 ways we could draw

coins from the jar if order mattered.
The chance of us pulling four pennies is then

8

20
· 7

19
· 6

18
· 5

17
=

1680

116280
.

The chance we first pull a nickel and then three pennies is

6

20
· 8

19
· 7

18
· 6

17
=

2016

116280
.
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Note we could also pull the nickel second, third, or fourth. These probabili-
ties correspond to simply moving that first six in the numerator above into
the second, third, or fourth position and doesn’t change the actual fraction.
That is, we need to multiply this probability by four; the probability we
pull a nickel and three pennies (regardless of the order in which the nickel
is pulled) is

4 · 2016

116280
=

8064

116280
.

Together, the probability we pull less than ten cents from the coin jar
is

1680

116280
+

8064

116280
=

9744

116280
.

Thus the probability we pull at least ten cents from the coin jar is

1− 9744

116280
=

106536

116280
≈ 0.9162.

4.5 Notice that the probability of getting the first heads on the n-th flip
is 1/2n. We are only interested in getting heads on an odd-numbered flip
(n = 1, or n = 3, or n = 5, ...), however. Writing the k-th odd number as
2k − 1, we have that the probability Alice wins on her first flip would be

1
22·1−1 = 1

2
; the probability Alice wins on her second flip (which would be

the third flip overall) is 1
22·2−1 = 1

8
; and so on. The probability that Alice

wins the game is thus the sum of these probabilities:

∞∑
k=1

1

22k−1
=
∞∑
k=1

(
1

2

)2k−1
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Notice that
(

1
2

)n−1
=
(
1
2

)n
/1/2 = 2 ·

(
1
2

)n
so the above may be written as

∞∑
k=1

(
1

2

)2k−1

= 2
∞∑
k=1

(
1

2

)2k

= 2
∞∑
k=1

((
1

2

)2
)k

= 2
∞∑
k=1

(
1

4

)k
= 2 ·

(
∞∑
k=0

(
1

4

)k
− 1

)

= 2 ·
(

1

1− 1/4
− 1

)
= 2 ·

(
1

3/4
− 1

)
= 2 ·

(
4

3
− 1

)
= 2 · 1/3

= 2/3

C.5 Chapter 5

5.1 Notice there are 11! ways to arrange the eleven distinct tiles, but
only one of them spells DRAGONFLIES. That is, the probability of randomly
spelling DRAGONFLIES is 1/11! ≈ 0.00000002505.

5.2 There are two ways to think about this problem. The first way is to
note that there are eleven tiles, so 11! arrangements. Of these, eight spell
MATHEMATICS: the reason for eight ways to spell MATHEMATICS is simply
because we can swap the two M’s and still spell MATHEMATICS, and similarly
swap the two A’s, and swap the two T’s. That is, we can perform 23 = 8
different swaps of M’s, A’s, and T’s and still spell MATHEMATICS. Thus the
probability of spelling MATHEMATICS is 8/11!.

Another way to think of this problem is that since the tiles are not
distinct, there aren’t actually 11! different arrangements: this 11! is double-
counting some of the arrangements – namely those where we swap the two
M, A, or T tiles. We need to divide out by two for each possible swap.
Dividing by two three times is the same as dividing by 23 = 8. Thus there
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are 11!/8 possible arrangements of our letters, but only one of them spells
MATHEMATICS, and so the probability is 1/(11!/8) = 8/11!.

5.3 (a) Notice we have six friends under consideration and are choosing
three of them, so there are

(
6
3

)
= 20 possible groups we are considering.

If Claire is going to be one of the friends going with us to the movies,
then we simply need to choose two of the five remaining friends, which
we can do in

(
5
2

)
= 10 different ways. Thus the probability Claire is

one of the selected friends is(
5
2

)(
6
3

) =
10

20
=

1

2

(b) If Erica and Fred are both going with us to the movies, we only need
to choose one of the four remaining friends, which we can do in

(
4
1

)
= 4

different ways. Thus the probability Erica and Fred are both selected
is (

4
1

)(
6
3

) =
4

20
=

1

5
.

(c) Notice that since there are three girls, there is only one way to pick
three girls: choose all three of them. Likewise, there is only one way to
choose all boys since there are three boys. So the probability of picking
all three friends of the same gender is

1 + 1(
6
3

) =
2

20
=

1

10
.

5.4 This is another problem where it is easier to consider the complement:
if you do not have at least two marbles of the same color, then all of the
marbles must be different colors. That is, when you select three marbles
from the urn, you must have one blue, one red, and one green. The total
number of ways to get three marbles from the urn is

(
16
3

)
. Of these we want

to consider getting one blue (of which there are
(

8
1

)
ways); one green (which

we can do
(

6
1

)
ways); and one of the two marbles (

(
2
1

)
options). That is, the

probability of getting one marble of each color is(
8
1

)
·
(

6
1

)
·
(

2
1

)(
16
3

) =
96

560
=

6

35
≈ 0.1714.

Hence the probability of getting at least two marbles of the same color is

1− 6

35
=

29

35
≈ 0.8286.
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Alternatively, you could approach the problem as follows: supposing you
get one marble of each color, you have to consider all of the permutations
of colors you could see (e.g., first you get blue, then you get green, then
you get red; or you could get red first, followed by green, followed by blue).
Since there are three colors, there are 3! = 6 different possible permutations
of colors.

The probability of you getting a blue marble first, then a green marble,
then a red marble is

8

16
· 6

15
· 2

14
=

96

3360
.

However, keep in mind you have to look at all permutations of colors, so
we need to multiply this value by 3! = 6 which gives

576

3360
=

6

35
≈ 0.1714,

and so the probability of getting at least two marbles of the same color we
again see is

1− 6

35
=

29

35
≈ 0.8286.

5.5 We must choose two ranks from the 13 possible ranks: one rank of
which we will receive three cards, and one rank of which we will receive
two cards. This gives

(
13
2

)
possible choices for the two ranks. However, this

computation doesn’t include order – i.e., it doesn’t distinguish between the
rank for the three-of-a-kind the rank for the two-of-a-kind. For example, if
our ranks are King and Queen, it does matter whether we have three Kings
and two Queens versus two Kings and three Queens. To compensate for
this, we’ll multiply our

(
13
2

)
by two. (Equivalently, we could first choose

the rank for the three-of-a-kind, then choose the rank for the two-of-a-kind:(
13
1

)(
12
1

)
= 2 ·

(
13
2

)
.)

Once we’ve chosen the ranks, we need to choose the suits. For the rank
with three cards we need to choose three of the four possible suits, which
we can do in

(
4
3

)
ways. For the rank with two cards we need to choose two

suits, which we can do in
(

4
2

)
ways. Hence the number of ways to get a full

house is 2
(

13
2

)
·
(

4
3

)
·
(

4
2

)
. Since there are

(
52
5

)
possible five card hards, the

probability of getting a full house is

2
(

13
2

) (
4
3

) (
4
2

)(
52
5

) =
3744

2598960
=

6

4165
≈ 0.00144

5.6 There are a total of twenty-six socks in the drawer and we are pulling
out two of them; there are

(
26
2

)
ways we can pull out two socks. Of these,
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there are
(

12
2

)
ways to pull out two white socks;

(
6
2

)
ways to pull out two

black socks;
(

4
2

)
ways to pull out two brown socks; and

(
4
2

)
ways to pull out

two blue socks. That is, the probability we pull out two socks of the same
color is (

12
2

)
+
(

6
2

)
+
(

4
2

)
+
(

4
2

)(
26
2

) =
66 + 15 + 6 + 6

325
=

93

325
≈ 0.2862

and so there’s about a 28.62% chance we would pull out two socks of the
same color.

5.7 There are twenty students and we want to choose three of them: there
are

(
20
3

)
ways to do this. If exactly one of our students has an Android

phone and not all students have the same phone, then it must be that
the other two students have iPhones. We want to select one of the eight
Android users, which we can do in

(
8
1

)
ways, and two of the twelve iPhone

users, which we can do in
(

12
2

)
ways. Thus the probability fo selecting one

Android user and two iPhone users is(
8
1

)
·
(

12
2

)(
20
3

) =
44

95
≈ 0.4632.

C.6 Chapter 6

6.1 The probability we pull out two blue socks, given that we’ve pulled out
two socks of the same color is

P (Two blue|Same Color) =
P (Two blue ∩ Same color)

P (Same color)

=
P (Two blue)

P (Same color)

=

(
4
2

)
/
(
26
2

)
93/325

=
6/325

93/325

=
6

93

=
2

31
≈ 0.0645

and so there is about a 6.45% chance we pull out two blue socks, given that
we pull out two socks of the same color.
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6.2 Note that

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F )

=⇒ 1/2 = 2/5 + 3/10− P (E ∩ F )

=⇒ P (E ∩ F ) = 2/5 + 3/10− 1/2 = 1/5.

We now compute

P (E|F ) =
P (E ∩ F )

P (F )
=

1/5
3/10

= 2/3.

6.3 Notice that P (E) = 50/100 = 1/2 and P (F ) = 20/100 = 1/5. The probabil-
ity both events take place would be that we pull out a marble which is both
a multiple of two and a multiple of five – that is, the marble would need to
be a multiple of 10. Hence P (E∩F ) = 10/100 = 1/10. Since P (E)P (F ) = 1/10

as well, the events are independent.

6.4 Let S be the event the student plays soccer, F the event they play
football, and B the event they play basketball. We are told in the problem
that P (S) = 0.3, P (F ) = 0.1, and P (B) = 0.25, as well as the conditional
probabilities P (B|F ∩ S) = 0.05 and P (F |S) = 0.1. We now compute

P (B ∩ F ∩ S) = P (B ∩ (F ∩ S))

= P (B|F ∩ S) · P (F ∩ S)

= P (B|F ∩ S) · P (F |S) · P (S)

= 0.05 · 0.1 · 0.3
= 0.0015

And so there is a 0.15% chance a randomly selected student plays all three
sports.

6.5 Let E be the event a randomly selected person from the UK is English;
S the event they’re Scottish; I the event they’re Irish; W the event they’re
Welsh; and R the event they have red hair. We are trying to determine
if P (E|R), P (S|R), P (I|R), or P (W |R) is most likely. We are told in the
problem that P (E) = 0.6, P (S) = 0.2, P (I) = 0.15, P (W ) = 0.05, as well
as P (R|E) = 0.15, P (R|S) = 0.75, P (R|I) = 0.65, and P (R|W ) = 0.3.
Notice that we can compute P (E|R) as

P (E|R) =
P (E ∩R)

P (R)
=
P (R ∩ E)

P (R)
=
P (R|E)P (E)

P (R)
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and similarly for P (S|R), P (I|R), and P (W |R). (This is simply Bayes’
formula.)

We can compute P (R) by the law of total probability:

P (R) = P (R|E)P (E) + P (R|S)P (S) + P (R|I)P (I) + P (R|W )P (W )

= 0.15 · 0.6 + 0.75 · 0.2 + 0.65 · 0.15 + 0.3 · 0.05

= 0.3525

Now by Bayes’ formula we have

P (E|R) =
P (R|E)P (E)

P (R)
=

0.15 · 0.6
0.3525

=
0.09

0.3525
≈ 0.2553

P (S|R) =
P (R|S)P (S)

P (R)
=

0.75 · 0.2
0.3525

=
0.15

0.3525
≈ 0.4255

P (I|R) =
P (R|I)P (I)

P (R)
=

0.65 · 0.15

0.3525
=

0.0975

0.3525
≈ 0.2766

P (W |R) =
P (R|W )P (W )

P (R)
=

0.3 · 0.05

0.3525
=

0.015

0.3525
≈ 0.0426

So, a randomly selected redhead has about an 25.53% chance of being
English, a 42.55% chance of being Scottish, a 27.66% chance of being Irish,
and a 4.26% chance of being Welsh. So the redhead is most likely to be
Scottish, and second most likely to be Irish.

6.6 (a) Let C be the event a math major is enrolled in the course, F the
event they are a freshmen, So the event they’re a sophomore, J the
event they’re a junior, and Se the event they’re a senior. By the law of
total probability we have

P (C) = P (C|F )P (F ) + P (C|So)P (So) + P (C|J)P (J) + P (C|Se)P (Se)

= 0 · 0.2 + 1/3 · 3/10 + 1/2 · 1/4 + 1/4 · 1/4

= 1/10 + 1/8 + 1/16

= 16/160 + 20/160 + 10/160

= 46/160 = 23/80.
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(b) By Bayes’ formula we simply compute

P (J |C) =
P (C|J)P (J)

P (C)

=
1/2 · 1/4

23/80

=
1/8

23/80

=
80/8

23
= 10/23

6.7 Let F be the event that a random graduate works in finance, and
M the event they were a math major, C the event they were a computer
science major, P the event they were a physics major, and O the event they
majored in something else. In the problem we are told P (F |M) = 0.15,
P (F |C) = 0.05, P (F |P ) = 0.1, and P (F |O) = 0.03, as well as P (M) =
0.05, P (C) = 0.1, P (P ) = 0.03, and so we must have P (O) = 0.82.

To compute the probability someone working in finance was a mathe-
matics major, we want P (M |F ) which we can compute with Bayes formula:

P (M |F ) =
P (M ∩ F )

P (F )

=
P (F ∩M)

P (F )

=
P (F |M)P (M)

P (F |M)P (M) + P (F |C)P (C) + P (F |P )P (P ) + P (F |O)P (O)

=
0.15 · 0.05

0.15 · 0.05 + 0.05 · 0.1 + ·0.1 · 0.03 + 0.03 · 0.82

=
0.0075

0.0401
≈0.187

So there is about an 18.7% chance the financier was a mathematics major.

6.8 Let T be the event that we buy a training flat, and let S be the event
the shoe was made in South Korea, A the event it was made in Australia,
and V the event it was made in Venezuela. We want to find the probability
the shoe was produced in South Korea given that we buy a training flat:
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P (S|T ). By Bayes’ formula we can write this as

P (S|T ) =
P (T |S)P (S)

P (T )

=
P (T |S)P (S)

P (T |S)P (S) + P (T |A)P (A) + P (T |V )P (V )

=
0.5 · 0.6

0.5 · 0.6 + 0.75 · 0.2 + 0.6 · 0.2

=
0.3

0.57

=
30

57
=

10

19
≈ 0.5263

C.7 Chapter 7

7.1 The random variable is continuous because it can, in principle, take on
any value in the interval [0,∞). Even if there were an upper bound on how
far the ball could roll (e.g., if the ball could not roll more than ten feet), the
random variable would still be continuous (in the case of the ball rolling at
most ten feet, the range of the random variable would be [0, 10]).

7.2 The random variable is discrete because the range of the random vari-
able is infinite, but the values in this range have a well-defined first, second,
third, and so on. The first value is 0, the second value is 1, the third value
is 2, etc.

7.3 The random variable is continuous because the range, the set of all
values you could potentially realize as an output of the random variable, is
the interval [0, 100].

C.8 Chapter 8

8.1 To solve this problem we want to make use of part (3) of Theorem 8.3
which says that for F to be a cdf, we must have lim

x→∞
F (x) = 1. As x goes

to infinity, the value of F (x) is made up of more and more and more terms,
and in the limit we have

lim
x→∞

F (x) =
∞∑
j=0

k

3j
.
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This is a geometric series, however, and so this is equal to

∞∑
j=0

k

3j
=

k

1− 1/3
=

3k

2
.

For this to equal one, we require k = 2/3.

8.2 Solution

E[X − µ] = E[X]− µ = µ− µ = 0.

8.3

E[f(X)] = f(1) · 1/10 + f(2) · 1/5 + f(3) · 2/5 + f(4) · 3/10

= 0 + (−2) · 1/5 + (−2) · 2/5 + 0

= (−2) · 3/5

= − 6/5

8.4 From the CDF we can recover the PDF as

p(x) = F (x)− lim
y→x−

F (y).

I.e., the pdf is given by the “jumps” in the CDF. Here this gives us

p(x) =



1/4 if x = 0
1/8 if x = 1
3/8 if x = 3
1/4 if x = 5

0 otherwise

Now we compute the expected value:

E[X] = 0 · 1/4 + 1 · 1/8 + 3 · 3/8 + 5 · 1/4

= 0 + 1/8 + 9/8 + 5/4

= 20/8

= 5/2

8.5 From the cdf we can recover the pmf as

p(x) = F (x)− lim
y→x−

F (y).
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I.e., the pmf is given by the “jumps” in the CDF. Here this gives us

p(x) =



1/4 if x = 0
1/8 if x = 1
3/8 if x = 3
1/4 if x = 5

0 otherwise

8.6 We create a table of all sums of rolls of two dice. In the table below
the label of the rows tell us the value of one of the dice, and the label of
the columns tell us the value of the other die.

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

We can now determine the pmf of the random variable by counting the
number of times each sum occurs in this table of 36 possible sums.

p(x) =



1/36 if x = 2
2/36 if x = 3
3/36 if x = 4
4/36 if x = 5
5/36 if x = 6
6/36 if x = 7
5/36 if x = 8
4/36 if x = 9
3/36 if x = 10
2/36 if x = 11
1/36 if x = 12

0 otherwise

Now we compute the expected value:

E[X] = 2 · 1/36 + 3 · 2/36 + 4 · 3/36 + · · ·+ 10 · 3/36 + 11 · 2/36 + 12 · 1/36

= 7
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We also compute the expected value of the square,

E[X2] = 22 · 1/36 + 32 · 2/36 + 42 · 3/36 + · · ·+ 102 · 3/36 + 112 · 2/36 + 122 · 1/36

= 329/6

And finally we compute the variance:

Var(X) = E[X2]− E[X]2 =
329

6
− 49 =

287

6
≈ 47.8333.

8.7 (a) To make the pmf easier to compute, let’s suppose we can distinguish
different sides of the same color. For example, suppose the sides on the
first die are R1, R2, R3, B1, B2, and G; and the sides on the second
die are R1, R2, B1, B2, G1, G2. Now let’s consider a table listing all 36
possible rolls of these dice with distinguishable colors. We’ll list these
as ordered pairs where the first entry tells us the outcome of the first
die, and the second entry tells us the outcome of the second die.

(R1, R1), (R1, R2), (R1, B1), (R1, B2), (R1, G1), (R1, G2)

(R2, R1), (R2, R2), (R2, B1), (R2, B2), (R2, G1), (R2, G2)

(R3, R1), (R3, R2), (R3, B1), (R3, B2), (R3, G1), (R3, G2)

(B1, R1), (B1, R2), (B1, B1), (B1, B2), (B1, G1), (B1, G2)

(B2, R1), (B2, R2), (B2, B1), (B2, B2), (B2, G1), (B2, G2)

(G,R1), (G,R2), (G,B1), (G,B2), (G,G1), (G,G2)

Now notice that in this table, where we’ve distinguished the sides, each
of the thirty-six outcomes is equally likely. We could now replace each
entry in this table by the corresponding score:

10, 10, 4, 4, 8, 8

10, 10, 4, 4, 8, 8

10, 10, 4, 4, 8, 8

4, 4, 10, 10, 3, 3

4, 4, 10, 10, 3, 3

8, 8, 3, 3, 10, 10
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Notice in this table 10 occurs twelve times, 8 occurs eight times, 4
occurs ten times, and 3 occurs six times. Thus, the pmf is

p(x) =



6/36 if x = 3
10/36 if x = 4
8/36 if x = 8
12/36 if x = 10

0 otherwise.

(b) Using the pmf from part (a) we have

E[X] = 3 · 6/36 + 4 · 10/36 + 8 · 8/36 + 10 · 12/36 =
242

36
≈ 6.722.

8.8 If the insurance company charges each customer a premium of P dol-
lars, then the company’s profit for that customer is P minus any money
the company spends covering the customer’s claims. Since there is a $500
deductible, the customer pays the first $500 of a claim and the company
pays the remainder. E.g., if the customer is in a $5000 accident, then the
company pays $4500 for the accident. This means the company’s profit
for such a customer is P − 4500. Note that for the trivial accidents the
company simply gains a profit of P from the customer since nothing is paid
in the accident. Thus the expected profit with premium P is

P · 0.8 + (P − 500) · 0.1 + (P − 4500) · 0.08 + (P − 9500) · 0.02

=P − 50− 360− 190

=P − 500

If this is to be $100, then the company needs to charge a premium of $600.

8.9 We simply plug into the formula for expected value to obtain

E[X] =
∑
x∈R

xp(x) =
∞∑
n=1

2n · 1/2n =
∞∑
n=1

1 =∞.

(Note that in some books the expected value is required to be finite
when it exists, and by that definition this random variable’s expectation
does not exist.)

8.10 The expected revenue from a random vehicle under the toll is

$1 · 0.6 + $2.5 · 0.4 = $0.6 + $1 = $1.6.

Thus the expected revenue from 25 random cars is

25 · $1.6 = $40.
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C.9 Chapter 9

9.1 Notice first that this is a binomial random variable with n = 5 trials
(the questions) and probability of success (guessing the right answer) q =
1/3: X ∼ Binomial(5, 1/3). The pdf of this random variable is thus

p(x) =

{(
5
x

)
(1/3)x (2/3)5−x if x = 0, 1, 2, 3, 4, 5

0 otherwise

We then compute

P (X ≥ 4) = P (X = 4) + P (X = 5)

= p(4) + p(5)

=

(
5

4

)
(1/3)4 (2/3)1 +

(
5

5

)
(1/3)5 (2/3)0

= 5 · 1/81 · 2/3 + 1 · 1/243 · 1

=
10

243
+

1

243

=
11

243

9.2 Notice the number of acceptable piston heads in the sample is given by
a hypergeometric random variable X where the population size is N = 50,
the sample size is n = 8, and the number of successes (acceptable piston
heads) in the population is k = 47. The probability we select exactly six
acceptable piston heads is given by plugging in x = 6 into the pdf for the
hypergeometric random variable:

P (X = 6) = p(6)

=

(
47
6

) (
3
2

)(
50
8

)
=

3

50
= 0.06

9.3 Let X be the number of corrupted bits, so X ∼ Binomial(7, 1/10). The
original message can be reconstructed if X = 0 or X = 1, and this happens
with probability

Pr(X = 0) + Pr(X = 1) =

(
7

0

)
(1/10)0 (9/10)7 +

(
7

0

)
(1/10)0 (9/10)7

=
531441

625000
≈ 0.8503
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So there’s about an 85% chance the original message can be reconstructed.

C.10 Chapter 10

10.1 By differentiating over each interval we have

f(x) =



0 if x < 0
x
8

if 0 < x < 2

0 if 2 < x < 4
1
4

if 4 < x < 7

0 if x > 7

0 otherwise

10.2 (a) It’s clear that f(x) ≥ 0 for all x, so we only need to verify that it
integrates to 1: ∫ ∞

−∞
f(x) dx =

∫ ∞
10

10

x2
dx

= lim
b→∞

∫ b

10

10x−2 dx

= lim
b→∞

−10

x

∣∣∣∣b
10

= lim
b→∞

(
−10

b
− −10

10

)
= lim

b→∞

(
−10

b
+ 1

)
= 1

(b) It’s clear that F (x) = 0 for x < 10. For x > 10 we compute

F (x) =

∫ x

10

10

t2
dt

=
−10

t

∣∣∣∣x
10

=
−10

x
− −10

10

= 1− 10

x
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and thus

F (x) =

{
0 if x < 10

1− 10
x

if x ≥ 10

10.3 (a) Since the pdf must integrate to 1 we have∫ 2

0

k(4x− 2x2) dx = 1

=⇒ k

(
2x2 − 2x3

3

)∣∣∣∣2
0

= 1

=⇒ k(8− 16/3) = 1

=⇒ 8k

3
= 1

=⇒ k =
3

8
.

To see that f(x) ≥ 0 for this choice of k, notice that f(0) = f(2) = 0,
and for x between 0 and 2 we have f ′(x) = 6(1 − x) which has a root
at x = 1. To the left of this (on the interval (0, 1)) we thus see that
f is increasing; to the right (on (1, 2)) the function is decreasing, but
it doesn’t intersect the x-axis until x = 2. Hence the function is non-
negative for all x.

(b)

P (1/2 < X < 3/2) =

∫ 3/2

1/2

3

8
(4x− 2x2) dx

=
3

8

(
2x2 − 2x3

3

)∣∣∣∣3/2
1/2

=
3

8

[(
9

2
− 9

4

)
−
(

1

2
− 1

12

)]
=

3

8

[
9

4
− 5

12

]
=

3

8
· 11

6

=
11

16
= 0.6875
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(c)

E[X] =

∫ 2

0

x
3

8

(
4x− 2x2

)
dx

=

∫ 2

0

3

8

(
4x2 − 2x3

)
dx

=
3

8

(
4x3

3
− x4

2

)∣∣∣∣2
0

=
3

8

(
32

3
− 8

)
=

3

8
· 8

3
= 1

10.4 By differentiating over each interval we have

f(x) =



0 if x < 0
x
8

if 0 < x < 2

0 if 2 < x < 4
1
4

if 4 < x < 7

0 if x > 7

0 otherwise

10.5 By the definition of conditional probability, this is equal to

P (X ≤ 2/3 ∩X ≥ 1/2)

P (X ≥ 1/2)
=
P (1/2 ≤ X ≤ 2/3)

P (X ≥ 1/2)

Now we just compute each of these probabilities by integrating the pdf:

P (1/2 ≤ X ≤ 2/3 =

∫ 2/3

1/2

4x3 dx

= x4

∣∣∣∣2/3
1/2

=
16

81
− 1/16
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P (X ≥ 1/2) =

∫ 1

1/2

4x3 dx

= x4

∣∣∣∣1
1/2

= 1− 1/16

=
15

16

Together these give that the desired probability is 35
243
≈ 0.144.

10.6 (a) The median of X is the 50-th percentile, so we need to find the

value of T such that
∫ T
−∞ f(x) dx = 1/2.

Since the pdf is only supported in [0, 1], it’s clear this value of T must
occur in [0, 1] and so we have∫ T

−∞
f(x) dx =

1

2

=⇒
∫ T

0

2(1− x) dx =
1

2

=⇒
(
2x− x2

)∣∣∣∣T
0

=
1

2

=⇒ 2T − T 2 =
1

2

That is, our T is a solution to the quadratic T 2 − 2T + 1/2 = 0. Using
the quadratic formula, we have

T =
2±

√
4− 4 · 1 · 1/2

2
=

2±
√

2

2
.

Of these two solutions, however, only 2−
√

2
2

is in the interval [0, 1], and

so our median is T = 2−
√

2
2

.

(b) We compute Var(X) using the formula Var(X) = E[X2] − E[X]2, so
first we need to compute these expected values.
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E[X] =

∫ 1

0

2x(1− x) dx

=

∫ 1

0

(2x− 2x2) dx

=

(
2x2

2
− 2x3

3

)∣∣∣∣1
0

= (1− 2/3)− (0− 0)

= 1/3

E[X2] =

∫ 1

0

2x2(1− x) dx

=

∫ 1

0

(2x2 − 2x3) dx

=

(
2x3

3
− 2x4

4

)∣∣∣∣1
0

= (2/3− 1/2)− (0− 0)

= 4/6− 3/6

= 1/6

Now we compute

Var(X) = E[X2]− E[X]2 = 1/6− 1/9 =
3− 2

18
= 1/18
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C.11 Chapter 11

11.1 (a) Notice if |X| > 1/2, that means that either X > 1/2 or X < −1/2.
We thus compute

P (|X| > 1/2) = P (X < −1/2) + P (X > 1/2)

=

∫ −1/2

−1

dx

2
+

∫ 1

1/2

dx

2

=
x

2

∣∣∣∣−1/2

−1

+
x

2

∣∣∣∣1
1/2

= −1/4− (−1/2) + 1/2− 1/4

= 1− 1/2

= 1/2

(b) Notice that for 0 ≤ x ≤ 1, |X| < x means −x < X < x. Hence,
assuming 0 ≤ x ≤ 1, we have

P (|X| < x) =

∫ x

−x

dt

2
=
t

2

∣∣∣∣x
−x

=
x

2
− −x

2
= x.

Clearly for x < 0 we have P (|X| < x) = 0 and for x > 1 we have
P (|X| < x) = 1. Thus the cdf is

F (x) =


0 if x < 0

x if 0 ≤ x < 1

1 if x ≥ 1

(Notice this means |X| ∼ Uni([0, 1]).)

11.2 If X is the random variable representing the number of accidents, then
we are told in the problem X ∼ N(45, 10). We want to compute P (X > 60),
and to do this we will consider the complementary event X ≤ 60 which we
can find by transforming X into the standard normal random variable Z
and using the table of Φ values on the first page of the exam.
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P (X > 60) = 1− P (X ≤ 60)

= 1− P
(
X − 45

10
≤ 60− 45

10

)
= 1− P (Z ≤ 15/10)

= 1− Φ(1.5)

= 1− 0.9332

= 0.0668

11.3 We are trying to find the 70-th percentile of the random variable X ∼
N(8, 0.5). That is, we want to find the value of x such that P (X ≤ x) = 0.7.
To compute this we will transform X into the standard normal Z ∼ N(0, 1),
whose 70-th percentile we can look up in the table on the first page of the
exam.

The transformation to the standard normal is given by Z = X−8
0.5

. Once
transformed to the standard normal we wish to find the value of η such that
P (Z ≤ η) = 0.7. We denote the cdf of the standard normal by Φ, so this
is the same as finding the value of η such that Φ(η) = 0.7. From the table
on the first page of the exam we see that Φ(0.5244) = 0.7, and hence the
corresponding η for the standard normal is 0.5244. We then transform this
to the corresponding value for the original random variable X:

x− 8

0.5
= 0.5244

=⇒ x− 8 = 0.5 · 0.5244 = 0.2622

=⇒ x = 8.2622

So the 70-th percentile of birth weights in the US is 8.2622 pounds.

C.12 Chapter 12

12.1 (a)

p(0,−2) + p(0,−1) + p(1,−2) + P (1,−1) + p(2,−2) + p(1,−1) = 0.29
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(b) For each x value we simply add up all possible y values.

pX(x) =



0.2 if x = 0

0.2 if x = 1

0.2 if x = 2

0.2 if x = 3

0 otherwise

(c) For each y value we simply add up all possible x values.

pY (y) =


0.27 if y = −2

0.17 if y = −1

0.22 if y = 1

0.14 if y = 2

(d) For each (x, y) pair in the table we multiply the x and y values and the
corresponding probability and add them all together:

E[XY ] =0 · −2 · 0.01 + 0 · −1 · 0 + 0 · 1 · 0.05 + 0 · 2 · 0.05+

1 · −2 · 0 + 1 · −1 · 0.1 + 1 · 1 · 0.1 + 1 · 2 · 0+

2 · −2 · 0.07 + 2 · −1 · 0.02 + 2 · 1 · 0.04 + 2 · 2 · 0.07+

3 · −2 · 0.1 + 3 · −1 · 0.05 + 3 · 1 · 0.03 + 3 · 2 · 0.02

=− 0.5

(e) For each value of X and Y we add the X and Y together, and consider
the probability of obtaining the given X and Y .
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X Y X + Y p(x, y)
0 −2 −2 0.1
0 −1 −1 0
0 1 1 0.05
0 2 2 0.05
1 −2 −1 0
1 −1 0 0.1
1 1 2 0.1
1 2 3 0
2 −2 0 0.07
2 −1 1 0.02
2 1 3 0.04
2 2 4 0.07
3 −2 1 0.1
3 −1 2 0.05
3 1 4 0.03
3 2 5 0.02

Now for each possible value of X + Y we add up the probabilities for
each combination of X and Y that gave us that particular sum.

pX+Y (n) =



0.1 if n = −2

0 if n = −1

0.17 if n = 0

0.17 if n = 1

0.2 if n = 2

0.04 if n = 3

0.1 if n = 4

0.02 if n = 5

0 otherwise

12.2 (a) First let’s realize what the area where f(x, y) 6= 0 looks like. Since
0 ≤ x and 0 ≤ y, certainly this region is contained in the first quadrant
of the plane. Additionally, we require x + y ≤ 1. If we note that this
can be rewritten as y ≤ 1 − x, we see the area we are interested in is
the following:
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x

y

Note that the x values in this triangle range from x = 0 up to x = 1,
whereas the values of y depend on x. In particular, for a given x value,
the y-values can start at y = 0 and go up to the line y = 1 − x. This
tells us ∫ 1

0

∫ 1−x

0

kxy dy dx = 1.

Now we compute the double integral,∫ 1

0

∫ 1−x

0

kxy dy dx =

∫ 1

0

kxy2

2

∣∣∣∣1−x
0

dx

=

∫ 1

0

kx(1− x)2

2
dx

=
k

2

∫ 1

0

(
(x− 2x2 + x3

)
dx

=
k

2

(
x2

2
− 2x3

3
+
x4

4

)∣∣∣∣1
0

=
k

2

(
1

2
− 2

3
+

1

4

)
=
k

2
· 1

12

=
k

24

Since this must equal 1, we have k = 24.

(b) Note that if Y ≥ X, then the y-value must be above the line y = x.
That is, the region were are interested in is the dark shaded region
below:
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x

y

We want to find the probability (X, y) is in this dark region, so we
must integrate the density function over this region. Note that here the
x values range from x = 0 to x = 1/2 (we find x = 1

2
by finding the

intersection of the lines y = x and y = 1 − x). Once x is chosen, the
y values range from y = x up to y = 1 − x, the top and bottom lines
bounding the dark shaded region above. Our integral is thus∫ 1/2

0

∫ 1−x

x

24xy dy dx

=

∫ 1/2

0

24xy2

2

∣∣∣∣1−x
x

dy dx

=

∫ 1/2

0

(
12x(1− x)2 − 12x · x2

)
dx

=

∫ 1/2

0

(
12x− 24x2

)
dx

=
(
6x2 − 8x3

)∣∣∣∣1/2
0

=
6

4
− 1

=
1

2

(You might think that the probability is intuitively one-half because we
are integrating over half of the original triangle. Here this integral gave
us one half because the density function has some symmetry: switching
the roles of x and y wouldn’t change the function. If our density function
was slightly more complicated though, say it had the form kx2y, then
this would no longer be true and the probability would not be 1/2, even
though we’re integrating over half the original area.)
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(c) To answer this we must compute the marginal pdfs of X and Y .

fX(x) =

{∫ 1−x
0

24xy dy if 0 ≤ x ≤ 1

0 otherwise

=

{
12x− 24x2 + 12x3 if 0 ≤ x ≤ 1

0 otherwise

fY (y) =

{∫ 1−y
0

24xy dx if 0 ≤ y ≤ 1

0 otherwise

=

{
12y − 24y2 + 12y3 if 0 ≤ y ≤ 1

0 otherwise

Now it is obvious that the random variables are not independent: f(x, y) 6=
fX(x)fY (y) since the expression on the right, for example, has a term
144x3y3.

12.3 Notice that since the density function is a constant, integrating it over
any region simply gives the area of that region times the constant:

x

E

1

π
dA =

1

π
Area(E).

(In general integrating 1 over a region gives the area of that region. This
is easy to see if you think about approximating the integral with Riemann
sums, since each term of the sum will be the area of a small rectangle in the
region, and we’re just adding up all of those terms, giving back the area of
the original region.)

Thus the probability we land in the circle of radius r is 1
π
· πr2 = r2.

You could do this the “long way” and write out the double integral
and explicitly evaluate it. If you do it that way, the integral becomes
much easier in polar coordinates. In Cartesian (aka (x, y)-coordinates) the
integral requires a trig substitution.

12.4 We want to find the function p such that p(n) gives the probability
X + Y = n. Note that there are several ways X + Y could equal n: it
could be that X = 0 and Y = n, or X = 1 and Y = n − 1, or X = 2 and
Y = n − 2, ..., X = n − 1 and Y = 1, or X = n and Y = 0. We want
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to compute the probability of each of these possibilities and add them all
together. This gives the following for n ≥ 0 an integer:

p(n) = P (X + Y = n)

=
n∑
k=0

P (X = k)P (Y = n− k)

=
n∑
k=0

pX(k)pY (n− k)

=
n∑
k=0

e−λX
λkX
k!
e−λY

λn−kY

(n− k)!

= e−(λX+λY )

n∑
k=0

1

k!(n− k)!
λkX · λn−kY

= e−(λX+λY )

n∑
k=0

1

n!
· n!

k!(n− k)!
λkX · λn−kY

= e−(λX+λY ) 1

n!

n∑
k=0

(
n

k

)
λkX · λn−kY

= e−(λX+λY ) (λX + λY )n

n!

where the last equality follows from the binomial theorem.
Notice this means the sum of two independent Poisson random variables

with parameters λX and λY is a Poisson random variable with parameter
λX + λY .

C.13 Chapter 14

14.1 Notice the likelihood function for n samples is 1
(2θ)n

. This function

is strictly decreasing on the interval (0,∞) and has no absolute minimum.
However, note each Xi must occur in the range [−θ, θ] – equivalently, each
|Xi| occurs in the range [0, θ]. To maximize the likelihood we need to
choose the smallest value of θ (since the likelihood function is decreasing)
that contains all of the |Xi| values, and this is given by the maximum of
the |Xi|:

θ̂ = max {|X1|, |X2|, ..., |Xn|} .
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14.2 The likehood function is

L(λ) =
n∏
i=1

f(xi;λ) = λne−λ(x1+···+xn),

and so the log-likelihood function is

log(L(λ)) = n log(λ)− λ(x1 + · · ·+ xn).

To maximize this we find our critical points by differentiating with respect
to λ and setting equal to zero:

d

dλ
log(L(λ)) = 0

=⇒ n

λ
− (x1 + · · ·+ xn) = 0

=⇒ λ =
n

x1 + · · ·+ xn
.

Notice that the second derivative is

d2

dλ2
log(L(λ)) =

d

dλ
nλ−1 =

−n
λ2

which is always negative. That is, this function is concave down every-
where, so our critical point is a maximum. Hence the maximum likelihood
estimator is

λ̂ =
n

x1 + · · ·+ xn
.

14.3

E[X] =

∫ ∞
−∞

xf(x) dx =

∫ ∞
0

x
xα−1e−x/β

βαΓ(α)
dx =

1

βαΓ(α)

∫ ∞
0

xαe−x/β dx

Now perform the substitution u = x/β, du = 1
β
dx, so x = βu and

dx = βdu. This turns the integral above into

E[X] =
βα+1

βαΓ(α)

∫ ∞
0

uαe−u du

=
β

Γ(α)
Γ(α + 1)

=
β

Γ(α)
αΓ(α)

= αβ
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The hint to the problem says we need to use the pdf of Γ(α + 2, β).
Let’s first write out what this pdf looks like:

xα+1e−x/β

βα+2Γ(α + 2)
=

xα+1e−x/β

βα+2(α + 1)Γ(α + 1)
=

xα+1e−x/β

βα+2(α + 2)αΓ(α)
.

Now let’s write out what E[X2] is:

E[X2] =

∫ ∞
0

x2x
α−1e−x/β

βαΓ(α)
dx =

∫ ∞
0

xα+1e−x/β

βαΓ(α)
dx

To turn this into the the pdf for Γ(α + 2, β), we need to multiply and
divide by β2(α + 1)α:

E[X2] =

∫ ∞
0

xα+1e−x/β

βαΓ(α)
dx

=
β2(α + 1)α)

β2(α + 1)α

∫ ∞
0

xα+1e−x/β

βαΓ(α)
dx

= β2(α + 1)α

∫ ∞
0

xα+1e−x/β

β2(α + 1)α · βαΓ(α)
dx

= β2(α + 1)α

∫ ∞
0

xα+1e−x/β

βα+2Γ(α + 2)
dx

Since the integral on the right-hand side above is the integral of a pdf,
we know it evaluates to 1 and we are left with

E[X2] = β2(α + 1)α

(a)(b) The method of moments tells us we should equate the first and second
moments with the first and second sample moments, respectively:

E[X] =
x1 + x2 + · · ·+ xn

n

E[X2] =
x2

1 + x2
2 + · · ·+ x2

n

n

Plugging in our first and second moments for the Gamma distribution
on the left-hand sides above gives us

αβ =
x1 + x2 + · · ·+ xn

n

β2(α + 1)α =
x2

1 + x2
2 + · · ·+ x2

n

n
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Notice we can solve the first equation for β in terms of α:

β =
x1 + x2 + · · ·+ xn

αn

We can plug this into the second equation to obtain(
x1 + x2 + · · ·+ xn

αn

)2

(α + 1)α =
x2

1 + x2
2 + · · ·+ x2

n

n

Multiplying out the left-hand side gives

(x1 + · · ·+ xn)2 (α + 1)

αn2
=
x2

1 + x2
2 + · · ·+ x2

n

n
.

Now we multiply both sides by αn2 and distribute on the left-hand side
to obtain

α (x1 + · · ·+ xn)2 + (x1 + · · ·+ xn)2 = αn
(
x2

1 + · · ·+ x2
n

)
Now move everything to one side,

α (x1 + · · ·+ xn)2 + (x1 + · · ·+ xn)2 − αn
(
x2

1 + · · ·+ x2
n

)
= 0

Factor out the α,

α
[
(x1 + · · ·+ xn)2 − n

(
x2

1 + · · ·+ x2
n

)]
+ (x1 + · · ·+ xn)2 = 0

And finally solve for α:

α =
− (x1 + · · ·+ xn)2

(x1 + · · ·+ xn)2 − n (x2
1 + · · ·+ x2

n)

Earlier we had solved for β in terms of α, but now we can plug the
above back in and we have

β =
(x1 + · · ·+ xn)2 − n (x2

1 + · · ·+ x2
n)

−n (x1 + · · ·+ xn)

C.14 Chapter 15

15.1 First note the sample mean of the GPA’s above is 2.8. For a 95%
confidence interval we use z0.025 in the formula

(X − zα/2
σ√
n
,X + zα/2

σ√
n

)

This gives us

(2.8− 1.96 · 0.5√
10
, 2.8 + 1.96 · 0.5√

10
) ≈ (2.49, 3.11).
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15.2 The sample mean with sample size n from a normally distributed
population with mean µ and standard deviation σ is a normal random
variable with mean µ and standard deviation σ√

n
. Transforming this to the

standard normal we can build the confidence interval (−1.96, 1.96), and then
perform some algebra to convert this back to our original (non-standard)
normal random variable. This boils down to

(X − zα/2
σ√
n
,X + zα/2

σ√
n

).

In our situation this becomes

(78− 1.96 · 1.5

4
, 78− 1.96 · 1.5

4
) = (77.625, 78.735).

C.15 Chapter 16

16.1 (a) The null hypothesis is H0 : µ = 90 and the alternative hypothesis
is Ha : µ > 90. Using µ = 90 and approximating the standard deviation
with σ ≈ S = 17, the sample mean X should be normal with mean
90 and standard deviation approximately 17√

50
≈ 2.4. Hence when we

standardize, we compute a z-value of

95− 90
17/
√

50
= 2.0797.

The rejection region for an upper-tailed test with significance level α =
0.05 is (1.645,∞). Since our z-value is in the rejection region, we reject
the null hypothesis.

(b) The only difference between this problem and part (a) is that the re-
jection region for α = 0.01 is (2.326,∞). Our z-value is not in the
rejection region, so we fail to reject the null hypothesis at the α = 0.01
confidence interval.

16.2 The null hypothesis here is that the old battery design is just as
good as the new battery design; on average batteries with the new design
would have the same average lifetime, µ = 8, as the original batteries.
The alternative hypothesis is that the new design is better and the average
lifetime is better, µ > 8.

The rejection region, where would reject the null hypothesis is (2.33,∞).
The sample mean from a sample of sixteen batteries should be normally dis-
tributed with mean µ = 8 and standard deviation σ = 0.25 (since 15 min-
utes is one quarter of an hour) if the null hypothesis is true. We standardize



APPENDIX C. SOLUTIONS TO PRACTICE PROBLEMS 422

this to obtain
8.25− 8
0.25/

√
16

=
0.25
0.25/4

=
4 · 0.25

0.25
= 4.

This is deep into the rejection region, and so we reject the null hypothesis:
there is significant evidence that the new battery design lasts longer on
average than the old design.
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